Diff of /README.md [000000] .. [b52384]

Switch to unified view

a b/README.md
1
# AssemblyNet: 3D Whole Brain MRI Segmentation
2
3
This repository presents the Docker image of our whole brain segmentation pipeline: **AssemblyNet** [[paper]](https://dx.doi.org/10.1016/j.neuroimage.2020.117026).
4
5
![AssemblyNet_report_capture.png](doc/AssemblyNet_report_capture.png)
6
7
Based on a large ensemble of convolution neural networks, **AssemblyNet** allows to segment a T1 MRI scan image in 133 labels, according to [BrainColor protocol](https://mindboggle.info/braincolor/).
8
9
10
Given an input T1 image in nifti format, this Docker image will produce segmentation images (in native and MNI spaces) of intracranial cavity, brain tissues, brain macrostructures, cortical lobes, and cortical and subcortical structures, and also a report and a csv file with segmented volumes and expected bounds (if age is provided).
11
12
Here are examples of produced segmentations (in MNI space): [structures](example/mni_structures_my_brain.nii.gz), [macrostructures](example/mni_macrostructures_my_brain.nii.gz), [tissues](example/mni_tissues_my_brain.nii.gz), [lobes](example/mni_lobes_my_brain.nii.gz), [intracranial cavity](example/mni_mask_my_brain.nii.gz) corresponding to this processed [T1 image](example/mni_t1_my_brain.nii.gz). Here are examples of produced PDF and CSV volumetry reports: [report.pdf](example/report_my_brain.pdf) and [report.csv](example/report_my_brain.csv).  
13
14
**This Docker image is to be used only for non-commercial and non-medical purposes (research only).** See [license](https://github.com/volBrain/AssemblyNet/blob/main/README.md#license).
15
16
If you use this Docker image, please cite:  
17
Pierrick Coupé, Boris Mansencal, Michaël Clément, Rémi Giraud, Baudouin Denis de Senneville, Vinh-Thong Ta, Vincent Lepetit, José V. Manjon  
18
[AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation](https://dx.doi.org/10.1016/j.neuroimage.2020.117026).  
19
NeuroImage, Elsevier, 2020, 219, pp.117026. 
20
[[paper]](https://dx.doi.org/10.1016/j.neuroimage.2020.117026) [[bibtex]](doc/AssemblyNet.bib)
21
22
23
# Quick Start instructions
24
25
If you have already installed Docker, you can get the volbrain/assemblynet:1.0.0 image from Docker Hub repository:
26
```
27
sudo docker pull volbrain/assemblynet:1.0.0
28
```
29
30
If you have a NVIDIA GPU with at least 8GB, and have already installed NVIDIA Container Toolkit, you can run AssemblyNet on the GPU on the image /absolute/path/to/images/image.nii.gz:
31
```
32
sudo docker run --rm --gpus '"device=0"' -v /absolute/path/to/images:/data volbrain/assemblynet:1.0.0 /data/image.nii.gz
33
```
34
35
If you have a x86_64 CPU, you can run AssemblyNet on the CPU on the image /absolute/path/to/images/image.nii.gz:
36
```
37
sudo docker run --rm -v /absolute/path/to/images:/data volbrain/assemblynet:1.0.0 /data/image.nii.gz
38
```
39
40
See [Installation instructions](https://github.com/volBrain/AssemblyNet/blob/main/README.md#installation-instructions) for detailed instructions on how to install all the dependencies.  
41
See [How to use AssemblyNet](https://github.com/volBrain/AssemblyNet/blob/main/README.md#how-to-use-assemblynet) for detailed instructions on how to use AssemblyNet.
42
43
44
# Installation instructions 
45
46
## Prerequisites
47
48
To run this Docker image on a CPU, you will need:
49
* a x86_64 CPU 
50
* At least 6GB of RAM
51
* GNU/Linux [[supported distributions]](https://docs.docker.com/engine/install/#server) or Windows 10/11 with WSL [[supported versions]](https://docs.docker.com/desktop/windows/install/)
52
* Docker >= 19.03 
53
* AssemblyNet Docker image 
54
* MRI files in nifti format
55
56
To run this Docker image on a GPU, you will need:
57
* A NVIDIA GPU with at least 8GB and a [CUDA Compute capability](https://developer.nvidia.com/cuda-gpus#compute) >= 6.0 (that is a GPU from the NVIDIA Pascal, Volta, Turing, and Ampere Architecture GPU families. For example Titan Xp, V100, GeForce RTX 2080, Geforce RTX 3080, A40, ...)
58
* GNU/Linux x86_64 with kernel version > 3.10 (for example Ubuntu 16.04 or above) [[supported distributions]](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#supported-platforms) or Windows 10/11 with WSL 2 [[supported versions]](https://docs.docker.com/desktop/windows/install/)
59
* NVIDIA drivers >= 418.xx with xx>=40, 440.xx with xx>=33, 450.xx with xx>=51, 460.xx with xx>=27 or 470.xx [[driver requirements]](https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_21-08.html#rel_21-08)
60
* Docker >= 19.03 
61
* NVIDIA Container Toolkit 
62
* AssemblyNet Docker image 
63
* MRI files in nifti format
64
65
## Installation 
66
67
Docker may be installed on supported versions of [GNU/Linux](https://github.com/volBrain/AssemblyNet/blob/main/README.md#installation-on-gnulinux) or [Windows 10/11 with WSL](https://github.com/volBrain/AssemblyNet/blob/main/README.md#installation-on-windows-1011-with-wsl). The docker image can also be transformed in a [Singularity image](https://github.com/volBrain/AssemblyNet/blob/main/README.md#singularity-image)
68
69
### Installation on GNU/Linux
70
71
Here are the detailled installation instructions on Ubuntu (18.04 or above).
72
73
#### Docker 
74
75
Install Docker from official repository [[instructions]](https://docs.docker.com/engine/install/ubuntu/).  
76
(Docker no longer releases updated packages for Ubuntu 16.04)
77
```
78
#Uninstall old versions of docker
79
sudo apt-get remove docker docker-engine docker.io containerd runc
80
#Install using the official repository
81
sudo apt-get update
82
sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
83
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
84
sudo apt-key fingerprint 0EBFCD88
85
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
86
sudo apt-get update
87
sudo apt-get install docker-ce docker-ce-cli containerd.io
88
#Verify that Docker Engine is installed correctly
89
sudo docker run hello-world
90
# it may download the hello-world docker image and then print "Hello from Docker!" and other information.
91
```
92
93
#### NVIDIA Driver [GPU-use only]
94
95
Install the proprietary NVIDIA driver. 
96
97
You need a NVIDIA driver version >= 418.xx with xx>=40, 440.xx with xx>=33, 450.xx with xx>=51, 460.xx with xx>=27 or 470.xx [[driver requirements]](https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel_21-08.html#rel_21-08)
98
99
For exemple:
100
```
101
sudo apt install nvidia-driver-470
102
```
103
104
105
#### NVIDIA Container Toolkit [GPU-use only]
106
107
Install NVIDIA Container Toolkit (nvidia-docker2 package) from official repository [[instructions]](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker)
108
```
109
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
110
   && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
111
   && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
112
sudo apt-get update
113
sudo apt-get install -y nvidia-docker2
114
sudo systemctl restart docker
115
#Verify that Docker can access the GPU with:
116
sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
117
# it may download the nvidia/cuda:11.0-base docker image and then run nvidia-smi from inside the docker without any error.
118
```
119
120
For other linux distributions, see [NVIDIA Container Toolkit installation instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker).
121
122
123
#### AssemblyNet Docker image 
124
125
Pull the volbrain/assemblynet:1.0.0 image from Docker Hub repository:
126
127
```
128
sudo docker pull volbrain/assemblynet:1.0.0
129
```
130
131
See [How to use AssemblyNet](https://github.com/volBrain/AssemblyNet/blob/main/README.md#how-to-use-assemblynet).
132
133
134
### Installation on Windows 10/11 with WSL
135
136
Here are the detailled installation instructions on Windows 10 or 11.
137
138
#### Check Windows version
139
140
You need:
141
* Windows 10 64-bit: Home or Pro 2004 (build 19041) or higher, or Enterprise or Education 1909 (build 18363) or higher.
142
* Windows 11 64-bit: Home or Pro version 21H2 or higher, or Enterprise or Education version 21H2 or higher.
143
144
To check your Windows version and build number, select Windows logo key + R, type winver, select OK. 
145
You can update to the latest Windows version by selecting Start > Settings > Windows Update > Check for updates.
146
147
#### Enable BIOS virtualization support
148
149
BIOS-level hardware virtualization support must be enabled.
150
151
You can check the Performance tab on the Task Manager to see if virtualization is enabled, see [virtualization support](https://docs.docker.com/desktop/windows/troubleshoot/#virtualization-must-be-enabled).
152
153
#### WSL2
154
155
Install Windows Subsystem for Linux (WSL) 2 [[instructions]](https://docs.microsoft.com/en-us/windows/wsl/install)
156
157
Open PowerShell as Administrator (Start menu > PowerShell > right-click > Run as Administrator) and enter this command:
158
```
159
wsl --install
160
```
161
It should install the last Ubuntu LTS. You may need to reboot your machine.
162
163
You can check that WSL version 2 was installed:
164
Open PowerShell as Administrator (Start menu > PowerShell > right-click > Run as Administrator) and enter this command:
165
```
166
wsl -l -v
167
```
168
169
Launch Ubuntu (Start menu > ubuntu). It should ask to create a default user. 
170
You may upgrade the system: 
171
```
172
sudo apt-get update
173
sudo apt-get upgrade
174
```
175
176
#### Docker Desktop
177
178
Install Docker Desktop [[instructions]](https://docs.docker.com/desktop/windows/wsl/).
179
180
Download [Docker Desktop 2.3+](https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe) and follow the installation instructions.
181
Use of WSL 2 backend should be enabled by default during installation if WSL 2 was correctly installed.
182
183
You have to log off and log in again to be able to use Docker Desktop.
184
185
If your admin account is different to your user account, you must add the user to the docker-users group. Run Computer Management as an administrator and navigate to Local Users and Groups > Groups > docker-users. Right-click to add the user to the group. Log out and log back in for the changes to take effect.
186
187
If you have an Nvidia GPU, you can verify that Docker can access the GPU.
188
Launch Ubuntu and run:
189
```
190
docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi
191
# it may download the nvidia/cuda:11.0-base docker image and then run nvidia-smi from inside the docker without any error.
192
```
193
194
#### AssemblyNet Docker image 
195
196
From the Ubuntu terminal, pull the volbrain/assemblynet:1.0.0 image from Docker Hub repository:
197
```
198
sudo docker pull volbrain/assemblynet:1.0.0
199
```
200
201
See [How to use AssemblyNet](https://github.com/volBrain/AssemblyNet/blob/main/README.md#how-to-use-assemblynet).
202
203
204
205
206
# How to use AssemblyNet 
207
208
## Inputs
209
210
This Docker image requires images in nifti format (.nii or .nii.gz) as inputs.
211
212
To convert your DICOM files into nifti format, you can use [dcm2niix](https://github.com/rordenlab/dcm2niix), a multiplatform and open source software.
213
214
215
## Outputs
216
217
For each processed image, the following files will be produced (where *filename* is replaced by the original filename):
218
219
* native_t1_*filename*.nii.gz and mni_t1_*filename*.nii.gz: filtered and normalized T1 image in native space and in MNI space
220
* native_mask_*filename*.nii.gz and mni_mask_*filename*.nii.gz: Intracranial Cavity mask image in native space and in MNI space
221
* native_tissues_*filename*.nii.gz and mni_tissues_*filename*.nii.gz: tissues segementation in native space and in MNI space
222
* native_macrostructures_*filename*.nii.gz and mni_macrostructures_*filename*.nii.gz: macrostructures segementation in native space and in MNI space
223
* native_lobes_*filename*.nii.gz and mni_lobes_*filename*.nii.gz: lobes segementation in native space and in MNI space
224
* native_strctures_*filename*.nii.gzand mni_strctures_*filename*.nii.gz: structures segementation in native space and in MNI space
225
* matrix_affine_native_to_mni_*filename*.txt: ITK transformation matrix from native to MNI space
226
* report_*filename*.pdf: PDF format volumetry report. The reports will show the expected limits/normative bounds of normalized volumes in function of age, if age and optionally sex were specified.
227
* report_*filename*.csv: CSV format volumetry report
228
* README.pdf: README with this information and the labels correspondance.
229
230
The reports include a Quality Control rating based on RegQCNET [1]. 
231
232
[1]
233
Baudouin Denis de Senneville, José V. Manjon, Pierrick Coupé,  
234
[RegQCNET: Deep quality control for image-to-template brain MRI affine registration](https://iopscience.iop.org/article/10.1088/1361-6560/abb6be/meta).  
235
Physics in Medicine & Biology, Volume 65, Number 22.
236
237
The size of the ouput files on disk is roughly 7.5 times the input size (for compressed nii files).
238
239
## Command options
240
241
The Docker image has the following arguments: 
242
```
243
[-age <age>] [-sex <sex>] [-age-sex-csv input_csv_filename] [-recursive] [-pattern-t1 <pattern>] [-no-pdf-report] [-global-csv output_csv_filename] [-batch-size <batchSize>] <input image or directory> [output directory]
244
```
245
246
* `<input image or directory>`: it is possible to process a single image or all the images in an input directory. 
247
* `<output directory>`: it is also possible to specify an output directory where the produced files will be saved. 
248
* `[-age <age>]` and `[-sex <sex>]` allows to specify age and sex. Sex must be "Male" or "Female". Age is the age in years and should be a float. If an age is specified, the produced volumetry report report_*filename*.pdf will show the expected limits/normative bounds of normalized volumes in function of age. If both age and sex are specified, the expected limits of normalized volumes will be in function of age and sex. These bounds have been estimated over more than 3000 cognitively normal subjects. In case of abnormality, red values indicate volumes lower or bigger than normal at 95%. These options are mainly useful when processing exactly one image (see `-age-sex-csv` when processing several images).
249
* `-age-sex-csv <input_csv_filename>`: specify input CSV filename with age and sex for all the input files when processing several files. The CSV file should have at least three columns: filename, age and sex, separated by commas. The first row of the csv should start with "#" and contain the columns names. In the filename column, each filename should contain the relative path of a file in the input directory. 
250
* `[-recursive]`: allows to specify that images will be searched recursively in input directory. 
251
* `[-pattern-t1 <pattern>]`: allows to specify a pattern for images searched in input directory. The default is: \*.nii\*
252
* `[-no-pdf-report]`: specify to produce no PDF format volumetry report.
253
* `[-global-csv <output_csv_filename>]`: allows to have all the volumetry information in a unique CSV file.
254
* `[-batch-size <batchSize>]`: allows to speciy the batch size (an integer) of T1 images processed simultaneously. When processing several images, increasing the batch size may reduce the total processing time (see [Processing time](https://github.com/volBrain/AssemblyNet/blob/main/README.md#processing_time)) at the cost of more memory usage (mainly CPU memory). It is recommanded to use the largest batch size that fits in your CPU & GPU memory. Default batch size is set to 3.
255
256
257
## Exemples of commands
258
259
260
The following command run AssemblyNet on first GPU (0) on the image /absolute/path/to/images/image.nii.gz:  
261
```
262
sudo docker run --rm --gpus '"device=0"' -v /absolute/path/to/images:/data volbrain/assemblynet:1.0.0 /data/image.nii.gz
263
```
264
265
- "/absolute/path/to/images" should be changed to the absolute path of your image. This path must only contain these letters `[a-zA-Z0-9][a-zA-Z0-9_.-]`.
266
- You can pass `.nii` or `.nii.gz` files
267
- If you have multiple GPUs, you can change the GPU used to run AssemblyNet by changing the GPU indice set. '"device=2"' for third GPU for example. This Docker image uses only one GPU.
268
- The produced output files will be in the same directory than the input image.
269
270
In the same way, the following command run AssemblyNet on CPU on the image /absolute/path/to/images/image.nii
271
```
272
sudo docker run --rm -v /absolute/path/to/images:/data volbrain/assemblynet:1.0.0 /data/image.nii
273
```
274
275
You can also process all the images in an input directory and produce the output files in an output directory, here on first GPU:
276
```
277
sudo docker run --rm --gpus '"device=0"' -v /absolute/input/path/to/images:/data -v /absolute/output/path:/data_out volbrain/assemblynet:1.0.0 /data /data_out
278
```
279
280
`sudo` may be omitted if the user is member of the docker group.
281
282
283
Here is an example of command to run AssemblyNet on first GPU, specifying age and gender of subject to have normality bounds:  
284
```
285
sudo docker run --rm --gpus '"device=0"' -v /absolute/path/to/images:/data volbrain/assemblynet:1.0.0 -age 50 -sex Male /data/image.nii.gz
286
```
287
If you only have one gpu, you can also specify `--gpus all` instead of `--gpus '"device=0"'`.
288
289
Here is an example of command to run AssemblyNet on first GPU on all the T1.nii images recursively found in input directory `/absolute/path/to/images`, produce a global csv file, and save ouptut files in `/absolute/path/to/output/directory`:
290
```
291
sudo docker run --rm --gpus '"device=0"' -v /absolute/path/to/images:/data -v /absolute/path/to/output/directory:/data_out volbrain/assemblynet:1.0.0 -recursive -pattern-t1 T1.nii -global-csv /data_out/global_volumetry_info.csv /data/ /data_out/
292
```
293
294
Here is an example of command to run AssemblyNet on first GPU on all the T1*.nii* images recursively found in input directory `/absolute/path/to/images`, to use a csv filename to specify age and sex, to produce a global csv file and no pdf report, to use a batch size of 8 and save ouptut files in `/absolute/path/to/output/directory`:
295
```
296
sudo docker run --rm --gpus '"device=0"' -v /absolute/path/to/images:/data -v /absolute/path/to/output/directory:/data_out volbrain/assemblynet:1.0.0 -recursive -pattern-t1 "T1*.nii*" -age-sex-csv /data/age_sex.csv -global-csv /data_out/global_volumetry_info.csv -no-pdf-report -batch-size 8 /data/ /data_out/
297
```
298
299
If there are sub-directories in the input dir (in particular when -recursive is used) and an output directory is specified, these sub-directories will be created in the output directory. This is for example a way to process a [BIDS](https://bids.neuroimaging.io/) directory.
300
301
On Windows, a C:\data_dir directory will be mounted as /mnt/c/data_dir in the WSL file system. So if you have a file image.nii.gz in C:\data_dir, you could process it for example with:
302
```
303
docker run --rm --gpus '"device=0"' -v /mnt/c/data_dir:/data volbrain/assemblynet:1.0.0 -age 50 -sex Male /data/image.nii.gz
304
```
305
However, your performance speed will improve if you store/copy your file(s) in the WSL file system.
306
307
Processing time should around 7-15mn/image depending on the hardware configuration (See [Processing time](https://github.com/volBrain/AssemblyNet/blob/main/README.md#processing_time)).
308
309
The produced ouput files will be own by root. You may change ownership with `sudo chown -R $(id -u) output_file_or_directory`.
310
If you run docker with `--user $(id -u):$(id -g)`  the created files will have the current user as owner, however, on linux, docker will only run on CPU.
311
312
AssemblyNet is not fully deterministic: you may have slight differences in the produced segmentations between runs.
313
314
315
# Singularity image 
316
317
To use this docker image without root privileges (on a HPC cluster for example), you can transform the docker image in a singularity image with the following command:
318
```
319
singularity build assemblynet_1.0.0.sif docker://volbrain/assemblynet:1.0.0
320
```
321
322
You can then use the singularity image with the following command to process a single image (and output the produced files in the same directory):
323
```
324
singularity run --nv -B <your_tmp_dir>:/tmp -B <your_data_dir>:/data <path_to_singularity_image>/assemblynet_1.0.0.sif /data/<your_nii_image>
325
```
326
or to process a whole directory (and output the produced files in a new ouput directory):
327
```
328
singularity run --nv -B <your_tmp_dir>:/tmp -B <your_data_dir>:/data <your_data_out_dir>:/data_out <path_to_singularity_image>/assemblynet_1.0.0.sif -recursive /data /data_out
329
```
330
The option `--nv` enables GPU support. You may have to set the environment variable [SINGULARITYENV_CUDA_VISIBLE_DEVICES](https://sylabs.io/guides/main/user-guide/gpu.html#gpu-selection) to choose which GPU to use.
331
332
Depending on how your computer is set up, you may also have to specify a temporary home directory, with for example:  `-H <a_tmp_dir>:/data` (for example to prevent finding local python packages).
333
334
See [command options](https://github.com/volBrain/AssemblyNet/blob/main/README.md#command-options) for other command arguments.
335
336
337
# Processing time
338
339
The following tables list AssemblyNet processing time for one or several images when running on CPU or GPU.
340
Each time, the batch size is set to be equal to the number of images.
341
342
343
Config1:  
344
 CPU: Intel Core i9-7940x  
345
 GPU: Nvidia Titan Xp 12GB  
346
 RAM: 128GB  
347
 DISK: SATA
348
 OS: Ubuntu 20.04  
349
350
On GPU:
351
352
| # images   | total time | time per image |
353
| ---------- | ---------- | -------------- |
354
|  1 image   |  14m48s    |  888s/img      |
355
|  2 images  |  21m02s    |  631s/img      |
356
|  4 images  |  33m15s    |  499s/img      |
357
|  8 images  |  58m34s    |  440s/img      |
358
| 12 images  |  82m06s    |  411s/img      |
359
| 16 images  | 108m21s    |  407s/img      |
360
361
On CPU:
362
363
| # images   | total time | time per image |
364
| ---------- | ---------- | -------------- |
365
|  1 image   |  16m32s    |  992s/img      |
366
|  2 images  |  27m48s    |  834s/img      |
367
|  4 images  |  46m42s    |  699s/img      |
368
|  8 images  |  87m32s    |  657s/img      |
369
| 12 images  | 127m40s    |  638s/img      |
370
| 16 images  | 169m10s    |  635s/img      |
371
372
373
374
Config2  
375
 CPU: AMD 5800X  
376
 GPU: RTX 3800  
377
 RAM: 64GB  
378
 DISK: NVMe SSD  
379
 OS: Windows 10 - WSL2 (Ubuntu 20.04)    
380
381
On GPU:
382
383
| # images   | total time | time per image |
384
| ---------- | ---------- | -------------- |
385
|  1 image   |   6m42s    |  402s/img      |
386
|  2 images  |   9m17s    |  279s/img      |
387
|  4 images  |  15m03s    |  226s/img      |
388
|  8 images  |  26m40s    |  200s/img      |
389
| 12 images  |  38m11s    |  191s/img      |
390
391
On CPU:
392
393
| # images   | total time | time per image |
394
| ---------- | ---------- | -------------- |
395
|  1 image   |  11m37s    |  697s/img      |
396
|  2 images  |  20m03s    |  601s/img      |
397
|  4 images  |  37m51s    |  568s/img      |
398
|  8 images  |  72m16s    |  542s/img      |
399
| 12 images  | 112m08s    |  561s/img      |
400
401
402
According to our benchmarks, disk access speed has more impact on processing time than GPU performance.
403
If possible, it is recommended to store both the Docker image and the T1 images on a SSD disk.
404
405
# Normative ranges
406
407
We provide the normative ranges of normalized volumes used in AssemblyNet (in the report when age is provided) through the following files: [bounds_female.csv](bounds_female.csv), [bounds_male.csv](bounds_male.csv), and [bounds_general.csv](bounds_general.csv).
408
bounds_general.csv is used when only age is provided (and not sex).
409
410
The first column is the name of the tissue/macrostructure/structure. In case of a bilateral symmetric element, the name is present four times with suffixes: "_total", "_right", "_left", "_asym" for the total, this is right+left, right and left normalized volumes and the asymmetry (calculated as the difference between right and left volumes divided by their mean, in percent).
411
Then the following columns, are the lower bound, median value and upper bound for each age in [1; 90] years old.
412
413
The images used to compute these ranges are described in the following paper:  
414
Pierrick Coupé, Gwenaelle Catheline, Enrique Lanuza, José V. Manjon, and for the Alzheimer's Disease Neuroimaging Initiative  
415
[Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis](https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23743).  
416
Human Brain Mapping, 38: 5501-5518.
417
[[paper]](https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.23743)  
418
Please cite this paper if you use these csv files.
419
420
421
# License
422
423
**This Docker image is to be used only for non-commercial and non-medical purposes (research only).**
424
425
The code and Docker are free for non-commercial purposes. [license.txt](license.txt) shows the terms for commercial and for-profit purposes.
426
427
As this Docker image uses CUDA for GPU support, you must agreee to [CUDA End User License Agreement](https://docs.nvidia.com/cuda/eula/index.html#abstract).  
428
Internally, this docker uses binaries of [SPM8](https://www.fil.ion.ucl.ac.uk/spm/software/spm8/), [N4ITK](), [ANTs](https://github.com/ANTsX/ANTs).
429
430