__all__ = ['mask_image']
import numpy as np
import ants
from ants.decorators import image_method
@image_method
def mask_image(image, mask, level=1, binarize=False):
"""
Mask an input image by a mask image. If the mask image has multiple labels,
it is possible to specify which label(s) to mask at.
ANTsR function: `maskImage`
Arguments
---------
image : ANTsImage
Input image.
mask : ANTsImage
Mask or label image.
level : scalar or tuple of scalars
Level(s) at which to mask image. If vector or list of values, output image is non-zero at all locations where label image matches any of the levels specified.
binarize : boolean
whether binarize the output image
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> myimage = ants.image_read(ants.get_ants_data('r16'))
>>> mask = ants.get_mask(myimage)
>>> myimage_mask = ants.mask_image(myimage, mask, 3)
>>> seg = ants.kmeans_segmentation(myimage, 3)
>>> myimage_mask = ants.mask_image(myimage, seg['segmentation'], (1,3))
"""
leveluse = level
if type(leveluse) is np.ndarray:
leveluse = level.tolist()
if type(leveluse) is int or type(leveluse) is float:
leveluse = [level]
image_out = image.clone() * 0
for mylevel in leveluse:
temp = ants.threshold_image(mask, mylevel, mylevel)
if binarize:
image_out = image_out + temp
else:
image_out = image_out + temp * image
return image_out