[5d12a0]: / tests / test_bugs.py

Download this file

144 lines (111 with data), 5.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"""
Test that any previously reported bugs are fixed
nptest.assert_allclose
self.assertEqual
self.assertTrue
"""
import os
import unittest
from common import run_tests
import ants
import numpy as np
import numpy.testing as nptest
class Test_bugs(unittest.TestCase):
"""
Test ants.ANTsImage class
"""
def setUp(self):
pass
def tearDown(self):
pass
def test_resample_returns_NaNs(self):
"""
Test that resampling an image doesnt cause the resampled
image to have NaNs - previously caused by resampling an
image of type DOUBLE
"""
img2d = ants.image_read(ants.get_ants_data('r16'))
img2dr = ants.resample_image(img2d, (2,2), 0, 0)
self.assertTrue(np.sum(np.isnan(img2dr.numpy())) == 0)
img3d = ants.image_read(ants.get_ants_data('mni'))
img3dr = ants.resample_image(img3d, (2,2,2), 0, 0)
self.assertTrue(np.sum(np.isnan(img3dr.numpy())) == 0)
def test_compose_multi_type_transforms(self):
image = ants.image_read(ants.get_ants_data("r16"))
linear_transform = ants.create_ants_transform(transform_type=
"AffineTransform", precision='float', dimension=image.dimension)
displacement_field = ants.simulate_displacement_field(image,
field_type="bspline", number_of_random_points=1000,
sd_noise=10.0, enforce_stationary_boundary=True,
number_of_fitting_levels=4, mesh_size=1,
sd_smoothing=4.0)
displacement_field_xfrm = ants.transform_from_displacement_field(displacement_field)
xfrm = ants.compose_ants_transforms([linear_transform, displacement_field_xfrm])
xfrm = ants.compose_ants_transforms([linear_transform, linear_transform])
xfrm = ants.compose_ants_transforms([displacement_field_xfrm, linear_transform])
def test_bspline_image_with_2d_weights(self):
# see https://github.com/ANTsX/ANTsPy/issues/655
import ants
import numpy as np
output_size = (256, 256)
bspline_epsilon = 1e-4
number_of_fitting_levels = 4
image = ants.image_read(ants.get_ants_data("r16"))
image = ants.resample_image(image, (100, 100), use_voxels=True)
indices = np.meshgrid(list(range(image.shape[0])),
list(range(image.shape[1])))
indices_array = np.stack((indices[1].flatten(),
indices[0].flatten()), axis=0)
image_parametric_values = indices_array.transpose()
weight_array = np.ones(image.shape)
parametric_values = image_parametric_values
scattered_data = np.atleast_2d(image.numpy().flatten()).transpose()
weight_values = np.atleast_2d(weight_array.flatten()).transpose()
min_parametric_values = np.min(parametric_values, axis=0)
max_parametric_values = np.max(parametric_values, axis=0)
spacing = np.zeros((2,))
for d in range(2):
spacing[d] = (max_parametric_values[d] - min_parametric_values[d]) / (output_size[d] - 1) + bspline_epsilon
bspline_image = ants.fit_bspline_object_to_scattered_data(scattered_data, parametric_values,
parametric_domain_origin=min_parametric_values - bspline_epsilon,
parametric_domain_spacing=spacing,
parametric_domain_size=output_size,
data_weights=weight_values,
number_of_fitting_levels=number_of_fitting_levels,
mesh_size=1)
def test_scalar_rgb_missing(self):
import ants
img = ants.image_read(ants.get_data('r16'))
with self.assertRaises(Exception):
img_color = ants.scalar_to_rgb(img, cmap='jet')
def test_bspline_zeros(self):
import ants
import numpy as np
x = np.linspace(-4, 4, num=100) + np.random.uniform(-0.1, 0.1, 100)
u = np.linspace(0, 1.0, num=len(x))
scattered_data = np.expand_dims(u, axis=-1)
parametric_data = np.expand_dims(u, axis=-1)
spacing = 1/(len(x)-1) * 1.0
bspline_curve = ants.fit_bspline_object_to_scattered_data(
scattered_data, parametric_data,
parametric_domain_origin=[0.0], parametric_domain_spacing=[spacing],
parametric_domain_size=[len(x)], is_parametric_dimension_closed=None,
number_of_fitting_levels=5, mesh_size=1)
# Erroneously returns all zeros.
self.assertNotEqual(bspline_curve.sum(), 0)
def test_from_numpy_different_dtypes(self):
all_dtypes = ('bool',
'int8',
'int16',
'int32',
'int64',
'uint16',
'uint64',
'float16')
arr = np.random.randn(100,100)
for dtype in all_dtypes:
arr2 = arr.astype(dtype)
img = ants.from_numpy(arr2)
self.assertTrue(ants.is_image(img))
if __name__ == '__main__':
run_tests()