[5d12a0]: / src / sccaner.cxx

Download this file

517 lines (484 with data), 15.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
#include <nanobind/nanobind.h>
#include <nanobind/stl/vector.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/tuple.h>
#include <nanobind/stl/list.h>
#include <nanobind/ndarray.h>
#include <nanobind/stl/shared_ptr.h>
#include <exception>
#include <vector>
#include <string>
#include "itkImage.h"
#include "itkVectorImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "antscore/antsSCCANObject.h"
#include "antsImage.h"
namespace nb = nanobind;
using namespace nb::literals;
template< class ImageType, class IntType, class RealType >
nb::dict sccanCppHelper(
std::vector<std::vector<double>> X,
std::vector<std::vector<double>> Y,
AntsImage<ImageType> & maskXimage,
AntsImage<ImageType> & maskYimage,
int maskxisnull,
int maskyisnull,
RealType sparsenessx,
RealType sparsenessy,
IntType nvecs,
IntType its,
IntType cthreshx,
IntType cthreshy,
RealType z,
RealType smooth,
std::vector<AntsImage<ImageType>> initializationListx,
std::vector<AntsImage<ImageType>> initializationListy,
IntType covering,
RealType ell1,
IntType verbose,
RealType priorWeight,
IntType useMaxBasedThresh )
{
enum { Dimension = ImageType::ImageDimension };
typename ImageType::RegionType region;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::Pointer ImagePointerType;
typedef double Scalar;
typedef itk::ants::antsSCCANObject<ImageType, Scalar> SCCANType;
typedef typename SCCANType::MatrixType vMatrix;
typename SCCANType::Pointer sccanobj = SCCANType::New();
sccanobj->SetMaxBasedThresholding( useMaxBasedThresh );
// cast mask ANTsImages to itk
typename ImageType::Pointer maskx = ITK_NULLPTR;
if (maskxisnull > 0)
{
maskx = maskXimage.ptr;
}
typename ImageType::Pointer masky = ITK_NULLPTR;
if (maskyisnull > 0)
{
masky = maskYimage.ptr;
}
// deal with the initializationList, if any
unsigned int nImagesx = initializationListx.size();
if ( ( nImagesx > 0 ) && ( !maskxisnull ) )
{
itk::ImageRegionIteratorWithIndex<ImageType> it( maskx,
maskx->GetLargestPossibleRegion() );
vMatrix priorROIMatx( nImagesx , X[0].size() );
priorROIMatx.fill( 0 );
for ( unsigned int i = 0; i < nImagesx; i++ )
{
typename ImageType::Pointer init = initializationListx[i].ptr;
unsigned long ct = 0;
it.GoToBegin();
while ( !it.IsAtEnd() )
{
PixelType pix = it.Get();
if ( pix >= 0.5 )
{
pix = init->GetPixel( it.GetIndex() );
priorROIMatx( i, ct ) = pix;
ct++;
}
++it;
}
}
sccanobj->SetMatrixPriorROI( priorROIMatx );
nvecs = nImagesx;
}
unsigned int nImagesy = initializationListy.size();
if ( ( nImagesy > 0 ) && ( !maskyisnull ) )
{
itk::ImageRegionIteratorWithIndex<ImageType> it( masky,
masky->GetLargestPossibleRegion() );
vMatrix priorROIMaty( nImagesy , Y[0].size() );
priorROIMaty.fill( 0 );
for ( unsigned int i = 0; i < nImagesy; i++ )
{
typename ImageType::Pointer init = initializationListy[i].ptr;
unsigned long ct = 0;
it.GoToBegin();
while ( !it.IsAtEnd() )
{
PixelType pix = it.Get();
if ( pix >= 0.5 )
{
pix = init->GetPixel( it.GetIndex() );
priorROIMaty( i, ct ) = pix;
ct++;
}
++it;
}
}
sccanobj->SetMatrixPriorROI2( priorROIMaty );
nvecs = nImagesy;
}
sccanobj->SetPriorWeight( priorWeight );
sccanobj->SetLambda( priorWeight );
// cast hack from Python type to sccan type
//std::vector<double> xdat = X;//.reshape({-1}).cast<std::vector<double> >();
//const double* _xdata = &xdat[0];
vMatrix vnlX( X.size(), X[0].size() );
for (int i = 0; i < X.size(); i++)
{
for (int j = 0; j < X[0].size(); j++)
{
vnlX(i,j) = X[i][j];
}
}
//vnlX = vnlX.transpose();
//std::vector<double> ydat = Y.reshape({-1}).cast<std::vector<double> >();
//const double* _ydata = &ydat[0];
//vMatrix vnlY( _ydata , Y.shape(0), Y.shape(1) );
vMatrix vnlY( Y.size(), Y[0].size() );
for (int i = 0; i < Y.size(); i++)
{
for (int j = 0; j < Y[0].size(); j++)
{
vnlY(i,j) = Y[i][j];
}
}
//vnlY = vnlY.transpose();
// cast hack done
sccanobj->SetGetSmall( false );
sccanobj->SetCovering( covering );
sccanobj->SetSilent( ! verbose );
if( ell1 > 0 )
{
sccanobj->SetUseL1( true );
}
else
{
sccanobj->SetUseL1( false );
}
sccanobj->SetGradStep( std::abs( ell1 ) );
sccanobj->SetMaximumNumberOfIterations( its );
sccanobj->SetRowSparseness( z );
sccanobj->SetSmoother( smooth );
if ( sparsenessx < 0 ) sccanobj->SetKeepPositiveP(false);
if ( sparsenessy < 0 ) sccanobj->SetKeepPositiveQ(false);
sccanobj->SetSCCANFormulation( SCCANType::PQ );
sccanobj->SetFractionNonZeroP( fabs( sparsenessx ) );
sccanobj->SetFractionNonZeroQ( fabs( sparsenessy ) );
sccanobj->SetMinClusterSizeP( cthreshx );
sccanobj->SetMinClusterSizeQ( cthreshy );
sccanobj->SetMatrixP( vnlX );
sccanobj->SetMatrixQ( vnlY );
// sccanobj->SetMatrixR( r ); // FIXME
sccanobj->SetMaskImageP( maskx );
sccanobj->SetMaskImageQ( masky );
sccanobj->SparsePartialArnoldiCCA( nvecs );
// FIXME - should not copy, should map memory
vMatrix solP = sccanobj->GetVariatesP();
std::vector<std::vector<float> > eanatMatp( solP.cols(), std::vector<float>(solP.rows()));
unsigned long rows = solP.rows();
for( unsigned long c = 0; c < solP.cols(); c++ )
{
for( unsigned int r = 0; r < rows; r++ )
{
eanatMatp[c][r] = solP( r, c );
}
}
vMatrix solQ = sccanobj->GetVariatesQ();
std::vector<std::vector<float> > eanatMatq( solQ.cols(), std::vector<float>(solQ.rows()));
rows = solQ.rows();
for( unsigned long c = 0; c < solQ.cols(); c++ )
{
for( unsigned int r = 0; r < rows; r++ )
{
eanatMatq[c][r] = solQ( r, c );
}
}
//nb::ndarray<double> eanatMatpList = nb::cast(eanatMatp);
//nb::ndarray<double> eanatMatqList = nb::cast(eanatMatq);
nb::dict res;
res["eig1"] = eanatMatp;
res["eig2"] = eanatMatq;
return res;
}
template <typename ImageType>
nb::dict sccanCpp(std::vector<std::vector<double>> X,
std::vector<std::vector<double>> Y,
AntsImage<ImageType> & maskXimage,
AntsImage<ImageType> & maskYimage,
int maskxisnull,
int maskyisnull,
float sparsenessx,
float sparsenessy,
unsigned int nvecs,
unsigned int its,
unsigned int cthreshx,
unsigned int cthreshy,
float z,
float smooth,
std::vector<AntsImage<ImageType>> initializationListx,
std::vector<AntsImage<ImageType>> initializationListy,
float ell1,
unsigned int verbose,
float priorWeight,
unsigned int mycoption,
unsigned int maxBasedThresh)
{
typedef float RealType;
typedef unsigned int IntType;
return sccanCppHelper<ImageType,IntType,RealType>(
X,
Y,
maskXimage,
maskYimage,
maskxisnull,
maskyisnull,
sparsenessx,
sparsenessy,
nvecs,
its,
cthreshx,
cthreshy,
z,
smooth,
initializationListx,
initializationListy,
mycoption,
ell1,
verbose,
priorWeight,
maxBasedThresh
);
}
template< class ImageType, class IntType, class RealType >
nb::dict sccanCppHelperV2(
std::vector<std::vector<double> > X,
std::vector<std::vector<double> > Y,
AntsImage<ImageType> & maskXimage,
AntsImage<ImageType> & maskYimage,
int maskxisnull,
int maskyisnull,
RealType sparsenessx,
RealType sparsenessy,
IntType nvecs,
IntType its,
IntType cthreshx,
IntType cthreshy,
RealType z,
RealType smooth,
std::vector<AntsImage<ImageType>> initializationListx,
std::vector<AntsImage<ImageType>> initializationListy,
IntType covering,
RealType ell1,
IntType verbose,
RealType priorWeight,
IntType useMaxBasedThresh )
{
enum { Dimension = ImageType::ImageDimension };
typename ImageType::RegionType region;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::Pointer ImagePointerType;
typedef double Scalar;
typedef itk::ants::antsSCCANObject<ImageType, Scalar> SCCANType;
typedef typename SCCANType::MatrixType vMatrix;
typename SCCANType::Pointer sccanobj = SCCANType::New();
sccanobj->SetMaxBasedThresholding( useMaxBasedThresh );
// cast mask ANTsImages to itk
typename ImageType::Pointer maskx = ITK_NULLPTR;
if (maskxisnull > 0)
{
maskx = maskXimage.ptr;
}
typename ImageType::Pointer masky = ITK_NULLPTR;
if (maskyisnull > 0)
{
masky = maskYimage.ptr;
}
// deal with the initializationList, if any
unsigned int nImagesx = initializationListx.size();
if ( ( nImagesx > 0 ) && ( !maskxisnull ) )
{
itk::ImageRegionIteratorWithIndex<ImageType> it( maskx,
maskx->GetLargestPossibleRegion() );
vMatrix priorROIMatx( nImagesx , X[0].size() );
priorROIMatx.fill( 0 );
for ( unsigned int i = 0; i < nImagesx; i++ )
{
typename ImageType::Pointer init = initializationListx[i].ptr;
unsigned long ct = 0;
it.GoToBegin();
while ( !it.IsAtEnd() )
{
PixelType pix = it.Get();
if ( pix >= 0.5 )
{
pix = init->GetPixel( it.GetIndex() );
priorROIMatx( i, ct ) = pix;
ct++;
}
++it;
}
}
sccanobj->SetMatrixPriorROI( priorROIMatx );
nvecs = nImagesx;
}
unsigned int nImagesy = initializationListy.size();
if ( ( nImagesy > 0 ) && ( !maskyisnull ) )
{
itk::ImageRegionIteratorWithIndex<ImageType> it( masky,
masky->GetLargestPossibleRegion() );
vMatrix priorROIMaty( nImagesy , Y[0].size() );
priorROIMaty.fill( 0 );
for ( unsigned int i = 0; i < nImagesy; i++ )
{
typename ImageType::Pointer init = initializationListy[i].ptr;
unsigned long ct = 0;
it.GoToBegin();
while ( !it.IsAtEnd() )
{
PixelType pix = it.Get();
if ( pix >= 0.5 )
{
pix = init->GetPixel( it.GetIndex() );
priorROIMaty( i, ct ) = pix;
ct++;
}
++it;
}
}
sccanobj->SetMatrixPriorROI2( priorROIMaty );
nvecs = nImagesy;
}
sccanobj->SetPriorWeight( priorWeight );
sccanobj->SetLambda( priorWeight );
// cast hack from Python type to sccan type
//std::vector<std::vector<double> > xdat;
//const double* _xdata = &X[0][0];
vMatrix vnlX( X.size(), X[0].size() );
for (int i = 0; i < X.size(); i++)
{
for (int j = 0; j < X[0].size(); j++)
{
vnlX(i,j) = X[i][j];
}
}
//vnlX = vnlX.transpose();
//std::vector<std::vector<double> > ydat;
//const double* _ydata = &Y[0][0];
vMatrix vnlY( Y.size(), Y[0].size() );
for (int i = 0; i < Y.size(); i++)
{
for (int j = 0; j < Y[0].size(); j++)
{
vnlY(i,j) = Y[i][j];
}
}
// cast hack done
sccanobj->SetGetSmall( false );
sccanobj->SetCovering( covering );
sccanobj->SetSilent( ! verbose );
if( ell1 > 0 )
{
sccanobj->SetUseL1( true );
}
else
{
sccanobj->SetUseL1( false );
}
sccanobj->SetGradStep( std::abs( ell1 ) );
sccanobj->SetMaximumNumberOfIterations( its );
sccanobj->SetRowSparseness( z );
sccanobj->SetSmoother( smooth );
if ( sparsenessx < 0 ) sccanobj->SetKeepPositiveP(false);
if ( sparsenessy < 0 ) sccanobj->SetKeepPositiveQ(false);
sccanobj->SetSCCANFormulation( SCCANType::PQ );
sccanobj->SetFractionNonZeroP( fabs( sparsenessx ) );
sccanobj->SetFractionNonZeroQ( fabs( sparsenessy ) );
sccanobj->SetMinClusterSizeP( cthreshx );
sccanobj->SetMinClusterSizeQ( cthreshy );
sccanobj->SetMatrixP( vnlX );
sccanobj->SetMatrixQ( vnlY );
// sccanobj->SetMatrixR( r ); // FIXME
sccanobj->SetMaskImageP( maskx );
sccanobj->SetMaskImageQ( masky );
sccanobj->SparsePartialArnoldiCCA( nvecs );
// FIXME - should not copy, should map memory
vMatrix solP = sccanobj->GetVariatesP();
std::vector<std::vector<double> > eanatMatp( solP.cols(), std::vector<double>(solP.rows()));
unsigned long rows = solP.rows();
for( unsigned long c = 0; c < solP.cols(); c++ )
{
for( unsigned int r = 0; r < rows; r++ )
{
eanatMatp[c][r] = solP( r, c );
}
}
vMatrix solQ = sccanobj->GetVariatesQ();
std::vector<std::vector<double> > eanatMatq( solQ.cols(), std::vector<double>(solQ.rows()));
rows = solQ.rows();
for( unsigned long c = 0; c < solQ.cols(); c++ )
{
for( unsigned int r = 0; r < rows; r++ )
{
eanatMatq[c][r] = solQ( r, c );
}
}
//nb::ndarray<double> eanatMatpList = nb::cast(eanatMatp);
//nb::ndarray<double> eanatMatqList = nb::cast(eanatMatq);
nb::dict res;
res["eig1"] = eanatMatp;
res["eig2"] = eanatMatq;
return res;
}
template <typename ImageType>
nb::dict sccanCppV2(std::vector<std::vector<double> > X,
std::vector<std::vector<double> > Y,
AntsImage<ImageType> & maskXimage,
AntsImage<ImageType> & maskYimage,
int maskxisnull,
int maskyisnull,
float sparsenessx,
float sparsenessy,
unsigned int nvecs,
unsigned int its,
unsigned int cthreshx,
unsigned int cthreshy,
float z,
float smooth,
std::vector<AntsImage<ImageType>> initializationListx,
std::vector<AntsImage<ImageType>> initializationListy,
float ell1,
unsigned int verbose,
float priorWeight,
unsigned int mycoption,
unsigned int maxBasedThresh)
{
typedef float RealType;
typedef unsigned int IntType;
return sccanCppHelperV2<ImageType,IntType,RealType>(
X,
Y,
maskXimage,
maskYimage,
maskxisnull,
maskyisnull,
sparsenessx,
sparsenessy,
nvecs,
its,
cthreshx,
cthreshy,
z,
smooth,
initializationListx,
initializationListy,
mycoption,
ell1,
verbose,
priorWeight,
maxBasedThresh
);
}
void local_sccaner(nb::module_ &m)
{
m.def("sccanCpp2D", &sccanCpp<itk::Image<float, 2>>);
m.def("sccanCpp3D", &sccanCpp<itk::Image<float, 3>>);
m.def("sccanCpp2DV2", &sccanCppV2<itk::Image<float, 2>>);
m.def("sccanCpp3DV2", &sccanCppV2<itk::Image<float, 3>>);
}