|
a |
|
b/ants/segmentation/joint_label_fusion.py |
|
|
1 |
""" |
|
|
2 |
Joint Label Fusion algorithm |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
__all__ = ["joint_label_fusion", "local_joint_label_fusion"] |
|
|
6 |
|
|
|
7 |
import os |
|
|
8 |
import numpy as np |
|
|
9 |
import warnings |
|
|
10 |
from pathlib import Path |
|
|
11 |
from tempfile import NamedTemporaryFile |
|
|
12 |
from tempfile import mktemp |
|
|
13 |
import glob |
|
|
14 |
import re |
|
|
15 |
import math |
|
|
16 |
|
|
|
17 |
import ants |
|
|
18 |
from ants.internal import get_lib_fn, get_pointer_string, process_arguments |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
def joint_label_fusion( |
|
|
22 |
target_image, |
|
|
23 |
target_image_mask, |
|
|
24 |
atlas_list, |
|
|
25 |
beta=4, |
|
|
26 |
rad=2, |
|
|
27 |
label_list=None, |
|
|
28 |
rho=0.01, |
|
|
29 |
usecor=False, |
|
|
30 |
r_search=3, |
|
|
31 |
nonnegative=False, |
|
|
32 |
no_zeroes=False, |
|
|
33 |
max_lab_plus_one=False, |
|
|
34 |
output_prefix=None, |
|
|
35 |
verbose=False, |
|
|
36 |
): |
|
|
37 |
""" |
|
|
38 |
A multiple atlas voting scheme to customize labels for a new subject. |
|
|
39 |
This function will also perform intensity fusion. It almost directly |
|
|
40 |
calls the C++ in the ANTs executable so is much faster than other |
|
|
41 |
variants in ANTsR. |
|
|
42 |
|
|
|
43 |
One may want to normalize image intensities for each input image before |
|
|
44 |
passing to this function. If no labels are passed, we do intensity fusion. |
|
|
45 |
Note on computation time: the underlying C++ is multithreaded. |
|
|
46 |
You can control the number of threads by setting the environment |
|
|
47 |
variable ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS e.g. to use all or some |
|
|
48 |
of your CPUs. This will improve performance substantially. |
|
|
49 |
For instance, on a macbook pro from 2015, 8 cores improves speed by about 4x. |
|
|
50 |
|
|
|
51 |
ANTsR function: `jointLabelFusion` |
|
|
52 |
|
|
|
53 |
Arguments |
|
|
54 |
--------- |
|
|
55 |
target_image : ANTsImage |
|
|
56 |
image to be approximated |
|
|
57 |
|
|
|
58 |
target_image_mask : ANTsImage |
|
|
59 |
mask with value 1 |
|
|
60 |
|
|
|
61 |
atlas_list : list of ANTsImage types |
|
|
62 |
list containing intensity images |
|
|
63 |
|
|
|
64 |
beta : scalar |
|
|
65 |
weight sharpness, default to 2 |
|
|
66 |
|
|
|
67 |
rad : scalar |
|
|
68 |
neighborhood radius, default to 2 |
|
|
69 |
|
|
|
70 |
label_list : list of ANTsImage types (optional) |
|
|
71 |
list containing images with segmentation labels |
|
|
72 |
|
|
|
73 |
rho : scalar |
|
|
74 |
ridge penalty increases robustness to outliers but also makes image converge to average |
|
|
75 |
|
|
|
76 |
usecor : boolean |
|
|
77 |
employ correlation as local similarity |
|
|
78 |
|
|
|
79 |
r_search : scalar |
|
|
80 |
radius of search, default is 3 |
|
|
81 |
|
|
|
82 |
nonnegative : boolean |
|
|
83 |
constrain weights to be non-negative |
|
|
84 |
|
|
|
85 |
no_zeroes : boolean |
|
|
86 |
this will constrain the solution only to voxels that are always non-zero in the label list |
|
|
87 |
|
|
|
88 |
max_lab_plus_one : boolean |
|
|
89 |
this will add max label plus one to the non-zero parts of each label where the target mask |
|
|
90 |
is greater than one. NOTE: this will have a side effect of adding to the original label |
|
|
91 |
images that are passed to the program. It also guarantees that every position in the |
|
|
92 |
labels have some label, rather than none. Ie it guarantees to explicitly parcellate the |
|
|
93 |
input data. |
|
|
94 |
|
|
|
95 |
output_prefix: string |
|
|
96 |
file prefix for storing output probabilityimages to disk |
|
|
97 |
|
|
|
98 |
verbose : boolean |
|
|
99 |
whether to show status updates |
|
|
100 |
|
|
|
101 |
Returns |
|
|
102 |
------- |
|
|
103 |
dictionary w/ following key/value pairs: |
|
|
104 |
`segmentation` : ANTsImage |
|
|
105 |
segmentation image |
|
|
106 |
|
|
|
107 |
`intensity` : ANTsImage |
|
|
108 |
intensity image |
|
|
109 |
|
|
|
110 |
`probabilityimages` : list of ANTsImage types |
|
|
111 |
probability map image for each label |
|
|
112 |
|
|
|
113 |
`segmentation_numbers` : list of numbers |
|
|
114 |
segmentation label (number, int) for each probability map |
|
|
115 |
|
|
|
116 |
|
|
|
117 |
Example |
|
|
118 |
------- |
|
|
119 |
>>> import ants |
|
|
120 |
>>> ref = ants.image_read( ants.get_ants_data('r16')) |
|
|
121 |
>>> ref = ants.resample_image(ref, (50,50),1,0) |
|
|
122 |
>>> ref = ants.iMath(ref,'Normalize') |
|
|
123 |
>>> mi = ants.image_read( ants.get_ants_data('r27')) |
|
|
124 |
>>> mi2 = ants.image_read( ants.get_ants_data('r30')) |
|
|
125 |
>>> mi3 = ants.image_read( ants.get_ants_data('r62')) |
|
|
126 |
>>> mi4 = ants.image_read( ants.get_ants_data('r64')) |
|
|
127 |
>>> mi5 = ants.image_read( ants.get_ants_data('r85')) |
|
|
128 |
>>> refmask = ants.get_mask(ref) |
|
|
129 |
>>> refmask = ants.iMath(refmask,'ME',2) # just to speed things up |
|
|
130 |
>>> ilist = [mi,mi2,mi3,mi4,mi5] |
|
|
131 |
>>> seglist = [None]*len(ilist) |
|
|
132 |
>>> for i in range(len(ilist)): |
|
|
133 |
>>> ilist[i] = ants.iMath(ilist[i],'Normalize') |
|
|
134 |
>>> mytx = ants.registration(fixed=ref , moving=ilist[i] , |
|
|
135 |
>>> type_of_transform = ('Affine') ) |
|
|
136 |
>>> mywarpedimage = ants.apply_transforms(fixed=ref,moving=ilist[i], |
|
|
137 |
>>> transformlist=mytx['fwdtransforms']) |
|
|
138 |
>>> ilist[i] = mywarpedimage |
|
|
139 |
>>> seg = ants.threshold_image(ilist[i],'Otsu', 3) |
|
|
140 |
>>> seglist[i] = ( seg ) + ants.threshold_image( seg, 1, 3 ).morphology( operation='dilate', radius=3 ) |
|
|
141 |
>>> r = 2 |
|
|
142 |
>>> pp = ants.joint_label_fusion(ref, refmask, ilist, r_search=2, |
|
|
143 |
>>> label_list=seglist, rad=[r]*ref.dimension ) |
|
|
144 |
>>> pp = ants.joint_label_fusion(ref,refmask,ilist, r_search=2, rad=[r]*ref.dimension) |
|
|
145 |
""" |
|
|
146 |
segpixtype = "unsigned int" |
|
|
147 |
if (label_list is None) or (np.any([l is None for l in label_list])): |
|
|
148 |
doJif = True |
|
|
149 |
else: |
|
|
150 |
doJif = False |
|
|
151 |
|
|
|
152 |
if not doJif: |
|
|
153 |
if len(label_list) != len(atlas_list): |
|
|
154 |
raise ValueError("len(label_list) != len(atlas_list)") |
|
|
155 |
if no_zeroes: |
|
|
156 |
for label in label_list: |
|
|
157 |
target_image_mask[label == 0] = 0 |
|
|
158 |
inlabs = set() |
|
|
159 |
for label in label_list: |
|
|
160 |
values = np.unique(label[target_image_mask != 0 and label != 0]) |
|
|
161 |
inlabs = inlabs.union(values) |
|
|
162 |
inlabs = sorted(inlabs) |
|
|
163 |
maxLab = max(inlabs) |
|
|
164 |
if max_lab_plus_one: |
|
|
165 |
for label in label_list: |
|
|
166 |
label[label == 0] = maxLab + 1 |
|
|
167 |
mymask = target_image_mask.clone() |
|
|
168 |
else: |
|
|
169 |
mymask = target_image_mask |
|
|
170 |
|
|
|
171 |
###### security issues with mktemp but could not figure out the right solution |
|
|
172 |
###### NamedTemporaryFile creates a file with permissions: |
|
|
173 |
###### -rw------- 1 stnava staff |
|
|
174 |
###### whereas mktemp gives |
|
|
175 |
###### -rw-r--r-- 1 stnava staff |
|
|
176 |
###### the latter is what we want - one solution is to use chmod via os but |
|
|
177 |
###### am currently too lazy to change one line of code to two or more everywhere |
|
|
178 |
|
|
|
179 |
# osegfn = NamedTemporaryFile(prefix="antsr", suffix="myseg.nii.gz",delete=False).name |
|
|
180 |
osegfn = mktemp(prefix="antsr", suffix="myseg.nii.gz") |
|
|
181 |
# segdir = osegfn.replace(os.path.basename(osegfn),'') |
|
|
182 |
|
|
|
183 |
if os.path.exists(osegfn): |
|
|
184 |
os.remove(osegfn) |
|
|
185 |
|
|
|
186 |
if output_prefix is None: |
|
|
187 |
# probs = NamedTemporaryFile(prefix="antsr", suffix="prob%02d.nii.gz",delete=False).name |
|
|
188 |
probs = mktemp(prefix="antsr", suffix="prob%02d.nii.gz") |
|
|
189 |
probsbase = os.path.basename(probs) |
|
|
190 |
tdir = probs.replace(probsbase, "") |
|
|
191 |
searchpattern = probsbase.replace("%02d", "*") |
|
|
192 |
|
|
|
193 |
if output_prefix is not None: |
|
|
194 |
probs = output_prefix + "prob%02d.nii.gz" |
|
|
195 |
probpath = Path(probs).parent |
|
|
196 |
Path(probpath).mkdir(parents=True, exist_ok=True) |
|
|
197 |
probsbase = os.path.basename(probs) |
|
|
198 |
tdir = probs.replace(probsbase, "") |
|
|
199 |
searchpattern = probsbase.replace("%02d", "*") |
|
|
200 |
|
|
|
201 |
mydim = target_image_mask.dimension |
|
|
202 |
if not doJif: |
|
|
203 |
# not sure if these should be allocated or what their size should be |
|
|
204 |
outimg = label_list[1].clone(segpixtype) |
|
|
205 |
outimgi = target_image * 0 |
|
|
206 |
|
|
|
207 |
outimg_ptr = get_pointer_string(outimg) |
|
|
208 |
outimgi_ptr = get_pointer_string(outimgi) |
|
|
209 |
outs = "[%s,%s,%s]" % (outimg_ptr, outimgi_ptr, probs) |
|
|
210 |
else: |
|
|
211 |
outimgi = target_image * 0 |
|
|
212 |
outs = get_pointer_string(outimgi) |
|
|
213 |
|
|
|
214 |
mymask = mymask.clone(segpixtype) |
|
|
215 |
if (not isinstance(rad, (tuple, list))) or (len(rad) == 1): |
|
|
216 |
myrad = [rad] * mydim |
|
|
217 |
else: |
|
|
218 |
myrad = rad |
|
|
219 |
|
|
|
220 |
if len(myrad) != mydim: |
|
|
221 |
raise ValueError("path radius dimensionality must equal image dimensionality") |
|
|
222 |
|
|
|
223 |
myrad = "x".join([str(mr) for mr in myrad]) |
|
|
224 |
vnum = 1 if verbose else 0 |
|
|
225 |
nnum = 1 if nonnegative else 0 |
|
|
226 |
mypc = "MSQ" |
|
|
227 |
if usecor: |
|
|
228 |
mypc = "PC" |
|
|
229 |
|
|
|
230 |
myargs = { |
|
|
231 |
"d": mydim, |
|
|
232 |
"t": target_image, |
|
|
233 |
"a": rho, |
|
|
234 |
"b": beta, |
|
|
235 |
"c": nnum, |
|
|
236 |
"p": myrad, |
|
|
237 |
"m": mypc, |
|
|
238 |
"s": r_search, |
|
|
239 |
"x": mymask, |
|
|
240 |
"o": outs, |
|
|
241 |
"v": vnum, |
|
|
242 |
} |
|
|
243 |
|
|
|
244 |
kct = len(myargs.keys()) |
|
|
245 |
for k in range(len(atlas_list)): |
|
|
246 |
kct += 1 |
|
|
247 |
myargs["g-MULTINAME-%i" % kct] = atlas_list[k] |
|
|
248 |
if not doJif: |
|
|
249 |
kct += 1 |
|
|
250 |
castseg = label_list[k].clone(segpixtype) |
|
|
251 |
myargs["l-MULTINAME-%i" % kct] = castseg |
|
|
252 |
|
|
|
253 |
myprocessedargs = process_arguments(myargs) |
|
|
254 |
|
|
|
255 |
libfn = get_lib_fn("antsJointFusion") |
|
|
256 |
rval = libfn(myprocessedargs) |
|
|
257 |
if rval != 0: |
|
|
258 |
print("Warning: Non-zero return from antsJointFusion") |
|
|
259 |
|
|
|
260 |
if doJif: |
|
|
261 |
return outimgi |
|
|
262 |
|
|
|
263 |
probsout = glob.glob(os.path.join(tdir, "*" + searchpattern)) |
|
|
264 |
probsout.sort() |
|
|
265 |
probimgs = [] |
|
|
266 |
# print( os.system("ls -l "+probsout[0]) ) |
|
|
267 |
for idx in range(len(probsout)): |
|
|
268 |
probimgs.append(ants.image_read(probsout[idx])) |
|
|
269 |
|
|
|
270 |
# if len(probsout) != (len(inlabs)) and max_lab_plus_one == False: |
|
|
271 |
# warnings.warn("Length of output probabilities != length of unique input labels") |
|
|
272 |
|
|
|
273 |
segmentation_numbers = [0] * len(probsout) |
|
|
274 |
for i in range(len(probsout)): |
|
|
275 |
temp = str.split(probsout[i], "prob") |
|
|
276 |
segnum = temp[len(temp) - 1].split(".nii.gz")[0] |
|
|
277 |
segmentation_numbers[i] = int(segnum) |
|
|
278 |
|
|
|
279 |
if max_lab_plus_one == False: |
|
|
280 |
segmat = ants.images_to_matrix(probimgs, target_image_mask) |
|
|
281 |
finalsegvec = segmat.argmax(axis=0) |
|
|
282 |
finalsegvec2 = finalsegvec.copy() |
|
|
283 |
# mapfinalsegvec to original labels |
|
|
284 |
for i in range(len(probsout)): |
|
|
285 |
temp = str.split(probsout[i], "prob") |
|
|
286 |
segnum = temp[len(temp) - 1].split(".nii.gz")[0] |
|
|
287 |
finalsegvec2[finalsegvec == i] = segnum |
|
|
288 |
outimg = ants.make_image(target_image_mask, finalsegvec2) |
|
|
289 |
|
|
|
290 |
return { |
|
|
291 |
"segmentation": outimg, |
|
|
292 |
"intensity": outimgi, |
|
|
293 |
"probabilityimages": probimgs, |
|
|
294 |
"segmentation_numbers": segmentation_numbers, |
|
|
295 |
} |
|
|
296 |
|
|
|
297 |
if max_lab_plus_one == True: |
|
|
298 |
mymaxlab = max(segmentation_numbers) |
|
|
299 |
matchings_indices = [ |
|
|
300 |
i |
|
|
301 |
for i, segmentation_numbers in enumerate(segmentation_numbers) |
|
|
302 |
if segmentation_numbers == mymaxlab |
|
|
303 |
] |
|
|
304 |
background_prob = probimgs[matchings_indices[0]] |
|
|
305 |
background_probfn = probsout[matchings_indices[0]] |
|
|
306 |
del probimgs[matchings_indices[0]] |
|
|
307 |
del probsout[matchings_indices[0]] |
|
|
308 |
del segmentation_numbers[matchings_indices[0]] |
|
|
309 |
|
|
|
310 |
segmat = ants.images_to_matrix(probimgs, target_image_mask) |
|
|
311 |
|
|
|
312 |
finalsegvec = segmat.argmax(axis=0) |
|
|
313 |
finalsegvec2 = finalsegvec.copy() |
|
|
314 |
# mapfinalsegvec to original labels |
|
|
315 |
for i in range(len(probsout)): |
|
|
316 |
temp = str.split(probsout[i], "prob") |
|
|
317 |
segnum = temp[len(temp) - 1].split(".nii.gz")[0] |
|
|
318 |
finalsegvec2[finalsegvec == i] = segnum |
|
|
319 |
|
|
|
320 |
outimg = ants.make_image(target_image_mask, finalsegvec2) |
|
|
321 |
|
|
|
322 |
# next decide what is "background" based on the sum of the first k labels vs the prob of the last one |
|
|
323 |
firstK = probimgs[0] * 0 |
|
|
324 |
for i in range(len(probsout)): |
|
|
325 |
firstK = firstK + probimgs[i] |
|
|
326 |
|
|
|
327 |
segmat = ants.images_to_matrix([background_prob, firstK], target_image_mask) |
|
|
328 |
bkgsegvec = segmat.argmax(axis=0) |
|
|
329 |
outimg = outimg * ants.make_image(target_image_mask, bkgsegvec) |
|
|
330 |
|
|
|
331 |
return { |
|
|
332 |
"segmentation": outimg * ants.make_image(target_image_mask, bkgsegvec), |
|
|
333 |
"segmentation_raw": outimg, |
|
|
334 |
"intensity": outimgi, |
|
|
335 |
"probabilityimages": probimgs, |
|
|
336 |
"segmentation_numbers": segmentation_numbers, |
|
|
337 |
"background_prob": background_prob, |
|
|
338 |
} |
|
|
339 |
|
|
|
340 |
|
|
|
341 |
def local_joint_label_fusion( |
|
|
342 |
target_image, |
|
|
343 |
which_labels, |
|
|
344 |
target_mask, |
|
|
345 |
initial_label, |
|
|
346 |
atlas_list, |
|
|
347 |
label_list, |
|
|
348 |
submask_dilation=10, |
|
|
349 |
type_of_transform="SyN", |
|
|
350 |
aff_metric="meansquares", |
|
|
351 |
syn_metric="mattes", |
|
|
352 |
syn_sampling=32, |
|
|
353 |
reg_iterations=(40, 20, 0), |
|
|
354 |
aff_iterations=(500, 50, 0), |
|
|
355 |
grad_step=0.2, |
|
|
356 |
flow_sigma=3, |
|
|
357 |
total_sigma=0, |
|
|
358 |
beta=4, |
|
|
359 |
rad=2, |
|
|
360 |
rho=0.1, |
|
|
361 |
usecor=False, |
|
|
362 |
r_search=3, |
|
|
363 |
nonnegative=False, |
|
|
364 |
no_zeroes=False, |
|
|
365 |
max_lab_plus_one=False, |
|
|
366 |
local_mask_transform="Similarity", |
|
|
367 |
output_prefix=None, |
|
|
368 |
verbose=False, |
|
|
369 |
): |
|
|
370 |
""" |
|
|
371 |
A local version of joint label fusion that focuses on a subset of labels. |
|
|
372 |
This is primarily different from standard JLF because it performs |
|
|
373 |
registration on the label subset and focuses JLF on those labels alone. |
|
|
374 |
|
|
|
375 |
ANTsR function: `localJointLabelFusion` |
|
|
376 |
|
|
|
377 |
Arguments |
|
|
378 |
--------- |
|
|
379 |
target_image : ANTsImage |
|
|
380 |
image to be labeled |
|
|
381 |
|
|
|
382 |
which_labels : numeric vector |
|
|
383 |
label number(s) that exist(s) in both the template and library |
|
|
384 |
|
|
|
385 |
target_image_mask : ANTsImage |
|
|
386 |
a mask for the target image (optional), passed to joint fusion |
|
|
387 |
|
|
|
388 |
initial_label : ANTsImage |
|
|
389 |
initial label set, may be same labels as library or binary. |
|
|
390 |
typically labels would be produced by a single deformable registration |
|
|
391 |
or by manual labeling. |
|
|
392 |
|
|
|
393 |
atlas_list : list of ANTsImage types |
|
|
394 |
list containing intensity images |
|
|
395 |
|
|
|
396 |
label_list : list of ANTsImage types (optional) |
|
|
397 |
list containing images with segmentation labels |
|
|
398 |
|
|
|
399 |
submask_dilation : integer |
|
|
400 |
amount to dilate initial mask to define region on which |
|
|
401 |
we perform focused registration |
|
|
402 |
|
|
|
403 |
type_of_transform : string |
|
|
404 |
A linear or non-linear registration type. Mutual information metric by default. |
|
|
405 |
See Notes below for more. |
|
|
406 |
|
|
|
407 |
aff_metric : string |
|
|
408 |
the metric for the affine part (GC, mattes, meansquares) |
|
|
409 |
|
|
|
410 |
syn_metric : string |
|
|
411 |
the metric for the syn part (CC, mattes, meansquares, demons) |
|
|
412 |
|
|
|
413 |
syn_sampling : scalar |
|
|
414 |
the nbins or radius parameter for the syn metric |
|
|
415 |
|
|
|
416 |
reg_iterations : list/tuple of integers |
|
|
417 |
vector of iterations for syn. we will set the smoothing and multi-resolution parameters based on the length of this vector. |
|
|
418 |
|
|
|
419 |
|
|
|
420 |
aff_iterations : list/tuple of integers |
|
|
421 |
vector of iterations for low-dimensional registration. |
|
|
422 |
|
|
|
423 |
grad_step : scalar |
|
|
424 |
gradient step size (not for all tx) |
|
|
425 |
|
|
|
426 |
flow_sigma : scalar |
|
|
427 |
smoothing for update field |
|
|
428 |
|
|
|
429 |
total_sigma : scalar |
|
|
430 |
smoothing for total field |
|
|
431 |
|
|
|
432 |
beta : scalar |
|
|
433 |
weight sharpness, default to 2 |
|
|
434 |
|
|
|
435 |
rad : scalar |
|
|
436 |
neighborhood radius, default to 2 |
|
|
437 |
|
|
|
438 |
rho : scalar |
|
|
439 |
ridge penalty increases robustness to outliers but also makes image converge to average |
|
|
440 |
|
|
|
441 |
usecor : boolean |
|
|
442 |
employ correlation as local similarity |
|
|
443 |
|
|
|
444 |
r_search : scalar |
|
|
445 |
radius of search, default is 3 |
|
|
446 |
|
|
|
447 |
nonnegative : boolean |
|
|
448 |
constrain weights to be non-negative |
|
|
449 |
|
|
|
450 |
no_zeroes : boolean |
|
|
451 |
this will constrain the solution only to voxels that are always non-zero in the label list |
|
|
452 |
|
|
|
453 |
max_lab_plus_one : boolean |
|
|
454 |
this will add max label plus one to the non-zero parts of each label where the target mask |
|
|
455 |
is greater than one. NOTE: this will have a side effect of adding to the original label |
|
|
456 |
images that are passed to the program. It also guarantees that every position in the |
|
|
457 |
labels have some label, rather than none. Ie it guarantees to explicitly parcellate the |
|
|
458 |
input data. |
|
|
459 |
|
|
|
460 |
local_mask_transform: string |
|
|
461 |
the type of transform for the local mask alignment - usually translation, |
|
|
462 |
rigid, similarity or affine. |
|
|
463 |
|
|
|
464 |
output_prefix: string |
|
|
465 |
file prefix for storing output probabilityimages to disk |
|
|
466 |
|
|
|
467 |
verbose : boolean |
|
|
468 |
whether to show status updates |
|
|
469 |
|
|
|
470 |
Returns |
|
|
471 |
------- |
|
|
472 |
dictionary w/ following key/value pairs: |
|
|
473 |
`segmentation` : ANTsImage |
|
|
474 |
segmentation image |
|
|
475 |
|
|
|
476 |
`intensity` : ANTsImage |
|
|
477 |
intensity image |
|
|
478 |
|
|
|
479 |
`probabilityimages` : list of ANTsImage types |
|
|
480 |
probability map image for each label |
|
|
481 |
|
|
|
482 |
""" |
|
|
483 |
myregion = ants.mask_image(initial_label, initial_label, which_labels) |
|
|
484 |
if myregion.max() == 0: |
|
|
485 |
myregion = ants.threshold_image(initial_label, 1, math.inf) |
|
|
486 |
|
|
|
487 |
myregionb = ants.threshold_image(myregion, 1, math.inf) |
|
|
488 |
myregionAroundRegion = ants.iMath(myregionb, "MD", submask_dilation) |
|
|
489 |
if target_mask is not None: |
|
|
490 |
myregionAroundRegion = myregionAroundRegion * target_mask |
|
|
491 |
croppedImage = ants.crop_image(target_image, myregionAroundRegion) |
|
|
492 |
croppedMask = ants.crop_image(myregionAroundRegion, myregionAroundRegion) |
|
|
493 |
mycroppedregion = ants.crop_image(myregion, myregionAroundRegion) |
|
|
494 |
croppedmappedImages = [] |
|
|
495 |
croppedmappedSegs = [] |
|
|
496 |
if verbose is True: |
|
|
497 |
print("Begin registrations:") |
|
|
498 |
for k in range(len(atlas_list)): |
|
|
499 |
|
|
|
500 |
if verbose is True: |
|
|
501 |
print(str(k) + "...") |
|
|
502 |
|
|
|
503 |
if verbose is True: |
|
|
504 |
print( "local-seg-tx: " + local_mask_transform ) |
|
|
505 |
libregion = ants.mask_image(label_list[k], label_list[k], which_labels) |
|
|
506 |
initMap = ants.registration( |
|
|
507 |
mycroppedregion, libregion, type_of_transform=local_mask_transform, aff_metric=aff_metric, aff_iterations=aff_iterations, verbose=False |
|
|
508 |
)["fwdtransforms"] |
|
|
509 |
if verbose is True: |
|
|
510 |
print( "local-img-tx: " + type_of_transform ) |
|
|
511 |
localReg = ants.registration( |
|
|
512 |
croppedImage, |
|
|
513 |
atlas_list[k], |
|
|
514 |
reg_iterations=reg_iterations, |
|
|
515 |
flow_sigma=flow_sigma, |
|
|
516 |
total_sigma=total_sigma, |
|
|
517 |
grad_step=grad_step, |
|
|
518 |
type_of_transform=type_of_transform, |
|
|
519 |
syn_metric=syn_metric, |
|
|
520 |
syn_sampling=syn_sampling, |
|
|
521 |
initial_transform=initMap[0], |
|
|
522 |
verbose=False, |
|
|
523 |
) |
|
|
524 |
transformedImage = ants.apply_transforms( |
|
|
525 |
croppedImage, atlas_list[k], localReg["fwdtransforms"] |
|
|
526 |
) |
|
|
527 |
transformedLabels = ants.apply_transforms( |
|
|
528 |
croppedImage, |
|
|
529 |
label_list[k], |
|
|
530 |
localReg["fwdtransforms"], |
|
|
531 |
interpolator="nearestNeighbor", |
|
|
532 |
) |
|
|
533 |
croppedmappedImages.append(transformedImage) |
|
|
534 |
croppedmappedSegs.append(transformedLabels) |
|
|
535 |
|
|
|
536 |
ljlf = joint_label_fusion( |
|
|
537 |
croppedImage, |
|
|
538 |
croppedMask, |
|
|
539 |
atlas_list=croppedmappedImages, |
|
|
540 |
label_list=croppedmappedSegs, |
|
|
541 |
beta=beta, |
|
|
542 |
rad=rad, |
|
|
543 |
rho=rho, |
|
|
544 |
usecor=usecor, |
|
|
545 |
r_search=r_search, |
|
|
546 |
nonnegative=nonnegative, |
|
|
547 |
no_zeroes=no_zeroes, |
|
|
548 |
max_lab_plus_one=max_lab_plus_one, |
|
|
549 |
output_prefix=output_prefix, |
|
|
550 |
verbose=verbose, |
|
|
551 |
) |
|
|
552 |
|
|
|
553 |
return { |
|
|
554 |
"ljlf": ljlf, |
|
|
555 |
"croppedImage": croppedImage, |
|
|
556 |
"croppedmappedImages": croppedmappedImages, |
|
|
557 |
"croppedmappedSegs": croppedmappedSegs, |
|
|
558 |
} |