__all__ = ['create_jacobian_determinant_image',
'deformation_gradient']
from tempfile import mktemp
import ants
from ants.internal import get_lib_fn, process_arguments
def deformation_gradient( warp_image, to_rotation=False, py_based=False ):
"""
Compute the deformation gradient from an image containing a warp (deformation)
ANTsR function: `NA`
Arguments
---------
warp_image : ANTsImage (or filename if not py_based)
image that defines the deformation field (vector pixels)
to_rotation : boolean maps deformation gradient to a rotation matrix
py_based: boolean uses pure python implementation (maybe slow)
Returns
-------
ANTsImage with dimension*dimension components indexed in order U_xyz, V_xyz, W_xyz
where U is the x-component of deformation and xyz are spatial.
Note
-------
the to_rotation option is still experimental. use with caution.
Example
-------
>>> import ants
>>> fi = ants.image_read( ants.get_ants_data('r16'))
>>> mi = ants.image_read( ants.get_ants_data('r64'))
>>> fi = ants.resample_image(fi,(128,128),1,0)
>>> mi = ants.resample_image(mi,(128,128),1,0)
>>> mytx = ants.registration(fixed=fi , moving=mi, type_of_transform = ('SyN') )
>>> dg = ants.deformation_gradient( ants.image_read( mytx['fwdtransforms'][0] ) )
"""
import numpy as np
def polar_decomposition(X):
U, d, V = np.linalg.svd(X, full_matrices=False)
P = np.matmul(U, np.matmul(np.diag(d), np.transpose(U)))
Z = np.matmul(U, V)
if np.linalg.det(Z) < 0:
n = X.shape[0]
reflection_matrix = np.identity(n)
reflection_matrix[0,0] = -1.0
Z = np.matmul(Z, reflection_matrix)
return({"P" : P, "Z" : Z, "Xtilde" : np.matmul(P, Z)})
if not py_based:
if ants.is_image(warp_image):
txuse = mktemp(suffix='.nii.gz')
ants.image_write(warp_image, txuse)
else:
txuse = warp_image
warp_image=ants.image_read(txuse)
if not ants.is_image(warp_image):
raise RuntimeError("antsimage is required")
writtenimage = mktemp(suffix='.nrrd')
dimage = warp_image.split_channels()[0].clone('double')
dim = dimage.dimension
tshp = dimage.shape
args2 = [dim, txuse, writtenimage, int(0), int(0), int(1)]
processed_args = process_arguments(args2)
libfn = get_lib_fn('CreateJacobianDeterminantImage')
libfn(processed_args)
dg = ants.image_read(writtenimage)
if to_rotation:
newshape = tshp + (dim,dim)
dg = np.reshape( dg.numpy(), newshape )
it=np.ndindex(tshp)
for i in it:
dg[i]=polar_decomposition( dg[i] )['Z']
newshape = tshp + (dim*dim,)
dg = np.reshape( dg, newshape )
dg = ants.from_numpy( dg, has_components=True )
dg = ants.copy_image_info( dimage, dg )
import os
os.remove( writtenimage )
return dg
if py_based:
if not ants.is_image(warp_image):
raise RuntimeError("antsimage is required")
dim = warp_image.dimension
warpnp=warp_image.numpy()
tshp=warp_image.shape
tdir=warp_image.direction
spc = warp_image.spacing
it=np.ndindex(tshp)
# print("first we need to rotate the warp by the direction cosines")
for i in it:
warpnp[i]=np.dot( tdir,warpnp[i])
# print("second get deformation gradient")
dg = []
for k in range(dim):
if dim == 2:
temp=np.stack( np.gradient( warpnp[...,k], spc[0], spc[1], axis=range(dim) ), axis=dim)
if dim == 3:
temp=np.stack( np.gradient( warpnp[...,k], spc[0], spc[1], spc[2], axis=range(dim) ), axis=dim)
dg.append(temp)
dg = np.stack(dg,axis=dim+1)
it=np.ndindex(tshp)
ident = np.eye( dim )
for i in it:
dg[i]=dg[i]+ident
if to_rotation:
it=np.ndindex(tshp)
for i in it:
dg[i]=polar_decomposition( dg[i] )['Z']
newshape = tshp + (dim*dim,)
dg = np.reshape( dg, newshape )
dg = ants.from_numpy( dg, has_components=True )
dg = ants.copy_image_info( warp_image, dg )
return dg
def create_jacobian_determinant_image(domain_image, tx, do_log=False, geom=False):
"""
Compute the jacobian determinant from a transformation file
ANTsR function: `createJacobianDeterminantImage`
Arguments
---------
domain_image : ANTsImage
image that defines transformation domain
tx : string
deformation transformation file name
do_log : boolean
return the log jacobian
geom : bolean
use the geometric jacobian calculation (boolean)
Returns
-------
ANTsImage
Example
-------
>>> import ants
>>> fi = ants.image_read( ants.get_ants_data('r16'))
>>> mi = ants.image_read( ants.get_ants_data('r64'))
>>> fi = ants.resample_image(fi,(128,128),1,0)
>>> mi = ants.resample_image(mi,(128,128),1,0)
>>> mytx = ants.registration(fixed=fi , moving=mi, type_of_transform = ('SyN') )
>>> jac = ants.create_jacobian_determinant_image(fi,mytx['fwdtransforms'][0],1)
"""
dim = domain_image.dimension
if ants.is_image(tx):
txuse = mktemp(suffix='.nii.gz')
ants.image_write(tx, txuse)
else:
txuse = tx
#args = [dim, txuse, do_log]
dimage = domain_image.clone('double')
args2 = [dim, txuse, dimage, int(do_log), int(geom)]
processed_args = process_arguments(args2)
libfn = get_lib_fn('CreateJacobianDeterminantImage')
libfn(processed_args)
jimage = args2[2].clone('float')
return jimage