|
a |
|
b/ants/registration/build_template.py |
|
|
1 |
__all__ = ["build_template"] |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import os |
|
|
5 |
import shutil |
|
|
6 |
from tempfile import mktemp |
|
|
7 |
|
|
|
8 |
import ants |
|
|
9 |
|
|
|
10 |
def build_template( |
|
|
11 |
initial_template=None, |
|
|
12 |
image_list=None, |
|
|
13 |
iterations=3, |
|
|
14 |
gradient_step=0.2, |
|
|
15 |
blending_weight=0.75, |
|
|
16 |
weights=None, |
|
|
17 |
useNoRigid=True, |
|
|
18 |
output_dir=None, |
|
|
19 |
**kwargs |
|
|
20 |
): |
|
|
21 |
""" |
|
|
22 |
Estimate an optimal template from an input image_list |
|
|
23 |
|
|
|
24 |
ANTsR function: N/A |
|
|
25 |
|
|
|
26 |
Arguments |
|
|
27 |
--------- |
|
|
28 |
initial_template : ANTsImage |
|
|
29 |
initialization for the template building |
|
|
30 |
|
|
|
31 |
image_list : ANTsImages |
|
|
32 |
images from which to estimate template |
|
|
33 |
|
|
|
34 |
iterations : integer |
|
|
35 |
number of template building iterations |
|
|
36 |
|
|
|
37 |
gradient_step : scalar |
|
|
38 |
for shape update gradient |
|
|
39 |
|
|
|
40 |
blending_weight : scalar |
|
|
41 |
weight for image blending |
|
|
42 |
|
|
|
43 |
weights : vector |
|
|
44 |
weight for each input image |
|
|
45 |
|
|
|
46 |
useNoRigid : boolean |
|
|
47 |
equivalent of -y in the script. Template update |
|
|
48 |
step will not use the rigid component if this is True. |
|
|
49 |
|
|
|
50 |
output_dir : path |
|
|
51 |
directory name where intermediate transforms are written |
|
|
52 |
|
|
|
53 |
kwargs : keyword args |
|
|
54 |
extra arguments passed to ants registration |
|
|
55 |
|
|
|
56 |
Returns |
|
|
57 |
------- |
|
|
58 |
ANTsImage |
|
|
59 |
|
|
|
60 |
Example |
|
|
61 |
------- |
|
|
62 |
>>> import ants |
|
|
63 |
>>> image = ants.image_read( ants.get_ants_data('r16') ) |
|
|
64 |
>>> image2 = ants.image_read( ants.get_ants_data('r27') ) |
|
|
65 |
>>> image3 = ants.image_read( ants.get_ants_data('r85') ) |
|
|
66 |
>>> timage = ants.build_template( image_list = ( image, image2, image3 ) ).resample_image( (45,45)) |
|
|
67 |
>>> timagew = ants.build_template( image_list = ( image, image2, image3 ), weights = (5,1,1) ) |
|
|
68 |
""" |
|
|
69 |
work_dir = mktemp() if output_dir is None else output_dir |
|
|
70 |
|
|
|
71 |
def make_outprefix(k: int): |
|
|
72 |
os.makedirs(os.path.join(work_dir, f"img{k:04d}"), exist_ok=True) |
|
|
73 |
return os.path.join(work_dir, f"img{k:04d}", "out") |
|
|
74 |
|
|
|
75 |
if "type_of_transform" not in kwargs: |
|
|
76 |
type_of_transform = "SyN" |
|
|
77 |
else: |
|
|
78 |
type_of_transform = kwargs.pop("type_of_transform") |
|
|
79 |
|
|
|
80 |
if weights is None: |
|
|
81 |
weights = np.repeat(1.0 / len(image_list), len(image_list)) |
|
|
82 |
weights = [x / sum(weights) for x in weights] |
|
|
83 |
if initial_template is None: |
|
|
84 |
initial_template = image_list[0] * 0 |
|
|
85 |
for i in range(len(image_list)): |
|
|
86 |
temp = image_list[i] * weights[i] |
|
|
87 |
temp = ants.resample_image_to_target(temp, initial_template) |
|
|
88 |
initial_template = initial_template + temp |
|
|
89 |
|
|
|
90 |
xavg = initial_template.clone() |
|
|
91 |
for i in range(iterations): |
|
|
92 |
affinelist = [] |
|
|
93 |
for k in range(len(image_list)): |
|
|
94 |
w1 = ants.registration( |
|
|
95 |
xavg, image_list[k], type_of_transform=type_of_transform, outprefix=make_outprefix(k), **kwargs |
|
|
96 |
) |
|
|
97 |
L = len(w1["fwdtransforms"]) |
|
|
98 |
# affine is the last one |
|
|
99 |
affinelist.append(w1["fwdtransforms"][L-1]) |
|
|
100 |
|
|
|
101 |
if k == 0: |
|
|
102 |
if L == 2: |
|
|
103 |
wavg = ants.image_read(w1["fwdtransforms"][0]) * weights[k] |
|
|
104 |
xavgNew = w1["warpedmovout"] * weights[k] |
|
|
105 |
else: |
|
|
106 |
if L == 2: |
|
|
107 |
wavg = wavg + ants.image_read(w1["fwdtransforms"][0]) * weights[k] |
|
|
108 |
xavgNew = xavgNew + w1["warpedmovout"] * weights[k] |
|
|
109 |
|
|
|
110 |
if useNoRigid: |
|
|
111 |
avgaffine = ants.average_affine_transform_no_rigid(affinelist) |
|
|
112 |
else: |
|
|
113 |
avgaffine = ants.average_affine_transform(affinelist) |
|
|
114 |
afffn = os.path.join(work_dir, "avgAffine.mat") |
|
|
115 |
ants.write_transform(avgaffine, afffn) |
|
|
116 |
|
|
|
117 |
if L == 2: |
|
|
118 |
print(wavg.abs().mean()) |
|
|
119 |
wscl = (-1.0) * gradient_step |
|
|
120 |
wavg = wavg * wscl |
|
|
121 |
# apply affine to the nonlinear? |
|
|
122 |
# need to save the average |
|
|
123 |
wavgA = ants.apply_transforms(fixed=xavgNew, moving=wavg, imagetype=1, transformlist=afffn, whichtoinvert=[1]) |
|
|
124 |
wavgfn = os.path.join(work_dir, "avgWarp.nii.gz") |
|
|
125 |
ants.image_write(wavgA, wavgfn) |
|
|
126 |
xavg = ants.apply_transforms(fixed=xavgNew, moving=xavgNew, transformlist=[wavgfn, afffn], whichtoinvert=[0, 1]) |
|
|
127 |
else: |
|
|
128 |
xavg = ants.apply_transforms(fixed=xavgNew, moving=xavgNew, transformlist=[afffn], whichtoinvert=[1]) |
|
|
129 |
|
|
|
130 |
if blending_weight is not None: |
|
|
131 |
xavg = xavg * blending_weight + ants.iMath(xavg, "Sharpen") * ( |
|
|
132 |
1.0 - blending_weight |
|
|
133 |
) |
|
|
134 |
|
|
|
135 |
if output_dir is None: |
|
|
136 |
shutil.rmtree(work_dir) |
|
|
137 |
return xavg |