|
a |
|
b/ants/plotting/plot_ortho.py |
|
|
1 |
""" |
|
|
2 |
Functions for plotting ants images |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
__all__ = [ |
|
|
7 |
"plot_ortho" |
|
|
8 |
] |
|
|
9 |
|
|
|
10 |
import fnmatch |
|
|
11 |
import math |
|
|
12 |
import os |
|
|
13 |
import warnings |
|
|
14 |
|
|
|
15 |
from matplotlib import gridspec |
|
|
16 |
import matplotlib.pyplot as plt |
|
|
17 |
import matplotlib.patheffects as path_effects |
|
|
18 |
import matplotlib.lines as mlines |
|
|
19 |
import matplotlib.patches as patches |
|
|
20 |
import matplotlib.mlab as mlab |
|
|
21 |
import matplotlib.animation as animation |
|
|
22 |
from mpl_toolkits.axes_grid1.inset_locator import inset_axes |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
import numpy as np |
|
|
26 |
import ants |
|
|
27 |
from ants.decorators import image_method |
|
|
28 |
|
|
|
29 |
@image_method |
|
|
30 |
def plot_ortho( |
|
|
31 |
image, |
|
|
32 |
overlay=None, |
|
|
33 |
reorient=True, |
|
|
34 |
blend=False, |
|
|
35 |
# xyz arguments |
|
|
36 |
xyz=None, |
|
|
37 |
xyz_lines=True, |
|
|
38 |
xyz_color="red", |
|
|
39 |
xyz_alpha=0.6, |
|
|
40 |
xyz_linewidth=2, |
|
|
41 |
xyz_pad=5, |
|
|
42 |
orient_labels=True, |
|
|
43 |
# base image arguments |
|
|
44 |
alpha=1, |
|
|
45 |
cmap="Greys_r", |
|
|
46 |
# overlay arguments |
|
|
47 |
overlay_cmap="jet", |
|
|
48 |
overlay_alpha=0.9, |
|
|
49 |
cbar=False, |
|
|
50 |
cbar_length=0.8, |
|
|
51 |
cbar_dx=0.0, |
|
|
52 |
cbar_vertical=True, |
|
|
53 |
# background arguments |
|
|
54 |
black_bg=True, |
|
|
55 |
bg_thresh_quant=0.01, |
|
|
56 |
bg_val_quant=0.99, |
|
|
57 |
# scale/crop/domain arguments |
|
|
58 |
crop=False, |
|
|
59 |
scale=False, |
|
|
60 |
domain_image_map=None, |
|
|
61 |
# title arguments |
|
|
62 |
title=None, |
|
|
63 |
titlefontsize=24, |
|
|
64 |
title_dx=0, |
|
|
65 |
title_dy=0, |
|
|
66 |
# 4th panel text arguemnts |
|
|
67 |
text=None, |
|
|
68 |
textfontsize=24, |
|
|
69 |
textfontcolor="white", |
|
|
70 |
text_dx=0, |
|
|
71 |
text_dy=0, |
|
|
72 |
# save & size arguments |
|
|
73 |
filename=None, |
|
|
74 |
dpi=500, |
|
|
75 |
figsize=1.0, |
|
|
76 |
flat=False, |
|
|
77 |
transparent=True, |
|
|
78 |
resample=False, |
|
|
79 |
allow_xyz_change=True, |
|
|
80 |
): |
|
|
81 |
""" |
|
|
82 |
Plot an orthographic view of a 3D image |
|
|
83 |
|
|
|
84 |
Use mask_image and/or threshold_image to preprocess images to be be |
|
|
85 |
overlaid and display the overlays in a given range. See the wiki examples. |
|
|
86 |
|
|
|
87 |
ANTsR function: N/A |
|
|
88 |
|
|
|
89 |
Arguments |
|
|
90 |
--------- |
|
|
91 |
image : ANTsImage |
|
|
92 |
image to plot |
|
|
93 |
|
|
|
94 |
overlay : ANTsImage |
|
|
95 |
image to overlay on base image |
|
|
96 |
|
|
|
97 |
xyz : list or tuple of 3 integers |
|
|
98 |
selects index location on which to center display |
|
|
99 |
if given, solid lines will be drawn to converge at this coordinate. |
|
|
100 |
This is useful for pinpointing a specific location in the image. |
|
|
101 |
|
|
|
102 |
flat : boolean |
|
|
103 |
if true, the ortho image will be plot in one row |
|
|
104 |
if false, the ortho image will be a 2x2 grid with the bottom |
|
|
105 |
left corner blank |
|
|
106 |
|
|
|
107 |
cmap : string |
|
|
108 |
colormap to use for base image. See matplotlib. |
|
|
109 |
|
|
|
110 |
overlay_cmap : string |
|
|
111 |
colormap to use for overlay images, if applicable. See matplotlib. |
|
|
112 |
|
|
|
113 |
overlay_alpha : float |
|
|
114 |
level of transparency for any overlays. Smaller value means |
|
|
115 |
the overlay is more transparent. See matplotlib. |
|
|
116 |
|
|
|
117 |
cbar: boolean |
|
|
118 |
if true, a colorbar will be added to the plot |
|
|
119 |
|
|
|
120 |
cbar_length: float |
|
|
121 |
length of the colorbar relative to the image |
|
|
122 |
|
|
|
123 |
cbar_dx: float |
|
|
124 |
horizontal shift of the colorbar relative to the image |
|
|
125 |
|
|
|
126 |
cbar_vertical: boolean |
|
|
127 |
if true, the colorbar will be vertical, if false, it will be |
|
|
128 |
horizontal underneath the image |
|
|
129 |
|
|
|
130 |
axis : integer |
|
|
131 |
which axis to plot along if image is 3D |
|
|
132 |
|
|
|
133 |
black_bg : boolean |
|
|
134 |
if True, the background of the image(s) will be black. |
|
|
135 |
if False, the background of the image(s) will be determined by the |
|
|
136 |
values `bg_thresh_quant` and `bg_val_quant`. |
|
|
137 |
|
|
|
138 |
bg_thresh_quant : float |
|
|
139 |
if white_bg=True, the background will be determined by thresholding |
|
|
140 |
the image at the `bg_thresh` quantile value and setting the background |
|
|
141 |
intensity to the `bg_val` quantile value. |
|
|
142 |
This value should be in [0, 1] - somewhere around 0.01 is recommended. |
|
|
143 |
- equal to 1 will threshold the entire image |
|
|
144 |
- equal to 0 will threshold none of the image |
|
|
145 |
|
|
|
146 |
bg_val_quant : float |
|
|
147 |
if white_bg=True, the background will be determined by thresholding |
|
|
148 |
the image at the `bg_thresh` quantile value and setting the background |
|
|
149 |
intensity to the `bg_val` quantile value. |
|
|
150 |
This value should be in [0, 1] |
|
|
151 |
- equal to 1 is pure white |
|
|
152 |
- equal to 0 is pure black |
|
|
153 |
- somewhere in between is gray |
|
|
154 |
|
|
|
155 |
domain_image_map : ANTsImage |
|
|
156 |
this input ANTsImage or list of ANTsImage types contains a reference image |
|
|
157 |
`domain_image` and optional reference mapping named `domainMap`. |
|
|
158 |
If supplied, the image(s) to be plotted will be mapped to the domain |
|
|
159 |
image space before plotting - useful for non-standard image orientations. |
|
|
160 |
|
|
|
161 |
crop : boolean |
|
|
162 |
if true, the image(s) will be cropped to their bounding boxes, resulting |
|
|
163 |
in a potentially smaller image size. |
|
|
164 |
if false, the image(s) will not be cropped |
|
|
165 |
|
|
|
166 |
scale : boolean or 2-tuple |
|
|
167 |
if true, nothing will happen to intensities of image(s) and overlay(s) |
|
|
168 |
if false, dynamic range will be maximized when visualizing overlays |
|
|
169 |
if 2-tuple, the image will be dynamically scaled between these quantiles |
|
|
170 |
|
|
|
171 |
title : string |
|
|
172 |
add a title to the plot |
|
|
173 |
|
|
|
174 |
filename : string |
|
|
175 |
if given, the resulting image will be saved to this file |
|
|
176 |
|
|
|
177 |
dpi : integer |
|
|
178 |
determines resolution of image if saved to file. Higher values |
|
|
179 |
result in higher resolution images, but at a cost of having a |
|
|
180 |
larger file size |
|
|
181 |
|
|
|
182 |
resample : resample image in case of unbalanced spacing |
|
|
183 |
|
|
|
184 |
allow_xyz_change : boolean will attempt to adjust xyz after padding |
|
|
185 |
|
|
|
186 |
Example |
|
|
187 |
------- |
|
|
188 |
>>> import ants |
|
|
189 |
>>> mni = ants.image_read(ants.get_data('mni')) |
|
|
190 |
>>> ants.plot_ortho(mni, xyz=(100,100,100)) |
|
|
191 |
>>> mni2 = mni.threshold_image(7000, mni.max()) |
|
|
192 |
>>> ants.plot_ortho(mni, overlay=mni2) |
|
|
193 |
>>> ants.plot_ortho(mni, overlay=mni2, flat=True) |
|
|
194 |
>>> ants.plot_ortho(mni, overlay=mni2, xyz=(110,110,110), xyz_lines=False, |
|
|
195 |
text='Lines Turned Off', textfontsize=22) |
|
|
196 |
>>> ants.plot_ortho(mni, mni2, xyz=(120,100,100), |
|
|
197 |
text=' Example \nOrtho Text', textfontsize=26, |
|
|
198 |
title='Example Ortho Title', titlefontsize=26) |
|
|
199 |
""" |
|
|
200 |
|
|
|
201 |
def mirror_matrix(x): |
|
|
202 |
return x[::-1, :] |
|
|
203 |
|
|
|
204 |
def rotate270_matrix(x): |
|
|
205 |
return mirror_matrix(x.T) |
|
|
206 |
|
|
|
207 |
def reorient_slice(x, axis): |
|
|
208 |
return rotate270_matrix(x) |
|
|
209 |
|
|
|
210 |
# need this hack because of a weird NaN warning from matplotlib with overlays |
|
|
211 |
warnings.simplefilter("ignore") |
|
|
212 |
|
|
|
213 |
# handle `image` argument |
|
|
214 |
if isinstance(image, str): |
|
|
215 |
image = ants.image_read(image) |
|
|
216 |
if not ants.is_image(image): |
|
|
217 |
raise ValueError("image argument must be an ANTsImage") |
|
|
218 |
if image.dimension != 3: |
|
|
219 |
raise ValueError("Input image must have 3 dimensions!") |
|
|
220 |
|
|
|
221 |
# handle `overlay` argument |
|
|
222 |
if overlay is not None: |
|
|
223 |
if isinstance(overlay, str): |
|
|
224 |
overlay = ants.image_read(overlay) |
|
|
225 |
vminol = overlay.min() |
|
|
226 |
vmaxol = overlay.max() |
|
|
227 |
if not ants.is_image(overlay): |
|
|
228 |
raise ValueError("overlay argument must be an ANTsImage") |
|
|
229 |
if overlay.components > 1: |
|
|
230 |
raise ValueError("overlay cannot have more than one voxel component") |
|
|
231 |
if overlay.dimension != 3: |
|
|
232 |
raise ValueError("Overlay image must have 3 dimensions!") |
|
|
233 |
|
|
|
234 |
if not ants.image_physical_space_consistency(image, overlay): |
|
|
235 |
overlay = ants.resample_image_to_target(overlay, image, interp_type="linear") |
|
|
236 |
|
|
|
237 |
if blend: |
|
|
238 |
if alpha == 1: |
|
|
239 |
alpha = 0.5 |
|
|
240 |
image = image * alpha + overlay * (1 - alpha) |
|
|
241 |
overlay = None |
|
|
242 |
alpha = 1.0 |
|
|
243 |
|
|
|
244 |
if image.pixeltype not in {"float", "double"}: |
|
|
245 |
scale = False # turn off scaling if image is discrete |
|
|
246 |
|
|
|
247 |
# reorient images |
|
|
248 |
if reorient != False: |
|
|
249 |
if reorient == True: |
|
|
250 |
reorient = "RPI" |
|
|
251 |
image = image.reorient_image2("RPI") |
|
|
252 |
if overlay is not None: |
|
|
253 |
overlay = overlay.reorient_image2("RPI") |
|
|
254 |
|
|
|
255 |
# handle `slices` argument |
|
|
256 |
if xyz is None: |
|
|
257 |
xyz = [int(s / 2) for s in image.shape] |
|
|
258 |
for i in range(3): |
|
|
259 |
if xyz[i] is None: |
|
|
260 |
xyz[i] = int(image.shape[i] / 2) |
|
|
261 |
|
|
|
262 |
# resample image if spacing is very unbalanced |
|
|
263 |
spacing = [s for i, s in enumerate(image.spacing)] |
|
|
264 |
if (max(spacing) / min(spacing)) > 3.0 and resample: |
|
|
265 |
new_spacing = (1, 1, 1) |
|
|
266 |
image = image.resample_image(tuple(new_spacing)) |
|
|
267 |
if overlay is not None: |
|
|
268 |
overlay = overlay.resample_image(tuple(new_spacing)) |
|
|
269 |
xyz = [ |
|
|
270 |
int(sl * (sold / snew)) for sl, sold, snew in zip(xyz, spacing, new_spacing) |
|
|
271 |
] |
|
|
272 |
|
|
|
273 |
|
|
|
274 |
# potentially crop image |
|
|
275 |
if crop: |
|
|
276 |
plotmask = image.get_mask(cleanup=0) |
|
|
277 |
if plotmask.max() == 0: |
|
|
278 |
plotmask += 1 |
|
|
279 |
image = image.crop_image(plotmask) |
|
|
280 |
if overlay is not None: |
|
|
281 |
overlay = overlay.crop_image(plotmask) |
|
|
282 |
|
|
|
283 |
# pad images |
|
|
284 |
if True: |
|
|
285 |
image, lowpad, uppad = image.pad_image(return_padvals=True) |
|
|
286 |
if allow_xyz_change: |
|
|
287 |
xyz = [v + l for v, l in zip(xyz, lowpad)] |
|
|
288 |
if overlay is not None: |
|
|
289 |
overlay = overlay.pad_image() |
|
|
290 |
|
|
|
291 |
|
|
|
292 |
# handle `domain_image_map` argument |
|
|
293 |
if domain_image_map is not None: |
|
|
294 |
if ants.is_image(domain_image_map): |
|
|
295 |
tx = ants.new_ants_transform( |
|
|
296 |
precision="float", |
|
|
297 |
transform_type="AffineTransform", |
|
|
298 |
dimension=image.dimension, |
|
|
299 |
) |
|
|
300 |
image = ants.apply_ants_transform_to_image(tx, image, domain_image_map) |
|
|
301 |
if overlay is not None: |
|
|
302 |
overlay = ants.apply_ants_transform_to_image( |
|
|
303 |
tx, overlay, domain_image_map, interpolation="linear" |
|
|
304 |
) |
|
|
305 |
else: |
|
|
306 |
raise Exception('The domain_image_map must be an image.') |
|
|
307 |
|
|
|
308 |
## single-channel images ## |
|
|
309 |
if image.components == 1: |
|
|
310 |
|
|
|
311 |
# potentially find dynamic range |
|
|
312 |
if scale == True: |
|
|
313 |
vmin, vmax = image.quantile((0.05, 0.95)) |
|
|
314 |
elif isinstance(scale, (list, tuple)): |
|
|
315 |
if len(scale) != 2: |
|
|
316 |
raise ValueError( |
|
|
317 |
"scale argument must be boolean or list/tuple with two values" |
|
|
318 |
) |
|
|
319 |
vmin, vmax = image.quantile(scale) |
|
|
320 |
else: |
|
|
321 |
vmin = None |
|
|
322 |
vmax = None |
|
|
323 |
|
|
|
324 |
if not flat: |
|
|
325 |
nrow = 2 |
|
|
326 |
ncol = 2 |
|
|
327 |
else: |
|
|
328 |
nrow = 1 |
|
|
329 |
ncol = 3 |
|
|
330 |
|
|
|
331 |
fig = plt.figure(figsize=(9 * figsize, 9 * figsize)) |
|
|
332 |
if title is not None: |
|
|
333 |
basey = 0.88 if not flat else 0.66 |
|
|
334 |
basex = 0.5 |
|
|
335 |
fig.suptitle( |
|
|
336 |
title, fontsize=titlefontsize, color=textfontcolor, x=basex + title_dx, y=basey + title_dy |
|
|
337 |
) |
|
|
338 |
|
|
|
339 |
gs = gridspec.GridSpec( |
|
|
340 |
nrow, |
|
|
341 |
ncol, |
|
|
342 |
wspace=0.0, |
|
|
343 |
hspace=0.0, |
|
|
344 |
top=1.0 - 0.5 / (nrow + 1), |
|
|
345 |
bottom=0.5 / (nrow + 1), |
|
|
346 |
left=0.5 / (ncol + 1), |
|
|
347 |
right=1 - 0.5 / (ncol + 1), |
|
|
348 |
) |
|
|
349 |
|
|
|
350 |
# pad image to have isotropic array dimensions |
|
|
351 |
imageReturn = image.clone() |
|
|
352 |
image = image.numpy() |
|
|
353 |
overlayReturn = None |
|
|
354 |
if overlay is not None: |
|
|
355 |
overlayReturn = overlay.clone() |
|
|
356 |
overlay = overlay.numpy() |
|
|
357 |
if overlay.dtype not in ["uint8", "uint32"]: |
|
|
358 |
overlay = np.ma.masked_where( np.abs(overlay) <= 1e-16, overlay) |
|
|
359 |
# overlay[np.abs(overlay) == 0] = np.nan |
|
|
360 |
|
|
|
361 |
yz_slice = reorient_slice(image[xyz[0], :, :], 0) |
|
|
362 |
ax = plt.subplot(gs[0, 0]) |
|
|
363 |
ax.imshow(yz_slice, cmap=cmap, vmin=vmin, vmax=vmax) |
|
|
364 |
if overlay is not None: |
|
|
365 |
yz_overlay = reorient_slice(overlay[xyz[0], :, :], 0) |
|
|
366 |
ax.imshow(yz_overlay, alpha=overlay_alpha, cmap=overlay_cmap, vmin=vminol, vmax=vmaxol ) |
|
|
367 |
if xyz_lines: |
|
|
368 |
# add lines |
|
|
369 |
l = mlines.Line2D( |
|
|
370 |
[xyz[1], xyz[1]], |
|
|
371 |
[xyz_pad, yz_slice.shape[0] - xyz_pad], |
|
|
372 |
color=xyz_color, |
|
|
373 |
alpha=xyz_alpha, |
|
|
374 |
linewidth=xyz_linewidth, |
|
|
375 |
) |
|
|
376 |
ax.add_line(l) |
|
|
377 |
l = mlines.Line2D( |
|
|
378 |
[xyz_pad, yz_slice.shape[1] - xyz_pad], |
|
|
379 |
[yz_slice.shape[1] - xyz[2], yz_slice.shape[1] - xyz[2]], |
|
|
380 |
color=xyz_color, |
|
|
381 |
alpha=xyz_alpha, |
|
|
382 |
linewidth=xyz_linewidth, |
|
|
383 |
) |
|
|
384 |
ax.add_line(l) |
|
|
385 |
if orient_labels: |
|
|
386 |
ax.text( |
|
|
387 |
0.5, |
|
|
388 |
0.98, |
|
|
389 |
"S", |
|
|
390 |
horizontalalignment="center", |
|
|
391 |
verticalalignment="top", |
|
|
392 |
fontsize=20 * figsize, |
|
|
393 |
color=textfontcolor, |
|
|
394 |
transform=ax.transAxes, |
|
|
395 |
) |
|
|
396 |
ax.text( |
|
|
397 |
0.5, |
|
|
398 |
0.02, |
|
|
399 |
"I", |
|
|
400 |
horizontalalignment="center", |
|
|
401 |
verticalalignment="bottom", |
|
|
402 |
fontsize=20 * figsize, |
|
|
403 |
color=textfontcolor, |
|
|
404 |
transform=ax.transAxes, |
|
|
405 |
) |
|
|
406 |
ax.text( |
|
|
407 |
0.98, |
|
|
408 |
0.5, |
|
|
409 |
"A", |
|
|
410 |
horizontalalignment="right", |
|
|
411 |
verticalalignment="center", |
|
|
412 |
fontsize=20 * figsize, |
|
|
413 |
color=textfontcolor, |
|
|
414 |
transform=ax.transAxes, |
|
|
415 |
) |
|
|
416 |
ax.text( |
|
|
417 |
0.02, |
|
|
418 |
0.5, |
|
|
419 |
"P", |
|
|
420 |
horizontalalignment="left", |
|
|
421 |
verticalalignment="center", |
|
|
422 |
fontsize=20 * figsize, |
|
|
423 |
color=textfontcolor, |
|
|
424 |
transform=ax.transAxes, |
|
|
425 |
) |
|
|
426 |
ax.axis("off") |
|
|
427 |
|
|
|
428 |
xz_slice = reorient_slice(image[:, xyz[1], :], 1) |
|
|
429 |
ax = plt.subplot(gs[0, 1]) |
|
|
430 |
ax.imshow(xz_slice, cmap=cmap, vmin=vmin, vmax=vmax) |
|
|
431 |
if overlay is not None: |
|
|
432 |
xz_overlay = reorient_slice(overlay[:, xyz[1], :], 1) |
|
|
433 |
ax.imshow(xz_overlay, alpha=overlay_alpha, cmap=overlay_cmap, vmin=vminol, vmax=vmaxol ) |
|
|
434 |
|
|
|
435 |
if xyz_lines: |
|
|
436 |
# add lines |
|
|
437 |
l = mlines.Line2D( |
|
|
438 |
[xz_slice.shape[0] - xyz[0], xz_slice.shape[0] - xyz[0]], |
|
|
439 |
[xyz_pad, xz_slice.shape[0] - xyz_pad], |
|
|
440 |
color=xyz_color, |
|
|
441 |
alpha=xyz_alpha, |
|
|
442 |
linewidth=xyz_linewidth, |
|
|
443 |
) |
|
|
444 |
ax.add_line(l) |
|
|
445 |
l = mlines.Line2D( |
|
|
446 |
[xyz_pad, xz_slice.shape[1] - xyz_pad], |
|
|
447 |
[xz_slice.shape[1] - xyz[2], xz_slice.shape[1] - xyz[2]], |
|
|
448 |
color=xyz_color, |
|
|
449 |
alpha=xyz_alpha, |
|
|
450 |
linewidth=xyz_linewidth, |
|
|
451 |
) |
|
|
452 |
ax.add_line(l) |
|
|
453 |
if orient_labels: |
|
|
454 |
ax.text( |
|
|
455 |
0.5, |
|
|
456 |
0.98, |
|
|
457 |
"S", |
|
|
458 |
horizontalalignment="center", |
|
|
459 |
verticalalignment="top", |
|
|
460 |
fontsize=20 * figsize, |
|
|
461 |
color=textfontcolor, |
|
|
462 |
transform=ax.transAxes, |
|
|
463 |
) |
|
|
464 |
ax.text( |
|
|
465 |
0.5, |
|
|
466 |
0.02, |
|
|
467 |
"I", |
|
|
468 |
horizontalalignment="center", |
|
|
469 |
verticalalignment="bottom", |
|
|
470 |
fontsize=20 * figsize, |
|
|
471 |
color=textfontcolor, |
|
|
472 |
transform=ax.transAxes, |
|
|
473 |
) |
|
|
474 |
ax.text( |
|
|
475 |
0.98, |
|
|
476 |
0.5, |
|
|
477 |
"L", |
|
|
478 |
horizontalalignment="right", |
|
|
479 |
verticalalignment="center", |
|
|
480 |
fontsize=20 * figsize, |
|
|
481 |
color=textfontcolor, |
|
|
482 |
transform=ax.transAxes, |
|
|
483 |
) |
|
|
484 |
ax.text( |
|
|
485 |
0.02, |
|
|
486 |
0.5, |
|
|
487 |
"R", |
|
|
488 |
horizontalalignment="left", |
|
|
489 |
verticalalignment="center", |
|
|
490 |
fontsize=20 * figsize, |
|
|
491 |
color=textfontcolor, |
|
|
492 |
transform=ax.transAxes, |
|
|
493 |
) |
|
|
494 |
ax.axis("off") |
|
|
495 |
|
|
|
496 |
xy_slice = reorient_slice(image[:, :, xyz[2]], 2) |
|
|
497 |
if not flat: |
|
|
498 |
ax = plt.subplot(gs[1, 1]) |
|
|
499 |
else: |
|
|
500 |
ax = plt.subplot(gs[0, 2]) |
|
|
501 |
im = ax.imshow(xy_slice, cmap=cmap, vmin=vmin, vmax=vmax) |
|
|
502 |
if overlay is not None: |
|
|
503 |
xy_overlay = reorient_slice(overlay[:, :, xyz[2]], 2) |
|
|
504 |
im = ax.imshow(xy_overlay, alpha=overlay_alpha, cmap=overlay_cmap, vmin=vminol, vmax=vmaxol) |
|
|
505 |
|
|
|
506 |
if xyz_lines: |
|
|
507 |
# add lines |
|
|
508 |
l = mlines.Line2D( |
|
|
509 |
[xy_slice.shape[0] - xyz[0], xy_slice.shape[0] - xyz[0]], |
|
|
510 |
[xyz_pad, xy_slice.shape[0] - xyz_pad], |
|
|
511 |
color=xyz_color, |
|
|
512 |
alpha=xyz_alpha, |
|
|
513 |
linewidth=xyz_linewidth, |
|
|
514 |
) |
|
|
515 |
ax.add_line(l) |
|
|
516 |
l = mlines.Line2D( |
|
|
517 |
[xyz_pad, xy_slice.shape[1] - xyz_pad], |
|
|
518 |
[xy_slice.shape[1] - xyz[1], xy_slice.shape[1] - xyz[1]], |
|
|
519 |
color=xyz_color, |
|
|
520 |
alpha=xyz_alpha, |
|
|
521 |
linewidth=xyz_linewidth, |
|
|
522 |
) |
|
|
523 |
ax.add_line(l) |
|
|
524 |
if orient_labels: |
|
|
525 |
ax.text( |
|
|
526 |
0.5, |
|
|
527 |
0.98, |
|
|
528 |
"A", |
|
|
529 |
horizontalalignment="center", |
|
|
530 |
verticalalignment="top", |
|
|
531 |
fontsize=20 * figsize, |
|
|
532 |
color=textfontcolor, |
|
|
533 |
transform=ax.transAxes, |
|
|
534 |
) |
|
|
535 |
ax.text( |
|
|
536 |
0.5, |
|
|
537 |
0.02, |
|
|
538 |
"P", |
|
|
539 |
horizontalalignment="center", |
|
|
540 |
verticalalignment="bottom", |
|
|
541 |
fontsize=20 * figsize, |
|
|
542 |
color=textfontcolor, |
|
|
543 |
transform=ax.transAxes, |
|
|
544 |
) |
|
|
545 |
ax.text( |
|
|
546 |
0.98, |
|
|
547 |
0.5, |
|
|
548 |
"L", |
|
|
549 |
horizontalalignment="right", |
|
|
550 |
verticalalignment="center", |
|
|
551 |
fontsize=20 * figsize, |
|
|
552 |
color=textfontcolor, |
|
|
553 |
transform=ax.transAxes, |
|
|
554 |
) |
|
|
555 |
ax.text( |
|
|
556 |
0.02, |
|
|
557 |
0.5, |
|
|
558 |
"R", |
|
|
559 |
horizontalalignment="left", |
|
|
560 |
verticalalignment="center", |
|
|
561 |
fontsize=20 * figsize, |
|
|
562 |
color=textfontcolor, |
|
|
563 |
transform=ax.transAxes, |
|
|
564 |
) |
|
|
565 |
ax.axis("off") |
|
|
566 |
|
|
|
567 |
if not flat: |
|
|
568 |
# empty corner |
|
|
569 |
ax = plt.subplot(gs[1, 0]) |
|
|
570 |
if text is not None: |
|
|
571 |
# add text |
|
|
572 |
left, width = 0.25, 0.5 |
|
|
573 |
bottom, height = 0.25, 0.5 |
|
|
574 |
right = left + width |
|
|
575 |
top = bottom + height |
|
|
576 |
ax.text( |
|
|
577 |
0.5 * (left + right) + text_dx, |
|
|
578 |
0.5 * (bottom + top) + text_dy, |
|
|
579 |
text, |
|
|
580 |
horizontalalignment="center", |
|
|
581 |
verticalalignment="center", |
|
|
582 |
fontsize=textfontsize, |
|
|
583 |
color=textfontcolor, |
|
|
584 |
transform=ax.transAxes, |
|
|
585 |
) |
|
|
586 |
# ax.text(0.5, 0.5) |
|
|
587 |
ax.imshow(np.zeros(image.shape[:-1]), cmap="Greys_r") |
|
|
588 |
ax.axis("off") |
|
|
589 |
|
|
|
590 |
if cbar: |
|
|
591 |
cbar_start = (1 - cbar_length) / 2 |
|
|
592 |
if cbar_vertical: |
|
|
593 |
cax = fig.add_axes([0.9 + cbar_dx, cbar_start, 0.03, cbar_length]) |
|
|
594 |
cbar_orient = "vertical" |
|
|
595 |
else: |
|
|
596 |
cax = fig.add_axes([cbar_start, 0.08 + cbar_dx, cbar_length, 0.03]) |
|
|
597 |
cbar_orient = "horizontal" |
|
|
598 |
fig.colorbar(im, cax=cax, orientation=cbar_orient) |
|
|
599 |
|
|
|
600 |
## multi-channel images ## |
|
|
601 |
elif image.components > 1: |
|
|
602 |
raise ValueError("Multi-channel images not currently supported!") |
|
|
603 |
|
|
|
604 |
if filename is not None: |
|
|
605 |
plt.savefig(filename, dpi=dpi, transparent=transparent) |
|
|
606 |
plt.close(fig) |
|
|
607 |
else: |
|
|
608 |
plt.show() |
|
|
609 |
|
|
|
610 |
# turn warnings back to default |
|
|
611 |
warnings.simplefilter("default") |
|
|
612 |
|