|
a |
|
b/ants/plotting/plot.py |
|
|
1 |
""" |
|
|
2 |
Functions for plotting ants images |
|
|
3 |
""" |
|
|
4 |
|
|
|
5 |
|
|
|
6 |
__all__ = [ |
|
|
7 |
"plot" |
|
|
8 |
] |
|
|
9 |
|
|
|
10 |
import fnmatch |
|
|
11 |
import math |
|
|
12 |
import os |
|
|
13 |
import warnings |
|
|
14 |
|
|
|
15 |
from matplotlib import gridspec |
|
|
16 |
import matplotlib.pyplot as plt |
|
|
17 |
import matplotlib.patheffects as path_effects |
|
|
18 |
import matplotlib.lines as mlines |
|
|
19 |
import matplotlib.patches as patches |
|
|
20 |
import matplotlib.mlab as mlab |
|
|
21 |
import matplotlib.animation as animation |
|
|
22 |
from mpl_toolkits.axes_grid1.inset_locator import inset_axes |
|
|
23 |
|
|
|
24 |
import numpy as np |
|
|
25 |
import ants |
|
|
26 |
from ants.decorators import image_method |
|
|
27 |
|
|
|
28 |
@image_method |
|
|
29 |
def plot( |
|
|
30 |
image, |
|
|
31 |
overlay=None, |
|
|
32 |
blend=False, |
|
|
33 |
alpha=1, |
|
|
34 |
cmap="Greys_r", |
|
|
35 |
overlay_cmap="turbo", |
|
|
36 |
overlay_alpha=0.9, |
|
|
37 |
vminol=None, |
|
|
38 |
vmaxol=None, |
|
|
39 |
cbar=False, |
|
|
40 |
cbar_length=0.8, |
|
|
41 |
cbar_dx=0.0, |
|
|
42 |
cbar_vertical=True, |
|
|
43 |
axis=0, |
|
|
44 |
nslices=12, |
|
|
45 |
slices=None, |
|
|
46 |
ncol=None, |
|
|
47 |
slice_buffer=None, |
|
|
48 |
black_bg=True, |
|
|
49 |
bg_thresh_quant=0.01, |
|
|
50 |
bg_val_quant=0.99, |
|
|
51 |
domain_image_map=None, |
|
|
52 |
crop=False, |
|
|
53 |
scale=False, |
|
|
54 |
reverse=False, |
|
|
55 |
title=None, |
|
|
56 |
title_fontsize=20, |
|
|
57 |
title_dx=0.0, |
|
|
58 |
title_dy=0.0, |
|
|
59 |
filename=None, |
|
|
60 |
dpi=500, |
|
|
61 |
figsize=1.5, |
|
|
62 |
reorient=True, |
|
|
63 |
resample=True, |
|
|
64 |
): |
|
|
65 |
""" |
|
|
66 |
Plot an ANTsImage. |
|
|
67 |
|
|
|
68 |
Use mask_image and/or threshold_image to preprocess images to be be |
|
|
69 |
overlaid and display the overlays in a given range. See the wiki examples. |
|
|
70 |
|
|
|
71 |
By default, images will be reoriented to 'LAI' orientation before plotting. |
|
|
72 |
So, if axis == 0, the images will be ordered from the |
|
|
73 |
left side of the brain to the right side of the brain. If axis == 1, |
|
|
74 |
the images will be ordered from the anterior (front) of the brain to |
|
|
75 |
the posterior (back) of the brain. And if axis == 2, the images will |
|
|
76 |
be ordered from the inferior (bottom) of the brain to the superior (top) |
|
|
77 |
of the brain. |
|
|
78 |
|
|
|
79 |
ANTsR function: `plot.antsImage` |
|
|
80 |
|
|
|
81 |
Arguments |
|
|
82 |
--------- |
|
|
83 |
image : ANTsImage |
|
|
84 |
image to plot |
|
|
85 |
|
|
|
86 |
overlay : ANTsImage |
|
|
87 |
image to overlay on base image |
|
|
88 |
|
|
|
89 |
cmap : string |
|
|
90 |
colormap to use for base image. See matplotlib. |
|
|
91 |
|
|
|
92 |
overlay_cmap : string |
|
|
93 |
colormap to use for overlay images, if applicable. See matplotlib. |
|
|
94 |
|
|
|
95 |
overlay_alpha : float |
|
|
96 |
level of transparency for any overlays. Smaller value means |
|
|
97 |
the overlay is more transparent. See matplotlib. |
|
|
98 |
|
|
|
99 |
axis : integer |
|
|
100 |
which axis to plot along if image is 3D |
|
|
101 |
|
|
|
102 |
nslices : integer |
|
|
103 |
number of slices to plot if image is 3D |
|
|
104 |
|
|
|
105 |
slices : list or tuple of integers |
|
|
106 |
specific slice indices to plot if image is 3D. |
|
|
107 |
If given, this will override `nslices`. |
|
|
108 |
This can be absolute array indices (e.g. (80,100,120)), or |
|
|
109 |
this can be relative array indices (e.g. (0.4,0.5,0.6)) |
|
|
110 |
|
|
|
111 |
ncol : integer |
|
|
112 |
Number of columns to have on the plot if image is 3D. |
|
|
113 |
|
|
|
114 |
slice_buffer : integer |
|
|
115 |
how many slices to buffer when finding the non-zero slices of |
|
|
116 |
a 3D images. So, if slice_buffer = 10, then the first slice |
|
|
117 |
in a 3D image will be the first non-zero slice index plus 10 more |
|
|
118 |
slices. |
|
|
119 |
|
|
|
120 |
black_bg : boolean |
|
|
121 |
if True, the background of the image(s) will be black. |
|
|
122 |
if False, the background of the image(s) will be determined by the |
|
|
123 |
values `bg_thresh_quant` and `bg_val_quant`. |
|
|
124 |
|
|
|
125 |
bg_thresh_quant : float |
|
|
126 |
if white_bg=True, the background will be determined by thresholding |
|
|
127 |
the image at the `bg_thresh` quantile value and setting the background |
|
|
128 |
intensity to the `bg_val` quantile value. |
|
|
129 |
This value should be in [0, 1] - somewhere around 0.01 is recommended. |
|
|
130 |
- equal to 1 will threshold the entire image |
|
|
131 |
- equal to 0 will threshold none of the image |
|
|
132 |
|
|
|
133 |
bg_val_quant : float |
|
|
134 |
if white_bg=True, the background will be determined by thresholding |
|
|
135 |
the image at the `bg_thresh` quantile value and setting the background |
|
|
136 |
intensity to the `bg_val` quantile value. |
|
|
137 |
This value should be in [0, 1] |
|
|
138 |
- equal to 1 is pure white |
|
|
139 |
- equal to 0 is pure black |
|
|
140 |
- somewhere in between is gray |
|
|
141 |
|
|
|
142 |
domain_image_map : ANTsImage |
|
|
143 |
this input ANTsImage or list of ANTsImage types contains a reference image |
|
|
144 |
`domain_image` and optional reference mapping named `domainMap`. |
|
|
145 |
If supplied, the image(s) to be plotted will be mapped to the domain |
|
|
146 |
image space before plotting - useful for non-standard image orientations. |
|
|
147 |
|
|
|
148 |
crop : boolean |
|
|
149 |
if true, the image(s) will be cropped to their bounding boxes, resulting |
|
|
150 |
in a potentially smaller image size. |
|
|
151 |
if false, the image(s) will not be cropped |
|
|
152 |
|
|
|
153 |
scale : boolean or 2-tuple |
|
|
154 |
if true, nothing will happen to intensities of image(s) and overlay(s) |
|
|
155 |
if false, dynamic range will be maximized when visualizing overlays |
|
|
156 |
if 2-tuple, the image will be dynamically scaled between these quantiles |
|
|
157 |
|
|
|
158 |
reverse : boolean |
|
|
159 |
if true, the order in which the slices are plotted will be reversed. |
|
|
160 |
This is useful if you want to plot from the front of the brain first |
|
|
161 |
to the back of the brain, or vice-versa |
|
|
162 |
|
|
|
163 |
title : string |
|
|
164 |
add a title to the plot |
|
|
165 |
|
|
|
166 |
filename : string |
|
|
167 |
if given, the resulting image will be saved to this file |
|
|
168 |
|
|
|
169 |
dpi : integer |
|
|
170 |
determines resolution of image if saved to file. Higher values |
|
|
171 |
result in higher resolution images, but at a cost of having a |
|
|
172 |
larger file size |
|
|
173 |
|
|
|
174 |
resample : bool |
|
|
175 |
if true, resample image if spacing is very unbalanced. |
|
|
176 |
|
|
|
177 |
Example |
|
|
178 |
------- |
|
|
179 |
>>> import ants |
|
|
180 |
>>> import numpy as np |
|
|
181 |
>>> img = ants.image_read(ants.get_data('r16')) |
|
|
182 |
>>> segs = img.kmeans_segmentation(k=3)['segmentation'] |
|
|
183 |
>>> ants.plot(img, segs*(segs==1), crop=True) |
|
|
184 |
>>> ants.plot(img, segs*(segs==1), crop=False) |
|
|
185 |
>>> mni = ants.image_read(ants.get_data('mni')) |
|
|
186 |
>>> segs = mni.kmeans_segmentation(k=3)['segmentation'] |
|
|
187 |
>>> ants.plot(mni, segs*(segs==1), crop=False) |
|
|
188 |
""" |
|
|
189 |
if (axis == "x") or (axis == "saggittal"): |
|
|
190 |
axis = 0 |
|
|
191 |
if (axis == "y") or (axis == "coronal"): |
|
|
192 |
axis = 1 |
|
|
193 |
if (axis == "z") or (axis == "axial"): |
|
|
194 |
axis = 2 |
|
|
195 |
|
|
|
196 |
def mirror_matrix(x): |
|
|
197 |
return x[::-1, :] |
|
|
198 |
|
|
|
199 |
def rotate270_matrix(x): |
|
|
200 |
return mirror_matrix(x.T) |
|
|
201 |
|
|
|
202 |
def rotate180_matrix(x): |
|
|
203 |
return x[::-1, ::-1] |
|
|
204 |
|
|
|
205 |
def rotate90_matrix(x): |
|
|
206 |
return x.T |
|
|
207 |
|
|
|
208 |
def reorient_slice(x, axis): |
|
|
209 |
if axis != 2: |
|
|
210 |
x = rotate90_matrix(x) |
|
|
211 |
if axis == 2: |
|
|
212 |
x = rotate270_matrix(x) |
|
|
213 |
x = mirror_matrix(x) |
|
|
214 |
return x |
|
|
215 |
|
|
|
216 |
|
|
|
217 |
# handle `image` argument |
|
|
218 |
if isinstance(image, str): |
|
|
219 |
image = ants.image_read(image) |
|
|
220 |
if not ants.is_image(image): |
|
|
221 |
raise ValueError("image argument must be an ANTsImage") |
|
|
222 |
|
|
|
223 |
if np.all(np.equal(image.numpy(), 0.0)): |
|
|
224 |
warnings.warn("Image must be non-zero. will not plot.") |
|
|
225 |
return |
|
|
226 |
|
|
|
227 |
# need this hack because of a weird NaN warning from matplotlib with overlays |
|
|
228 |
warnings.simplefilter("ignore") |
|
|
229 |
|
|
|
230 |
if (image.pixeltype not in {"float", "double"}) or (image.is_rgb): |
|
|
231 |
scale = False # turn off scaling if image is discrete |
|
|
232 |
|
|
|
233 |
# handle `overlay` argument |
|
|
234 |
if overlay is not None: |
|
|
235 |
if isinstance(overlay, str): |
|
|
236 |
overlay = ants.image_read(overlay) |
|
|
237 |
if vminol is None: |
|
|
238 |
vminol = overlay.min() |
|
|
239 |
if vmaxol is None: |
|
|
240 |
vmaxol = overlay.max() |
|
|
241 |
if not ants.is_image(overlay): |
|
|
242 |
raise ValueError("overlay argument must be an ANTsImage") |
|
|
243 |
if overlay.components > 1: |
|
|
244 |
raise ValueError("overlay cannot have more than one voxel component") |
|
|
245 |
|
|
|
246 |
if not ants.image_physical_space_consistency(image, overlay): |
|
|
247 |
overlay = ants.resample_image_to_target(overlay, image, interp_type="nearestNeighbor") |
|
|
248 |
|
|
|
249 |
if blend: |
|
|
250 |
if alpha == 1: |
|
|
251 |
alpha = 0.5 |
|
|
252 |
image = image * alpha + overlay * (1 - alpha) |
|
|
253 |
overlay = None |
|
|
254 |
alpha = 1.0 |
|
|
255 |
|
|
|
256 |
# handle `domain_image_map` argument |
|
|
257 |
if domain_image_map is not None: |
|
|
258 |
tx = ants.new_ants_transform( |
|
|
259 |
precision="float", |
|
|
260 |
transform_type="AffineTransform", |
|
|
261 |
dimension=image.dimension, |
|
|
262 |
) |
|
|
263 |
image = ants.apply_ants_transform_to_image(tx, image, domain_image_map) |
|
|
264 |
if overlay is not None: |
|
|
265 |
overlay = ants.apply_ants_transform_to_image( |
|
|
266 |
tx, overlay, domain_image_map, interpolation="nearestNeighbor" |
|
|
267 |
) |
|
|
268 |
|
|
|
269 |
## single-channel images ## |
|
|
270 |
if image.components == 1: |
|
|
271 |
|
|
|
272 |
# potentially crop image |
|
|
273 |
if crop: |
|
|
274 |
plotmask = image.get_mask(cleanup=0) |
|
|
275 |
if plotmask.max() == 0: |
|
|
276 |
plotmask += 1 |
|
|
277 |
image = image.crop_image(plotmask) |
|
|
278 |
if overlay is not None: |
|
|
279 |
overlay = overlay.crop_image(plotmask) |
|
|
280 |
|
|
|
281 |
# potentially find dynamic range |
|
|
282 |
if scale == True: |
|
|
283 |
vmin, vmax = image.quantile((0.05, 0.95)) |
|
|
284 |
elif isinstance(scale, (list, tuple)): |
|
|
285 |
if len(scale) != 2: |
|
|
286 |
raise ValueError( |
|
|
287 |
"scale argument must be boolean or list/tuple with two values" |
|
|
288 |
) |
|
|
289 |
vmin, vmax = image.quantile(scale) |
|
|
290 |
else: |
|
|
291 |
vmin = None |
|
|
292 |
vmax = None |
|
|
293 |
|
|
|
294 |
# Plot 2D image |
|
|
295 |
if image.dimension == 2: |
|
|
296 |
|
|
|
297 |
img_arr = image.numpy() |
|
|
298 |
img_arr = rotate90_matrix(img_arr) |
|
|
299 |
|
|
|
300 |
if not black_bg: |
|
|
301 |
img_arr[img_arr < image.quantile(bg_thresh_quant)] = image.quantile( |
|
|
302 |
bg_val_quant |
|
|
303 |
) |
|
|
304 |
|
|
|
305 |
if overlay is not None: |
|
|
306 |
ov_arr = overlay.numpy() |
|
|
307 |
mask = ov_arr == 0 |
|
|
308 |
mask = np.ma.masked_where(mask == 0, mask) |
|
|
309 |
ov_arr = np.ma.masked_array(ov_arr, mask) |
|
|
310 |
ov_arr = rotate90_matrix(ov_arr) |
|
|
311 |
|
|
|
312 |
fig = plt.figure() |
|
|
313 |
if title is not None: |
|
|
314 |
fig.suptitle( |
|
|
315 |
title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy |
|
|
316 |
) |
|
|
317 |
|
|
|
318 |
ax = plt.subplot(111) |
|
|
319 |
|
|
|
320 |
# plot main image |
|
|
321 |
im = ax.imshow(img_arr, cmap=cmap, alpha=alpha, vmin=vmin, vmax=vmax) |
|
|
322 |
|
|
|
323 |
if overlay is not None: |
|
|
324 |
im = ax.imshow(ov_arr, alpha=overlay_alpha, cmap=overlay_cmap, |
|
|
325 |
vmin=vminol, vmax=vmaxol ) |
|
|
326 |
|
|
|
327 |
if cbar: |
|
|
328 |
cbar_orient = "vertical" if cbar_vertical else "horizontal" |
|
|
329 |
fig.colorbar(im, orientation=cbar_orient) |
|
|
330 |
|
|
|
331 |
plt.axis("off") |
|
|
332 |
|
|
|
333 |
# Plot 3D image |
|
|
334 |
elif image.dimension == 3: |
|
|
335 |
# resample image if spacing is very unbalanced |
|
|
336 |
spacing = [s for i, s in enumerate(image.spacing) if i != axis] |
|
|
337 |
was_resampled = False |
|
|
338 |
if (max(spacing) / min(spacing)) > 3.0 and resample: |
|
|
339 |
was_resampled = True |
|
|
340 |
new_spacing = (1, 1, 1) |
|
|
341 |
image = image.resample_image(tuple(new_spacing)) |
|
|
342 |
if overlay is not None: |
|
|
343 |
overlay = overlay.resample_image(tuple(new_spacing)) |
|
|
344 |
|
|
|
345 |
if reorient: |
|
|
346 |
image = image.reorient_image2("LAI") |
|
|
347 |
img_arr = image.numpy() |
|
|
348 |
# reorder dims so that chosen axis is first |
|
|
349 |
img_arr = np.rollaxis(img_arr, axis) |
|
|
350 |
|
|
|
351 |
if overlay is not None: |
|
|
352 |
if reorient: |
|
|
353 |
overlay = overlay.reorient_image2("LAI") |
|
|
354 |
ov_arr = overlay.numpy() |
|
|
355 |
mask = ov_arr == 0 |
|
|
356 |
mask = np.ma.masked_where(mask == 0, mask) |
|
|
357 |
ov_arr = np.ma.masked_array(ov_arr, mask) |
|
|
358 |
ov_arr = np.rollaxis(ov_arr, axis) |
|
|
359 |
|
|
|
360 |
if slices is None: |
|
|
361 |
if not isinstance(slice_buffer, (list, tuple)): |
|
|
362 |
if slice_buffer is None: |
|
|
363 |
slice_buffer = ( |
|
|
364 |
int(img_arr.shape[1] * 0.1), |
|
|
365 |
int(img_arr.shape[2] * 0.1), |
|
|
366 |
) |
|
|
367 |
else: |
|
|
368 |
slice_buffer = (slice_buffer, slice_buffer) |
|
|
369 |
nonzero = np.where(img_arr.sum(axis=(1, 2)) > 0.01)[0] |
|
|
370 |
min_idx = nonzero[0] + slice_buffer[0] |
|
|
371 |
max_idx = nonzero[-1] - slice_buffer[1] |
|
|
372 |
if min_idx > max_idx: |
|
|
373 |
temp = min_idx |
|
|
374 |
min_idx = max_idx |
|
|
375 |
max_idx = temp |
|
|
376 |
if max_idx > nonzero.max(): |
|
|
377 |
max_idx = nonzero.max() |
|
|
378 |
if min_idx < 0: |
|
|
379 |
min_idx = 0 |
|
|
380 |
slice_idxs = np.linspace(min_idx, max_idx, nslices).astype("int") |
|
|
381 |
if reverse: |
|
|
382 |
slice_idxs = np.array(list(reversed(slice_idxs))) |
|
|
383 |
else: |
|
|
384 |
if isinstance(slices, (int, float)): |
|
|
385 |
slices = [slices] |
|
|
386 |
# if all slices are less than 1, infer that they are relative slices |
|
|
387 |
if sum([s > 1 for s in slices]) == 0: |
|
|
388 |
slices = [int(s * img_arr.shape[0]) for s in slices] |
|
|
389 |
slice_idxs = slices |
|
|
390 |
nslices = len(slices) |
|
|
391 |
|
|
|
392 |
if was_resampled: |
|
|
393 |
# re-calculate slices to account for new image shape |
|
|
394 |
slice_idxs = np.unique( |
|
|
395 |
np.array( |
|
|
396 |
[ |
|
|
397 |
int(s * (image.shape[axis] / img_arr.shape[0])) |
|
|
398 |
for s in slice_idxs |
|
|
399 |
] |
|
|
400 |
) |
|
|
401 |
) |
|
|
402 |
|
|
|
403 |
# only have one row if nslices <= 6 and user didnt specify ncol |
|
|
404 |
if ncol is None: |
|
|
405 |
if nslices <= 6: |
|
|
406 |
ncol = nslices |
|
|
407 |
else: |
|
|
408 |
ncol = int(round(math.sqrt(nslices))) |
|
|
409 |
|
|
|
410 |
# calculate grid size |
|
|
411 |
nrow = math.ceil(nslices / ncol) |
|
|
412 |
xdim = img_arr.shape[2] |
|
|
413 |
ydim = img_arr.shape[1] |
|
|
414 |
|
|
|
415 |
dim_ratio = ydim / xdim |
|
|
416 |
fig = plt.figure( |
|
|
417 |
figsize=((ncol + 1) * figsize * dim_ratio, (nrow + 1) * figsize) |
|
|
418 |
) |
|
|
419 |
if title is not None: |
|
|
420 |
fig.suptitle( |
|
|
421 |
title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy |
|
|
422 |
) |
|
|
423 |
|
|
|
424 |
gs = gridspec.GridSpec( |
|
|
425 |
nrow, |
|
|
426 |
ncol, |
|
|
427 |
wspace=0.0, |
|
|
428 |
hspace=0.0, |
|
|
429 |
top=1.0 - 0.5 / (nrow + 1), |
|
|
430 |
bottom=0.5 / (nrow + 1), |
|
|
431 |
left=0.5 / (ncol + 1), |
|
|
432 |
right=1 - 0.5 / (ncol + 1), |
|
|
433 |
) |
|
|
434 |
|
|
|
435 |
slice_idx_idx = 0 |
|
|
436 |
for i in range(nrow): |
|
|
437 |
for j in range(ncol): |
|
|
438 |
if slice_idx_idx < len(slice_idxs): |
|
|
439 |
imslice = img_arr[slice_idxs[slice_idx_idx]] |
|
|
440 |
imslice = reorient_slice(imslice, axis) |
|
|
441 |
if not black_bg: |
|
|
442 |
imslice[ |
|
|
443 |
imslice < image.quantile(bg_thresh_quant) |
|
|
444 |
] = image.quantile(bg_val_quant) |
|
|
445 |
else: |
|
|
446 |
imslice = np.zeros_like(img_arr[0]) |
|
|
447 |
imslice = reorient_slice(imslice, axis) |
|
|
448 |
|
|
|
449 |
ax = plt.subplot(gs[i, j]) |
|
|
450 |
im = ax.imshow(imslice, cmap=cmap, vmin=vmin, vmax=vmax) |
|
|
451 |
|
|
|
452 |
if overlay is not None: |
|
|
453 |
if slice_idx_idx < len(slice_idxs): |
|
|
454 |
ovslice = ov_arr[slice_idxs[slice_idx_idx]] |
|
|
455 |
ovslice = reorient_slice(ovslice, axis) |
|
|
456 |
im = ax.imshow( |
|
|
457 |
ovslice, alpha=overlay_alpha, cmap=overlay_cmap, |
|
|
458 |
vmin=vminol, vmax=vmaxol ) |
|
|
459 |
ax.axis("off") |
|
|
460 |
slice_idx_idx += 1 |
|
|
461 |
|
|
|
462 |
if cbar: |
|
|
463 |
cbar_start = (1 - cbar_length) / 2 |
|
|
464 |
if cbar_vertical: |
|
|
465 |
cax = fig.add_axes([0.9 + cbar_dx, cbar_start, 0.03, cbar_length]) |
|
|
466 |
cbar_orient = "vertical" |
|
|
467 |
else: |
|
|
468 |
cax = fig.add_axes([cbar_start, 0.08 + cbar_dx, cbar_length, 0.03]) |
|
|
469 |
cbar_orient = "horizontal" |
|
|
470 |
fig.colorbar(im, cax=cax, orientation=cbar_orient) |
|
|
471 |
|
|
|
472 |
## multi-channel images ## |
|
|
473 |
elif image.has_components: |
|
|
474 |
raise Exception('Plotting images with components is not currently supported.') |
|
|
475 |
|
|
|
476 |
if filename is not None: |
|
|
477 |
filename = os.path.expanduser(filename) |
|
|
478 |
plt.savefig(filename, dpi=dpi, transparent=True, bbox_inches="tight") |
|
|
479 |
plt.close(fig) |
|
|
480 |
else: |
|
|
481 |
plt.show() |
|
|
482 |
|
|
|
483 |
# turn warnings back to default |
|
|
484 |
warnings.simplefilter("default") |
|
|
485 |
|
|
|
486 |
|