"""
Functions for plotting ants images
"""
__all__ = [
"plot"
]
import fnmatch
import math
import os
import warnings
from matplotlib import gridspec
import matplotlib.pyplot as plt
import matplotlib.patheffects as path_effects
import matplotlib.lines as mlines
import matplotlib.patches as patches
import matplotlib.mlab as mlab
import matplotlib.animation as animation
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import numpy as np
import ants
from ants.decorators import image_method
@image_method
def plot(
image,
overlay=None,
blend=False,
alpha=1,
cmap="Greys_r",
overlay_cmap="turbo",
overlay_alpha=0.9,
vminol=None,
vmaxol=None,
cbar=False,
cbar_length=0.8,
cbar_dx=0.0,
cbar_vertical=True,
axis=0,
nslices=12,
slices=None,
ncol=None,
slice_buffer=None,
black_bg=True,
bg_thresh_quant=0.01,
bg_val_quant=0.99,
domain_image_map=None,
crop=False,
scale=False,
reverse=False,
title=None,
title_fontsize=20,
title_dx=0.0,
title_dy=0.0,
filename=None,
dpi=500,
figsize=1.5,
reorient=True,
resample=True,
):
"""
Plot an ANTsImage.
Use mask_image and/or threshold_image to preprocess images to be be
overlaid and display the overlays in a given range. See the wiki examples.
By default, images will be reoriented to 'LAI' orientation before plotting.
So, if axis == 0, the images will be ordered from the
left side of the brain to the right side of the brain. If axis == 1,
the images will be ordered from the anterior (front) of the brain to
the posterior (back) of the brain. And if axis == 2, the images will
be ordered from the inferior (bottom) of the brain to the superior (top)
of the brain.
ANTsR function: `plot.antsImage`
Arguments
---------
image : ANTsImage
image to plot
overlay : ANTsImage
image to overlay on base image
cmap : string
colormap to use for base image. See matplotlib.
overlay_cmap : string
colormap to use for overlay images, if applicable. See matplotlib.
overlay_alpha : float
level of transparency for any overlays. Smaller value means
the overlay is more transparent. See matplotlib.
axis : integer
which axis to plot along if image is 3D
nslices : integer
number of slices to plot if image is 3D
slices : list or tuple of integers
specific slice indices to plot if image is 3D.
If given, this will override `nslices`.
This can be absolute array indices (e.g. (80,100,120)), or
this can be relative array indices (e.g. (0.4,0.5,0.6))
ncol : integer
Number of columns to have on the plot if image is 3D.
slice_buffer : integer
how many slices to buffer when finding the non-zero slices of
a 3D images. So, if slice_buffer = 10, then the first slice
in a 3D image will be the first non-zero slice index plus 10 more
slices.
black_bg : boolean
if True, the background of the image(s) will be black.
if False, the background of the image(s) will be determined by the
values `bg_thresh_quant` and `bg_val_quant`.
bg_thresh_quant : float
if white_bg=True, the background will be determined by thresholding
the image at the `bg_thresh` quantile value and setting the background
intensity to the `bg_val` quantile value.
This value should be in [0, 1] - somewhere around 0.01 is recommended.
- equal to 1 will threshold the entire image
- equal to 0 will threshold none of the image
bg_val_quant : float
if white_bg=True, the background will be determined by thresholding
the image at the `bg_thresh` quantile value and setting the background
intensity to the `bg_val` quantile value.
This value should be in [0, 1]
- equal to 1 is pure white
- equal to 0 is pure black
- somewhere in between is gray
domain_image_map : ANTsImage
this input ANTsImage or list of ANTsImage types contains a reference image
`domain_image` and optional reference mapping named `domainMap`.
If supplied, the image(s) to be plotted will be mapped to the domain
image space before plotting - useful for non-standard image orientations.
crop : boolean
if true, the image(s) will be cropped to their bounding boxes, resulting
in a potentially smaller image size.
if false, the image(s) will not be cropped
scale : boolean or 2-tuple
if true, nothing will happen to intensities of image(s) and overlay(s)
if false, dynamic range will be maximized when visualizing overlays
if 2-tuple, the image will be dynamically scaled between these quantiles
reverse : boolean
if true, the order in which the slices are plotted will be reversed.
This is useful if you want to plot from the front of the brain first
to the back of the brain, or vice-versa
title : string
add a title to the plot
filename : string
if given, the resulting image will be saved to this file
dpi : integer
determines resolution of image if saved to file. Higher values
result in higher resolution images, but at a cost of having a
larger file size
resample : bool
if true, resample image if spacing is very unbalanced.
Example
-------
>>> import ants
>>> import numpy as np
>>> img = ants.image_read(ants.get_data('r16'))
>>> segs = img.kmeans_segmentation(k=3)['segmentation']
>>> ants.plot(img, segs*(segs==1), crop=True)
>>> ants.plot(img, segs*(segs==1), crop=False)
>>> mni = ants.image_read(ants.get_data('mni'))
>>> segs = mni.kmeans_segmentation(k=3)['segmentation']
>>> ants.plot(mni, segs*(segs==1), crop=False)
"""
if (axis == "x") or (axis == "saggittal"):
axis = 0
if (axis == "y") or (axis == "coronal"):
axis = 1
if (axis == "z") or (axis == "axial"):
axis = 2
def mirror_matrix(x):
return x[::-1, :]
def rotate270_matrix(x):
return mirror_matrix(x.T)
def rotate180_matrix(x):
return x[::-1, ::-1]
def rotate90_matrix(x):
return x.T
def reorient_slice(x, axis):
if axis != 2:
x = rotate90_matrix(x)
if axis == 2:
x = rotate270_matrix(x)
x = mirror_matrix(x)
return x
# handle `image` argument
if isinstance(image, str):
image = ants.image_read(image)
if not ants.is_image(image):
raise ValueError("image argument must be an ANTsImage")
if np.all(np.equal(image.numpy(), 0.0)):
warnings.warn("Image must be non-zero. will not plot.")
return
# need this hack because of a weird NaN warning from matplotlib with overlays
warnings.simplefilter("ignore")
if (image.pixeltype not in {"float", "double"}) or (image.is_rgb):
scale = False # turn off scaling if image is discrete
# handle `overlay` argument
if overlay is not None:
if isinstance(overlay, str):
overlay = ants.image_read(overlay)
if vminol is None:
vminol = overlay.min()
if vmaxol is None:
vmaxol = overlay.max()
if not ants.is_image(overlay):
raise ValueError("overlay argument must be an ANTsImage")
if overlay.components > 1:
raise ValueError("overlay cannot have more than one voxel component")
if not ants.image_physical_space_consistency(image, overlay):
overlay = ants.resample_image_to_target(overlay, image, interp_type="nearestNeighbor")
if blend:
if alpha == 1:
alpha = 0.5
image = image * alpha + overlay * (1 - alpha)
overlay = None
alpha = 1.0
# handle `domain_image_map` argument
if domain_image_map is not None:
tx = ants.new_ants_transform(
precision="float",
transform_type="AffineTransform",
dimension=image.dimension,
)
image = ants.apply_ants_transform_to_image(tx, image, domain_image_map)
if overlay is not None:
overlay = ants.apply_ants_transform_to_image(
tx, overlay, domain_image_map, interpolation="nearestNeighbor"
)
## single-channel images ##
if image.components == 1:
# potentially crop image
if crop:
plotmask = image.get_mask(cleanup=0)
if plotmask.max() == 0:
plotmask += 1
image = image.crop_image(plotmask)
if overlay is not None:
overlay = overlay.crop_image(plotmask)
# potentially find dynamic range
if scale == True:
vmin, vmax = image.quantile((0.05, 0.95))
elif isinstance(scale, (list, tuple)):
if len(scale) != 2:
raise ValueError(
"scale argument must be boolean or list/tuple with two values"
)
vmin, vmax = image.quantile(scale)
else:
vmin = None
vmax = None
# Plot 2D image
if image.dimension == 2:
img_arr = image.numpy()
img_arr = rotate90_matrix(img_arr)
if not black_bg:
img_arr[img_arr < image.quantile(bg_thresh_quant)] = image.quantile(
bg_val_quant
)
if overlay is not None:
ov_arr = overlay.numpy()
mask = ov_arr == 0
mask = np.ma.masked_where(mask == 0, mask)
ov_arr = np.ma.masked_array(ov_arr, mask)
ov_arr = rotate90_matrix(ov_arr)
fig = plt.figure()
if title is not None:
fig.suptitle(
title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy
)
ax = plt.subplot(111)
# plot main image
im = ax.imshow(img_arr, cmap=cmap, alpha=alpha, vmin=vmin, vmax=vmax)
if overlay is not None:
im = ax.imshow(ov_arr, alpha=overlay_alpha, cmap=overlay_cmap,
vmin=vminol, vmax=vmaxol )
if cbar:
cbar_orient = "vertical" if cbar_vertical else "horizontal"
fig.colorbar(im, orientation=cbar_orient)
plt.axis("off")
# Plot 3D image
elif image.dimension == 3:
# resample image if spacing is very unbalanced
spacing = [s for i, s in enumerate(image.spacing) if i != axis]
was_resampled = False
if (max(spacing) / min(spacing)) > 3.0 and resample:
was_resampled = True
new_spacing = (1, 1, 1)
image = image.resample_image(tuple(new_spacing))
if overlay is not None:
overlay = overlay.resample_image(tuple(new_spacing))
if reorient:
image = image.reorient_image2("LAI")
img_arr = image.numpy()
# reorder dims so that chosen axis is first
img_arr = np.rollaxis(img_arr, axis)
if overlay is not None:
if reorient:
overlay = overlay.reorient_image2("LAI")
ov_arr = overlay.numpy()
mask = ov_arr == 0
mask = np.ma.masked_where(mask == 0, mask)
ov_arr = np.ma.masked_array(ov_arr, mask)
ov_arr = np.rollaxis(ov_arr, axis)
if slices is None:
if not isinstance(slice_buffer, (list, tuple)):
if slice_buffer is None:
slice_buffer = (
int(img_arr.shape[1] * 0.1),
int(img_arr.shape[2] * 0.1),
)
else:
slice_buffer = (slice_buffer, slice_buffer)
nonzero = np.where(img_arr.sum(axis=(1, 2)) > 0.01)[0]
min_idx = nonzero[0] + slice_buffer[0]
max_idx = nonzero[-1] - slice_buffer[1]
if min_idx > max_idx:
temp = min_idx
min_idx = max_idx
max_idx = temp
if max_idx > nonzero.max():
max_idx = nonzero.max()
if min_idx < 0:
min_idx = 0
slice_idxs = np.linspace(min_idx, max_idx, nslices).astype("int")
if reverse:
slice_idxs = np.array(list(reversed(slice_idxs)))
else:
if isinstance(slices, (int, float)):
slices = [slices]
# if all slices are less than 1, infer that they are relative slices
if sum([s > 1 for s in slices]) == 0:
slices = [int(s * img_arr.shape[0]) for s in slices]
slice_idxs = slices
nslices = len(slices)
if was_resampled:
# re-calculate slices to account for new image shape
slice_idxs = np.unique(
np.array(
[
int(s * (image.shape[axis] / img_arr.shape[0]))
for s in slice_idxs
]
)
)
# only have one row if nslices <= 6 and user didnt specify ncol
if ncol is None:
if nslices <= 6:
ncol = nslices
else:
ncol = int(round(math.sqrt(nslices)))
# calculate grid size
nrow = math.ceil(nslices / ncol)
xdim = img_arr.shape[2]
ydim = img_arr.shape[1]
dim_ratio = ydim / xdim
fig = plt.figure(
figsize=((ncol + 1) * figsize * dim_ratio, (nrow + 1) * figsize)
)
if title is not None:
fig.suptitle(
title, fontsize=title_fontsize, x=0.5 + title_dx, y=0.95 + title_dy
)
gs = gridspec.GridSpec(
nrow,
ncol,
wspace=0.0,
hspace=0.0,
top=1.0 - 0.5 / (nrow + 1),
bottom=0.5 / (nrow + 1),
left=0.5 / (ncol + 1),
right=1 - 0.5 / (ncol + 1),
)
slice_idx_idx = 0
for i in range(nrow):
for j in range(ncol):
if slice_idx_idx < len(slice_idxs):
imslice = img_arr[slice_idxs[slice_idx_idx]]
imslice = reorient_slice(imslice, axis)
if not black_bg:
imslice[
imslice < image.quantile(bg_thresh_quant)
] = image.quantile(bg_val_quant)
else:
imslice = np.zeros_like(img_arr[0])
imslice = reorient_slice(imslice, axis)
ax = plt.subplot(gs[i, j])
im = ax.imshow(imslice, cmap=cmap, vmin=vmin, vmax=vmax)
if overlay is not None:
if slice_idx_idx < len(slice_idxs):
ovslice = ov_arr[slice_idxs[slice_idx_idx]]
ovslice = reorient_slice(ovslice, axis)
im = ax.imshow(
ovslice, alpha=overlay_alpha, cmap=overlay_cmap,
vmin=vminol, vmax=vmaxol )
ax.axis("off")
slice_idx_idx += 1
if cbar:
cbar_start = (1 - cbar_length) / 2
if cbar_vertical:
cax = fig.add_axes([0.9 + cbar_dx, cbar_start, 0.03, cbar_length])
cbar_orient = "vertical"
else:
cax = fig.add_axes([cbar_start, 0.08 + cbar_dx, cbar_length, 0.03])
cbar_orient = "horizontal"
fig.colorbar(im, cax=cax, orientation=cbar_orient)
## multi-channel images ##
elif image.has_components:
raise Exception('Plotting images with components is not currently supported.')
if filename is not None:
filename = os.path.expanduser(filename)
plt.savefig(filename, dpi=dpi, transparent=True, bbox_inches="tight")
plt.close(fig)
else:
plt.show()
# turn warnings back to default
warnings.simplefilter("default")