|
a |
|
b/ants/math/averaging.py |
|
|
1 |
import os |
|
|
2 |
from tempfile import mktemp |
|
|
3 |
|
|
|
4 |
import numpy as np |
|
|
5 |
|
|
|
6 |
import ants |
|
|
7 |
|
|
|
8 |
__all__ = ['average_images'] |
|
|
9 |
|
|
|
10 |
|
|
|
11 |
def average_images( x, normalize=True, mask=None, imagetype=0, sum_image_threshold=3, return_sum_image=False, verbose=False ): |
|
|
12 |
""" |
|
|
13 |
average a list of images |
|
|
14 |
|
|
|
15 |
images will be resampled automatically to the largest image space; |
|
|
16 |
this is not a registration so images should be in the same physical |
|
|
17 |
space to begin with. |
|
|
18 |
|
|
|
19 |
x : a list containing either filenames or antsImages |
|
|
20 |
|
|
|
21 |
normalize : boolean |
|
|
22 |
|
|
|
23 |
mask : None or integer; this will perform a masked averaging which can |
|
|
24 |
be useful when images have only partial coverage. integer greater |
|
|
25 |
than zero will perform morphological closing. |
|
|
26 |
|
|
|
27 |
imagetype : integer |
|
|
28 |
choose 0/1/2/3 mapping to scalar/vector/tensor/time-series |
|
|
29 |
|
|
|
30 |
sum_image_threshold : integer |
|
|
31 |
only average regions with overlap greater than or equal to this value |
|
|
32 |
|
|
|
33 |
return_sum_image : boolean |
|
|
34 |
returns the average and the image that show ROI overlap; primarily for debugging |
|
|
35 |
|
|
|
36 |
verbose : boolean |
|
|
37 |
will print progress |
|
|
38 |
|
|
|
39 |
Returns |
|
|
40 |
------- |
|
|
41 |
ANTsImage |
|
|
42 |
|
|
|
43 |
Example |
|
|
44 |
------- |
|
|
45 |
>>> import ants |
|
|
46 |
>>> x0=[ ants.get_data('r16'), ants.get_data('r27'), ants.get_data('r62'), ants.get_data('r64') ] |
|
|
47 |
>>> x1=[] |
|
|
48 |
>>> for k in range(len(x0)): |
|
|
49 |
>>> x1.append( ants.image_read( x0[k] ) ) |
|
|
50 |
>>> avg=ants.average_images(x0) |
|
|
51 |
>>> avg1=ants.average_images(x1) |
|
|
52 |
>>> avg2=ants.average_images(x1,mask=0) |
|
|
53 |
>>> avg3=ants.average_images(x1,mask=1,normalize=True) |
|
|
54 |
""" |
|
|
55 |
import numpy as np |
|
|
56 |
|
|
|
57 |
def gli( y, normalize=False ): |
|
|
58 |
if isinstance(y,str): |
|
|
59 |
y=ants.image_read(y) |
|
|
60 |
if normalize: |
|
|
61 |
y=y/y.mean() |
|
|
62 |
return y |
|
|
63 |
|
|
|
64 |
biggest=0 |
|
|
65 |
biggestind=0 |
|
|
66 |
for k in range( len( x ) ): |
|
|
67 |
locimg = gli( x[k], False ) |
|
|
68 |
sz=np.prod( locimg.shape ) |
|
|
69 |
if sz > biggest: |
|
|
70 |
biggest=sz |
|
|
71 |
biggestind=k |
|
|
72 |
|
|
|
73 |
avg = gli( x[biggestind], False ) * 0 |
|
|
74 |
scl = float( 1.0 / len(x)) |
|
|
75 |
if mask is not None: |
|
|
76 |
sumimg = gli( x[biggestind], False ) * 0 |
|
|
77 |
|
|
|
78 |
for k in range( len( x ) ): |
|
|
79 |
if verbose and k % 20 == 0: |
|
|
80 |
print( str(k)+'...', end='',flush=True) |
|
|
81 |
locimg = gli( x[k], normalize ) |
|
|
82 |
temp = ants.resample_image_to_target( locimg, avg, interp_type='linear', imagetype=imagetype ) |
|
|
83 |
avg = avg + temp |
|
|
84 |
if mask is not None: |
|
|
85 |
fgmask = ants.threshold_image(temp,'Otsu',1) |
|
|
86 |
if mask > 0: |
|
|
87 |
fgmask = ants.morphology(fgmask,"close",mask) |
|
|
88 |
sumimg = sumimg + fgmask |
|
|
89 |
|
|
|
90 |
if return_sum_image: |
|
|
91 |
return avg * scl, sumimg |
|
|
92 |
if mask is None: |
|
|
93 |
avg = avg * scl |
|
|
94 |
else: |
|
|
95 |
nonzero = sumimg > sum_image_threshold |
|
|
96 |
tozero = sumimg <= sum_image_threshold |
|
|
97 |
avg[nonzero] = avg[nonzero] / sumimg[nonzero] |
|
|
98 |
avg[tozero] = 0 |
|
|
99 |
return avg |
|
|
100 |
|