|
a |
|
b/model.py |
|
|
1 |
# Keras implementation of the paper: |
|
|
2 |
# 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization |
|
|
3 |
# by Myronenko A. (https://arxiv.org/pdf/1810.11654.pdf) |
|
|
4 |
# Author of this code: Suyog Jadhav (https://github.com/IAmSUyogJadhav) |
|
|
5 |
|
|
|
6 |
import keras.backend as K |
|
|
7 |
from keras.losses import mse |
|
|
8 |
from keras.layers import Conv3D, Activation, Add, UpSampling3D, Lambda, Dense |
|
|
9 |
from keras.layers import Input, Reshape, Flatten, Dropout, SpatialDropout3D |
|
|
10 |
from keras.optimizers import adam |
|
|
11 |
from keras.models import Model |
|
|
12 |
try: |
|
|
13 |
from group_norm import GroupNormalization |
|
|
14 |
except ImportError: |
|
|
15 |
import urllib.request |
|
|
16 |
print('Downloading group_norm.py in the current directory...') |
|
|
17 |
url = 'https://raw.githubusercontent.com/titu1994/Keras-Group-Normalization/master/group_norm.py' |
|
|
18 |
urllib.request.urlretrieve(url, "group_norm.py") |
|
|
19 |
from group_norm import GroupNormalization |
|
|
20 |
|
|
|
21 |
|
|
|
22 |
def green_block(inp, filters, data_format='channels_first', name=None): |
|
|
23 |
""" |
|
|
24 |
green_block(inp, filters, name=None) |
|
|
25 |
------------------------------------ |
|
|
26 |
Implementation of the special residual block used in the paper. The block |
|
|
27 |
consists of two (GroupNorm --> ReLu --> 3x3x3 non-strided Convolution) |
|
|
28 |
units, with a residual connection from the input `inp` to the output. Used |
|
|
29 |
internally in the model. Can be used independently as well. |
|
|
30 |
|
|
|
31 |
Parameters |
|
|
32 |
---------- |
|
|
33 |
`inp`: An keras.layers.layer instance, required |
|
|
34 |
The keras layer just preceding the green block. |
|
|
35 |
`filters`: integer, required |
|
|
36 |
No. of filters to use in the 3D convolutional block. The output |
|
|
37 |
layer of this green block will have this many no. of channels. |
|
|
38 |
`data_format`: string, optional |
|
|
39 |
The format of the input data. Must be either 'chanels_first' or |
|
|
40 |
'channels_last'. Defaults to `channels_first`, as used in the paper. |
|
|
41 |
`name`: string, optional |
|
|
42 |
The name to be given to this green block. Defaults to None, in which |
|
|
43 |
case, keras uses generated names for the involved layers. If a string |
|
|
44 |
is provided, the names of individual layers are generated by attaching |
|
|
45 |
a relevant prefix from [GroupNorm_, Res_, Conv3D_, Relu_, ], followed |
|
|
46 |
by _1 or _2. |
|
|
47 |
|
|
|
48 |
Returns |
|
|
49 |
------- |
|
|
50 |
`out`: A keras.layers.Layer instance |
|
|
51 |
The output of the green block. Has no. of channels equal to `filters`. |
|
|
52 |
The size of the rest of the dimensions remains same as in `inp`. |
|
|
53 |
""" |
|
|
54 |
inp_res = Conv3D( |
|
|
55 |
filters=filters, |
|
|
56 |
kernel_size=(1, 1, 1), |
|
|
57 |
strides=1, |
|
|
58 |
data_format=data_format, |
|
|
59 |
name=f'Res_{name}' if name else None)(inp) |
|
|
60 |
|
|
|
61 |
# axis=1 for channels_first data format |
|
|
62 |
# No. of groups = 8, as given in the paper |
|
|
63 |
x = GroupNormalization( |
|
|
64 |
groups=8, |
|
|
65 |
axis=1 if data_format == 'channels_first' else 0, |
|
|
66 |
name=f'GroupNorm_1_{name}' if name else None)(inp) |
|
|
67 |
x = Activation('relu', name=f'Relu_1_{name}' if name else None)(x) |
|
|
68 |
x = Conv3D( |
|
|
69 |
filters=filters, |
|
|
70 |
kernel_size=(3, 3, 3), |
|
|
71 |
strides=1, |
|
|
72 |
padding='same', |
|
|
73 |
data_format=data_format, |
|
|
74 |
name=f'Conv3D_1_{name}' if name else None)(x) |
|
|
75 |
|
|
|
76 |
x = GroupNormalization( |
|
|
77 |
groups=8, |
|
|
78 |
axis=1 if data_format == 'channels_first' else 0, |
|
|
79 |
name=f'GroupNorm_2_{name}' if name else None)(x) |
|
|
80 |
x = Activation('relu', name=f'Relu_2_{name}' if name else None)(x) |
|
|
81 |
x = Conv3D( |
|
|
82 |
filters=filters, |
|
|
83 |
kernel_size=(3, 3, 3), |
|
|
84 |
strides=1, |
|
|
85 |
padding='same', |
|
|
86 |
data_format=data_format, |
|
|
87 |
name=f'Conv3D_2_{name}' if name else None)(x) |
|
|
88 |
|
|
|
89 |
out = Add(name=f'Out_{name}' if name else None)([x, inp_res]) |
|
|
90 |
return out |
|
|
91 |
|
|
|
92 |
|
|
|
93 |
# From keras-team/keras/blob/master/examples/variational_autoencoder.py |
|
|
94 |
def sampling(args): |
|
|
95 |
"""Reparameterization trick by sampling from an isotropic unit Gaussian. |
|
|
96 |
# Arguments |
|
|
97 |
args (tensor): mean and log of variance of Q(z|X) |
|
|
98 |
# Returns |
|
|
99 |
z (tensor): sampled latent vector |
|
|
100 |
""" |
|
|
101 |
z_mean, z_var = args |
|
|
102 |
batch = K.shape(z_mean)[0] |
|
|
103 |
dim = K.int_shape(z_mean)[1] |
|
|
104 |
# by default, random_normal has mean = 0 and std = 1.0 |
|
|
105 |
epsilon = K.random_normal(shape=(batch, dim)) |
|
|
106 |
return z_mean + K.exp(0.5 * z_var) * epsilon |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
def dice_coefficient(y_true, y_pred): |
|
|
110 |
intersection = K.sum(K.abs(y_true * y_pred), axis=[-3,-2,-1]) |
|
|
111 |
dn = K.sum(K.square(y_true) + K.square(y_pred), axis=[-3,-2,-1]) + 1e-8 |
|
|
112 |
return K.mean(2 * intersection / dn, axis=[0,1]) |
|
|
113 |
|
|
|
114 |
|
|
|
115 |
def loss_gt(e=1e-8): |
|
|
116 |
""" |
|
|
117 |
loss_gt(e=1e-8) |
|
|
118 |
------------------------------------------------------ |
|
|
119 |
Since keras does not allow custom loss functions to have arguments |
|
|
120 |
other than the true and predicted labels, this function acts as a wrapper |
|
|
121 |
that allows us to implement the custom loss used in the paper. This function |
|
|
122 |
only calculates - L<dice> term of the following equation. (i.e. GT Decoder part loss) |
|
|
123 |
|
|
|
124 |
L = - L<dice> + weight_L2 ∗ L<L2> + weight_KL ∗ L<KL> |
|
|
125 |
|
|
|
126 |
Parameters |
|
|
127 |
---------- |
|
|
128 |
`e`: Float, optional |
|
|
129 |
A small epsilon term to add in the denominator to avoid dividing by |
|
|
130 |
zero and possible gradient explosion. |
|
|
131 |
|
|
|
132 |
Returns |
|
|
133 |
------- |
|
|
134 |
loss_gt_(y_true, y_pred): A custom keras loss function |
|
|
135 |
This function takes as input the predicted and ground labels, uses them |
|
|
136 |
to calculate the dice loss. |
|
|
137 |
|
|
|
138 |
""" |
|
|
139 |
def loss_gt_(y_true, y_pred): |
|
|
140 |
intersection = K.sum(K.abs(y_true * y_pred), axis=[-3,-2,-1]) |
|
|
141 |
dn = K.sum(K.square(y_true) + K.square(y_pred), axis=[-3,-2,-1]) + e |
|
|
142 |
|
|
|
143 |
return - K.mean(2 * intersection / dn, axis=[0,1]) |
|
|
144 |
|
|
|
145 |
return loss_gt_ |
|
|
146 |
|
|
|
147 |
def loss_VAE(input_shape, z_mean, z_var, weight_L2=0.1, weight_KL=0.1): |
|
|
148 |
""" |
|
|
149 |
loss_VAE(input_shape, z_mean, z_var, weight_L2=0.1, weight_KL=0.1) |
|
|
150 |
------------------------------------------------------ |
|
|
151 |
Since keras does not allow custom loss functions to have arguments |
|
|
152 |
other than the true and predicted labels, this function acts as a wrapper |
|
|
153 |
that allows us to implement the custom loss used in the paper. This function |
|
|
154 |
calculates the following equation, except for -L<dice> term. (i.e. VAE decoder part loss) |
|
|
155 |
|
|
|
156 |
L = - L<dice> + weight_L2 ∗ L<L2> + weight_KL ∗ L<KL> |
|
|
157 |
|
|
|
158 |
Parameters |
|
|
159 |
---------- |
|
|
160 |
`input_shape`: A 4-tuple, required |
|
|
161 |
The shape of an image as the tuple (c, H, W, D), where c is |
|
|
162 |
the no. of channels; H, W and D is the height, width and depth of the |
|
|
163 |
input image, respectively. |
|
|
164 |
`z_mean`: An keras.layers.Layer instance, required |
|
|
165 |
The vector representing values of mean for the learned distribution |
|
|
166 |
in the VAE part. Used internally. |
|
|
167 |
`z_var`: An keras.layers.Layer instance, required |
|
|
168 |
The vector representing values of variance for the learned distribution |
|
|
169 |
in the VAE part. Used internally. |
|
|
170 |
`weight_L2`: A real number, optional |
|
|
171 |
The weight to be given to the L2 loss term in the loss function. Adjust to get best |
|
|
172 |
results for your task. Defaults to 0.1. |
|
|
173 |
`weight_KL`: A real number, optional |
|
|
174 |
The weight to be given to the KL loss term in the loss function. Adjust to get best |
|
|
175 |
results for your task. Defaults to 0.1. |
|
|
176 |
|
|
|
177 |
Returns |
|
|
178 |
------- |
|
|
179 |
loss_VAE_(y_true, y_pred): A custom keras loss function |
|
|
180 |
This function takes as input the predicted and ground labels, uses them |
|
|
181 |
to calculate the L2 and KL loss. |
|
|
182 |
|
|
|
183 |
""" |
|
|
184 |
def loss_VAE_(y_true, y_pred): |
|
|
185 |
c, H, W, D = input_shape |
|
|
186 |
n = c * H * W * D |
|
|
187 |
|
|
|
188 |
loss_L2 = K.mean(K.square(y_true - y_pred), axis=(1, 2, 3, 4)) # original axis value is (1,2,3,4). |
|
|
189 |
|
|
|
190 |
loss_KL = (1 / n) * K.sum( |
|
|
191 |
K.exp(z_var) + K.square(z_mean) - 1. - z_var, |
|
|
192 |
axis=-1 |
|
|
193 |
) |
|
|
194 |
|
|
|
195 |
return weight_L2 * loss_L2 + weight_KL * loss_KL |
|
|
196 |
|
|
|
197 |
return loss_VAE_ |
|
|
198 |
|
|
|
199 |
def build_model(input_shape=(4, 160, 192, 128), output_channels=3, weight_L2=0.1, weight_KL=0.1, dice_e=1e-8): |
|
|
200 |
""" |
|
|
201 |
build_model(input_shape=(4, 160, 192, 128), output_channels=3, weight_L2=0.1, weight_KL=0.1) |
|
|
202 |
------------------------------------------- |
|
|
203 |
Creates the model used in the BRATS2018 winning solution |
|
|
204 |
by Myronenko A. (https://arxiv.org/pdf/1810.11654.pdf) |
|
|
205 |
|
|
|
206 |
Parameters |
|
|
207 |
---------- |
|
|
208 |
`input_shape`: A 4-tuple, optional. |
|
|
209 |
Shape of the input image. Must be a 4D image of shape (c, H, W, D), |
|
|
210 |
where, each of H, W and D are divisible by 2^4, and c is divisible by 4. |
|
|
211 |
Defaults to the crop size used in the paper, i.e., (4, 160, 192, 128). |
|
|
212 |
`output_channels`: An integer, optional. |
|
|
213 |
The no. of channels in the output. Defaults to 3 (BraTS 2018 format). |
|
|
214 |
`weight_L2`: A real number, optional |
|
|
215 |
The weight to be given to the L2 loss term in the loss function. Adjust to get best |
|
|
216 |
results for your task. Defaults to 0.1. |
|
|
217 |
`weight_KL`: A real number, optional |
|
|
218 |
The weight to be given to the KL loss term in the loss function. Adjust to get best |
|
|
219 |
results for your task. Defaults to 0.1. |
|
|
220 |
`dice_e`: Float, optional |
|
|
221 |
A small epsilon term to add in the denominator of dice loss to avoid dividing by |
|
|
222 |
zero and possible gradient explosion. This argument will be passed to loss_gt function. |
|
|
223 |
|
|
|
224 |
|
|
|
225 |
Returns |
|
|
226 |
------- |
|
|
227 |
`model`: A keras.models.Model instance |
|
|
228 |
The created model. |
|
|
229 |
""" |
|
|
230 |
c, H, W, D = input_shape |
|
|
231 |
assert len(input_shape) == 4, "Input shape must be a 4-tuple" |
|
|
232 |
assert (c % 4) == 0, "The no. of channels must be divisible by 4" |
|
|
233 |
assert (H % 16) == 0 and (W % 16) == 0 and (D % 16) == 0, \ |
|
|
234 |
"All the input dimensions must be divisible by 16" |
|
|
235 |
|
|
|
236 |
|
|
|
237 |
# ------------------------------------------------------------------------- |
|
|
238 |
# Encoder |
|
|
239 |
# ------------------------------------------------------------------------- |
|
|
240 |
|
|
|
241 |
## Input Layer |
|
|
242 |
inp = Input(input_shape) |
|
|
243 |
|
|
|
244 |
## The Initial Block |
|
|
245 |
x = Conv3D( |
|
|
246 |
filters=32, |
|
|
247 |
kernel_size=(3, 3, 3), |
|
|
248 |
strides=1, |
|
|
249 |
padding='same', |
|
|
250 |
data_format='channels_first', |
|
|
251 |
name='Input_x1')(inp) |
|
|
252 |
|
|
|
253 |
## Dropout (0.2) |
|
|
254 |
x = SpatialDropout3D(0.2, data_format='channels_first')(x) |
|
|
255 |
|
|
|
256 |
## Green Block x1 (output filters = 32) |
|
|
257 |
x1 = green_block(x, 32, name='x1') |
|
|
258 |
x = Conv3D( |
|
|
259 |
filters=32, |
|
|
260 |
kernel_size=(3, 3, 3), |
|
|
261 |
strides=2, |
|
|
262 |
padding='same', |
|
|
263 |
data_format='channels_first', |
|
|
264 |
name='Enc_DownSample_32')(x1) |
|
|
265 |
|
|
|
266 |
## Green Block x2 (output filters = 64) |
|
|
267 |
x = green_block(x, 64, name='Enc_64_1') |
|
|
268 |
x2 = green_block(x, 64, name='x2') |
|
|
269 |
x = Conv3D( |
|
|
270 |
filters=64, |
|
|
271 |
kernel_size=(3, 3, 3), |
|
|
272 |
strides=2, |
|
|
273 |
padding='same', |
|
|
274 |
data_format='channels_first', |
|
|
275 |
name='Enc_DownSample_64')(x2) |
|
|
276 |
|
|
|
277 |
## Green Blocks x2 (output filters = 128) |
|
|
278 |
x = green_block(x, 128, name='Enc_128_1') |
|
|
279 |
x3 = green_block(x, 128, name='x3') |
|
|
280 |
x = Conv3D( |
|
|
281 |
filters=128, |
|
|
282 |
kernel_size=(3, 3, 3), |
|
|
283 |
strides=2, |
|
|
284 |
padding='same', |
|
|
285 |
data_format='channels_first', |
|
|
286 |
name='Enc_DownSample_128')(x3) |
|
|
287 |
|
|
|
288 |
## Green Blocks x4 (output filters = 256) |
|
|
289 |
x = green_block(x, 256, name='Enc_256_1') |
|
|
290 |
x = green_block(x, 256, name='Enc_256_2') |
|
|
291 |
x = green_block(x, 256, name='Enc_256_3') |
|
|
292 |
x4 = green_block(x, 256, name='x4') |
|
|
293 |
|
|
|
294 |
# ------------------------------------------------------------------------- |
|
|
295 |
# Decoder |
|
|
296 |
# ------------------------------------------------------------------------- |
|
|
297 |
|
|
|
298 |
## GT (Groud Truth) Part |
|
|
299 |
# ------------------------------------------------------------------------- |
|
|
300 |
|
|
|
301 |
### Green Block x1 (output filters=128) |
|
|
302 |
x = Conv3D( |
|
|
303 |
filters=128, |
|
|
304 |
kernel_size=(1, 1, 1), |
|
|
305 |
strides=1, |
|
|
306 |
data_format='channels_first', |
|
|
307 |
name='Dec_GT_ReduceDepth_128')(x4) |
|
|
308 |
x = UpSampling3D( |
|
|
309 |
size=2, |
|
|
310 |
data_format='channels_first', |
|
|
311 |
name='Dec_GT_UpSample_128')(x) |
|
|
312 |
x = Add(name='Input_Dec_GT_128')([x, x3]) |
|
|
313 |
x = green_block(x, 128, name='Dec_GT_128') |
|
|
314 |
|
|
|
315 |
### Green Block x1 (output filters=64) |
|
|
316 |
x = Conv3D( |
|
|
317 |
filters=64, |
|
|
318 |
kernel_size=(1, 1, 1), |
|
|
319 |
strides=1, |
|
|
320 |
data_format='channels_first', |
|
|
321 |
name='Dec_GT_ReduceDepth_64')(x) |
|
|
322 |
x = UpSampling3D( |
|
|
323 |
size=2, |
|
|
324 |
data_format='channels_first', |
|
|
325 |
name='Dec_GT_UpSample_64')(x) |
|
|
326 |
x = Add(name='Input_Dec_GT_64')([x, x2]) |
|
|
327 |
x = green_block(x, 64, name='Dec_GT_64') |
|
|
328 |
|
|
|
329 |
### Green Block x1 (output filters=32) |
|
|
330 |
x = Conv3D( |
|
|
331 |
filters=32, |
|
|
332 |
kernel_size=(1, 1, 1), |
|
|
333 |
strides=1, |
|
|
334 |
data_format='channels_first', |
|
|
335 |
name='Dec_GT_ReduceDepth_32')(x) |
|
|
336 |
x = UpSampling3D( |
|
|
337 |
size=2, |
|
|
338 |
data_format='channels_first', |
|
|
339 |
name='Dec_GT_UpSample_32')(x) |
|
|
340 |
x = Add(name='Input_Dec_GT_32')([x, x1]) |
|
|
341 |
x = green_block(x, 32, name='Dec_GT_32') |
|
|
342 |
|
|
|
343 |
### Blue Block x1 (output filters=32) |
|
|
344 |
x = Conv3D( |
|
|
345 |
filters=32, |
|
|
346 |
kernel_size=(3, 3, 3), |
|
|
347 |
strides=1, |
|
|
348 |
padding='same', |
|
|
349 |
data_format='channels_first', |
|
|
350 |
name='Input_Dec_GT_Output')(x) |
|
|
351 |
|
|
|
352 |
### Output Block |
|
|
353 |
out_GT = Conv3D( |
|
|
354 |
filters=output_channels, # No. of tumor classes is 3 |
|
|
355 |
kernel_size=(1, 1, 1), |
|
|
356 |
strides=1, |
|
|
357 |
data_format='channels_first', |
|
|
358 |
activation='sigmoid', |
|
|
359 |
name='Dec_GT_Output')(x) |
|
|
360 |
|
|
|
361 |
## VAE (Variational Auto Encoder) Part |
|
|
362 |
# ------------------------------------------------------------------------- |
|
|
363 |
|
|
|
364 |
### VD Block (Reducing dimensionality of the data) |
|
|
365 |
x = GroupNormalization(groups=8, axis=1, name='Dec_VAE_VD_GN')(x4) |
|
|
366 |
x = Activation('relu', name='Dec_VAE_VD_relu')(x) |
|
|
367 |
x = Conv3D( |
|
|
368 |
filters=16, |
|
|
369 |
kernel_size=(3, 3, 3), |
|
|
370 |
strides=2, |
|
|
371 |
padding='same', |
|
|
372 |
data_format='channels_first', |
|
|
373 |
name='Dec_VAE_VD_Conv3D')(x) |
|
|
374 |
|
|
|
375 |
# Not mentioned in the paper, but the author used a Flattening layer here. |
|
|
376 |
x = Flatten(name='Dec_VAE_VD_Flatten')(x) |
|
|
377 |
x = Dense(256, name='Dec_VAE_VD_Dense')(x) |
|
|
378 |
|
|
|
379 |
### VDraw Block (Sampling) |
|
|
380 |
z_mean = Dense(128, name='Dec_VAE_VDraw_Mean')(x) |
|
|
381 |
z_var = Dense(128, name='Dec_VAE_VDraw_Var')(x) |
|
|
382 |
x = Lambda(sampling, name='Dec_VAE_VDraw_Sampling')([z_mean, z_var]) |
|
|
383 |
|
|
|
384 |
### VU Block (Upsizing back to a depth of 256) |
|
|
385 |
x = Dense((c//4) * (H//16) * (W//16) * (D//16))(x) |
|
|
386 |
x = Activation('relu')(x) |
|
|
387 |
x = Reshape(((c//4), (H//16), (W//16), (D//16)))(x) |
|
|
388 |
x = Conv3D( |
|
|
389 |
filters=256, |
|
|
390 |
kernel_size=(1, 1, 1), |
|
|
391 |
strides=1, |
|
|
392 |
data_format='channels_first', |
|
|
393 |
name='Dec_VAE_ReduceDepth_256')(x) |
|
|
394 |
x = UpSampling3D( |
|
|
395 |
size=2, |
|
|
396 |
data_format='channels_first', |
|
|
397 |
name='Dec_VAE_UpSample_256')(x) |
|
|
398 |
|
|
|
399 |
### Green Block x1 (output filters=128) |
|
|
400 |
x = Conv3D( |
|
|
401 |
filters=128, |
|
|
402 |
kernel_size=(1, 1, 1), |
|
|
403 |
strides=1, |
|
|
404 |
data_format='channels_first', |
|
|
405 |
name='Dec_VAE_ReduceDepth_128')(x) |
|
|
406 |
x = UpSampling3D( |
|
|
407 |
size=2, |
|
|
408 |
data_format='channels_first', |
|
|
409 |
name='Dec_VAE_UpSample_128')(x) |
|
|
410 |
x = green_block(x, 128, name='Dec_VAE_128') |
|
|
411 |
|
|
|
412 |
### Green Block x1 (output filters=64) |
|
|
413 |
x = Conv3D( |
|
|
414 |
filters=64, |
|
|
415 |
kernel_size=(1, 1, 1), |
|
|
416 |
strides=1, |
|
|
417 |
data_format='channels_first', |
|
|
418 |
name='Dec_VAE_ReduceDepth_64')(x) |
|
|
419 |
x = UpSampling3D( |
|
|
420 |
size=2, |
|
|
421 |
data_format='channels_first', |
|
|
422 |
name='Dec_VAE_UpSample_64')(x) |
|
|
423 |
x = green_block(x, 64, name='Dec_VAE_64') |
|
|
424 |
|
|
|
425 |
### Green Block x1 (output filters=32) |
|
|
426 |
x = Conv3D( |
|
|
427 |
filters=32, |
|
|
428 |
kernel_size=(1, 1, 1), |
|
|
429 |
strides=1, |
|
|
430 |
data_format='channels_first', |
|
|
431 |
name='Dec_VAE_ReduceDepth_32')(x) |
|
|
432 |
x = UpSampling3D( |
|
|
433 |
size=2, |
|
|
434 |
data_format='channels_first', |
|
|
435 |
name='Dec_VAE_UpSample_32')(x) |
|
|
436 |
x = green_block(x, 32, name='Dec_VAE_32') |
|
|
437 |
|
|
|
438 |
### Blue Block x1 (output filters=32) |
|
|
439 |
x = Conv3D( |
|
|
440 |
filters=32, |
|
|
441 |
kernel_size=(3, 3, 3), |
|
|
442 |
strides=1, |
|
|
443 |
padding='same', |
|
|
444 |
data_format='channels_first', |
|
|
445 |
name='Input_Dec_VAE_Output')(x) |
|
|
446 |
|
|
|
447 |
### Output Block |
|
|
448 |
out_VAE = Conv3D( |
|
|
449 |
filters=4, |
|
|
450 |
kernel_size=(1, 1, 1), |
|
|
451 |
strides=1, |
|
|
452 |
data_format='channels_first', |
|
|
453 |
name='Dec_VAE_Output')(x) |
|
|
454 |
|
|
|
455 |
# Build and Compile the model |
|
|
456 |
out = out_GT |
|
|
457 |
model = Model(inp, outputs=[out, out_VAE]) # Create the model |
|
|
458 |
model.compile( |
|
|
459 |
adam(lr=1e-4), |
|
|
460 |
[loss_gt(dice_e), loss_VAE(input_shape, z_mean, z_var, weight_L2=weight_L2, weight_KL=weight_KL)], |
|
|
461 |
metrics=[dice_coefficient] |
|
|
462 |
) |
|
|
463 |
|
|
|
464 |
return model |