[408896]: / layers / resnet.py

Download this file

142 lines (123 with data), 6.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Contains ResNet block class."""
import tensorflow as tf
from layers.group_norm import GroupNormalization
class ResnetBlock(tf.keras.layers.Layer):
def __init__(self,
filters,
data_format='channels_last',
groups=8,
reduction=2,
l2_scale=1e-5):
""" Initializes one SENet block. Builds on basic ResNet block
structure, but applies squeeze-and-excitation to the residual.
References:
- [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385.pdf)
"""
super(ResnetBlock, self).__init__()
# Set up config for self.get_config() to serialize later.
self.config = super(ResnetBlock, self).get_config()
self.config.update({'filters': filters,
'data_format': data_format,
'reduction': reduction,
'l2_scale': l2_scale,
'groups': groups})
# Pointwise convolution.
self.conv3d_ptwise = tf.keras.layers.Conv3D(
filters=filters,
kernel_size=1,
strides=1,
padding='same',
data_format=data_format,
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
kernel_initializer='he_normal')
if filters % reduction != 0:
raise ValueError(
'Reduction ratio, {}, must be a factor of number of channels, {}.'
.format(reduction, filters))
# Channel squeeze excitation layers.
self.squeeze = tf.keras.layers.GlobalAveragePooling3D(
data_format=data_format)
self.dense_relu = tf.keras.layers.Dense(
units=filters // reduction,
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
kernel_initializer='he_normal',
use_bias=False,
activation='relu')
self.dense_sigmoid = tf.keras.layers.Dense(
units=filters,
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
kernel_initializer='he_normal',
use_bias=False,
activation='sigmoid')
self.reshape = tf.keras.layers.Reshape(
(1, 1, 1, -1) if data_format == 'channels_last'
else (-1, 1, 1, 1))
# Spatial squeeze excitation layers.
self.spatial = tf.keras.layers.Conv3D(
filters=1,
kernel_size=1,
strides=1,
padding='same',
data_format=data_format,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
use_bias=False,
activation='sigmoid')
self.scale_res = tf.keras.layers.Multiply()
self.add_se = tf.keras.layers.Add()
# Convolutional layers.
self.convs = []
self.convs.append([tf.keras.layers.Conv3D(
filters=filters,
kernel_size=3,
strides=1,
padding='same',
data_format=data_format,
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
kernel_initializer='he_normal'),
GroupNormalization(
groups=groups,
axis=-1 if data_format == 'channels_last' else 1,
beta_initializer='zeros',
gamma_initializer='ones',
beta_regularizer=tf.keras.regularizers.l2(l=l2_scale),
gamma_regularizer=tf.keras.regularizers.l2(l=l2_scale)),
tf.keras.layers.Activation('relu')])
self.convs.append([tf.keras.layers.Conv3D(
filters=filters,
kernel_size=3,
strides=1,
padding='same',
data_format=data_format,
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale),
kernel_initializer='he_normal'),
GroupNormalization(
groups=groups,
axis=-1 if data_format == 'channels_last' else 1,
beta_initializer='zeros',
gamma_initializer='zeros',
beta_regularizer=tf.keras.regularizers.l2(l=l2_scale),
gamma_regularizer=tf.keras.regularizers.l2(l=l2_scale)),
tf.keras.layers.Activation('relu')])
self.residual = tf.keras.layers.Add()
def call(self, inputs, training=None):
# Pointwise input convolution.
res = self.conv3d_ptwise(inputs)
# Channel squeeze & excitation.
chse = self.squeeze(res)
chse = self.dense_relu(chse)
chse = self.dense_sigmoid(chse)
chse = self.reshape(chse)
# Spatial squeeze & excitation.
spse = self.spatial(res)
# Scale residual.
res = self.scale_res([res, self.add_se([spse, chse])])
# Convolutional layers.
for conv, norm, relu in self.convs:
inputs = conv(inputs)
inputs = norm(inputs, training=training)
inputs = relu(inputs)
inputs = self.residual([res, inputs])
return inputs
def get_config(self):
return self.config