|
a |
|
b/layers/vae.py |
|
|
1 |
"""Contains custom variational autoencoder class.""" |
|
|
2 |
import tensorflow as tf |
|
|
3 |
|
|
|
4 |
from layers.downsample import get_downsampling |
|
|
5 |
from layers.upsample import get_upsampling |
|
|
6 |
from layers.resnet import ResnetBlock |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
def sample(inputs): |
|
|
10 |
"""Samples from the Gaussian given by mean and variance.""" |
|
|
11 |
z_mean, z_logvar = inputs |
|
|
12 |
eps = tf.random.normal(shape=z_mean.shape, dtype=tf.float32) |
|
|
13 |
return z_mean + tf.math.exp(0.5 * z_logvar) * eps |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
class VariationalAutoencoder(tf.keras.layers.Layer): |
|
|
17 |
def __init__(self, |
|
|
18 |
data_format='channels_last', |
|
|
19 |
groups=8, |
|
|
20 |
reduction=2, |
|
|
21 |
l2_scale=1e-5, |
|
|
22 |
downsampling='conv', |
|
|
23 |
upsampling='conv', |
|
|
24 |
base_filters=16, |
|
|
25 |
depth=4, |
|
|
26 |
out_ch=2): |
|
|
27 |
""" Initializes the variational autoencoder: consists of sampling |
|
|
28 |
then an alternating series of SENet blocks and upsampling. |
|
|
29 |
|
|
|
30 |
References: |
|
|
31 |
- [3D MRI brain tumor segmentation using autoencoder regularization](https://arxiv.org/pdf/1810.11654.pdf) |
|
|
32 |
""" |
|
|
33 |
super(VariationalAutoencoder, self).__init__() |
|
|
34 |
# Set up config for self.get_config() to serialize later. |
|
|
35 |
self.data_format = data_format |
|
|
36 |
self.l2_scale = l2_scale |
|
|
37 |
self.config = super(VariationalAutoencoder, self).get_config() |
|
|
38 |
self.config.update({'groups': groups, |
|
|
39 |
'reduction': reduction, |
|
|
40 |
'downsampling': downsampling, |
|
|
41 |
'upsampling': upsampling, |
|
|
42 |
'base_filters': base_filters, |
|
|
43 |
'depth': depth, |
|
|
44 |
'out_ch': out_ch}) |
|
|
45 |
|
|
|
46 |
# Retrieve downsampling method. |
|
|
47 |
Downsample = get_downsampling(downsampling) |
|
|
48 |
|
|
|
49 |
# Retrieve upsampling method. |
|
|
50 |
Upsample = get_upsampling(upsampling) |
|
|
51 |
|
|
|
52 |
# Extra downsampling layer to reduce parameters. |
|
|
53 |
self.downsample = Downsample( |
|
|
54 |
filters=base_filters//2, |
|
|
55 |
groups=groups, |
|
|
56 |
data_format=data_format, |
|
|
57 |
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale)) |
|
|
58 |
|
|
|
59 |
# Build sampling layers. |
|
|
60 |
self.flatten = tf.keras.layers.Flatten(data_format) |
|
|
61 |
self.proj = tf.keras.layers.Dense( |
|
|
62 |
units=base_filters*(2**(depth-1)), |
|
|
63 |
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale), |
|
|
64 |
kernel_initializer='he_normal') |
|
|
65 |
self.latent_size = base_filters*(2**(depth-2)) |
|
|
66 |
self.sample = tf.keras.layers.Lambda(sample) |
|
|
67 |
|
|
|
68 |
# Extra upsampling layer to counter extra downsampling layer. |
|
|
69 |
self.upsample = Upsample( |
|
|
70 |
filters=base_filters*(2**(depth-1)), |
|
|
71 |
groups=groups, |
|
|
72 |
data_format=data_format, |
|
|
73 |
l2_scale=l2_scale) |
|
|
74 |
|
|
|
75 |
# Build layers at all spatial levels. |
|
|
76 |
self.levels = [] |
|
|
77 |
for i in range(depth-2, -1, -1): |
|
|
78 |
upsample = Upsample( |
|
|
79 |
filters=base_filters*(2**i), |
|
|
80 |
groups=groups, |
|
|
81 |
data_format=data_format, |
|
|
82 |
l2_scale=l2_scale) |
|
|
83 |
conv = ResnetBlock( |
|
|
84 |
filters=base_filters*(2**i), |
|
|
85 |
groups=groups, |
|
|
86 |
reduction=reduction, |
|
|
87 |
data_format=data_format, |
|
|
88 |
l2_scale=l2_scale) |
|
|
89 |
self.levels.append([upsample, conv]) |
|
|
90 |
|
|
|
91 |
# Output layer convolution. |
|
|
92 |
self.out = tf.keras.layers.Conv3D( |
|
|
93 |
filters=out_ch, |
|
|
94 |
kernel_size=3, |
|
|
95 |
strides=1, |
|
|
96 |
padding='same', |
|
|
97 |
data_format=data_format, |
|
|
98 |
kernel_regularizer=tf.keras.regularizers.l2(l=l2_scale), |
|
|
99 |
kernel_initializer='he_normal') |
|
|
100 |
|
|
|
101 |
def build(self, input_shape): |
|
|
102 |
h, w, d = input_shape[1:-1] if self.data_format == 'channels_last' else input_shape[2:] |
|
|
103 |
|
|
|
104 |
# Build reshaping layers after sampling. |
|
|
105 |
self.unproj = tf.keras.layers.Dense( |
|
|
106 |
units=h*w*d*1//8, |
|
|
107 |
kernel_regularizer=tf.keras.regularizers.l2(l=self.l2_scale), |
|
|
108 |
kernel_initializer='he_normal', |
|
|
109 |
activation='relu') |
|
|
110 |
self.unflatten = tf.keras.layers.Reshape( |
|
|
111 |
(h//2, w//2, d//2, 1) if self.data_format == 'channels_last' else (1, h//2, w//2, d//2)) |
|
|
112 |
|
|
|
113 |
|
|
|
114 |
def call(self, inputs, training=None): |
|
|
115 |
# Downsample. |
|
|
116 |
inputs = self.downsample(inputs) |
|
|
117 |
|
|
|
118 |
# Flatten and project |
|
|
119 |
inputs = self.flatten(inputs) |
|
|
120 |
inputs = self.proj(inputs) |
|
|
121 |
|
|
|
122 |
# Sample. |
|
|
123 |
z_mean = inputs[:, :self.latent_size] |
|
|
124 |
z_logvar = inputs[:, self.latent_size:] |
|
|
125 |
inputs = self.sample([z_mean, z_logvar]) |
|
|
126 |
|
|
|
127 |
# Restored projection and reshape |
|
|
128 |
inputs = self.unproj(inputs) |
|
|
129 |
inputs = self.unflatten(inputs) |
|
|
130 |
|
|
|
131 |
# Upsample. |
|
|
132 |
inputs = self.upsample(inputs) |
|
|
133 |
|
|
|
134 |
# Iterate through spatial levels. |
|
|
135 |
for level in self.levels: |
|
|
136 |
upsample, conv = level |
|
|
137 |
inputs = upsample(inputs, training=training) |
|
|
138 |
inputs = conv(inputs, training=training) |
|
|
139 |
|
|
|
140 |
# Map convolution to number of original input channels. |
|
|
141 |
inputs = self.out(inputs) |
|
|
142 |
|
|
|
143 |
return inputs, z_mean, z_logvar |
|
|
144 |
|
|
|
145 |
def get_config(self): |
|
|
146 |
self.config.update({'data_format': self.data_format, |
|
|
147 |
'l2_scale': self.l2_scale}) |
|
|
148 |
return self.config |