|
a |
|
b/args.py |
|
|
1 |
import argparse |
|
|
2 |
import shutil |
|
|
3 |
import pickle |
|
|
4 |
import copy |
|
|
5 |
import os |
|
|
6 |
import numpy as np |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
class BaseArgParser(object): |
|
|
10 |
def __init__(self): |
|
|
11 |
self.parser = argparse.ArgumentParser() |
|
|
12 |
|
|
|
13 |
def namespace_to_dict(self, args): |
|
|
14 |
"""Turns a nested Namespace object to a nested dictionary""" |
|
|
15 |
args_dict = vars(copy.deepcopy(args)) |
|
|
16 |
|
|
|
17 |
for arg in args_dict: |
|
|
18 |
obj = args_dict[arg] |
|
|
19 |
if isinstance(obj, argparse.Namespace): |
|
|
20 |
args_dict[arg] = self.namespace_to_dict(obj) |
|
|
21 |
|
|
|
22 |
return args_dict |
|
|
23 |
|
|
|
24 |
def fix_nested_namespaces(self, args): |
|
|
25 |
"""Makes sure that nested Namespace work. Supports only one level of nesting.""" |
|
|
26 |
group_name_keys = [] |
|
|
27 |
|
|
|
28 |
for key in args.__dict__: |
|
|
29 |
if '.' in key: |
|
|
30 |
group, name = key.split('.') |
|
|
31 |
group_name_keys.append((group, name, key)) |
|
|
32 |
|
|
|
33 |
for group, name, key in group_name_keys: |
|
|
34 |
if group not in args: |
|
|
35 |
args.__dict__[group] = argparse.Namespace() |
|
|
36 |
|
|
|
37 |
args.__dict__[group].__dict__[name] = args.__dict__[key] |
|
|
38 |
del args.__dict__[key] |
|
|
39 |
|
|
|
40 |
def parse_args(self): |
|
|
41 |
args = self.parser.parse_args() |
|
|
42 |
args = self.namespace_to_dict(args) |
|
|
43 |
self.fix_nested_namespaces(args) |
|
|
44 |
return args |
|
|
45 |
|
|
|
46 |
|
|
|
47 |
class PreproArgParser(BaseArgParser): |
|
|
48 |
def __init__(self): |
|
|
49 |
super(PreproArgParser, self).__init__() |
|
|
50 |
|
|
|
51 |
self.parser.add_argument('--in_locs', type=str, required=True, |
|
|
52 |
help='Comma-separated list of paths to all data folders.') |
|
|
53 |
self.parser.add_argument('--modalities', type=str, required=True, |
|
|
54 |
help='Comma-separated list of all input modalities to use.') |
|
|
55 |
self.parser.add_argument('--truth', type=str, required=True, |
|
|
56 |
help='Truth label pattern to use.') |
|
|
57 |
|
|
|
58 |
self.parser.add_argument('--create_val', action='store_true', default=False, |
|
|
59 |
help='Whether to create validation set.') |
|
|
60 |
self.parser.add_argument('--out_loc', type=str, default='./data', |
|
|
61 |
help='Location to write preprocessed data.') |
|
|
62 |
|
|
|
63 |
def parse_args(self): |
|
|
64 |
args = self.parser.parse_args() |
|
|
65 |
|
|
|
66 |
# Create list of all input datasets. |
|
|
67 |
args.in_locs = args.in_locs.split(',') |
|
|
68 |
|
|
|
69 |
# Create list of all accepted modalities. |
|
|
70 |
args.modalities = args.modalities.split(',') |
|
|
71 |
|
|
|
72 |
# Create output directory if it doesn't already exist. |
|
|
73 |
if os.path.isdir(args.out_loc): |
|
|
74 |
shutil.rmtree(args.out_loc) |
|
|
75 |
|
|
|
76 |
args.train_loc = os.path.join(args.out_loc, 'train') |
|
|
77 |
args.val_loc = os.path.join(args.out_loc, 'val') |
|
|
78 |
|
|
|
79 |
os.mkdir(args.out_loc) |
|
|
80 |
os.mkdir(args.train_loc) |
|
|
81 |
os.mkdir(args.val_loc) |
|
|
82 |
|
|
|
83 |
return args |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
class TrainArgParser(BaseArgParser): |
|
|
87 |
def __init__(self): |
|
|
88 |
super(TrainArgParser, self).__init__() |
|
|
89 |
|
|
|
90 |
# Data args. |
|
|
91 |
self.parser.add_argument('--train_loc', type=str, required=True, |
|
|
92 |
help='Location of .tfrecords training data.') |
|
|
93 |
self.parser.add_argument('--prepro_loc', type=str, required=True, |
|
|
94 |
help='Location of preprocessed dump.') |
|
|
95 |
self.parser.add_argument('--val_loc', type=str, default='', |
|
|
96 |
help='Location of .tfrecords validation data.') |
|
|
97 |
|
|
|
98 |
# Checkpoint args. |
|
|
99 |
self.parser.add_argument('--save_folder', type=str, default='', |
|
|
100 |
help='Output folder to save checkpoints, logs, and configs.') |
|
|
101 |
self.parser.add_argument('--load_folder', type=str, default='', |
|
|
102 |
help='Input folder to load checkpoints and configs to resume training.') |
|
|
103 |
|
|
|
104 |
# Training args. |
|
|
105 |
self.parser.add_argument('--lr', type=float, default=1e-4, |
|
|
106 |
help='Initial learning rate for training.') |
|
|
107 |
self.parser.add_argument('--batch_size', type=int, default=1, |
|
|
108 |
help='Batch size to use in training.') |
|
|
109 |
self.parser.add_argument('--patience', type=int, default=-1, |
|
|
110 |
help='Number of epochs without validation improvement to stop training.') |
|
|
111 |
self.parser.add_argument('--n_epochs', type=int, default=300, |
|
|
112 |
help='Number of epochs to train for.') |
|
|
113 |
self.parser.add_argument('--gpu', action='store_true', default=False, |
|
|
114 |
help='Whether to train using GPU.') |
|
|
115 |
|
|
|
116 |
# Augmentation args. |
|
|
117 |
self.parser.add_argument('--crop_size', type=str, default='128,128,128', |
|
|
118 |
help='Crop size of image (comma-separated h,w,d).') |
|
|
119 |
|
|
|
120 |
# Model args. |
|
|
121 |
self.parser.add_argument('--data_format', type=str, dest='model_args.data_format', |
|
|
122 |
default='channels_first', choices=['channels_last', 'channels_first'], |
|
|
123 |
help='Data format to be passed through the model.') |
|
|
124 |
self.parser.add_argument('--base_filters', type=int, dest='model_args.base_filters', default=32, |
|
|
125 |
help='Number of filters in the base convolutional layer.') |
|
|
126 |
self.parser.add_argument('--depth', type=int, dest='model_args.depth', default=4, |
|
|
127 |
help='Number of spatial levels through the model.') |
|
|
128 |
self.parser.add_argument('--l2_scale', type=float, dest='model_args.l2_scale', default=1e-5, |
|
|
129 |
help='Scale of L2 regularization applied to all kernels.') |
|
|
130 |
self.parser.add_argument('--dropout', type=float, dest='model_args.dropout', default=0.2, |
|
|
131 |
help='Dropout ratio to apply to input data.') |
|
|
132 |
self.parser.add_argument('--groups', type=int, dest='model_args.groups', default=8, |
|
|
133 |
help='Number of groups in group normalization.') |
|
|
134 |
self.parser.add_argument('--reduction', type=int, dest='model_args.reduction', default=8, |
|
|
135 |
help='Size of reduction ratio in squeeze-excitation layers.') |
|
|
136 |
self.parser.add_argument('--downsampling', type=str, dest='model_args.downsampling', |
|
|
137 |
default='conv', choices=['conv', 'max', 'avg'], |
|
|
138 |
help='Type of downsampling method.') |
|
|
139 |
self.parser.add_argument('--upsampling', type=str, dest='model_args.upsampling', |
|
|
140 |
default='conv', choices=['conv', 'linear'], |
|
|
141 |
help='Type of upsampling method.') |
|
|
142 |
self.parser.add_argument('--out_ch', type=int, dest='model_args.out_ch', default=3, |
|
|
143 |
help='Number of output classes.') |
|
|
144 |
|
|
|
145 |
def parse_args(self): |
|
|
146 |
args = self.parser.parse_args() |
|
|
147 |
|
|
|
148 |
# Fix nested Namespaces. |
|
|
149 |
self.fix_nested_namespaces(args) |
|
|
150 |
args.data_format = args.model_args.data_format |
|
|
151 |
|
|
|
152 |
# Check data format and GPU compatibility. |
|
|
153 |
args.device = '/device:GPU:0' if args.gpu else '/cpu:0' |
|
|
154 |
if not args.gpu: |
|
|
155 |
assert args.model_args.data_format == 'channels_last', \ |
|
|
156 |
'tf.keras.layers.Conv3D only supports `channels_last` input for CPU.' |
|
|
157 |
|
|
|
158 |
# Convert model args to dictionaries. |
|
|
159 |
args.model_args = self.namespace_to_dict(args.model_args) |
|
|
160 |
|
|
|
161 |
# Set crop size. |
|
|
162 |
args.crop_size = args.crop_size.split(',') |
|
|
163 |
args.crop_size = [int(s) for s in args.crop_size] |
|
|
164 |
|
|
|
165 |
# Load preprocessed stats. |
|
|
166 |
prepro = np.load(args.prepro_loc).item() |
|
|
167 |
args.prepro_size = [prepro['size']['h'], prepro['size']['w'], prepro['size']['d'], prepro['size']['c']] |
|
|
168 |
|
|
|
169 |
# Check that sizes work out. |
|
|
170 |
assert (args.model_args['base_filters'] / 2) % args.model_args['groups'] == 0, \ |
|
|
171 |
'Base filters must be a multiple of {} for group normalization at lowest spatial level.'.format(args.model_args['groups'] * 2) |
|
|
172 |
|
|
|
173 |
assert args.model_args['base_filters'] % args.model_args['reduction'] == 0, \ |
|
|
174 |
'Base filters must be a multiple of {} for squeeze-excitation reduction.'.format(args.model_args['reduction']) |
|
|
175 |
|
|
|
176 |
# Add args.model_args.in_ch for output size of variational autoencoder. |
|
|
177 |
args.model_args['in_ch'] = prepro['size']['c'] |
|
|
178 |
|
|
|
179 |
# Check for checkpointing option. |
|
|
180 |
if args.load_folder: |
|
|
181 |
with open(os.path.join(args.load_folder, 'train_args.pkl'), 'rb') as f: |
|
|
182 |
chkpt_args = pickle.load(f) |
|
|
183 |
args.model_args = chkpt_args['model_args'] |
|
|
184 |
args.crop_size = chkpt_args.crop_size |
|
|
185 |
assert isinstance(args.model_args, dict) |
|
|
186 |
args.save_folder = args.load_folder |
|
|
187 |
|
|
|
188 |
# Create checkpoint folder if necessary. |
|
|
189 |
if not os.path.isdir(args.save_folder): |
|
|
190 |
os.mkdir(args.save_folder) |
|
|
191 |
|
|
|
192 |
# Save training args. |
|
|
193 |
with open(os.path.join(args.save_folder, 'train_args.pkl'), 'wb') as f: |
|
|
194 |
pickle.dump(self.namespace_to_dict(args), f) |
|
|
195 |
|
|
|
196 |
return args |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
class TestArgParser(BaseArgParser): |
|
|
200 |
def __init__(self): |
|
|
201 |
super(TestArgParser, self).__init__() |
|
|
202 |
|
|
|
203 |
# Data. |
|
|
204 |
self.parser.add_argument('--in_locs', type=str, required=True, |
|
|
205 |
help='Comma-separated paths of test data.') |
|
|
206 |
self.parser.add_argument('--modalities', type=str, required=True, |
|
|
207 |
help='Comma-separated modalities to be used as input') |
|
|
208 |
self.parser.add_argument('--truth', type=str, default='', |
|
|
209 |
help='Truth label pattern to use (optional).') |
|
|
210 |
|
|
|
211 |
# Training and preprocessing stats. |
|
|
212 |
self.parser.add_argument('--tumor_prepro', type=str, required=True, |
|
|
213 |
help='Path to Numpy preprocessing dump for tumor segmentation.') |
|
|
214 |
self.parser.add_argument('--skull_prepro', type=str, default='', |
|
|
215 |
help='Path to Numpy preprocessing dump for skull segmentation.') |
|
|
216 |
self.parser.add_argument('--tumor_model', type=str, required=True, |
|
|
217 |
help='Path to checkpoint folder for tumor segmentation.') |
|
|
218 |
self.parser.add_argument('--skull_model', type=str, default='', |
|
|
219 |
help='Path to checkpoint folder for skull-stripping segmentation.') |
|
|
220 |
|
|
|
221 |
# Input normalization parameters. |
|
|
222 |
self.parser.add_argument('--order', type=int, default=3, |
|
|
223 |
help='Order of interpolation function to be used in voxel resizing.') |
|
|
224 |
self.parser.add_argument('--mode', type=str, default='reflect', |
|
|
225 |
help='Method of handling image edges in interpolation.') |
|
|
226 |
|
|
|
227 |
# Test time augmentation and segmentation. |
|
|
228 |
self.parser.add_argument('--spatial_tta', action='store_true', default=True, |
|
|
229 |
help='Whether to apply spatial augmentation on all spatial axes.') |
|
|
230 |
self.parser.add_argument('--channel_tta', type=int, default=0, |
|
|
231 |
help='Additional intensity shifting samples to take.') |
|
|
232 |
self.parser.add_argument('--threshold', type=float, default=0.5, |
|
|
233 |
help='Threshold at which to create mask from probabilities.') |
|
|
234 |
self.parser.add_argument('--gpu', action='store_true', default=False, |
|
|
235 |
help='Whether to evaluate on GPU.') |
|
|
236 |
|
|
|
237 |
def parse_args(self): |
|
|
238 |
args = self.parser.parse_args() |
|
|
239 |
args.modalities = args.modalities.split(',') |
|
|
240 |
args.in_locs = args.in_locs.split(',') |
|
|
241 |
|
|
|
242 |
# Assert proper combination of inputs. |
|
|
243 |
assert args.threshold > 0 and args.threshold < 1, \ |
|
|
244 |
'Threshold must be a probability between (0, 1).' |
|
|
245 |
if args.skull_model: |
|
|
246 |
assert args.skull_prepro, 'Need skull preprocessing stats if model is provided.' |
|
|
247 |
args.skull_strip = bool(args.skull_model) |
|
|
248 |
|
|
|
249 |
# Load model args. |
|
|
250 |
with open(os.path.join(args.tumor_model, 'train_args.pkl'), 'rb') as f: |
|
|
251 |
train_args = pickle.load(f) |
|
|
252 |
args.tumor_model_args = train_args['model_args'] |
|
|
253 |
args.tumor_spatial_res = 2 ** args.tumor_model_args['depth'] |
|
|
254 |
args.tumor_crop_size = train_args['crop_size'] |
|
|
255 |
if args.skull_model: |
|
|
256 |
with open(os.path.join(args.skull_model, 'train_args.pkl'), 'rb') as f: |
|
|
257 |
train_args = pickle.load(f) |
|
|
258 |
args.skull_model_args = train_args['model_args'] |
|
|
259 |
args.skull_spatial_res = 2 ** args.skull_model_args['depth'] |
|
|
260 |
args.skull_crop_size = train_args['crop_size'] |
|
|
261 |
|
|
|
262 |
# Load prepro stats. |
|
|
263 |
args.tumor_prepro = np.load(args.tumor_prepro).item() |
|
|
264 |
if args.skull_prepro: |
|
|
265 |
args.skull_prepro = np.load(args.skull_prepro).item() |
|
|
266 |
|
|
|
267 |
# Check data format and GPU compatibility. |
|
|
268 |
args.device = '/device:GPU:0' if args.gpu else '/cpu:0' |
|
|
269 |
if not args.gpu: |
|
|
270 |
assert args.tumor_model_args['data_format'] == 'channels_last' and args.skull_model_args['data_format'], \ |
|
|
271 |
'tf.keras.layers.Conv3D only supports `channels_last` input for CPU.' |
|
|
272 |
|
|
|
273 |
return args |