layer { name: "data" type: "HDF5Data" top: "data" top: "label" include { phase: TRAIN } transform_param { crop_size_w: 64 crop_size_h: 64 crop_size_l: 64 } hdf5_data_param { source: "./train_list.txt" batch_size: 4 shuffle: true } } layer { name: "conv1a" type: "Convolution" bottom: "data" top: "conv1a" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 32 pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: -0.10000000149 } axis: 1 } } layer { name: "bnorm1a" type: "BatchNorm" bottom: "conv1a" top: "bnorm1a" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "scale1a" type: "Scale" bottom: "bnorm1a" top: "bnorm1a" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "relu1a" type: "ReLU" bottom: "bnorm1a" top: "bnorm1a" } layer { name: "conv1b" type: "Convolution" bottom: "bnorm1a" top: "conv1b" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "bnorm1b" type: "BatchNorm" bottom: "conv1b" top: "bnorm1b" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "scale1b" type: "Scale" bottom: "bnorm1b" top: "bnorm1b" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "relu1b" type: "ReLU" bottom: "bnorm1b" top: "bnorm1b" } layer { name: "conv1c" type: "Convolution" bottom: "bnorm1b" top: "conv1c" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "bnorm1c" type: "BatchNorm" bottom: "conv1c" top: "bnorm1c" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "scale1c" type: "Scale" bottom: "bnorm1c" top: "bnorm1c" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "relu1c" type: "ReLU" bottom: "bnorm1c" top: "bnorm1c" } layer { name: "Conv_down_1" type: "Convolution" bottom: "bnorm1c" top: "Conv_down_1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 2 kernel_size: 2 kernel_size: 2 stride: 2 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm1" type: "BatchNorm" bottom: "Conv_down_1" top: "BatchNorm1" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale1" type: "Scale" bottom: "BatchNorm1" top: "BatchNorm1" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU1" type: "ReLU" bottom: "BatchNorm1" top: "BatchNorm1" } layer { name: "Convolution1" type: "Convolution" bottom: "BatchNorm1" top: "Convolution1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm2" type: "BatchNorm" bottom: "Convolution1" top: "BatchNorm2" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale2" type: "Scale" bottom: "BatchNorm2" top: "BatchNorm2" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU2" type: "ReLU" bottom: "BatchNorm2" top: "BatchNorm2" } layer { name: "Convolution2" type: "Convolution" bottom: "BatchNorm2" top: "Convolution2" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout1" type: "Dropout" bottom: "Convolution2" top: "Dropout1" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_1" type: "Concat" bottom: "Conv_down_1" bottom: "Dropout1" top: "Concat_1" concat_param { axis: 1 } } layer { name: "BatchNorm3" type: "BatchNorm" bottom: "Concat_1" top: "BatchNorm3" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale3" type: "Scale" bottom: "BatchNorm3" top: "BatchNorm3" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU3" type: "ReLU" bottom: "BatchNorm3" top: "BatchNorm3" } layer { name: "Convolution3" type: "Convolution" bottom: "BatchNorm3" top: "Convolution3" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm4" type: "BatchNorm" bottom: "Convolution3" top: "BatchNorm4" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale4" type: "Scale" bottom: "BatchNorm4" top: "BatchNorm4" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU4" type: "ReLU" bottom: "BatchNorm4" top: "BatchNorm4" } layer { name: "Convolution4" type: "Convolution" bottom: "BatchNorm4" top: "Convolution4" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout2" type: "Dropout" bottom: "Convolution4" top: "Dropout2" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_2" type: "Concat" bottom: "Concat_1" bottom: "Dropout2" top: "Concat_2" concat_param { axis: 1 } } layer { name: "BatchNorm5" type: "BatchNorm" bottom: "Concat_2" top: "BatchNorm5" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale5" type: "Scale" bottom: "BatchNorm5" top: "BatchNorm5" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU5" type: "ReLU" bottom: "BatchNorm5" top: "BatchNorm5" } layer { name: "Convolution5" type: "Convolution" bottom: "BatchNorm5" top: "Convolution5" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm6" type: "BatchNorm" bottom: "Convolution5" top: "BatchNorm6" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale6" type: "Scale" bottom: "BatchNorm6" top: "BatchNorm6" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU6" type: "ReLU" bottom: "BatchNorm6" top: "BatchNorm6" } layer { name: "Convolution6" type: "Convolution" bottom: "BatchNorm6" top: "Convolution6" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout3" type: "Dropout" bottom: "Convolution6" top: "Dropout3" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_3" type: "Concat" bottom: "Concat_2" bottom: "Dropout3" top: "Concat_3" concat_param { axis: 1 } } layer { name: "BatchNorm7" type: "BatchNorm" bottom: "Concat_3" top: "BatchNorm7" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale7" type: "Scale" bottom: "BatchNorm7" top: "BatchNorm7" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU7" type: "ReLU" bottom: "BatchNorm7" top: "BatchNorm7" } layer { name: "Convolution7" type: "Convolution" bottom: "BatchNorm7" top: "Convolution7" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm8" type: "BatchNorm" bottom: "Convolution7" top: "BatchNorm8" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale8" type: "Scale" bottom: "BatchNorm8" top: "BatchNorm8" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU8" type: "ReLU" bottom: "BatchNorm8" top: "BatchNorm8" } layer { name: "Convolution8" type: "Convolution" bottom: "BatchNorm8" top: "Convolution8" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout4" type: "Dropout" bottom: "Convolution8" top: "Dropout4" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_4" type: "Concat" bottom: "Concat_3" bottom: "Dropout4" top: "Concat_4" concat_param { axis: 1 } } layer { name: "Deconvolution_5" type: "Deconvolution" bottom: "Concat_4" top: "Deconvolution_5" param { lr_mult: 0.10000000149 decay_mult: 1.0 } convolution_param { num_output: 4 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 4 kernel_size: 4 kernel_size: 4 group: 4 stride: 2 stride: 2 stride: 2 weight_filler { type: "bilinear_3D" } } } layer { name: "BatchNorm9" type: "BatchNorm" bottom: "Concat_4" top: "BatchNorm9" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale9" type: "Scale" bottom: "BatchNorm9" top: "BatchNorm9" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU9" type: "ReLU" bottom: "BatchNorm9" top: "BatchNorm9" } layer { name: "Convolution9" type: "Convolution" bottom: "BatchNorm9" top: "Convolution9" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 48 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm10" type: "BatchNorm" bottom: "Convolution9" top: "BatchNorm10" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale10" type: "Scale" bottom: "BatchNorm10" top: "BatchNorm10" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU10" type: "ReLU" bottom: "BatchNorm10" top: "BatchNorm10" } layer { name: "Conv_down_5" type: "Convolution" bottom: "BatchNorm10" top: "Conv_down_5" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 48 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 2 kernel_size: 2 kernel_size: 2 stride: 2 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm11" type: "BatchNorm" bottom: "Conv_down_5" top: "BatchNorm11" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale11" type: "Scale" bottom: "BatchNorm11" top: "BatchNorm11" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU11" type: "ReLU" bottom: "BatchNorm11" top: "BatchNorm11" } layer { name: "Convolution10" type: "Convolution" bottom: "BatchNorm11" top: "Convolution10" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm12" type: "BatchNorm" bottom: "Convolution10" top: "BatchNorm12" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale12" type: "Scale" bottom: "BatchNorm12" top: "BatchNorm12" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU12" type: "ReLU" bottom: "BatchNorm12" top: "BatchNorm12" } layer { name: "Convolution11" type: "Convolution" bottom: "BatchNorm12" top: "Convolution11" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout5" type: "Dropout" bottom: "Convolution11" top: "Dropout5" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_6" type: "Concat" bottom: "Conv_down_5" bottom: "Dropout5" top: "Concat_6" concat_param { axis: 1 } } layer { name: "BatchNorm13" type: "BatchNorm" bottom: "Concat_6" top: "BatchNorm13" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale13" type: "Scale" bottom: "BatchNorm13" top: "BatchNorm13" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU13" type: "ReLU" bottom: "BatchNorm13" top: "BatchNorm13" } layer { name: "Convolution12" type: "Convolution" bottom: "BatchNorm13" top: "Convolution12" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm14" type: "BatchNorm" bottom: "Convolution12" top: "BatchNorm14" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale14" type: "Scale" bottom: "BatchNorm14" top: "BatchNorm14" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU14" type: "ReLU" bottom: "BatchNorm14" top: "BatchNorm14" } layer { name: "Convolution13" type: "Convolution" bottom: "BatchNorm14" top: "Convolution13" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout6" type: "Dropout" bottom: "Convolution13" top: "Dropout6" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_7" type: "Concat" bottom: "Concat_6" bottom: "Dropout6" top: "Concat_7" concat_param { axis: 1 } } layer { name: "BatchNorm15" type: "BatchNorm" bottom: "Concat_7" top: "BatchNorm15" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale15" type: "Scale" bottom: "BatchNorm15" top: "BatchNorm15" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU15" type: "ReLU" bottom: "BatchNorm15" top: "BatchNorm15" } layer { name: "Convolution14" type: "Convolution" bottom: "BatchNorm15" top: "Convolution14" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm16" type: "BatchNorm" bottom: "Convolution14" top: "BatchNorm16" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale16" type: "Scale" bottom: "BatchNorm16" top: "BatchNorm16" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU16" type: "ReLU" bottom: "BatchNorm16" top: "BatchNorm16" } layer { name: "Convolution15" type: "Convolution" bottom: "BatchNorm16" top: "Convolution15" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout7" type: "Dropout" bottom: "Convolution15" top: "Dropout7" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_8" type: "Concat" bottom: "Concat_7" bottom: "Dropout7" top: "Concat_8" concat_param { axis: 1 } } layer { name: "BatchNorm17" type: "BatchNorm" bottom: "Concat_8" top: "BatchNorm17" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale17" type: "Scale" bottom: "BatchNorm17" top: "BatchNorm17" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU17" type: "ReLU" bottom: "BatchNorm17" top: "BatchNorm17" } layer { name: "Convolution16" type: "Convolution" bottom: "BatchNorm17" top: "Convolution16" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm18" type: "BatchNorm" bottom: "Convolution16" top: "BatchNorm18" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale18" type: "Scale" bottom: "BatchNorm18" top: "BatchNorm18" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU18" type: "ReLU" bottom: "BatchNorm18" top: "BatchNorm18" } layer { name: "Convolution17" type: "Convolution" bottom: "BatchNorm18" top: "Convolution17" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout8" type: "Dropout" bottom: "Convolution17" top: "Dropout8" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_9" type: "Concat" bottom: "Concat_8" bottom: "Dropout8" top: "Concat_9" concat_param { axis: 1 } } layer { name: "Deconvolution_10" type: "Deconvolution" bottom: "Concat_9" top: "Deconvolution_10" param { lr_mult: 0.10000000149 decay_mult: 1.0 } convolution_param { num_output: 4 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 6 kernel_size: 6 kernel_size: 6 group: 4 stride: 4 stride: 4 stride: 4 weight_filler { type: "bilinear_3D" } } } layer { name: "BatchNorm19" type: "BatchNorm" bottom: "Concat_9" top: "BatchNorm19" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale19" type: "Scale" bottom: "BatchNorm19" top: "BatchNorm19" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU19" type: "ReLU" bottom: "BatchNorm19" top: "BatchNorm19" } layer { name: "Convolution18" type: "Convolution" bottom: "BatchNorm19" top: "Convolution18" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 56 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm20" type: "BatchNorm" bottom: "Convolution18" top: "BatchNorm20" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale20" type: "Scale" bottom: "BatchNorm20" top: "BatchNorm20" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU20" type: "ReLU" bottom: "BatchNorm20" top: "BatchNorm20" } layer { name: "Conv_down_10" type: "Convolution" bottom: "BatchNorm20" top: "Conv_down_10" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 56 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 2 kernel_size: 2 kernel_size: 2 stride: 2 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm21" type: "BatchNorm" bottom: "Conv_down_10" top: "BatchNorm21" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale21" type: "Scale" bottom: "BatchNorm21" top: "BatchNorm21" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU21" type: "ReLU" bottom: "BatchNorm21" top: "BatchNorm21" } layer { name: "Convolution19" type: "Convolution" bottom: "BatchNorm21" top: "Convolution19" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm22" type: "BatchNorm" bottom: "Convolution19" top: "BatchNorm22" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale22" type: "Scale" bottom: "BatchNorm22" top: "BatchNorm22" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU22" type: "ReLU" bottom: "BatchNorm22" top: "BatchNorm22" } layer { name: "Convolution20" type: "Convolution" bottom: "BatchNorm22" top: "Convolution20" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout9" type: "Dropout" bottom: "Convolution20" top: "Dropout9" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_11" type: "Concat" bottom: "Conv_down_10" bottom: "Dropout9" top: "Concat_11" concat_param { axis: 1 } } layer { name: "BatchNorm23" type: "BatchNorm" bottom: "Concat_11" top: "BatchNorm23" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale23" type: "Scale" bottom: "BatchNorm23" top: "BatchNorm23" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU23" type: "ReLU" bottom: "BatchNorm23" top: "BatchNorm23" } layer { name: "Convolution21" type: "Convolution" bottom: "BatchNorm23" top: "Convolution21" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm24" type: "BatchNorm" bottom: "Convolution21" top: "BatchNorm24" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale24" type: "Scale" bottom: "BatchNorm24" top: "BatchNorm24" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU24" type: "ReLU" bottom: "BatchNorm24" top: "BatchNorm24" } layer { name: "Convolution22" type: "Convolution" bottom: "BatchNorm24" top: "Convolution22" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout10" type: "Dropout" bottom: "Convolution22" top: "Dropout10" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_12" type: "Concat" bottom: "Concat_11" bottom: "Dropout10" top: "Concat_12" concat_param { axis: 1 } } layer { name: "BatchNorm25" type: "BatchNorm" bottom: "Concat_12" top: "BatchNorm25" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale25" type: "Scale" bottom: "BatchNorm25" top: "BatchNorm25" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU25" type: "ReLU" bottom: "BatchNorm25" top: "BatchNorm25" } layer { name: "Convolution23" type: "Convolution" bottom: "BatchNorm25" top: "Convolution23" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm26" type: "BatchNorm" bottom: "Convolution23" top: "BatchNorm26" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale26" type: "Scale" bottom: "BatchNorm26" top: "BatchNorm26" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU26" type: "ReLU" bottom: "BatchNorm26" top: "BatchNorm26" } layer { name: "Convolution24" type: "Convolution" bottom: "BatchNorm26" top: "Convolution24" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout11" type: "Dropout" bottom: "Convolution24" top: "Dropout11" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_13" type: "Concat" bottom: "Concat_12" bottom: "Dropout11" top: "Concat_13" concat_param { axis: 1 } } layer { name: "BatchNorm27" type: "BatchNorm" bottom: "Concat_13" top: "BatchNorm27" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale27" type: "Scale" bottom: "BatchNorm27" top: "BatchNorm27" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU27" type: "ReLU" bottom: "BatchNorm27" top: "BatchNorm27" } layer { name: "Convolution25" type: "Convolution" bottom: "BatchNorm27" top: "Convolution25" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm28" type: "BatchNorm" bottom: "Convolution25" top: "BatchNorm28" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale28" type: "Scale" bottom: "BatchNorm28" top: "BatchNorm28" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU28" type: "ReLU" bottom: "BatchNorm28" top: "BatchNorm28" } layer { name: "Convolution26" type: "Convolution" bottom: "BatchNorm28" top: "Convolution26" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout12" type: "Dropout" bottom: "Convolution26" top: "Dropout12" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_14" type: "Concat" bottom: "Concat_13" bottom: "Dropout12" top: "Concat_14" concat_param { axis: 1 } } layer { name: "Deconvolution_15" type: "Deconvolution" bottom: "Concat_14" top: "Deconvolution_15" param { lr_mult: 0.10000000149 decay_mult: 1.0 } convolution_param { num_output: 4 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 10 kernel_size: 10 kernel_size: 10 group: 4 stride: 8 stride: 8 stride: 8 weight_filler { type: "bilinear_3D" } } } layer { name: "BatchNorm29" type: "BatchNorm" bottom: "Concat_14" top: "BatchNorm29" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale29" type: "Scale" bottom: "BatchNorm29" top: "BatchNorm29" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU29" type: "ReLU" bottom: "BatchNorm29" top: "BatchNorm29" } layer { name: "Convolution27" type: "Convolution" bottom: "BatchNorm29" top: "Convolution27" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 60 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm30" type: "BatchNorm" bottom: "Convolution27" top: "BatchNorm30" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale30" type: "Scale" bottom: "BatchNorm30" top: "BatchNorm30" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU30" type: "ReLU" bottom: "BatchNorm30" top: "BatchNorm30" } layer { name: "Conv_down_15" type: "Convolution" bottom: "BatchNorm30" top: "Conv_down_15" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 60 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 2 kernel_size: 2 kernel_size: 2 stride: 2 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm31" type: "BatchNorm" bottom: "Conv_down_15" top: "BatchNorm31" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale31" type: "Scale" bottom: "BatchNorm31" top: "BatchNorm31" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU31" type: "ReLU" bottom: "BatchNorm31" top: "BatchNorm31" } layer { name: "Convolution28" type: "Convolution" bottom: "BatchNorm31" top: "Convolution28" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm32" type: "BatchNorm" bottom: "Convolution28" top: "BatchNorm32" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale32" type: "Scale" bottom: "BatchNorm32" top: "BatchNorm32" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU32" type: "ReLU" bottom: "BatchNorm32" top: "BatchNorm32" } layer { name: "Convolution29" type: "Convolution" bottom: "BatchNorm32" top: "Convolution29" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout13" type: "Dropout" bottom: "Convolution29" top: "Dropout13" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_19" type: "Concat" bottom: "Conv_down_15" bottom: "Dropout13" top: "Concat_19" concat_param { axis: 1 } } layer { name: "BatchNorm33" type: "BatchNorm" bottom: "Concat_19" top: "BatchNorm33" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale33" type: "Scale" bottom: "BatchNorm33" top: "BatchNorm33" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU33" type: "ReLU" bottom: "BatchNorm33" top: "BatchNorm33" } layer { name: "Convolution30" type: "Convolution" bottom: "BatchNorm33" top: "Convolution30" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm34" type: "BatchNorm" bottom: "Convolution30" top: "BatchNorm34" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale34" type: "Scale" bottom: "BatchNorm34" top: "BatchNorm34" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU34" type: "ReLU" bottom: "BatchNorm34" top: "BatchNorm34" } layer { name: "Convolution31" type: "Convolution" bottom: "BatchNorm34" top: "Convolution31" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout14" type: "Dropout" bottom: "Convolution31" top: "Dropout14" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_20" type: "Concat" bottom: "Concat_19" bottom: "Dropout14" top: "Concat_20" concat_param { axis: 1 } } layer { name: "BatchNorm35" type: "BatchNorm" bottom: "Concat_20" top: "BatchNorm35" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale35" type: "Scale" bottom: "BatchNorm35" top: "BatchNorm35" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU35" type: "ReLU" bottom: "BatchNorm35" top: "BatchNorm35" } layer { name: "Convolution32" type: "Convolution" bottom: "BatchNorm35" top: "Convolution32" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm36" type: "BatchNorm" bottom: "Convolution32" top: "BatchNorm36" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale36" type: "Scale" bottom: "BatchNorm36" top: "BatchNorm36" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU36" type: "ReLU" bottom: "BatchNorm36" top: "BatchNorm36" } layer { name: "Convolution33" type: "Convolution" bottom: "BatchNorm36" top: "Convolution33" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout15" type: "Dropout" bottom: "Convolution33" top: "Dropout15" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_21" type: "Concat" bottom: "Concat_20" bottom: "Dropout15" top: "Concat_21" concat_param { axis: 1 } } layer { name: "BatchNorm37" type: "BatchNorm" bottom: "Concat_21" top: "BatchNorm37" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale37" type: "Scale" bottom: "BatchNorm37" top: "BatchNorm37" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU37" type: "ReLU" bottom: "BatchNorm37" top: "BatchNorm37" } layer { name: "Convolution34" type: "Convolution" bottom: "BatchNorm37" top: "Convolution34" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 64 bias_term: false pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "BatchNorm38" type: "BatchNorm" bottom: "Convolution34" top: "BatchNorm38" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "Scale38" type: "Scale" bottom: "BatchNorm38" top: "BatchNorm38" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "ReLU38" type: "ReLU" bottom: "BatchNorm38" top: "BatchNorm38" } layer { name: "Convolution35" type: "Convolution" bottom: "BatchNorm38" top: "Convolution35" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 3 kernel_size: 3 kernel_size: 3 stride: 1 stride: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" } axis: 1 } } layer { name: "Dropout16" type: "Dropout" bottom: "Convolution35" top: "Dropout16" dropout_param { dropout_ratio: 0.20000000298 } } layer { name: "Concat_22" type: "Concat" bottom: "Concat_21" bottom: "Dropout16" top: "Concat_22" concat_param { axis: 1 } } layer { name: "Deconvolution_20" type: "Deconvolution" bottom: "Concat_22" top: "Deconvolution_20" param { lr_mult: 0.10000000149 decay_mult: 1.0 } convolution_param { num_output: 4 bias_term: false pad: 1 pad: 1 pad: 1 kernel_size: 18 kernel_size: 18 kernel_size: 18 group: 4 stride: 16 stride: 16 stride: 16 weight_filler { type: "bilinear_3D" } } } layer { name: "Concat1" type: "Concat" bottom: "conv1c" bottom: "Deconvolution_5" bottom: "Deconvolution_10" bottom: "Deconvolution_15" bottom: "Deconvolution_20" top: "Concat1" concat_param { axis: 1 } } layer { name: "bnorm_concat" type: "BatchNorm" bottom: "Concat1" top: "bnorm_concat" param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } param { lr_mult: 0.0 decay_mult: 0.0 } batch_norm_param { use_global_stats: false } } layer { name: "scale_concat" type: "Scale" bottom: "bnorm_concat" top: "bnorm_concat" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "relu_concat" type: "ReLU" bottom: "bnorm_concat" top: "bnorm_concat" } layer { name: "Convolution36" type: "Convolution" bottom: "bnorm_concat" top: "Convolution36" param { lr_mult: 1.0 decay_mult: 1.0 } param { lr_mult: 2.0 decay_mult: 0.0 } convolution_param { num_output: 4 pad: 0 pad: 0 pad: 0 kernel_size: 1 kernel_size: 1 kernel_size: 1 weight_filler { type: "msra" } axis: 1 } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "Convolution36" bottom: "label" top: "loss" }