--- a +++ b/seg_deploy.py @@ -0,0 +1,151 @@ +import csv +caffe_root = '/home/toanhoi/caffe/build/tools/caffe/' +import sys +import os +sys.path.insert(0, caffe_root + 'python') +os.environ["GLOG_minloglevel"] = "1" +import caffe +import argparse +import numpy as np +from medpy.io import load, save + +#0: Background (everything outside the brain) +#10: Cerebrospinal fluid (CSF) +#150: Gray matter (GM) +#250: White matter (WM) +def convert_label_submit(label_img): + label_processed=np.zeros(label_img.shape[0:]).astype(np.uint8) + for i in range(label_img.shape[2]): + label_slice=label_img[:, :, i] + label_slice[label_slice == 1] = 10 + label_slice[label_slice == 2] = 150 + label_slice[label_slice == 3] = 250 + label_processed[:, :, i]=label_slice + return label_processed + +def convert_label(label_img): + label_processed=np.zeros(label_img.shape[0:]).astype(np.uint8) + for i in range(label_img.shape[2]): + label_slice=label_img[:, :, i] + label_slice[label_slice == 10] = 1 + label_slice[label_slice == 150] = 2 + label_slice[label_slice == 250] = 3 + label_processed[:, :, i]=label_slice + return label_processed +#Reference https://github.com/ginobilinie/infantSeg +def dice(im1, im2,tid): + im1=im1==tid + im2=im2==tid + im1=np.asarray(im1).astype(np.bool) + im2=np.asarray(im2).astype(np.bool) + if im1.shape != im2.shape: + raise ValueError("Shape mismatch: im1 and im2 must have the same shape.") + # Compute Dice coefficient + intersection = np.logical_and(im1, im2) + dsc=2. * intersection.sum() / (im1.sum() + im2.sum()) + return dsc + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='makes a plot from Caffe output') + parser.add_argument("-start") + parser.add_argument("-end") + + if (os.environ.get('CAFFE_CPU_MODE')): + caffe.set_mode_cpu() + else: + caffe.set_mode_gpu() + + data_path = '/media/toanhoi/Study/databaseSeg/ISeg/iSeg-2017-Training' + + subject_id=9 + subject_name = 'subject-%d-' % subject_id + + f_T1 = os.path.join(data_path, subject_name + 'T1.hdr') + inputs_T1, header_T1 = load(f_T1) + inputs_T1 = inputs_T1.astype(np.float32) + + f_T2 = os.path.join(data_path, subject_name + 'T2.hdr') + inputs_T2, header_T2 = load(f_T2) + inputs_T2 = inputs_T2.astype(np.float32) + + f_l = os.path.join(data_path, subject_name + 'label.hdr') + labels, header_label = load(f_l) + labels = labels.astype(np.uint8) + labels=convert_label(labels) + + mask = inputs_T1 > 0 + mask = mask.astype(np.bool) + # ======================normalize to 0 mean and 1 variance==== + # Normalization + inputs_T1_norm =(inputs_T1 - inputs_T1[mask].mean()) / inputs_T1[mask].std() + inputs_T2_norm = (inputs_T2 - inputs_T2[mask].mean()) / inputs_T2[mask].std() + + inputs_T1_norm = inputs_T1_norm[:, :, :, None] + inputs_T2_norm = inputs_T2_norm[:, :, :, None] + + inputs = np.concatenate((inputs_T1_norm, inputs_T2_norm), axis=3) + inputs = inputs[None, :, :, :, :] + inputs = inputs.transpose(0, 4, 3, 1, 2) + num_class=4 + num_paches=0 + + model_def='./deploy_3d_denseseg.prototxt' + model_weights = "./snapshot/3d_denseseg_iseg_iter_200000.caffemodel" + net = caffe.Net(model_def, model_weights,caffe.TEST) + patch_input = [64, 64, 64] + xstep = 16 + ystep = 8#16 + zstep = 16#16 + deep_slices = np.arange(patch_input[0] // 2, inputs.shape[2] - patch_input[0] // 2 + xstep, xstep) + height_slices = np.arange(patch_input[1] // 2, inputs.shape[3] - patch_input[1] // 2 + ystep, ystep) + width_slices = np.arange(patch_input[2] // 2, inputs.shape[4] - patch_input[2] // 2 + zstep, zstep) + output = np.zeros((num_class,) + inputs.shape[2:]) + count_used=np.zeros((inputs.shape[2],inputs.shape[3],inputs.shape[4]))+1e-5 + + total_patch=len(deep_slices)*len(height_slices)*len(width_slices) + for i in range(len(deep_slices)): + for j in range(len(height_slices)): + for k in range(len(width_slices)): + num_paches=num_paches+1 + deep = deep_slices[i] + height = height_slices[j] + width = width_slices[k] + raw_patches= inputs[:,:,deep - patch_input[0] // 2:deep + patch_input[0] // 2, + height - patch_input[1] // 2:height + patch_input[1] // 2, + width - patch_input[2] // 2:width + patch_input[2] // 2] + print "Processed: ",num_paches ,"/", total_patch + net.blobs['data'].data[...] = raw_patches + net.forward() + + #Major voting https://github.com/ginobilinie/infantSeg + temp_predic=net.blobs['softmax'].data[0].argmax(axis=0) + for labelInd in range(4): # note, start from 0 + currLabelMat = np.where(temp_predic == labelInd, 1, 0) # true, vote for 1, otherwise 0 + output[labelInd, deep - patch_input[0] // 2:deep + patch_input[0] // 2, + height - patch_input[1] // 2:height + patch_input[1] // 2, + width - patch_input[2] // 2:width + patch_input[2] // 2] += currLabelMat + #Average + # output[slice(None),deep - patch_input[0] // 2:deep + patch_input[0] // 2, + # height - patch_input[1] // 2:height + patch_input[1] // 2, + # width - patch_input[2] // 2:width + patch_input[2] // 2]+=net.blobs['softmax'].data[0] + + count_used[deep - patch_input[0] // 2:deep + patch_input[0] // 2, + height - patch_input[1] // 2:height + patch_input[1] // 2, + width - patch_input[2] // 2:width + patch_input[2] // 2]+=1 + + output=output/count_used + y = np.argmax(output, axis=0) + out_label=y.transpose(1,2,0) + dsc_0 = dice(out_label , labels, 0) + dsc_1 = dice(out_label , labels, 1) + dsc_2 = dice(out_label , labels, 2) + dsc_3 = dice(out_label , labels, 3) + dsc = np.mean([dsc_1, dsc_2, dsc_3]) # ignore Background + print dsc_1, dsc_2, dsc_3, dsc + with open('result_3d_dense_seg.csv', 'a+') as csvfile: + datacsv = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) + datacsv.writerow([dsc_1, dsc_2, dsc_3, dsc]) + + out_label=out_label.astype(np.uint8) + out_label = convert_label_submit(out_label) + save(out_label, '{}/{}'.format("./", "3d_dense_seg_result.hdr"), header_T1) \ No newline at end of file