--- a +++ b/deploy_3d_denseseg.prototxt @@ -0,0 +1,3493 @@ +layer { + name: "data" + type: "Input" + top: "data" + input_param { + shape { + dim: 1 + dim: 2 + dim: 64 + dim: 64 + dim: 64 + } + } +} +layer { + name: "conv1a" + type: "Convolution" + bottom: "data" + top: "conv1a" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 32 + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + value: -0.10000000149 + } + axis: 1 + } +} +layer { + name: "bnorm1a" + type: "BatchNorm" + bottom: "conv1a" + top: "bnorm1a" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "scale1a" + type: "Scale" + bottom: "bnorm1a" + top: "bnorm1a" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "relu1a" + type: "ReLU" + bottom: "bnorm1a" + top: "bnorm1a" +} +layer { + name: "conv1b" + type: "Convolution" + bottom: "bnorm1a" + top: "conv1b" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 32 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "bnorm1b" + type: "BatchNorm" + bottom: "conv1b" + top: "bnorm1b" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "scale1b" + type: "Scale" + bottom: "bnorm1b" + top: "bnorm1b" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "relu1b" + type: "ReLU" + bottom: "bnorm1b" + top: "bnorm1b" +} +layer { + name: "conv1c" + type: "Convolution" + bottom: "bnorm1b" + top: "conv1c" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 32 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "bnorm1c" + type: "BatchNorm" + bottom: "conv1c" + top: "bnorm1c" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "scale1c" + type: "Scale" + bottom: "bnorm1c" + top: "bnorm1c" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "relu1c" + type: "ReLU" + bottom: "bnorm1c" + top: "bnorm1c" +} +layer { + name: "Conv_down_1" + type: "Convolution" + bottom: "bnorm1c" + top: "Conv_down_1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 32 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 2 + kernel_size: 2 + kernel_size: 2 + stride: 2 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm1" + type: "BatchNorm" + bottom: "Conv_down_1" + top: "BatchNorm1" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale1" + type: "Scale" + bottom: "BatchNorm1" + top: "BatchNorm1" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU1" + type: "ReLU" + bottom: "BatchNorm1" + top: "BatchNorm1" +} +layer { + name: "Convolution1" + type: "Convolution" + bottom: "BatchNorm1" + top: "Convolution1" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm2" + type: "BatchNorm" + bottom: "Convolution1" + top: "BatchNorm2" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale2" + type: "Scale" + bottom: "BatchNorm2" + top: "BatchNorm2" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU2" + type: "ReLU" + bottom: "BatchNorm2" + top: "BatchNorm2" +} +layer { + name: "Convolution2" + type: "Convolution" + bottom: "BatchNorm2" + top: "Convolution2" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout1" + type: "Dropout" + bottom: "Convolution2" + top: "Dropout1" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_1" + type: "Concat" + bottom: "Conv_down_1" + bottom: "Dropout1" + top: "Concat_1" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm3" + type: "BatchNorm" + bottom: "Concat_1" + top: "BatchNorm3" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale3" + type: "Scale" + bottom: "BatchNorm3" + top: "BatchNorm3" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU3" + type: "ReLU" + bottom: "BatchNorm3" + top: "BatchNorm3" +} +layer { + name: "Convolution3" + type: "Convolution" + bottom: "BatchNorm3" + top: "Convolution3" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm4" + type: "BatchNorm" + bottom: "Convolution3" + top: "BatchNorm4" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale4" + type: "Scale" + bottom: "BatchNorm4" + top: "BatchNorm4" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU4" + type: "ReLU" + bottom: "BatchNorm4" + top: "BatchNorm4" +} +layer { + name: "Convolution4" + type: "Convolution" + bottom: "BatchNorm4" + top: "Convolution4" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout2" + type: "Dropout" + bottom: "Convolution4" + top: "Dropout2" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_2" + type: "Concat" + bottom: "Concat_1" + bottom: "Dropout2" + top: "Concat_2" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm5" + type: "BatchNorm" + bottom: "Concat_2" + top: "BatchNorm5" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale5" + type: "Scale" + bottom: "BatchNorm5" + top: "BatchNorm5" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU5" + type: "ReLU" + bottom: "BatchNorm5" + top: "BatchNorm5" +} +layer { + name: "Convolution5" + type: "Convolution" + bottom: "BatchNorm5" + top: "Convolution5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm6" + type: "BatchNorm" + bottom: "Convolution5" + top: "BatchNorm6" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale6" + type: "Scale" + bottom: "BatchNorm6" + top: "BatchNorm6" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU6" + type: "ReLU" + bottom: "BatchNorm6" + top: "BatchNorm6" +} +layer { + name: "Convolution6" + type: "Convolution" + bottom: "BatchNorm6" + top: "Convolution6" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout3" + type: "Dropout" + bottom: "Convolution6" + top: "Dropout3" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_3" + type: "Concat" + bottom: "Concat_2" + bottom: "Dropout3" + top: "Concat_3" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm7" + type: "BatchNorm" + bottom: "Concat_3" + top: "BatchNorm7" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale7" + type: "Scale" + bottom: "BatchNorm7" + top: "BatchNorm7" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU7" + type: "ReLU" + bottom: "BatchNorm7" + top: "BatchNorm7" +} +layer { + name: "Convolution7" + type: "Convolution" + bottom: "BatchNorm7" + top: "Convolution7" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm8" + type: "BatchNorm" + bottom: "Convolution7" + top: "BatchNorm8" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale8" + type: "Scale" + bottom: "BatchNorm8" + top: "BatchNorm8" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU8" + type: "ReLU" + bottom: "BatchNorm8" + top: "BatchNorm8" +} +layer { + name: "Convolution8" + type: "Convolution" + bottom: "BatchNorm8" + top: "Convolution8" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout4" + type: "Dropout" + bottom: "Convolution8" + top: "Dropout4" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_4" + type: "Concat" + bottom: "Concat_3" + bottom: "Dropout4" + top: "Concat_4" + concat_param { + axis: 1 + } +} +layer { + name: "Deconvolution_5" + type: "Deconvolution" + bottom: "Concat_4" + top: "Deconvolution_5" + param { + lr_mult: 0.10000000149 + decay_mult: 1.0 + } + convolution_param { + num_output: 4 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 4 + kernel_size: 4 + kernel_size: 4 + group: 4 + stride: 2 + stride: 2 + stride: 2 + weight_filler { + type: "bilinear_3D" + } + } +} +layer { + name: "BatchNorm9" + type: "BatchNorm" + bottom: "Concat_4" + top: "BatchNorm9" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale9" + type: "Scale" + bottom: "BatchNorm9" + top: "BatchNorm9" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU9" + type: "ReLU" + bottom: "BatchNorm9" + top: "BatchNorm9" +} +layer { + name: "Convolution9" + type: "Convolution" + bottom: "BatchNorm9" + top: "Convolution9" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 48 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm10" + type: "BatchNorm" + bottom: "Convolution9" + top: "BatchNorm10" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale10" + type: "Scale" + bottom: "BatchNorm10" + top: "BatchNorm10" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU10" + type: "ReLU" + bottom: "BatchNorm10" + top: "BatchNorm10" +} +layer { + name: "Conv_down_5" + type: "Convolution" + bottom: "BatchNorm10" + top: "Conv_down_5" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 48 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 2 + kernel_size: 2 + kernel_size: 2 + stride: 2 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm11" + type: "BatchNorm" + bottom: "Conv_down_5" + top: "BatchNorm11" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale11" + type: "Scale" + bottom: "BatchNorm11" + top: "BatchNorm11" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU11" + type: "ReLU" + bottom: "BatchNorm11" + top: "BatchNorm11" +} +layer { + name: "Convolution10" + type: "Convolution" + bottom: "BatchNorm11" + top: "Convolution10" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm12" + type: "BatchNorm" + bottom: "Convolution10" + top: "BatchNorm12" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale12" + type: "Scale" + bottom: "BatchNorm12" + top: "BatchNorm12" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU12" + type: "ReLU" + bottom: "BatchNorm12" + top: "BatchNorm12" +} +layer { + name: "Convolution11" + type: "Convolution" + bottom: "BatchNorm12" + top: "Convolution11" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout5" + type: "Dropout" + bottom: "Convolution11" + top: "Dropout5" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_6" + type: "Concat" + bottom: "Conv_down_5" + bottom: "Dropout5" + top: "Concat_6" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm13" + type: "BatchNorm" + bottom: "Concat_6" + top: "BatchNorm13" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale13" + type: "Scale" + bottom: "BatchNorm13" + top: "BatchNorm13" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU13" + type: "ReLU" + bottom: "BatchNorm13" + top: "BatchNorm13" +} +layer { + name: "Convolution12" + type: "Convolution" + bottom: "BatchNorm13" + top: "Convolution12" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm14" + type: "BatchNorm" + bottom: "Convolution12" + top: "BatchNorm14" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale14" + type: "Scale" + bottom: "BatchNorm14" + top: "BatchNorm14" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU14" + type: "ReLU" + bottom: "BatchNorm14" + top: "BatchNorm14" +} +layer { + name: "Convolution13" + type: "Convolution" + bottom: "BatchNorm14" + top: "Convolution13" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout6" + type: "Dropout" + bottom: "Convolution13" + top: "Dropout6" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_7" + type: "Concat" + bottom: "Concat_6" + bottom: "Dropout6" + top: "Concat_7" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm15" + type: "BatchNorm" + bottom: "Concat_7" + top: "BatchNorm15" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale15" + type: "Scale" + bottom: "BatchNorm15" + top: "BatchNorm15" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU15" + type: "ReLU" + bottom: "BatchNorm15" + top: "BatchNorm15" +} +layer { + name: "Convolution14" + type: "Convolution" + bottom: "BatchNorm15" + top: "Convolution14" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm16" + type: "BatchNorm" + bottom: "Convolution14" + top: "BatchNorm16" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale16" + type: "Scale" + bottom: "BatchNorm16" + top: "BatchNorm16" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU16" + type: "ReLU" + bottom: "BatchNorm16" + top: "BatchNorm16" +} +layer { + name: "Convolution15" + type: "Convolution" + bottom: "BatchNorm16" + top: "Convolution15" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout7" + type: "Dropout" + bottom: "Convolution15" + top: "Dropout7" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_8" + type: "Concat" + bottom: "Concat_7" + bottom: "Dropout7" + top: "Concat_8" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm17" + type: "BatchNorm" + bottom: "Concat_8" + top: "BatchNorm17" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale17" + type: "Scale" + bottom: "BatchNorm17" + top: "BatchNorm17" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU17" + type: "ReLU" + bottom: "BatchNorm17" + top: "BatchNorm17" +} +layer { + name: "Convolution16" + type: "Convolution" + bottom: "BatchNorm17" + top: "Convolution16" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm18" + type: "BatchNorm" + bottom: "Convolution16" + top: "BatchNorm18" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale18" + type: "Scale" + bottom: "BatchNorm18" + top: "BatchNorm18" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU18" + type: "ReLU" + bottom: "BatchNorm18" + top: "BatchNorm18" +} +layer { + name: "Convolution17" + type: "Convolution" + bottom: "BatchNorm18" + top: "Convolution17" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout8" + type: "Dropout" + bottom: "Convolution17" + top: "Dropout8" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_9" + type: "Concat" + bottom: "Concat_8" + bottom: "Dropout8" + top: "Concat_9" + concat_param { + axis: 1 + } +} +layer { + name: "Deconvolution_10" + type: "Deconvolution" + bottom: "Concat_9" + top: "Deconvolution_10" + param { + lr_mult: 0.10000000149 + decay_mult: 1.0 + } + convolution_param { + num_output: 4 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 6 + kernel_size: 6 + kernel_size: 6 + group: 4 + stride: 4 + stride: 4 + stride: 4 + weight_filler { + type: "bilinear_3D" + } + } +} +layer { + name: "BatchNorm19" + type: "BatchNorm" + bottom: "Concat_9" + top: "BatchNorm19" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale19" + type: "Scale" + bottom: "BatchNorm19" + top: "BatchNorm19" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU19" + type: "ReLU" + bottom: "BatchNorm19" + top: "BatchNorm19" +} +layer { + name: "Convolution18" + type: "Convolution" + bottom: "BatchNorm19" + top: "Convolution18" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 56 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm20" + type: "BatchNorm" + bottom: "Convolution18" + top: "BatchNorm20" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale20" + type: "Scale" + bottom: "BatchNorm20" + top: "BatchNorm20" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU20" + type: "ReLU" + bottom: "BatchNorm20" + top: "BatchNorm20" +} +layer { + name: "Conv_down_10" + type: "Convolution" + bottom: "BatchNorm20" + top: "Conv_down_10" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 56 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 2 + kernel_size: 2 + kernel_size: 2 + stride: 2 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm21" + type: "BatchNorm" + bottom: "Conv_down_10" + top: "BatchNorm21" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale21" + type: "Scale" + bottom: "BatchNorm21" + top: "BatchNorm21" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU21" + type: "ReLU" + bottom: "BatchNorm21" + top: "BatchNorm21" +} +layer { + name: "Convolution19" + type: "Convolution" + bottom: "BatchNorm21" + top: "Convolution19" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm22" + type: "BatchNorm" + bottom: "Convolution19" + top: "BatchNorm22" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale22" + type: "Scale" + bottom: "BatchNorm22" + top: "BatchNorm22" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU22" + type: "ReLU" + bottom: "BatchNorm22" + top: "BatchNorm22" +} +layer { + name: "Convolution20" + type: "Convolution" + bottom: "BatchNorm22" + top: "Convolution20" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout9" + type: "Dropout" + bottom: "Convolution20" + top: "Dropout9" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_11" + type: "Concat" + bottom: "Conv_down_10" + bottom: "Dropout9" + top: "Concat_11" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm23" + type: "BatchNorm" + bottom: "Concat_11" + top: "BatchNorm23" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale23" + type: "Scale" + bottom: "BatchNorm23" + top: "BatchNorm23" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU23" + type: "ReLU" + bottom: "BatchNorm23" + top: "BatchNorm23" +} +layer { + name: "Convolution21" + type: "Convolution" + bottom: "BatchNorm23" + top: "Convolution21" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm24" + type: "BatchNorm" + bottom: "Convolution21" + top: "BatchNorm24" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale24" + type: "Scale" + bottom: "BatchNorm24" + top: "BatchNorm24" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU24" + type: "ReLU" + bottom: "BatchNorm24" + top: "BatchNorm24" +} +layer { + name: "Convolution22" + type: "Convolution" + bottom: "BatchNorm24" + top: "Convolution22" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout10" + type: "Dropout" + bottom: "Convolution22" + top: "Dropout10" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_12" + type: "Concat" + bottom: "Concat_11" + bottom: "Dropout10" + top: "Concat_12" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm25" + type: "BatchNorm" + bottom: "Concat_12" + top: "BatchNorm25" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale25" + type: "Scale" + bottom: "BatchNorm25" + top: "BatchNorm25" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU25" + type: "ReLU" + bottom: "BatchNorm25" + top: "BatchNorm25" +} +layer { + name: "Convolution23" + type: "Convolution" + bottom: "BatchNorm25" + top: "Convolution23" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm26" + type: "BatchNorm" + bottom: "Convolution23" + top: "BatchNorm26" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale26" + type: "Scale" + bottom: "BatchNorm26" + top: "BatchNorm26" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU26" + type: "ReLU" + bottom: "BatchNorm26" + top: "BatchNorm26" +} +layer { + name: "Convolution24" + type: "Convolution" + bottom: "BatchNorm26" + top: "Convolution24" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout11" + type: "Dropout" + bottom: "Convolution24" + top: "Dropout11" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_13" + type: "Concat" + bottom: "Concat_12" + bottom: "Dropout11" + top: "Concat_13" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm27" + type: "BatchNorm" + bottom: "Concat_13" + top: "BatchNorm27" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale27" + type: "Scale" + bottom: "BatchNorm27" + top: "BatchNorm27" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU27" + type: "ReLU" + bottom: "BatchNorm27" + top: "BatchNorm27" +} +layer { + name: "Convolution25" + type: "Convolution" + bottom: "BatchNorm27" + top: "Convolution25" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm28" + type: "BatchNorm" + bottom: "Convolution25" + top: "BatchNorm28" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale28" + type: "Scale" + bottom: "BatchNorm28" + top: "BatchNorm28" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU28" + type: "ReLU" + bottom: "BatchNorm28" + top: "BatchNorm28" +} +layer { + name: "Convolution26" + type: "Convolution" + bottom: "BatchNorm28" + top: "Convolution26" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout12" + type: "Dropout" + bottom: "Convolution26" + top: "Dropout12" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_14" + type: "Concat" + bottom: "Concat_13" + bottom: "Dropout12" + top: "Concat_14" + concat_param { + axis: 1 + } +} +layer { + name: "Deconvolution_15" + type: "Deconvolution" + bottom: "Concat_14" + top: "Deconvolution_15" + param { + lr_mult: 0.10000000149 + decay_mult: 1.0 + } + convolution_param { + num_output: 4 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 10 + kernel_size: 10 + kernel_size: 10 + group: 4 + stride: 8 + stride: 8 + stride: 8 + weight_filler { + type: "bilinear_3D" + } + } +} +layer { + name: "BatchNorm29" + type: "BatchNorm" + bottom: "Concat_14" + top: "BatchNorm29" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale29" + type: "Scale" + bottom: "BatchNorm29" + top: "BatchNorm29" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU29" + type: "ReLU" + bottom: "BatchNorm29" + top: "BatchNorm29" +} +layer { + name: "Convolution27" + type: "Convolution" + bottom: "BatchNorm29" + top: "Convolution27" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 60 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm30" + type: "BatchNorm" + bottom: "Convolution27" + top: "BatchNorm30" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale30" + type: "Scale" + bottom: "BatchNorm30" + top: "BatchNorm30" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU30" + type: "ReLU" + bottom: "BatchNorm30" + top: "BatchNorm30" +} +layer { + name: "Conv_down_15" + type: "Convolution" + bottom: "BatchNorm30" + top: "Conv_down_15" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 60 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 2 + kernel_size: 2 + kernel_size: 2 + stride: 2 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm31" + type: "BatchNorm" + bottom: "Conv_down_15" + top: "BatchNorm31" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale31" + type: "Scale" + bottom: "BatchNorm31" + top: "BatchNorm31" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU31" + type: "ReLU" + bottom: "BatchNorm31" + top: "BatchNorm31" +} +layer { + name: "Convolution28" + type: "Convolution" + bottom: "BatchNorm31" + top: "Convolution28" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm32" + type: "BatchNorm" + bottom: "Convolution28" + top: "BatchNorm32" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale32" + type: "Scale" + bottom: "BatchNorm32" + top: "BatchNorm32" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU32" + type: "ReLU" + bottom: "BatchNorm32" + top: "BatchNorm32" +} +layer { + name: "Convolution29" + type: "Convolution" + bottom: "BatchNorm32" + top: "Convolution29" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout13" + type: "Dropout" + bottom: "Convolution29" + top: "Dropout13" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_19" + type: "Concat" + bottom: "Conv_down_15" + bottom: "Dropout13" + top: "Concat_19" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm33" + type: "BatchNorm" + bottom: "Concat_19" + top: "BatchNorm33" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale33" + type: "Scale" + bottom: "BatchNorm33" + top: "BatchNorm33" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU33" + type: "ReLU" + bottom: "BatchNorm33" + top: "BatchNorm33" +} +layer { + name: "Convolution30" + type: "Convolution" + bottom: "BatchNorm33" + top: "Convolution30" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm34" + type: "BatchNorm" + bottom: "Convolution30" + top: "BatchNorm34" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale34" + type: "Scale" + bottom: "BatchNorm34" + top: "BatchNorm34" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU34" + type: "ReLU" + bottom: "BatchNorm34" + top: "BatchNorm34" +} +layer { + name: "Convolution31" + type: "Convolution" + bottom: "BatchNorm34" + top: "Convolution31" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout14" + type: "Dropout" + bottom: "Convolution31" + top: "Dropout14" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_20" + type: "Concat" + bottom: "Concat_19" + bottom: "Dropout14" + top: "Concat_20" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm35" + type: "BatchNorm" + bottom: "Concat_20" + top: "BatchNorm35" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale35" + type: "Scale" + bottom: "BatchNorm35" + top: "BatchNorm35" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU35" + type: "ReLU" + bottom: "BatchNorm35" + top: "BatchNorm35" +} +layer { + name: "Convolution32" + type: "Convolution" + bottom: "BatchNorm35" + top: "Convolution32" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm36" + type: "BatchNorm" + bottom: "Convolution32" + top: "BatchNorm36" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale36" + type: "Scale" + bottom: "BatchNorm36" + top: "BatchNorm36" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU36" + type: "ReLU" + bottom: "BatchNorm36" + top: "BatchNorm36" +} +layer { + name: "Convolution33" + type: "Convolution" + bottom: "BatchNorm36" + top: "Convolution33" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout15" + type: "Dropout" + bottom: "Convolution33" + top: "Dropout15" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_21" + type: "Concat" + bottom: "Concat_20" + bottom: "Dropout15" + top: "Concat_21" + concat_param { + axis: 1 + } +} +layer { + name: "BatchNorm37" + type: "BatchNorm" + bottom: "Concat_21" + top: "BatchNorm37" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale37" + type: "Scale" + bottom: "BatchNorm37" + top: "BatchNorm37" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU37" + type: "ReLU" + bottom: "BatchNorm37" + top: "BatchNorm37" +} +layer { + name: "Convolution34" + type: "Convolution" + bottom: "BatchNorm37" + top: "Convolution34" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 64 + bias_term: false + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "BatchNorm38" + type: "BatchNorm" + bottom: "Convolution34" + top: "BatchNorm38" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "Scale38" + type: "Scale" + bottom: "BatchNorm38" + top: "BatchNorm38" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "ReLU38" + type: "ReLU" + bottom: "BatchNorm38" + top: "BatchNorm38" +} +layer { + name: "Convolution35" + type: "Convolution" + bottom: "BatchNorm38" + top: "Convolution35" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + convolution_param { + num_output: 16 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 3 + kernel_size: 3 + kernel_size: 3 + stride: 1 + stride: 1 + stride: 1 + weight_filler { + type: "msra" + } + bias_filler { + type: "constant" + } + axis: 1 + } +} +layer { + name: "Dropout16" + type: "Dropout" + bottom: "Convolution35" + top: "Dropout16" + dropout_param { + dropout_ratio: 0.20000000298 + } +} +layer { + name: "Concat_22" + type: "Concat" + bottom: "Concat_21" + bottom: "Dropout16" + top: "Concat_22" + concat_param { + axis: 1 + } +} +layer { + name: "Deconvolution_20" + type: "Deconvolution" + bottom: "Concat_22" + top: "Deconvolution_20" + param { + lr_mult: 0.10000000149 + decay_mult: 1.0 + } + convolution_param { + num_output: 4 + bias_term: false + pad: 1 + pad: 1 + pad: 1 + kernel_size: 18 + kernel_size: 18 + kernel_size: 18 + group: 4 + stride: 16 + stride: 16 + stride: 16 + weight_filler { + type: "bilinear_3D" + } + } +} +layer { + name: "Concat1" + type: "Concat" + bottom: "conv1c" + bottom: "Deconvolution_5" + bottom: "Deconvolution_10" + bottom: "Deconvolution_15" + bottom: "Deconvolution_20" + top: "Concat1" + concat_param { + axis: 1 + } +} +layer { + name: "bnorm_concat" + type: "BatchNorm" + bottom: "Concat1" + top: "bnorm_concat" + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + param { + lr_mult: 0.0 + decay_mult: 0.0 + } + batch_norm_param { + use_global_stats: true + } +} +layer { + name: "scale_concat" + type: "Scale" + bottom: "bnorm_concat" + top: "bnorm_concat" + scale_param { + filler { + value: 1.0 + } + bias_term: true + bias_filler { + value: 0.0 + } + } +} +layer { + name: "relu_concat" + type: "ReLU" + bottom: "bnorm_concat" + top: "bnorm_concat" +} +layer { + name: "Convolution36" + type: "Convolution" + bottom: "bnorm_concat" + top: "Convolution36" + param { + lr_mult: 1.0 + decay_mult: 1.0 + } + param { + lr_mult: 2.0 + decay_mult: 0.0 + } + convolution_param { + num_output: 4 + pad: 0 + pad: 0 + pad: 0 + kernel_size: 1 + kernel_size: 1 + kernel_size: 1 + weight_filler { + type: "msra" + } + axis: 1 + } +} +layer { + name: "softmax" + type: "Softmax" + bottom: "Convolution36" + top: "softmax" +} +