[f949a5]: / SurfaceIntersection.m

Download this file

942 lines (877 with data), 35.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
function [intMatrix, intSurface] = SurfaceIntersection(surface1, surface2, varargin)
%SURFACEINTERSECTION intersection of 2 surfaces
% [intMatrix, intSurface] = SurfaceIntersection(surface1, surface2)
% calculates the intersection of surfaces 1 and 2. Code can either return
% just the matrix indicating which face of surface1 intersected with face
% of surface2, which is calculated using Tomas Moller algorithm, or can
% also return the actual line of intersection. In case when parts of the
% surface 1 and 2 lay on the same plane the intersection is a 2D area
% instead of 1D edge. In such a case the intersection area will be
% triangulated and intSurface.edges will hold the edges of the
% triangulation surface and intSurface.faces will hold the faces.
%
% INPUT:
% * surface1 & surface2 - two surfaces defined as structs or classes.
% Several inputs are possible:
% - struct with "faces" and "vertices" fields
% - 'triangulation' class (only the boundary surface will be used)
% - 'delaunayTriangulation' class
%
% OUTPUT:
% * intMatrix - sparse Matrix with n1 x n2 dimension where n1 and n2 are
% number of faces in surfaces
% * intSurface - a structure with following fields:
% intSurface.vertices - N x 3 array of unique points
% intSurface.edges - N x 2 array of edge vertex ID's
% intSurface.faces - N x 3 array of face vertex ID's
%
% ALGORITHM:
% Based on Triangle/triangle intersection test routine by Tomas Mller, 1997.
% See article "A Fast Triangle-Triangle Intersection Test",
% Journal of Graphics Tools, 2(2), 1997
% http://web.stanford.edu/class/cs277/resources/papers/Moller1997b.pdf
% http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/opttritri.txt
%% Get FACES and VERTICES inputs
if isa(surface1, 'triangulation')
[surface1.faces, surface1.vertices] = freeBoundary(surface1);
elseif isa(surface1, 'delaunayTriangulation')
S = surface1;
surface1 = [];
surface1.faces = S.ConnectivityList;
surface1.vertices = S.Points;
clear S
end
if isa(surface2, 'triangulation')
[surface2.faces, surface1.vertices] = freeBoundary(surface2);
elseif isa(surface2, 'delaunayTriangulation')
S = surface2;
surface2 = [];
surface2.faces = S.ConnectivityList;
surface2.vertices = S.Points;
clear S
end
ok1 = isstruct(surface1) && isfield(surface1, 'vertices') && isfield(surface1, 'faces');
ok2 = isstruct(surface2) && isfield(surface2, 'vertices') && isfield(surface2, 'faces');
assert(ok1, 'Surface #1 must be a struct with "faces" and "vertices" fields' );
assert(ok2, 'Surface #2 must be a struct with "faces" and "vertices" fields' );
%% Flip dimentions if necessery
if size(surface1.faces,1)==3 && size(surface1.faces,2)~=3
surface1.faces = surface1.faces';
end
if size(surface1.vertices,1)==3 && size(surface1.vertices,2)~=3
surface1.vertices = surface1.vertices';
end
if size(surface2.faces,1)==3 && size(surface2.faces,2)~=3
surface2.faces = surface2.faces';
end
if size(surface2.vertices,1)==3 && size(surface2.vertices,2)~=3
surface2.vertices = surface2.vertices';
end
%% Parse extra parameters
getIntersection = (nargout>1);
debug = true;
PointRoundingTol = 1e6;
algorithm = 'moller';
k=1;
nVarargs = length(varargin);
while (k<=nVarargs)
assert(ischar(varargin{k}), 'Incorrect input parameters')
switch lower(varargin{k})
case 'debug'
debug = varargin{k+1}~=0;
k = k+1;
case 'algorithm'
algorithm = lower(strtrim(varargin{k+1}));
k = k+1;
case 'pointroundingtol'
PointRoundingTol = varargin{k+1};
k = k+1;
end
k = k+1;
end
%% Initialize variables
epsilon = eps;
nFace1 = size(surface1.faces,1);
nFace2 = size(surface2.faces,1);
nVert1 = size(surface1.vertices,1);
nVert2 = size(surface2.vertices,1);
%% create strip down versions of MATLAB cross and dot function
cross_prod = @(a,b) [...
a(:,2).*b(:,3)-a(:,3).*b(:,2), ...
a(:,3).*b(:,1)-a(:,1).*b(:,3), ...
a(:,1).*b(:,2)-a(:,2).*b(:,1)];
dot_prod = @(a,b) a(:,1).*b(:,1)+a(:,2).*b(:,2)+a(:,3).*b(:,3);
normalize = @(V) bsxfun(@rdivide,V, sqrt(sum(V.^2,2)));
%% Initialize output variables
% intersect is a nFace1 x nFace2 matrix. Possible values: -2 (do not know),
% -1 (coplanar with unknown overlap), 0 (no intersections), 1 (intersects).
% Negative values are internal only.
intMatrix = zeros([nFace1,nFace2], 'int8')-2; % -2 indicates that there was no succesful test yet
intSurface.vertices = [];
intSurface.faces = [];
intSurface.edges = [];
% =======================================================================
%% === Stage 1 ==========================================================
% =======================================================================
% Each triangle is a subset of the plane it lies in, so for two triangles
% to intersect they must overlap along the line of intersection of their
% planes. Hence, a necessary condition for intersection is that each
% triangle must intersect the plane of the other.
% Mllers method begins by checking the mutual intersection of each
% triangle with the plane of the other. To do so, it determines for each
% triangle on which side of the other triangles supporting plane its
% vertices lie. Now, if all vertices of one triangle lie on the same side
% and no vertex is on the plane, the intersection is rejected.
%% compute plane equations for each triangle of the surface #1
% plane equation #1: N1.X-d1=0
V1 = surface1.vertices(surface1.faces(:,1),:);
V2 = surface1.vertices(surface1.faces(:,2),:);
V3 = surface1.vertices(surface1.faces(:,3),:);
N1 = cross_prod(V2-V1,V3-V1); % array size nFace1 x 3
N1 = normalize(N1);
d1 = dot_prod(N1,V1); % array size nFace1 x 1
%% Distance from surface #2 vertices to planes of surface #1
% Calculate signed distance from all vertices of surface #2 to each plane
% of of surface #1
du = zeros(nFace1,nVert2);
for iVert2 = 1:nVert2
p = surface2.vertices(iVert2,:);
du(:,iVert2) = N1(:,1)*p(1) + N1(:,2)*p(2) + N1(:,3)*p(3) - d1;
end
if debug
assert(all(size(du)==[nFace1,nVert2]), 'Incorrect array dimensions: dv')
end
du(abs(du)<epsilon)=0; % robustness check
% Distances from vertex 1, 2 & 3 of faces of surface #2 to planes of surface #1
du1 = du(:,surface2.faces(:,1));
du2 = du(:,surface2.faces(:,2));
du3 = du(:,surface2.faces(:,3));
if debug
assert(all(size(du1)==size(intMatrix)), 'Incorrect array dimensions: du1')
end
clear du
intMatrix(du1.*du2>0 & du1.*du3>0) = 0; % same sign on all of them & not equal 0
if(all(intMatrix==0)), return; end % no intersections
intMatrix(du1==0 & du2==0 & du3==0) = -1; % coplanar with unknown overlap
%% compute plane of triangle (U0,U1,U2)
% plane equation 2: N2.X-d2=0
U1 = surface2.vertices(surface2.faces(:,1),:);
U2 = surface2.vertices(surface2.faces(:,2),:);
U3 = surface2.vertices(surface2.faces(:,3),:);
N2 = cross_prod(U2-U1,U3-U1); % array size nFace1 x 3
N2 = normalize(N2);
d2 = dot_prod(N2,U1); % array size nFace1 x 1
%% Distance from surface #1 vertices to planes of surface #2
% Calculate signed distance from all vertices of surface #1 to each plane
% of of surface #2
dv = zeros(nFace2,nVert1);
for iVert1 = 1:nVert1
p = surface1.vertices(iVert1,:);
dv(:,iVert1) = N2(:,1)*p(1) + N2(:,2)*p(2) + N2(:,3)*p(3) - d2;
end
if debug
assert(all(size(dv)==[nFace2,nVert1]), 'Incorrect array dimensions: dv')
end
dv(abs(dv)<epsilon)=0; % robustness check
% Distances from vertex 1, 2 & 3 of faces of surface #1 to planes of surface #2
dv1 = dv(:,surface1.faces(:,1))';
dv2 = dv(:,surface1.faces(:,2))';
dv3 = dv(:,surface1.faces(:,3))';
if debug
assert(all(size(dv1)==size(intMatrix)), 'Incorrect array dimensions: dv1')
end
clear dv
intMatrix(dv1.*dv2>0 & dv1.*dv3>0) = 0; % same sign on all of them & not equal 0
if(all(intMatrix==0)), return; end % no intersections
intMatrix(dv1==0 & dv2==0 & dv3==0) = -1; % coplanar with unknown overlap
% =======================================================================
%% === Stage 2 ==========================================================
% =======================================================================
%% Process remaining (non-coplanar) triangle pairs
tMsk = (intMatrix==-2);
n = nnz(tMsk);
if n>0
[face1, face2] = find(tMsk);
switch lower(algorithm)
case 'moller'
if size(dv1(tMsk),1)==1
dv = [dv1(tMsk)', dv2(tMsk)', dv3(tMsk)'];
du = [du1(tMsk)', du2(tMsk)', du3(tMsk)'];
else
dv = [dv1(tMsk), dv2(tMsk), dv3(tMsk)];
du = [du1(tMsk), du2(tMsk), du3(tMsk)];
end
[intMatrix(tMsk), intSurface] = TriangleIntersection3D_Moller(...
V1(face1,:), V2(face1,:), V3(face1,:), N1(face1,:), d1(face1,:), dv, ...
U1(face2,:), U2(face2,:), U3(face2,:), N2(face2,:), d2(face2,:), du, ...
getIntersection, debug);
case 'rapid'
% Undocumented experimental feature. In some experiments I got
% identical results as with Moller algorithm, but others gave
% different results. Often faster tham Moller.
intMatrix(tMsk) = TriangleIntersection3D_Rapid( ...
V1(face1,:), V2(face1,:), V3(face1,:), ...
U1(face2,:), U2(face2,:), U3(face2,:), N1(face1,:), N2(face2,:) );
otherwise
error('Unknown algorithm name');
end
end % if
%% Process coplanar triangle pairs. Pass #1:
% compare the overlap of the bounding boxes
tMsk = (intMatrix==-1);
if nnz(tMsk)>0
[face1, face2] = find(tMsk);
overlap = true;
for idim = 1:3
v = [V1(face1,idim), V2(face1,idim), V3(face1,idim)];
u = [U1(face2,idim), U2(face2,idim), U3(face2,idim)];
t1 = min(v,[],2);
t2 = max(v,[],2);
s1 = min(u,[],2);
s2 = max(u,[],2);
overlap = overlap & (s1<=t2 & t1<=s2);
end
% if overlap intMatrix will remain "-1" otherwise it will change to "0"
intMatrix(tMsk) = -1*overlap;
clear v u t1 t2 s1 s2 overlap
end
%% Process coplanar triangle pairs. Pass #2:
% use edge-edge intersections
tMsk = (intMatrix==-1);
if nnz(tMsk)>0
[face1, face2] = find(tMsk);
% repack data prior to function call
V(:,:,1)=V1(face1,:); V(:,:,2)=V2(face1,:); V(:,:,3)=V3(face1,:);
U(:,:,1)=U1(face2,:); U(:,:,2)=U2(face2,:); U(:,:,3)=U3(face2,:);
[intMatrix(tMsk), intSurface2] = TriangleIntersection2D(V, U, ...
N1(face1,:), getIntersection, debug);
%% Merge surfaces
if getIntersection
np = size(intSurface.vertices,1);
intSurface.vertices = [intSurface.vertices; intSurface2.vertices];
intSurface.faces = [intSurface.faces; intSurface2.faces+np];
intSurface.edges = [intSurface.edges; intSurface2.edges+np];
if debug
np = size(intSurface.vertices,1);
assert(max(intSurface.faces(:))<=np, 'Bad surface definition')
assert(max(intSurface.edges(:))<=np, 'Bad surface definition')
end
end
end
%% Clean up the outputs
intMatrix = sparse(double(intMatrix));
if(getIntersection)
% make point array unique
P = round(intSurface.vertices*PointRoundingTol)/PointRoundingTol;
[~,ia,ic] = unique(P,'rows'); % V = P(ia,:) and P = V(ic,:).
intSurface.vertices = intSurface.vertices(ia,:);
intSurface.faces = ic(intSurface.faces);
intSurface.edges = ic(intSurface.edges);
end
end % function
%% ========================================================================
function [iMsk, intSurface] = TriangleIntersection3D_Moller(...
V1, V2, V3, N1, d1, dv, ...
U1, U2, U3, N2, d2, du, ...
getIntersection, debug)
%TriangleIntersection3D tests if 2 triangles defined in 3D intersect.
% This is a secondary test following Tomas Moller algorithm
%
% INPUTS:
% V1, V2, V3, - Nx3 array of surface 1 triangle vertex coordinates
% U1, U2, U3, - Nx3 array of surface 2 triangle vertex coordinates
% N1, d1 - Nx3 array of surface 1 triangle plane equations N1.X-d1=0
% N2, d2 - Nx3 array of surface 2 triangle plane equations N2.X-d2=0
% dv - Nx3 array of distances of surface 1 triangle vertices to surface 2 planes
% du - Nx3 array of distances of surface 2 triangle vertices to surface 1 planes
% getIntersection - do we need to output the intersecting surface?
% Algorithm is much simpler if we do not.
% debug - In the debugging mode much more extra "sanity check" test
% are performed.
%
% OUTPUT:
% iMsk - N x 1 intersection boolean mask marking which triangles overlap
% intSurface - intersection surface
%
% ALGORITHM:
% The input triangles are guaranteed to intersect the line of intersection
% of the two planes. Furthermore, these intersections form intervals on
% this line, and the triangles overlap iff these intervals overlap as well.
% Hence, the last part of the algorithm computes a parametric equation
% L(t) of the line of intersection of the two planes, finds the intervals
% (i.e. scalar intervals on L(t)) for which the line lies inside each
% triangle and performs a one-dimensional interval overlap test.
if debug
ok = size(N1,2)==3 && size(N2,2)==3 && size(dv,2)==3 && size(du,2)==3 && ...
size(V1,2)==3 && size(V2,2)==3 && size(V3,2)==3 && ...
size(U1,2)==3 && size(U2,2)==3 && size(U3,2)==3;
assert(ok, 'Incorrect array dimensions');
end
%% create strip down versions of MATLAB cross and dot function
cross_prod = @(a,b) [...
a(:,2).*b(:,3)-a(:,3).*b(:,2), ...
a(:,3).*b(:,1)-a(:,1).*b(:,3), ...
a(:,1).*b(:,2)-a(:,2).*b(:,1)];
dot_prod = @(a,b) a(:,1).*b(:,1)+a(:,2).*b(:,2)+a(:,3).*b(:,3);
normalize = @(V) bsxfun(@rdivide,V, sqrt(sum(V.^2,2)));
%% Find intervals of surface 1 and 2 triangles
% compute the scalar intervals on L(t) for which the line lies inside each
% triangle
% Plane creates two open half-spaces. Find the odd vertex, which:
% 1) if no or two vertices are on the plane than pick the vertex which is
% by itself in its half-space
% 2) if one vertex is on the plane and the other two occupy the same
% half-space than pick the vertex on the plane
% 3) if one vertex is on the plane and the other two occupy different
% half-spaces than pick one of the vertices off the plane
% Find vertex using a look-up table "lut" with key calculated based on
% sign of dv and du arrays
lut = [0;3;3;2;1;3;2;2;1;1;2;3;3;0;3;3;2;1;1;2;2;3;1;2;3;3;0];
n = numel(d1);
rows = (1:n)';
%% order surface 1 triangle vertices
a1 = lut(sign(dv)*[9; 3; 1] + 14); % calculate the key and call the look-up table
[b1, c1] = otherDim(a1);
if debug
assert(all(a1>0), 'Something Wrong: triangles are coplanar')
end
a1 = sub2ind([n,3],rows,a1); % convert row and column IDs to array indecies
b1 = sub2ind([n,3],rows,b1);
c1 = sub2ind([n,3],rows,c1);
%% order surface 2 triangle vertices
a2 = lut(sign(du)*[9; 3; 1] + 14); % calculate the key and call the look-up table
[b2, c2] = otherDim(a2);
if debug
assert(all(a2>0), 'Something Wrong: triangles are coplanar')
end
a2 = sub2ind([n,3],rows,a2);
b2 = sub2ind([n,3],rows,b2);
c2 = sub2ind([n,3],rows,c2);
%% compute direction of L the line of intersection of 2 planes
% containing 2 triangles. Line L parametric equation: t*D+O=0
D = cross_prod(N1,N2); % D must be perpendicular to both N1 and N2
[~, maxDim] = max(abs(D),[],2); % compute and index to the largest component of D
if(getIntersection)
D = normalize(D);
O = zeros(n,3);
d = [d1, d2, zeros(n,1)];
for r =1:n
N = [N1(r,:); N2(r,:); 0, 0, 0];
N(3,maxDim(r)) = 1;
dd = d(r,:)';
O(r,:) = (N\dd)'; %Solve systems of linear equations N*D3 = d for D3
end
clear N d dd
end
%% projection of triangle(V1,V2,V3) and triangle(U1,U2,U3) onto intersection line
% Vp and Up are Nx3 arrays with columns indicating corners of triangles 1 and 2
if(getIntersection)
Vp=[dot_prod(V1-O,D), dot_prod(V2-O,D), dot_prod(V3-O,D)];
Up=[dot_prod(U1-O,D), dot_prod(U2-O,D), dot_prod(U3-O,D)];
else
% Project on one of the axis (closest to the intersection line) instead.
% Simplified projection is faster and sufficient if we do not need
% intersection line
idx = sub2ind([n,3],rows,maxDim);
Vp = [V1(idx), V2(idx), V3(idx)];
Up = [U1(idx), U2(idx), U3(idx)];
end
clear V1 V2 V3 U1 U2 U3
%% Calculate surface 1 and 2 triangle intervals
% t1 and t2 are intersection points of surface 1 with the intersection line
% t*D+O=0, and s1 & s2 are intersection points of surface 2 with the same
% line. Tomas Moller algorithm made this section much more complicated
% trying to avoid divisions. However, I could not detect any speed-up.
% Operations (ADD: 12; MUL:4 ; DIV:4 )
t1 = Vp(a1) - (Vp(b1)-Vp(a1)).*dv(a1)./(dv(b1)-dv(a1));
t2 = Vp(a1) - (Vp(c1)-Vp(a1)).*dv(a1)./(dv(c1)-dv(a1));
s1 = Up(a2) - (Up(b2)-Up(a2)).*du(a2)./(du(b2)-du(a2));
s2 = Up(a2) - (Up(c2)-Up(a2)).*du(a2)./(du(c2)-du(a2));
%% Order the intervals as to t1<t2 and s1<s2
msk = t2<t1; % order t1 and t2 so t1<t2
t = t1(msk); t1(msk)=t2(msk); t2(msk)=t; % swap
msk = s2<s1; % order s1 and s2 so s1<s2
t = s1(msk); s1(msk)=s2(msk); s2(msk)=t; % swap
%% Perform THE final test we were preparying for.
% It test for the overlap of 2 1D intervals s1->s2 and t1->t2
iMsk = (s1<t2 & t1<s2);
%% calculate intersection segments
n = nnz(iMsk);
if(getIntersection && n>0)
% p1 = D*max(t1,s1) + O; p2 = D*min(t2,s2) + O
p1 = bsxfun(@times,D(iMsk,:),max(t1(iMsk),s1(iMsk))) + O(iMsk,:);
p2 = bsxfun(@times,D(iMsk,:),min(t2(iMsk),s2(iMsk))) + O(iMsk,:);
intSurface.vertices = [p1; p2];
intSurface.faces = [1:n; n+1:2*n; n+1:2*n]';
intSurface.edges = intSurface.faces(:,1:2);
else
intSurface.vertices = [];
intSurface.faces = [];
intSurface.edges = [];
end % if
end % function
%% ========================================================================
function [overlap, intSurface] = TriangleIntersection2D(V, U, N, ...
getIntersection, debug)
% Triangles V(V0,V1,V2) and U(U0,U1,U2) are are coplanar. Do they overlap?
% INPUTS:
% N - array(n,3) of surface normals where V(i,:,:) and U(i,:,:) are on the same plane
% V - array(n,3,3) (nFace x 3 dimensions x 3 vertices) of surface #1 vertices
% U - array(n,3,3) (nFace x 3 dimensions x 3 vertices) of surface #2 vertices
%
% OUTPUT:
% iMsk - N x 1 intersection boolean mask marking which triangles overlap
% intSurface - intersection surface
% * parameters: vertices of triangle 1: V0,V1,V2
% * vertices of triangle 2: U0,U1,U2
% * result : returns 1 if the triangles intersect, otherwise 0
%% Constants needed for creating a mesh based on 3 to 6 points in a circle
tri_mesh{6} = [1 2 6; 2 4 6; 2 3 4; 4 5 6];
tri_mesh{5} = [1 2 3; 1 3 4; 4 5 1];
tri_mesh{4} = [1 2 3; 1 3 4];
tri_mesh{3} = 1:3;
vertices = [];
faces = [];
pairs = []; % each row corresponds to pair of faces. match row number with face number
nVert = 0;
%% use edge-edge intersections
overlap = false(size(N,1),1);
i1Idx = [1 1 1 2 2 2 3 3 3];
i2Idx = [3 3 3 1 1 1 2 2 2];
j1Idx = [1 2 3 1 2 3 1 2 3];
j2Idx = [3 1 2 3 1 2 3 1 2];
for row = 1:size(N,1)
% When it is necesary to project 3D plane on 2D, dIdx will be the optimal
% dimensions to use.
[~, a] = max(abs(N(row,:)));
[b, c] = otherDim(a);
dIdx = [b, c];
order = [];
%% test all edges of triangle 1 against the edges of triangle 2
% triangles overlap if edges cross
[edgeMat, P] = EdgesIntersect3D(...
squeeze(V(row,:,i1Idx))',squeeze(V(row,:,i2Idx))', ...
squeeze(U(row,:,j1Idx))',squeeze(U(row,:,j2Idx))');
overlap(row) = any(edgeMat);
if ~getIntersection && overlap(row), continue; end
if ~overlap(row)
%% project onto an axis-aligned plane, that maximizes the area
% of the triangles, compute indices: dIdx which correspond to 2 smallest N1
% components.
V2d = [V(row,dIdx,1); V(row,dIdx,2); V(row,dIdx,3)]; % each row is a 2D vertex
U2d = [U(row,dIdx,1); U(row,dIdx,2); U(row,dIdx,3)];
%% test if tri1 is totally contained in tri2 or vice varsa
if PointInTriangle2D(V2d(1,:), U2d) % tri1 is totally contained in tri2
overlap(row) = true;
order = 1:3;
elseif PointInTriangle2D(U2d(1,:), V2d) % tri2 is totally contained in tri1
overlap(row) = true;
order = 4:6;
end
if overlap(row) && ~getIntersection, continue; end
clear V2d U2d
end
%% Build the intersection surface
if getIntersection && overlap(row)
%Assemble all the points which might be needed for desining
%intersection polygon: Intersection points and points from triangle 1
%and 2
points = [P(edgeMat,:); squeeze(V(row,:,:))'; squeeze(U(row,:,:))'];
if isempty(order) % when one tri is totally contained in the other tri then order is set
order = IntersectionPolygon(edgeMat>0, points, dIdx, debug);
if isempty(order), continue; end
end
nPoint = length(order); % how many points will be added?
nFace = nPoint-2; % how many faces will be added?
vertices = [vertices; points(order,:)]; %#ok<*AGROW>
faces = [faces; nVert+tri_mesh{nPoint} ];
pairs = [pairs; row+zeros(nFace,1)]; % each row corresponds to pair of faces. match row number with face number
nVert = nVert + nPoint;
if debug
assert(max(faces(:))<=size(vertices,1), 'Bad surface definition')
end
end
end % for
%% Prepare outputs
intSurface.vertices = vertices;
intSurface.faces = faces;
if isempty(faces)
intSurface.edges = [];
else
intSurface.edges = [faces(:,1:2); faces(:,2:3); faces(:,[1,3])];
end
end % function
%% ========================================================================
function polygon = IntersectionPolygon(edgeMat, points, dIdx, debug)
% edgeMat is an edge intersection matrix with 3 rows for edges between
% the points 1-3, 1-2, & 2-3 of the triangle 1 and 3 columns for the same
% edges of the triangle 2. If 2 edges intersect a point of intersection
% is calculated and stored in array "points" followed by points of the
% triangles 1 & 2. This function calculates the polygon of the intersection
% between 2 triangles.
persistent orderLUT verified
if isempty(orderLUT) || isempty(orderLUT{3})
% This pre-calculated look-up table is used to quickly look up the order of
% the vertices in array "points" which make up polygon of the intersection
% between 2 triangles. A unique key is calculated for each edgeMat using
% dot product between edgeMat(:) and [256 128 64 32 16 8 4 2 1], which is
% used to look up point order around the polygon. Negative numbers in the
% LUT indicate values which were not observed yet so they were not
% independently verified.
% reshape(sprintf('%09s',dec2base(key, 2)),3,3) will convert from the key
% to matrix.
OrderLUT = zeros(432,1);
OrderLUT(003) = 127;
OrderLUT(005) = 128;
OrderLUT(006) = 126;
OrderLUT(009) = 124;
OrderLUT(010) = 1427;
OrderLUT(012) = 1428;
OrderLUT(017) = 1427;
OrderLUT(018) = 124;
OrderLUT(020) = 1426;
OrderLUT(024) = 127;
OrderLUT(027) = 1243;
OrderLUT(029) = 12438;
OrderLUT(030) = 12034;
OrderLUT(033) = 1428;
OrderLUT(034) = 1426;
OrderLUT(036) = 124;
OrderLUT(040) = 128;
OrderLUT(043) = 21834;
OrderLUT(045) = 1243;
OrderLUT(046) = 21349;
OrderLUT(048) = 126;
OrderLUT(051) = 12340;
OrderLUT(053) = 12943;
OrderLUT(054) = 1243;
OrderLUT(065) = 125;
OrderLUT(066) = 1527;
OrderLUT(068) = 1825;
OrderLUT(072) = 123;
OrderLUT(080) = 1327;
OrderLUT(083) = 15234;
OrderLUT(085) = -15234;
OrderLUT(086) = -15243;
OrderLUT(090) = 13247;
OrderLUT(092) = -13247;
OrderLUT(096) = 1328;
OrderLUT(099) = 152834;
OrderLUT(101) = 15234;
OrderLUT(102) = 152349;
OrderLUT(106) = 132847;
OrderLUT(108) = 13247;
OrderLUT(114) = 102347;
OrderLUT(116) = -13247;
OrderLUT(129) = 1527;
OrderLUT(130) = 125;
OrderLUT(132) = 1526;
OrderLUT(136) = 1327;
OrderLUT(139) = 15243;
OrderLUT(141) = 152438;
OrderLUT(142) = 152034;
OrderLUT(144) = 123;
OrderLUT(153) = 12347;
OrderLUT(156) = 123047;
OrderLUT(160) = 1326;
OrderLUT(163) = -152043;
OrderLUT(165) = 13247;
OrderLUT(166) = 15234;
OrderLUT(169) = -182347;
OrderLUT(172) = 193247;
OrderLUT(177) = -132047;
OrderLUT(180) = 13247;
OrderLUT(192) = 127;
OrderLUT(195) = 1243;
OrderLUT(197) = 12438;
OrderLUT(198) = 12034;
OrderLUT(202) = 12364;
OrderLUT(204) = 123648;
OrderLUT(209) = 21364;
OrderLUT(212) = -21364;
OrderLUT(216) = 1243;
OrderLUT(225) = -124638;
OrderLUT(226) = 120364;
OrderLUT(232) = 12438;
OrderLUT(238) = 124356;
OrderLUT(240) = 12034;
OrderLUT(245) = -214356;
OrderLUT(257) = 1528;
OrderLUT(258) = 1526;
OrderLUT(260) = 125;
OrderLUT(264) = 1328;
OrderLUT(267) = -152438;
OrderLUT(269) = 15243;
OrderLUT(270) = -152943;
OrderLUT(272) = 1326;
OrderLUT(275) = 152340;
OrderLUT(277) = 152943;
OrderLUT(278) = 15243;
OrderLUT(281) = 182347;
OrderLUT(282) = -103247;
OrderLUT(288) = 123;
OrderLUT(297) = 12347;
OrderLUT(298) = -123947;
OrderLUT(305) = 123947;
OrderLUT(306) = 12347;
OrderLUT(320) = 128;
OrderLUT(323) = 21834;
OrderLUT(325) = 1243;
OrderLUT(326) = 21349;
OrderLUT(330) = -123648;
OrderLUT(332) = 12364;
OrderLUT(337) = 183642;
OrderLUT(340) = -129364;
OrderLUT(344) = 21834;
OrderLUT(350) = -124365;
OrderLUT(353) = 12463;
OrderLUT(354) = 136492;
OrderLUT(360) = 1243;
OrderLUT(368) = 12943;
OrderLUT(371) = 126543;
OrderLUT(384) = 126;
OrderLUT(387) = 12340;
OrderLUT(389) = 12943;
OrderLUT(390) = 1243;
OrderLUT(394) = -103642;
OrderLUT(396) = 129364;
OrderLUT(401) = 123640;
OrderLUT(404) = 12364;
OrderLUT(408) = 12340;
OrderLUT(413) = 215643;
OrderLUT(417) = -136492;
OrderLUT(418) = 12463;
OrderLUT(424) = 13492;
OrderLUT(427) = -213456;
OrderLUT(432) = 1342;
% Convert to more convinient format
orderLUT = cell(size(OrderLUT));
for i = 1:size(OrderLUT,1)
polygon = abs(OrderLUT(i));
if polygon>0
polygon = num2str(polygon)-48; % Convert from a single number to array of digits
polygon(polygon==0) = 10; % 0 stands for 10
orderLUT{i} = polygon;
end
end
% Negative numbers in the LUT indicate values which were not observed yet
% so they were not independently verified.
verified = OrderLUT>0;
clear OrderLUT
end
%% Calculate unique key for each edgeMat configuration
key = dot(1*edgeMat(:)', [256 128 64 32 16 8 4 2 1]);
assert(key<=432, 'Error: in IntersectionPolygon: key is out of bound');
%% Look up the point order around the polygon
polygon = orderLUT{key};
if (isempty(polygon))
return
end
%% in a rare case of 2 intersections there is ambiguity if one or two
% vertices of the triangle lay inside the other triangle. OrderLUT stores
% only the single vertex cases.
nx = nnz(edgeMat(:));
if nx==2
pList = polygon; % list of vertices to check
pList(pList<=nx) = []; % keep only the triangle points of the polygon
flip = false; % was there a flip from single vertex to vertices case?
for ip = 1:length(pList)
p = pList(ip); % point to check
t = floor((p-nx-1)/3); % does it belong to triangle 0 or 1 (actually 1 or 2)
tri = (1:3) + nx + 3*abs(1-t); % Points belonging to the other triangle
if ~PointInTriangle2D(points(p,dIdx), points(tri,dIdx))
d = nx+t*3; % offset
% "p-d" is vertex number of point just tested: 1, 2, or 3. "b, c" are
% the other 2 vertices
[b, c] = otherDim(p-d);
polygon = [polygon(polygon~=p), b+d, c+d]; % remove i2 and add i0 and i1
flip = true;
end
end
if flip
% if ther were any flips than use existing codes to figure out the
% order of the points around the polygon
DT = delaunayTriangulation(points(polygon,dIdx));
idx = freeBoundary(DT)';
idx(2,:) = [];
polygon = polygon(idx);
end
end
%% Check to duplicate points
tol = 1e6;
P = round(points(polygon,:)*tol)/tol;
[~,ia] = unique(P,'rows'); % V = P(ia,:) and P = V(ic,:).
polygon = polygon(sort(ia));
%% Test the results using more expensive function
doPlot = (~verified(key));
if debug && length(polygon)>3
DT = delaunayTriangulation(points(polygon,dIdx));
idx = freeBoundary(DT)';
idx(2,:) = [];
k = max(abs(diff(idx)));
%doPlot = (k>1 && k<(length(idx)-1)) || (~verified(key));
assert(k==1 || k==(length(idx)-1), 'Two triangle intersection polygon is not convex')
end
if debug && doPlot % plot the interesting cases
PlotTwoTriangles(points, polygon, 'm')
title(sprintf('key = %i', key));
end
end % function
%% ========================================================================
function PlotTwoTriangles(points, polygon, color)
% Plotting function used for debugging
nx = size(points,1)-6;
d = (max(points,[],1)-min(points,[],1))/200;
figure(2)
clf
hold on
line( points(nx+(1:2),1), points(nx+(1:2),2), points(nx+(1:2),3), 'Color', 'g');
line( points(nx+(2:3),1), points(nx+(2:3),2), points(nx+(2:3),3), 'Color', 'g');
line( points(nx+[1,3],1), points(nx+[1,3],2), points(nx+[1,3],3), 'Color', 'g');
line( points(nx+(4:5),1), points(nx+(4:5),2), points(nx+(4:5),3), 'Color', 'b');
line( points(nx+(5:6),1), points(nx+(5:6),2), points(nx+(5:6),3), 'Color', 'b');
line( points(nx+[4,6],1), points(nx+[4,6],2), points(nx+[4,6],3), 'Color', 'b');
plot3( points(:,1), points(:,2), points(:,3), 'm.');
if (length(polygon)>2)
idx = polygon([1:end, 1]);
plot3( points(idx,1), points(idx,2),points(idx,3), 'Color', color, 'LineWidth', 1);
end
for i = 1:nx+6
text(points(i,1)+d(1), points(i,2)+d(2), points(i,3), num2str(i))
end
end % function
%% ========================================================================
function [intersect, X] = EdgesIntersect3D(V1,V2, U1,U2)
%EdgesIntersectPoint3D calculates point of intersection of 2 coplanar
% segments in 3D
%
% INPUTS:
% V1,V2 - 1 x 3 coordinates of endpoints of edge 1
% U1,U2 - 1 x 3 coordinates of endpoints of edge 2
% OUTPUT:
% X - 1 x 3 coordinates of the intersection point
A = V2-V1;
B = U1-U2;
C = U1-V1;
%% Solve system of equations [A,B,1] * [d;e;0] = C for d and e
det3 = @(a,b) ... % determinant of a matrix with columns: [a, b, 1]
a(:,1).*b(:,2)-a(:,3).*b(:,2) + ...
a(:,2).*b(:,3)-a(:,2).*b(:,1) + ...
a(:,3).*b(:,1)-a(:,1).*b(:,3);
f=det3(A,B); % https://en.wikipedia.org/wiki/Cramer%27s_rule#Explicit_formulas_for_small_systems
t=det3(C,B)./f; % use Cramer's rule
s=det3(A,C)./f;
intersect = (t>=0 & t<=1 & s>=0 & s<=1);
X = V1 + bsxfun(@times,A,t);
end % function
%% ========================================================================
function inside = PointInTriangle2D(V1, U)
% check if V1 is inside triangle U (U1,U2,U3)
% Algorithm is checking on which side of the half-plane created by the
% edges the point is. It uses sign of determinant to calculate orientation
% of point triplets.
% INPUTS:
% V1 - 1 x 2 coordinates of a point
% U - 3 x 2 coordinates of endpoints of 3 edges of a triangle
% OUTPUT:
% inside - a boolean or boolean array
det2 = @(A,B,C) (A(:,1)-C(:,1))*(B(:,2)-C(:,2)) - (B(:,1)-C(:,1))*(A(:,2)-C(:,2));
b1 = (det2(U(1,:), U(2,:), V1) > 0);
b2 = (det2(U(2,:), U(3,:), V1) > 0);
b3 = (det2(U(3,:), U(1,:), V1) > 0);
inside = ((b1 == b2) & (b2 == b3)); % inside if same orientation for all 3 edges
end % function
%% ========================================================================
function [b, c] = otherDim(a)
% return set [1 2 3] without k
b = mod(a+1,3)+1; % b and c are vertices which are on the same side of the plane
c = 6-a-b; % a+b+c = 6
end
%% ========================================================================
function overlap = TriangleIntersection3D_Rapid( v1, v2, v3, u1, u2, u3, n1, n2 )
%TriangleIntersection3D tests if 2 triangles defined in 3D intersect.
%
% INPUTS:
% v1, v2, v3, - Nx3 array of surface 1 triangle vertex coordinates
% u1, u2, u3, - Nx3 array of surface 2 triangle vertex coordinates
% n1, n2 - Nx3 array of surface 1 & 2 triangle plane normals. Those
% are optional and if provided than the first 2 steps of the algorithm
% (which are equivalent to first 2 steps of Moller algorithm) will be
% skipped.
%
% OUTPUT:
% iMsk - N x 1 intersection boolean mask marking which triangles overlap
%
% ALGORITHM:
% translated from the UNC-CH V-Collide RAPID code
% https://wwwx.cs.unc.edu/~geom/papers/COLLISION/vcol.pdf
global V1 V2 V3 U1 U2 U3
cross_prod = @(a,b) [...
a(:,2).*b(:,3)-a(:,3).*b(:,2), ...
a(:,3).*b(:,1)-a(:,1).*b(:,3), ...
a(:,1).*b(:,2)-a(:,2).*b(:,1)];
%% shift t1 and t2 by p1#
V1 = zeros(size(v1));
V2 = v2-v1;
V3 = v3-v1;
U1 = u1-v1;
U2 = u2-v1;
U3 = u3-v1;
clear v1 v2 v3 u1 u2 u3
if(nargin<7)
%% now begin the series of tests
n1 = cross_prod( V2-V1, V3-V1 ); % face normals
n2 = cross_prod( U2-U1, U3-U1 ); % face normals
end
%% test the face normals
overlap = project6(n1) & project6(n2);
V1 = V1(overlap,:);
V2 = V2(overlap,:);
V3 = V3(overlap,:);
U1 = U1(overlap,:);
U2 = U2(overlap,:);
U3 = U3(overlap,:);
n1 = n1(overlap,:);
n2 = n2(overlap,:);
%% compute triangle edges
e1 = V2-V1;
e2 = V3-V2;
e3 = V1-V3;
f1 = U2-U1;
f2 = U3-U2;
f3 = U1-U3;
%% run more tests
overlap2 = project6(cross_prod(e1, f1));
overlap2 = project6(cross_prod(e1, f2)) & overlap2;
overlap2 = project6(cross_prod(e1, f3)) & overlap2;
overlap2 = project6(cross_prod(e2, f1)) & overlap2;
overlap2 = project6(cross_prod(e2, f2)) & overlap2;
overlap2 = project6(cross_prod(e2, f3)) & overlap2;
overlap2 = project6(cross_prod(e3, f1)) & overlap2;
overlap2 = project6(cross_prod(e3, f2)) & overlap2;
overlap2 = project6(cross_prod(e3, f3)) & overlap2;
overlap2 = project6(cross_prod(e1, n1)) & overlap2;
overlap2 = project6(cross_prod(e2, n1)) & overlap2;
overlap2 = project6(cross_prod(e3, n1)) & overlap2;
overlap2 = project6(cross_prod(f1, n2)) & overlap2;
overlap2 = project6(cross_prod(f2, n2)) & overlap2;
overlap2 = project6(cross_prod(f3, n2)) & overlap2;
overlap(overlap) = overlap2;
end
%% ========================================================================
function pass = project6( p )
% project all 6 vertices of both triangles onto vector p and check if two
% projections overlap
global V1 V2 V3 U1 U2 U3
dot_prod = @(a,b) a(:,1).*b(:,1)+a(:,2).*b(:,2)+a(:,3).*b(:,3);
%% Project vertices of triangle 1 and find the bounds min1 and max1
P = [dot_prod(p, V1), dot_prod(p, V2), dot_prod(p, V3)];
max1 = max(P,[],2);
min1 = min(P,[],2);
%% Project vertices of triangle 2 and find the bounds min1 and max1
P = [dot_prod(p, U1), dot_prod(p, U2), dot_prod(p, U3)];
max2 = max(P,[],2);
min2 = min(P,[],2);
%% Compare the bounds to see if they overlap
pass = (( min1 < max2 ) & ( min2 < max1 )) | ~dot_prod(p, p);
end