Diff of /transforms.py [000000] .. [ef4563]

Switch to unified view

a b/transforms.py
1
from monai.transforms import (
2
    Compose,
3
    ToTensord,
4
    RandFlipd,
5
    Spacingd,
6
    RandScaleIntensityd,
7
    RandShiftIntensityd,
8
    NormalizeIntensityd,
9
    AddChanneld,
10
    DivisiblePadd
11
)
12
13
14
#Transforms to be applied on training instances
15
train_transform = Compose(
16
    [   
17
        AddChanneld(keys=["image", "label"]),
18
        Spacingd(keys=['image', 'label'], pixdim=(1., 1., 1.), mode=("bilinear", "nearest")),
19
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=0),
20
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=1),
21
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=2),
22
        NormalizeIntensityd(keys='image', nonzero=True, channel_wise=True),
23
        RandScaleIntensityd(keys='image', factors=0.1, prob=1.0),
24
        RandShiftIntensityd(keys='image', offsets=0.1, prob=1.0),
25
        DivisiblePadd(k=16, keys=["image", "label"]),
26
        ToTensord(keys=['image', 'label'])
27
    ]
28
)
29
30
#Cuda version of "train_transform"
31
train_transform_cuda = Compose(
32
    [   
33
        AddChanneld(keys=["image", "label"]),
34
        Spacingd(keys=['image', 'label'], pixdim=(1., 1., 1.), mode=("bilinear", "nearest")),
35
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=0),
36
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=1),
37
        RandFlipd(keys=['image', 'label'], prob=0.5, spatial_axis=2),
38
        NormalizeIntensityd(keys='image', nonzero=True, channel_wise=True),
39
        RandScaleIntensityd(keys='image', factors=0.1, prob=1.0),
40
        RandShiftIntensityd(keys='image', offsets=0.1, prob=1.0),
41
        DivisiblePadd(k=16, keys=["image", "label"]),
42
        ToTensord(keys=['image', 'label'], device='cuda')
43
    ]
44
)
45
46
#Transforms to be applied on validation instances
47
val_transform = Compose(
48
    [   
49
        AddChanneld(keys=["image", "label"]),
50
        NormalizeIntensityd(keys='image', nonzero=True, channel_wise=True),
51
        DivisiblePadd(k=16, keys=["image", "label"]),
52
        ToTensord(keys=['image', 'label'])
53
    ]
54
)
55
56
#Cuda version of "val_transform"
57
val_transform_cuda = Compose(
58
    [   
59
        AddChanneld(keys=["image", "label"]),
60
        NormalizeIntensityd(keys='image', nonzero=True, channel_wise=True),
61
        DivisiblePadd(k=16, keys=["image", "label"]),
62
        ToTensord(keys=['image', 'label'], device='cuda')
63
    ]
64
)