[bc8010]: / RefineNet & SESNet / SESNet / multi_gpu_train.py

Download this file

250 lines (207 with data), 9.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import tensorflow as tf
from tensorflow.python.ops import gen_logging_ops
from tensorflow.python.framework import ops as _ops
import time
import shutil
import datetime
import os
import cv2
import pickle
import numpy as np
from tensorflow.contrib import slim
import sys
sys.path.append(os.getcwd())
from nets import model as model
from utils.tf_records import read_tfrecord_and_decode_into_image_annotation_pair_tensors
from utils.pascal_voc import pascal_segmentation_lut
# Parameter Setting: batch_size 2 gpu_list 2
tf.app.flags.DEFINE_string('model_type', 'refinenet', 'refinenet or sesnet')
tf.app.flags.DEFINE_integer('batch_size', 2, '')
tf.app.flags.DEFINE_integer('train_size', 512, '')
tf.app.flags.DEFINE_float('learning_rate', 0.00001, '')
tf.app.flags.DEFINE_integer('max_steps', 60000, '')
tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '')
tf.app.flags.DEFINE_integer('num_classes', 2, '')
tf.app.flags.DEFINE_string('gpu_list', '0,1', '')
tf.app.flags.DEFINE_string('checkpoint_path', 'checkpoints/', '')
tf.app.flags.DEFINE_string('logs_path', 'logs/', '')
tf.app.flags.DEFINE_boolean('restore', False, 'whether to restore from checkpoint')
tf.app.flags.DEFINE_integer('save_checkpoint_steps', 500, '')
tf.app.flags.DEFINE_integer('save_summary_steps', 10, '')
tf.app.flags.DEFINE_integer('save_image_steps', 10, '')
tf.app.flags.DEFINE_string('training_data_path', 'data/train.tfrecords', '')
tf.app.flags.DEFINE_string('pretrained_model_path', 'data/resnet_v1_101.ckpt', '')
tf.app.flags.DEFINE_integer('decay_steps', 20000, '')
tf.app.flags.DEFINE_float('decay_rate', 0.1, '')
FLAGS = tf.app.flags.FLAGS
def tower_loss(images, annotation, class_labels, reuse_variables=None):
with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables):
logits = model.model(FLAGS.model_type, images, is_training=True)
pred = tf.argmax(logits, dimension=3)
model_loss = model.loss(annotation, logits, class_labels)
total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# add summary
if reuse_variables is None:
tf.summary.scalar('model_loss', model_loss)
tf.summary.scalar('total_loss', total_loss)
return total_loss, model_loss, pred, logits
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
for g, _ in grad_and_vars:
expanded_g = tf.expand_dims(g, 0)
grads.append(expanded_g)
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def build_image_summary():
log_image_data = tf.placeholder(tf.uint8, [None, None, 3])
log_image_name = tf.placeholder(tf.string)
log_image = gen_logging_ops .image_summary(log_image_name, tf.expand_dims(log_image_data, 0), max_images=1)
_ops.add_to_collection(_ops.GraphKeys.SUMMARIES, log_image)
return log_image, log_image_data, log_image_name
def main(argv=None):
gpus = range(len(FLAGS.gpu_list.split(',')))
pascal_voc_lut = pascal_segmentation_lut()
class_labels = pascal_voc_lut.keys()
print(class_labels)
with open('data/color_map', 'rb') as f:
color_map = pickle.load(f)
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list
now = datetime.datetime.now()
StyleTime = now.strftime("%Y-%m-%d-%H-%M-%S")
os.makedirs(FLAGS.logs_path + StyleTime)
if not os.path.exists(FLAGS.checkpoint_path):
os.makedirs(FLAGS.checkpoint_path)
else:
if not FLAGS.restore:
if os.path.exists(FLAGS.checkpoint_path):
shutil.rmtree(FLAGS.checkpoint_path)
os.makedirs(FLAGS.checkpoint_path)
filename_queue = tf.train.string_input_producer([FLAGS.training_data_path], num_epochs=1000)
image, annotation = read_tfrecord_and_decode_into_image_annotation_pair_tensors(filename_queue)
image_train_size = [FLAGS.train_size, FLAGS.train_size]
annotation_train_size = [FLAGS.train_size // 4, FLAGS.train_size // 4]
resized_image = tf.image.resize_images(image, image_train_size, method=1)
resized_annotation = tf.image.resize_images(annotation, annotation_train_size, method=1)
resized_annotation = tf.squeeze(resized_annotation)
image_batch, annotation_batch = tf.train.shuffle_batch([resized_image, resized_annotation],
batch_size=FLAGS.batch_size * len(gpus), capacity=1000,
num_threads=4,
min_after_dequeue=500)
# split
input_images_split = tf.split(image_batch, len(gpus))
input_segs_split = tf.split(annotation_batch, len(gpus))
learning_rate = tf.Variable(FLAGS.learning_rate, trainable=False)
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
# add summary
tf.summary.scalar('learning_rate', learning_rate)
opt = tf.train.AdamOptimizer(learning_rate)
tower_grads = []
reuse_variables = None
for i, gpu_id in enumerate(gpus):
with tf.device('/gpu:%d' % gpu_id):
with tf.name_scope('model_%d' % gpu_id) as scope:
iis = input_images_split[i]
isms = input_segs_split[i]
total_loss, model_loss, output_pred, output_logits = tower_loss(iis, isms, class_labels, reuse_variables)
batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
reuse_variables = True
grads = opt.compute_gradients(total_loss)
tower_grads.append(grads)
grads = average_gradients(tower_grads)
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
summary_op = tf.summary.merge_all()
log_image, log_image_data, log_image_name = build_image_summary()
# save moving average
variable_averages = tf.train.ExponentialMovingAverage(
FLAGS.moving_average_decay, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
# batch norm updates
with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]):
train_op = tf.no_op(name='train_op')
saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)
summary_writer = tf.summary.FileWriter(FLAGS.logs_path + StyleTime, tf.get_default_graph())
if FLAGS.pretrained_model_path is not None:
variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path,
slim.get_trainable_variables(),
ignore_missing_vars=True)
global_vars_init_op = tf.global_variables_initializer()
local_vars_init_op = tf.local_variables_initializer()
init = tf.group(local_vars_init_op, global_vars_init_op)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
config = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False,
gpu_options=gpu_options)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
restore_step = 0
if FLAGS.restore:
sess.run(init)
print('continue training from previous checkpoint')
ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
restore_step = int(ckpt.split('.')[0].split('_')[-1])
saver.restore(sess, ckpt)
else:
sess.run(init)
if FLAGS.pretrained_model_path is not None:
variable_restore_op(sess)
start = time.time()
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop():
for step in range(restore_step, FLAGS.max_steps):
if step != 0 and step % FLAGS.decay_steps == 0:
sess.run(tf.assign(learning_rate, learning_rate.eval() * FLAGS.decay_rate))
ml, tl, _ = sess.run([model_loss, total_loss, train_op])
if np.isnan(tl):
print('Loss diverged, stop training')
break
if step % 10 == 0:
avg_time_per_step = (time.time() - start) / 10
start = time.time()
print('Step {:06d}, model loss {:.4f}, total loss {:.4f}, {:.3f} seconds/step, lr: {:.7f}'). \
format(step, ml, tl, avg_time_per_step, learning_rate.eval())
if (step + 1) % FLAGS.save_checkpoint_steps == 0:
filename = ('SESNet' + '_step_{:d}'.format(step + 1) + '.ckpt')
filename = os.path.join(FLAGS.checkpoint_path, filename)
saver.save(sess, filename)
print('Write model to: {:s}'.format(filename))
if step % FLAGS.save_summary_steps == 0:
_, tl, summary_str = sess.run([train_op, total_loss, summary_op])
summary_writer.add_summary(summary_str, global_step=step)
if step % FLAGS.save_image_steps == 0:
log_image_name_str = ('%06d' % step)
img_split, seg_split, pred = sess.run([iis, isms, output_pred])
img_split = np.squeeze(img_split)[0]
seg_split = np.squeeze(seg_split)[0]
pred = np.squeeze(pred)[0] # why cannot batch_size = 1
# img_split = img_split[0]
# seg_split = seg_split[0]
# pred = pred[0]
# print(np.max(seg_split))
img_split = cv2.resize(img_split,(128,128))
color_seg = np.zeros((seg_split.shape[0], seg_split.shape[1], 3))
for i in range(seg_split.shape[0]):
for j in range(seg_split.shape[1]):
color_seg[i, j, :] = color_map[str(seg_split[i][j])]
color_pred = np.zeros((pred.shape[0], pred.shape[1], 3))
for i in range(pred.shape[0]):
for j in range(pred.shape[1]):
color_pred[i, j, :] = color_map[str(class_labels[pred[i][j]])]
write_img = np.hstack((img_split, color_seg, color_pred))
log_image_summary_op = sess.run(log_image, feed_dict={log_image_name: log_image_name_str, \
log_image_data: write_img})
summary_writer.add_summary(log_image_summary_op, global_step=step)
except tf.errors.OutOfRangeError:
print('finish')
finally:
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
tf.app.run()