Download this file

454 lines (391 with data), 18.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
//------------------------------------------------------------------------------
template<class T> inline
int DualMC<T>::getCellCode(int32_t const cx, int32_t const cy, int32_t const cz, VolumeDataType const iso) const {
// determine for each cube corner if it is outside or inside
int code = 0;
if(data[gA(cx,cy,cz)] >= iso)
code |= 1;
if(data[gA(cx+1,cy,cz)] >= iso)
code |= 2;
if(data[gA(cx,cy+1,cz)] >= iso)
code |= 4;
if(data[gA(cx+1,cy+1,cz)] >= iso)
code |= 8;
if(data[gA(cx,cy,cz+1)] >= iso)
code |= 16;
if(data[gA(cx+1,cy,cz+1)] >= iso)
code |= 32;
if(data[gA(cx,cy+1,cz+1)] >= iso)
code |= 64;
if(data[gA(cx+1,cy+1,cz+1)] >= iso)
code |= 128;
return code;
}
//------------------------------------------------------------------------------
template<class T> inline
int DualMC<T>::getDualPointCode(int32_t const cx, int32_t const cy, int32_t const cz, VolumeDataType const iso, DMCEdgeCode const edge) const {
int cubeCode = getCellCode(cx, cy, cz, iso);
// is manifold dual marching cubes desired?
if(generateManifold) {
// The Manifold Dual Marching Cubes approach from Rephael Wenger as described in
// chapter 3.3.5 of his book "Isosurfaces: Geometry, Topology, and Algorithms"
// is implemente here.
// If a problematic C16 or C19 configuration shares the ambiguous face
// with another C16 or C19 configuration we simply invert the cube code
// before looking up dual points. Doing this for these pairs ensures
// manifold meshes.
// But this removes the dualism to marching cubes.
// check if we have a potentially problematic configuration
uint8_t const direction = problematicConfigs[uint8_t(cubeCode)];
// If the direction code is in {0,...,5} we have a C16 or C19 configuration.
if(direction != 255) {
// We have to check the neighboring cube, which shares the ambiguous
// face. For this we decode the direction. This could also be done
// with another lookup table.
// copy current cube coordinates into an array.
int32_t neighborCoords[] = {cx,cy,cz};
// get the dimension of the non-zero coordinate axis
unsigned int const component = direction >> 1;
// get the sign of the direction
int32_t delta = (direction & 1) == 1 ? 1 : -1;
// modify the correspong cube coordinate
neighborCoords[component] += delta;
// have we left the volume in this direction?
if(neighborCoords[component] >= 0 && neighborCoords[component] < (dims[component]-1)) {
// get the cube configuration of the relevant neighbor
int neighborCubeCode = getCellCode(neighborCoords[0], neighborCoords[1], neighborCoords[2], iso);
// Look up the neighbor configuration ambiguous face direction.
// If the direction is valid we have a C16 or C19 neighbor.
// As C16 and C19 have exactly one ambiguous face this face is
// guaranteed to be shared for the pair.
if(problematicConfigs[uint8_t(neighborCubeCode)] != 255) {
// replace the cube configuration with its inverse.
cubeCode ^= 0xff;
}
}
}
}
for(int i = 0; i < 4; ++i)
if(dualPointsList[cubeCode][i] & edge) {
return dualPointsList[cubeCode][i];
}
return 0;
}
//------------------------------------------------------------------------------
template<class T> inline
void DualMC<T>::calculateDualPoint(int32_t const cx, int32_t const cy, int32_t const cz, VolumeDataType const iso, int const pointCode, Vertex & v) const {
// initialize the point with lower voxel coordinates
v.x = cx;
v.y = cy;
v.z = cz;
// compute the dual point as the mean of the face vertices belonging to the
// original marching cubes face
Vertex p;
p.x=0;
p.y=0;
p.z=0;
int points = 0;
// sum edge intersection vertices using the point code
if(pointCode & EDGE0) {
p.x += ((float)iso - (float)data[gA(cx,cy,cz)])/((float)data[gA(cx+1,cy,cz)]-(float)data[gA(cx,cy,cz)]);
points++;
}
if(pointCode & EDGE1) {
p.x += 1.0f;
p.z += ((float)iso - (float)data[gA(cx+1,cy,cz)])/((float)data[gA(cx+1,cy,cz+1)]-(float)data[gA(cx+1,cy,cz)]);
points++;
}
if(pointCode & EDGE2) {
p.x += ((float)iso - (float)data[gA(cx,cy,cz+1)])/((float)data[gA(cx+1,cy,cz+1)]-(float)data[gA(cx,cy,cz+1)]);
p.z += 1.0f;
points++;
}
if(pointCode & EDGE3) {
p.z += ((float)iso - (float)data[gA(cx,cy,cz)])/((float)data[gA(cx,cy,cz+1)]-(float)data[gA(cx,cy,cz)]);
points++;
}
if(pointCode & EDGE4) {
p.x += ((float)iso - (float)data[gA(cx,cy+1,cz)])/((float)data[gA(cx+1,cy+1,cz)]-(float)data[gA(cx,cy+1,cz)]);
p.y += 1.0f;
points++;
}
if(pointCode & EDGE5) {
p.x += 1.0f;
p.z += ((float)iso - (float)data[gA(cx+1,cy+1,cz)])/((float)data[gA(cx+1,cy+1,cz+1)]-(float)data[gA(cx+1,cy+1,cz)]);
p.y += 1.0f;
points++;
}
if(pointCode & EDGE6) {
p.x += ((float)iso - (float)data[gA(cx,cy+1,cz+1)])/((float)data[gA(cx+1,cy+1,cz+1)]-(float)data[gA(cx,cy+1,cz+1)]);
p.z += 1.0f;
p.y += 1.0f;
points++;
}
if(pointCode & EDGE7) {
p.z += ((float)iso - (float)data[gA(cx,cy+1,cz)])/((float)data[gA(cx,cy+1,cz+1)]-(float)data[gA(cx,cy+1,cz)]);
p.y += 1.0f;
points++;
}
if(pointCode & EDGE8) {
p.y += ((float)iso - (float)data[gA(cx,cy,cz)])/((float)data[gA(cx,cy+1,cz)]-(float)data[gA(cx,cy,cz)]);
points++;
}
if(pointCode & EDGE9) {
p.x += 1.0f;
p.y += ((float)iso - (float)data[gA(cx+1,cy,cz)])/((float)data[gA(cx+1,cy+1,cz)]-(float)data[gA(cx+1,cy,cz)]);
points++;
}
if(pointCode & EDGE10) {
p.x += 1.0f;
p.y += ((float)iso - (float)data[gA(cx+1,cy,cz+1)])/((float)data[gA(cx+1,cy+1,cz+1)]-(float)data[gA(cx+1,cy,cz+1)]);
p.z += 1.0f;
points++;
}
if(pointCode & EDGE11) {
p.z += 1.0f;
p.y += ((float)iso - (float)data[gA(cx,cy,cz+1)])/((float)data[gA(cx,cy+1,cz+1)]-(float)data[gA(cx,cy,cz+1)]);
points++;
}
// divide by number of accumulated points
float invPoints = 1.0f / (float)points;
p.x*= invPoints;
p.y*= invPoints;
p.z*= invPoints;
// offset point by voxel coordinates
v.x += p.x;
v.y += p.y;
v.z += p.z;
}
//------------------------------------------------------------------------------
template<class T> inline
QuadIndexType DualMC<T>::getSharedDualPointIndex(
int32_t const cx, int32_t const cy, int32_t const cz,
VolumeDataType const iso, DMCEdgeCode const edge,
std::vector<Vertex> & vertices
) {
// create a key for the dual point from its linearized cell ID and point code
DualPointKey key;
key.linearizedCellID = gA(cx,cy,cz);
key.pointCode = getDualPointCode(cx,cy,cz,iso,edge);
// have we already computed the dual point?
auto iterator = pointToIndex.find(key);
if(iterator != pointToIndex.end()) {
// just return the dual point index
return iterator->second;
} else {
// create new vertex and vertex id
QuadIndexType newVertexId = vertices.size();
vertices.emplace_back();
calculateDualPoint(cx,cy,cz,iso,key.pointCode, vertices.back());
// insert vertex ID into map and also return it
pointToIndex[key] = newVertexId;
return newVertexId;
}
}
//------------------------------------------------------------------------------
template<class T> inline
void DualMC<T>::build(
VolumeDataType const * data,
int32_t const dimX, int32_t const dimY, int32_t const dimZ,
VolumeDataType const iso,
bool const generateManifold,
bool const generateSoup,
std::vector<Vertex> & vertices,
std::vector<Quad> & quads
) {
// set members
this->dims[0] = dimX;
this->dims[1] = dimY;
this->dims[2] = dimZ;
this->data = data;
this->generateManifold = generateManifold;
// clear vertices and quad indices
vertices.clear();
quads.clear();
// generate quad soup or shared vertices quad list
if(generateSoup) {
buildQuadSoup(iso,vertices,quads);
} else {
buildSharedVerticesQuads(iso,vertices,quads);
}
}
//------------------------------------------------------------------------------
template<class T> inline
void DualMC<T>::buildQuadSoup(
VolumeDataType const iso,
std::vector<Vertex> & vertices,
std::vector<Quad> & quads
) {
int32_t const reducedX = dims[0] - 2;
int32_t const reducedY = dims[1] - 2;
int32_t const reducedZ = dims[2] - 2;
Vertex vertex0;
Vertex vertex1;
Vertex vertex2;
Vertex vertex3;
int pointCode;
// iterate voxels
for(int32_t z = 0; z < reducedZ; ++z)
for(int32_t y = 0; y < reducedY; ++y)
for(int32_t x = 0; x < reducedX; ++x) {
// construct quad for x edge
if(z > 0 && y > 0) {
// is edge intersected?
bool const entering = data[gA(x,y,z)] < iso && data[gA(x+1,y,z)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x+1,y,z)] < iso;
if(entering || exiting){
// generate quad
pointCode = getDualPointCode(x,y,z,iso,EDGE0);
calculateDualPoint(x,y,z,iso,pointCode, vertex0);
pointCode = getDualPointCode(x,y,z-1,iso,EDGE2);
calculateDualPoint(x,y,z-1,iso,pointCode, vertex1);
pointCode = getDualPointCode(x,y-1,z-1,iso,EDGE6);
calculateDualPoint(x,y-1,z-1,iso,pointCode, vertex2);
pointCode = getDualPointCode(x,y-1,z,iso,EDGE4);
calculateDualPoint(x,y-1,z,iso,pointCode, vertex3);
if(entering) {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex1);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex3);
} else {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex3);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex1);
}
}
}
// construct quad for y edge
if(z > 0 && x > 0) {
// is edge intersected?
bool const entering = data[gA(x,y,z)] < iso && data[gA(x,y+1,z)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x,y+1,z)] < iso;
if(entering || exiting){
// generate quad
pointCode = getDualPointCode(x,y,z,iso,EDGE8);
calculateDualPoint(x,y,z,iso,pointCode, vertex0);
pointCode = getDualPointCode(x,y,z-1,iso,EDGE11);
calculateDualPoint(x,y,z-1,iso,pointCode, vertex1);
pointCode = getDualPointCode(x-1,y,z-1,iso,EDGE10);
calculateDualPoint(x-1,y,z-1,iso,pointCode, vertex2);
pointCode = getDualPointCode(x-1,y,z,iso,EDGE9);
calculateDualPoint(x-1,y,z,iso,pointCode, vertex3);
if(exiting) {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex1);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex3);
} else {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex3);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex1);
}
}
}
// construct quad for z edge
if(x > 0 && y > 0) {
// is edge intersected?
bool const entering = data[gA(x,y,z)] < iso && data[gA(x,y,z+1)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x,y,z+1)] < iso;
if(entering || exiting){
// generate quad
pointCode = getDualPointCode(x,y,z,iso,EDGE3);
calculateDualPoint(x,y,z,iso,pointCode, vertex0);
pointCode = getDualPointCode(x-1,y,z,iso,EDGE1);
calculateDualPoint(x-1,y,z,iso,pointCode, vertex1);
pointCode = getDualPointCode(x-1,y-1,z,iso,EDGE5);
calculateDualPoint(x-1,y-1,z,iso,pointCode, vertex2);
pointCode = getDualPointCode(x,y-1,z,iso,EDGE7);
calculateDualPoint(x,y-1,z,iso,pointCode, vertex3);
if(exiting) {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex1);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex3);
} else {
vertices.emplace_back(vertex0);
vertices.emplace_back(vertex3);
vertices.emplace_back(vertex2);
vertices.emplace_back(vertex1);
}
}
}
}
// generate triangle soup quads
size_t const numQuads = vertices.size() / 4;
quads.reserve(numQuads);
for (size_t i = 0; i < numQuads; ++i) {
quads.emplace_back(i * 4, i * 4 + 1, i * 4 + 2, i * 4 + 3);
}
}
//------------------------------------------------------------------------------
template<class T> inline
void DualMC<T>::buildSharedVerticesQuads(
VolumeDataType const iso,
std::vector<Vertex> & vertices,
std::vector<Quad> & quads
) {
int32_t const reducedX = dims[0] - 2;
int32_t const reducedY = dims[1] - 2;
int32_t const reducedZ = dims[2] - 2;
QuadIndexType i0,i1,i2,i3;
pointToIndex.clear();
// iterate voxels
for(int32_t z = 0; z < reducedZ; ++z)
for(int32_t y = 0; y < reducedY; ++y)
for(int32_t x = 0; x < reducedX; ++x) {
// construct quads for x edge
if(z > 0 && y > 0) {
bool const entering = data[gA(x,y,z)] < iso && data[gA(x+1,y,z)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x+1,y,z)] < iso;
if(entering || exiting){
// generate quad
i0 = getSharedDualPointIndex(x,y,z,iso,EDGE0,vertices);
i1 = getSharedDualPointIndex(x,y,z-1,iso,EDGE2,vertices);
i2 = getSharedDualPointIndex(x,y-1,z-1,iso,EDGE6,vertices);
i3 = getSharedDualPointIndex(x,y-1,z,iso,EDGE4,vertices);
if(entering) {
quads.emplace_back(i0,i1,i2,i3);
} else {
quads.emplace_back(i0,i3,i2,i1);
}
}
}
// construct quads for y edge
if(z > 0 && x > 0) {
bool const entering = data[gA(x,y,z)] < iso && data[gA(x,y+1,z)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x,y+1,z)] < iso;
if(entering || exiting){
// generate quad
i0 = getSharedDualPointIndex(x,y,z,iso,EDGE8,vertices);
i1 = getSharedDualPointIndex(x,y,z-1,iso,EDGE11,vertices);
i2 = getSharedDualPointIndex(x-1,y,z-1,iso,EDGE10,vertices);
i3 = getSharedDualPointIndex(x-1,y,z,iso,EDGE9,vertices);
if(exiting) {
quads.emplace_back(i0,i1,i2,i3);
} else {
quads.emplace_back(i0,i3,i2,i1);
}
}
}
// construct quads for z edge
if(x > 0 && y > 0) {
bool const entering = data[gA(x,y,z)] < iso && data[gA(x,y,z+1)] >= iso;
bool const exiting = data[gA(x,y,z)] >= iso && data[gA(x,y,z+1)] < iso;
if(entering || exiting){
// generate quad
i0 = getSharedDualPointIndex(x,y,z,iso,EDGE3,vertices);
i1 = getSharedDualPointIndex(x-1,y,z,iso,EDGE1,vertices);
i2 = getSharedDualPointIndex(x-1,y-1,z,iso,EDGE5,vertices);
i3 = getSharedDualPointIndex(x,y-1,z,iso,EDGE7,vertices);
if(exiting) {
quads.emplace_back(i0,i1,i2,i3);
} else {
quads.emplace_back(i0,i3,i2,i1);
}
}
}
}
}