Switch to unified view

a b/SegNet/SegNetCMR/helpers.py
1
import tensorflow as tf
2
3
def add_output_images(images, logits, labels):
4
    cast_labels = tf.cast(labels, tf.uint8) * 128
5
    cast_labels = cast_labels[...,None]
6
    tf.summary.image('input_labels', cast_labels, max_outputs=3)
7
8
    classification1 = tf.nn.softmax(logits = logits, dim=-1)[...,1]
9
    output_image_gb = images[...,0]
10
    output_image_r = classification1 + tf.multiply(images[...,0], (1-classification1))
11
    output_image = tf.stack([output_image_r, output_image_gb, output_image_gb], axis=3)
12
    tf.summary.image('output_mixed', output_image, max_outputs=3)
13
14
    output_image_binary = tf.argmax(logits, 3)
15
    output_image_binary = tf.cast(output_image_binary[...,None], tf.float32) * 128/255
16
    tf.summary.image('output_labels', output_image_binary, max_outputs=3)
17
18
    output_labels_mixed_r = output_image_binary[...,0] + tf.multiply(images[...,0], (1-output_image_binary[...,0]))
19
    output_labels_mixed = tf.stack([output_labels_mixed_r, output_image_gb, output_image_gb], axis=3)
20
    tf.summary.image('output_labels_mixed', output_labels_mixed, max_outputs=3)
21
22
    return
23
24
def add_test_output_images(images, logits):
25
    output_image_gb = images[..., 0]
26
27
    output_image_binary = tf.argmax(logits, 3)
28
    output_image_binary = tf.cast(output_image_binary[..., None], tf.float32) * 128 / 255
29
    tf.summary.image('test_prediction_labels', output_image_binary, max_outputs=3)
30
31
    output_labels_mixed_r = output_image_binary[..., 0] + tf.multiply(images[..., 0], (1 - output_image_binary[..., 0]))
32
    output_labels_mixed = tf.stack([output_labels_mixed_r, output_image_gb, output_image_gb], axis=3)
33
    tf.summary.image('test_prediction_labels_mixed', output_labels_mixed, max_outputs=3)
34
35
    return