Switch to unified view

a b/SegNet/SegNetCMR/evaluation.py
1
import tensorflow as tf
2
3
4
def loss_calc(logits, labels):
5
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
6
    loss = tf.reduce_mean(cross_entropy)
7
    tf.summary.scalar('loss', loss)
8
    return loss
9
10
11
def evaluation(logits, labels):
12
    correct_prediction = tf.equal(tf.argmax(logits, 3) > 0, labels > 0)
13
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
14
    tf.summary.scalar('accuracy', accuracy)
15
    return accuracy
16
17
def IoU_calc(logits, labels):
18
    inter = tf.reduce_sum(tf.cast((tf.argmax(logits, 3) > 0) & (labels > 0), tf.float32), [1, 2])
19
    union = tf.reduce_sum(tf.cast((tf.argmax(logits, 3) > 0) | (labels > 0), tf.float32), [1, 2])
20
    IoU = tf.reduce_mean(tf.cast(inter/union, tf.float32))
21
    return IoU