import tensorflow as tf
from tensorflow.contrib import slim
from nets import resnet_v1
from nets.convlstm_cell import ConvLSTMCell
from utils.training import get_valid_logits_and_labels
FLAGS = tf.app.flags.FLAGS
def unpool(inputs,scale):
return tf.image.resize_bilinear(inputs, size=[tf.shape(inputs)[1]*scale, tf.shape(inputs)[2]*scale])
def ResidualConvUnit(inputs,features=256,kernel_size=3):
net=tf.nn.relu(inputs)
net=slim.conv2d(net, features, kernel_size)
net=tf.nn.relu(net)
net=slim.conv2d(net,features,kernel_size)
net=tf.add(net,inputs)
return net
def ChainedResidualPooling(inputs,features=256):
net_relu=tf.nn.relu(inputs)
net=slim.max_pool2d(net_relu, [5, 5],stride=1,padding='SAME')
net=slim.conv2d(net,features,3)
net_sum_1=tf.add(net,net_relu)
net = slim.max_pool2d(net_relu, [5, 5], stride=1, padding='SAME')
net = slim.conv2d(net, features, 3)
net_sum_2=tf.add(net,net_sum_1)
return net_sum_2
def MultiResolutionFusion(high_inputs=None,low_inputs=None,features=256):
if high_inputs is None:#refineNet block 4
rcu_low_1 = low_inputs[0]
rcu_low_2 = low_inputs[1]
rcu_low_1 = slim.conv2d(rcu_low_1, features, 3)
rcu_low_2 = slim.conv2d(rcu_low_2, features, 3)
return tf.add(rcu_low_1,rcu_low_2)
else:
rcu_low_1 = low_inputs[0]
rcu_low_2 = low_inputs[1]
rcu_low_1 = slim.conv2d(rcu_low_1, features, 3)
rcu_low_2 = slim.conv2d(rcu_low_2, features, 3)
rcu_low = tf.add(rcu_low_1,rcu_low_2)
rcu_high_1 = high_inputs[0]
rcu_high_2 = high_inputs[1]
rcu_high_1 = unpool(slim.conv2d(rcu_high_1, features, 3),2)
rcu_high_2 = unpool(slim.conv2d(rcu_high_2, features, 3),2)
rcu_high = tf.add(rcu_high_1,rcu_high_2)
return tf.add(rcu_low, rcu_high)
def RefineBlock(high_inputs=None,low_inputs=None):
if high_inputs is None: # block 4
rcu_low_1= ResidualConvUnit(low_inputs, features=256)
rcu_low_2 = ResidualConvUnit(low_inputs, features=256)
rcu_low = [rcu_low_1, rcu_low_2]
fuse = MultiResolutionFusion(high_inputs=None, low_inputs=rcu_low, features=256)
fuse_pooling = ChainedResidualPooling(fuse, features=256)
output = ResidualConvUnit(fuse_pooling, features=256)
return output
else:
rcu_low_1 = ResidualConvUnit(low_inputs, features=256)
rcu_low_2 = ResidualConvUnit(low_inputs, features=256)
rcu_low = [rcu_low_1, rcu_low_2]
rcu_high_1 = ResidualConvUnit(high_inputs, features=256)
rcu_high_2 = ResidualConvUnit(high_inputs, features=256)
rcu_high = [rcu_high_1, rcu_high_2]
fuse = MultiResolutionFusion(rcu_high, rcu_low,features=256)
fuse_pooling = ChainedResidualPooling(fuse, features=256)
output = ResidualConvUnit(fuse_pooling, features=256)
return output
def model(model_type, images, weight_decay=1e-5, is_training=True):
images = mean_image_subtraction(images)
with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
logits, end_points = resnet_v1.resnet_v1_101(images, is_training=is_training, scope='resnet_v1_101')
with tf.variable_scope('feature_fusion', values=[end_points.values]):
batch_norm_params = {'decay': 0.997,'epsilon': 1e-5,'scale': True,'is_training': is_training}
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
weights_regularizer=slim.l2_regularizer(weight_decay)):
f = [end_points['pool5'], end_points['pool4'],
end_points['pool3'], end_points['pool2']]
for i in range(4):
print('Shape of f_{} {}'.format(i, f[i].shape))
g = [None, None, None, None]
h = [None, None, None, None]
for i in range(4):
h[i]=slim.conv2d(f[i], 256, 1)
for i in range(4):
print('Shape of h_{} {}'.format(i, h[i].shape))
g[0]=RefineBlock(high_inputs=None,low_inputs=h[0])
g[1]=RefineBlock(g[0],h[1])
g[2]=RefineBlock(g[1],h[2])
g[3]=RefineBlock(g[2],h[3])
#g[3]=unpool(g[3],scale=4)
output = g[3]
if model_type == 'sesnet':
in_shape = g[3].shape
output = tf.expand_dims(g[3], axis=0)
lstm_cell_1 = ConvLSTMCell([in_shape[1], in_shape[2]], in_shape[3] // 2, [3, 3])
lstm_cell_2 = ConvLSTMCell([in_shape[1], in_shape[2]], in_shape[3] // 4, [3, 3])
with tf.variable_scope('rnn_scope_0', reuse=tf.AUTO_REUSE):
output0, _ = tf.nn.dynamic_rnn(lstm_cell_1, output, dtype=output.dtype)
with tf.variable_scope('rnn_scope_1', reuse=tf.AUTO_REUSE):
output1, _ = tf.nn.dynamic_rnn(lstm_cell_2, output0, dtype=output0.dtype)
output = tf.squeeze(output1, axis=0)
F_score = slim.conv2d(output, 2, 1, activation_fn=tf.nn.relu, normalizer_fn=None)
return F_score
def mean_image_subtraction(images, means=[123.68, 116.78, 103.94]):
images=tf.to_float(images)
num_channels = images.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
channels = tf.split(axis=3, num_or_size_splits=num_channels, value=images)
for i in range(num_channels):
channels[i] -= means[i]
return tf.concat(axis=3, values=channels)
def loss(annotation_batch,upsampled_logits_batch,class_labels):
valid_labels_batch_tensor, valid_logits_batch_tensor = get_valid_logits_and_labels(
annotation_batch_tensor=annotation_batch,
logits_batch_tensor=upsampled_logits_batch,
class_labels=class_labels)
valid_labels_batch_tensor = tf.argmax(valid_labels_batch_tensor, dimension=3)
cross_entropies = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=valid_logits_batch_tensor,
labels=valid_labels_batch_tensor)
cross_entropy_sum = tf.reduce_mean(cross_entropies)
return cross_entropy_sum