|
a |
|
b/scratch.py |
|
|
1 |
""" |
|
|
2 |
import pandas as pd |
|
|
3 |
from sklearn import svm |
|
|
4 |
file = 'data/train.csv' |
|
|
5 |
|
|
|
6 |
train_data = pd.read_csv(file) |
|
|
7 |
|
|
|
8 |
print(train_data.head()) |
|
|
9 |
|
|
|
10 |
print(train_data.columns) |
|
|
11 |
|
|
|
12 |
#features = Sex, Age, Pclass, Cabin, SibSp, Parch, Embarked, Name, Ticket |
|
|
13 |
#label = Survived |
|
|
14 |
|
|
|
15 |
#'PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp','Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked' |
|
|
16 |
|
|
|
17 |
#SVM |
|
|
18 |
#Bayesian logisitic regression |
|
|
19 |
kernel = 'rbf' |
|
|
20 |
svm.SVC() |
|
|
21 |
""" |
|
|
22 |
|
|
|
23 |
# Extract features using sliding window and form the training dataset, test dataset |
|
|
24 |
|
|
|
25 |
from sklearn.ensemble import RandomForestClassifier |
|
|
26 |
from sklearn.datasets import make_classification |
|
|
27 |
from sklearn.model_selection import train_test_split |
|
|
28 |
from sklearn.mixture import GaussianMixture |
|
|
29 |
|
|
|
30 |
import numpy as np |
|
|
31 |
|
|
|
32 |
X, y = make_classification(n_samples=10000, n_features=6, |
|
|
33 |
n_informative=3, n_redundant=0, |
|
|
34 |
random_state=0, shuffle=True) |
|
|
35 |
|
|
|
36 |
print(X.shape) # 10000x6 |
|
|
37 |
print(y.shape) # 10000 |
|
|
38 |
|
|
|
39 |
# TODO: Feature extraction using sliding window |
|
|
40 |
|
|
|
41 |
train_features, test_features, train_labels, test_labels = train_test_split(X, y, |
|
|
42 |
test_size=0.25, random_state=42) |
|
|
43 |
# TODO: K-fold cross validation |
|
|
44 |
|
|
|
45 |
print('Training Features Shape:', train_features.shape) |
|
|
46 |
print('Training Labels Shape:', train_labels.shape) |
|
|
47 |
print('Testing Features Shape:', test_features.shape) |
|
|
48 |
print('Testing Labels Shape:', test_labels.shape) |
|
|
49 |
|
|
|
50 |
clf = RandomForestClassifier(n_estimators=100, max_depth=3, oob_score=True |
|
|
51 |
) |
|
|
52 |
|
|
|
53 |
clf.fit(X, y) |
|
|
54 |
|
|
|
55 |
print(clf.feature_importances_) |
|
|
56 |
#print(clf.oob_decision_function_) |
|
|
57 |
print(clf.oob_score_) |
|
|
58 |
|
|
|
59 |
predictions = clf.predict(test_features) |
|
|
60 |
errors = abs(predictions - test_labels) |
|
|
61 |
print("M A E: ", round(np.mean(errors), 2)) |
|
|
62 |
|
|
|
63 |
|
|
|
64 |
# Visualization |
|
|
65 |
feature_list = [1, 2, 3, 4, 5, 6] |
|
|
66 |
from sklearn.tree import export_graphviz |
|
|
67 |
import pydot |
|
|
68 |
# Pull out one tree from the forest |
|
|
69 |
tree = clf.estimators_[5] |
|
|
70 |
# Export the image to a dot file |
|
|
71 |
export_graphviz(tree, out_file='tree.dot', feature_names=feature_list, rounded=True, precision=1) |
|
|
72 |
# Use dot file to create a graph |
|
|
73 |
(graph, ) = pydot.graph_from_dot_file('tree.dot') |
|
|
74 |
# Write graph to a png file |
|
|
75 |
#graph.write_png('tree_.png') |
|
|
76 |
|
|
|
77 |
# TODO: Confusion matrix, Accuracy |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
# GMM |
|
|
81 |
|
|
|
82 |
gmm = GaussianMixture(n_components=3, covariance_type='full') |
|
|
83 |
gmm.fit(X, y) |