|
a |
|
b/model/model.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"metadata": {}, |
|
|
6 |
"source": [ |
|
|
7 |
"# Stress Detection Using ML" |
|
|
8 |
] |
|
|
9 |
}, |
|
|
10 |
{ |
|
|
11 |
"cell_type": "code", |
|
|
12 |
"execution_count": 45, |
|
|
13 |
"metadata": {}, |
|
|
14 |
"outputs": [], |
|
|
15 |
"source": [ |
|
|
16 |
"import numpy as np\n", |
|
|
17 |
"import pandas as pd" |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"### Reading the Dataset" |
|
|
25 |
] |
|
|
26 |
}, |
|
|
27 |
{ |
|
|
28 |
"cell_type": "code", |
|
|
29 |
"execution_count": 46, |
|
|
30 |
"metadata": {}, |
|
|
31 |
"outputs": [ |
|
|
32 |
{ |
|
|
33 |
"data": { |
|
|
34 |
"text/html": [ |
|
|
35 |
"<div>\n", |
|
|
36 |
"<style scoped>\n", |
|
|
37 |
" .dataframe tbody tr th:only-of-type {\n", |
|
|
38 |
" vertical-align: middle;\n", |
|
|
39 |
" }\n", |
|
|
40 |
"\n", |
|
|
41 |
" .dataframe tbody tr th {\n", |
|
|
42 |
" vertical-align: top;\n", |
|
|
43 |
" }\n", |
|
|
44 |
"\n", |
|
|
45 |
" .dataframe thead th {\n", |
|
|
46 |
" text-align: right;\n", |
|
|
47 |
" }\n", |
|
|
48 |
"</style>\n", |
|
|
49 |
"<table border=\"1\" class=\"dataframe\">\n", |
|
|
50 |
" <thead>\n", |
|
|
51 |
" <tr style=\"text-align: right;\">\n", |
|
|
52 |
" <th></th>\n", |
|
|
53 |
" <th>net_acc_mean</th>\n", |
|
|
54 |
" <th>net_acc_std</th>\n", |
|
|
55 |
" <th>net_acc_min</th>\n", |
|
|
56 |
" <th>net_acc_max</th>\n", |
|
|
57 |
" <th>ACC_x_mean</th>\n", |
|
|
58 |
" <th>ACC_x_std</th>\n", |
|
|
59 |
" <th>ACC_x_min</th>\n", |
|
|
60 |
" <th>ACC_x_max</th>\n", |
|
|
61 |
" <th>ACC_y_mean</th>\n", |
|
|
62 |
" <th>ACC_y_std</th>\n", |
|
|
63 |
" <th>...</th>\n", |
|
|
64 |
" <th>age</th>\n", |
|
|
65 |
" <th>height</th>\n", |
|
|
66 |
" <th>weight</th>\n", |
|
|
67 |
" <th>gender_ female</th>\n", |
|
|
68 |
" <th>gender_ male</th>\n", |
|
|
69 |
" <th>coffee_today_YES</th>\n", |
|
|
70 |
" <th>sport_today_YES</th>\n", |
|
|
71 |
" <th>smoker_NO</th>\n", |
|
|
72 |
" <th>smoker_YES</th>\n", |
|
|
73 |
" <th>feel_ill_today_YES</th>\n", |
|
|
74 |
" </tr>\n", |
|
|
75 |
" </thead>\n", |
|
|
76 |
" <tbody>\n", |
|
|
77 |
" <tr>\n", |
|
|
78 |
" <th>0</th>\n", |
|
|
79 |
" <td>0.029937</td>\n", |
|
|
80 |
" <td>0.009942</td>\n", |
|
|
81 |
" <td>0.000000</td>\n", |
|
|
82 |
" <td>0.087383</td>\n", |
|
|
83 |
" <td>0.029510</td>\n", |
|
|
84 |
" <td>0.011145</td>\n", |
|
|
85 |
" <td>-0.024082</td>\n", |
|
|
86 |
" <td>0.087383</td>\n", |
|
|
87 |
" <td>0.000020</td>\n", |
|
|
88 |
" <td>0.000008</td>\n", |
|
|
89 |
" <td>...</td>\n", |
|
|
90 |
" <td>27</td>\n", |
|
|
91 |
" <td>175</td>\n", |
|
|
92 |
" <td>80</td>\n", |
|
|
93 |
" <td>0</td>\n", |
|
|
94 |
" <td>1</td>\n", |
|
|
95 |
" <td>0</td>\n", |
|
|
96 |
" <td>0</td>\n", |
|
|
97 |
" <td>1</td>\n", |
|
|
98 |
" <td>0</td>\n", |
|
|
99 |
" <td>0</td>\n", |
|
|
100 |
" </tr>\n", |
|
|
101 |
" <tr>\n", |
|
|
102 |
" <th>1</th>\n", |
|
|
103 |
" <td>0.021986</td>\n", |
|
|
104 |
" <td>0.015845</td>\n", |
|
|
105 |
" <td>0.000000</td>\n", |
|
|
106 |
" <td>0.071558</td>\n", |
|
|
107 |
" <td>0.017352</td>\n", |
|
|
108 |
" <td>0.020817</td>\n", |
|
|
109 |
" <td>-0.037843</td>\n", |
|
|
110 |
" <td>0.071558</td>\n", |
|
|
111 |
" <td>0.000012</td>\n", |
|
|
112 |
" <td>0.000014</td>\n", |
|
|
113 |
" <td>...</td>\n", |
|
|
114 |
" <td>27</td>\n", |
|
|
115 |
" <td>175</td>\n", |
|
|
116 |
" <td>80</td>\n", |
|
|
117 |
" <td>0</td>\n", |
|
|
118 |
" <td>1</td>\n", |
|
|
119 |
" <td>0</td>\n", |
|
|
120 |
" <td>0</td>\n", |
|
|
121 |
" <td>1</td>\n", |
|
|
122 |
" <td>0</td>\n", |
|
|
123 |
" <td>0</td>\n", |
|
|
124 |
" </tr>\n", |
|
|
125 |
" <tr>\n", |
|
|
126 |
" <th>2</th>\n", |
|
|
127 |
" <td>0.020839</td>\n", |
|
|
128 |
" <td>0.011034</td>\n", |
|
|
129 |
" <td>0.002752</td>\n", |
|
|
130 |
" <td>0.054356</td>\n", |
|
|
131 |
" <td>0.020839</td>\n", |
|
|
132 |
" <td>0.011034</td>\n", |
|
|
133 |
" <td>0.002752</td>\n", |
|
|
134 |
" <td>0.054356</td>\n", |
|
|
135 |
" <td>0.000014</td>\n", |
|
|
136 |
" <td>0.000008</td>\n", |
|
|
137 |
" <td>...</td>\n", |
|
|
138 |
" <td>27</td>\n", |
|
|
139 |
" <td>175</td>\n", |
|
|
140 |
" <td>80</td>\n", |
|
|
141 |
" <td>0</td>\n", |
|
|
142 |
" <td>1</td>\n", |
|
|
143 |
" <td>0</td>\n", |
|
|
144 |
" <td>0</td>\n", |
|
|
145 |
" <td>1</td>\n", |
|
|
146 |
" <td>0</td>\n", |
|
|
147 |
" <td>0</td>\n", |
|
|
148 |
" </tr>\n", |
|
|
149 |
" <tr>\n", |
|
|
150 |
" <th>3</th>\n", |
|
|
151 |
" <td>0.034449</td>\n", |
|
|
152 |
" <td>0.003185</td>\n", |
|
|
153 |
" <td>0.013761</td>\n", |
|
|
154 |
" <td>0.040595</td>\n", |
|
|
155 |
" <td>0.034449</td>\n", |
|
|
156 |
" <td>0.003185</td>\n", |
|
|
157 |
" <td>0.013761</td>\n", |
|
|
158 |
" <td>0.040595</td>\n", |
|
|
159 |
" <td>0.000024</td>\n", |
|
|
160 |
" <td>0.000002</td>\n", |
|
|
161 |
" <td>...</td>\n", |
|
|
162 |
" <td>27</td>\n", |
|
|
163 |
" <td>175</td>\n", |
|
|
164 |
" <td>80</td>\n", |
|
|
165 |
" <td>0</td>\n", |
|
|
166 |
" <td>1</td>\n", |
|
|
167 |
" <td>0</td>\n", |
|
|
168 |
" <td>0</td>\n", |
|
|
169 |
" <td>1</td>\n", |
|
|
170 |
" <td>0</td>\n", |
|
|
171 |
" <td>0</td>\n", |
|
|
172 |
" </tr>\n", |
|
|
173 |
" </tbody>\n", |
|
|
174 |
"</table>\n", |
|
|
175 |
"<p>4 rows × 58 columns</p>\n", |
|
|
176 |
"</div>" |
|
|
177 |
], |
|
|
178 |
"text/plain": [ |
|
|
179 |
" net_acc_mean net_acc_std net_acc_min net_acc_max ACC_x_mean ACC_x_std \\\n", |
|
|
180 |
"0 0.029937 0.009942 0.000000 0.087383 0.029510 0.011145 \n", |
|
|
181 |
"1 0.021986 0.015845 0.000000 0.071558 0.017352 0.020817 \n", |
|
|
182 |
"2 0.020839 0.011034 0.002752 0.054356 0.020839 0.011034 \n", |
|
|
183 |
"3 0.034449 0.003185 0.013761 0.040595 0.034449 0.003185 \n", |
|
|
184 |
"\n", |
|
|
185 |
" ACC_x_min ACC_x_max ACC_y_mean ACC_y_std ... age height weight \\\n", |
|
|
186 |
"0 -0.024082 0.087383 0.000020 0.000008 ... 27 175 80 \n", |
|
|
187 |
"1 -0.037843 0.071558 0.000012 0.000014 ... 27 175 80 \n", |
|
|
188 |
"2 0.002752 0.054356 0.000014 0.000008 ... 27 175 80 \n", |
|
|
189 |
"3 0.013761 0.040595 0.000024 0.000002 ... 27 175 80 \n", |
|
|
190 |
"\n", |
|
|
191 |
" gender_ female gender_ male coffee_today_YES sport_today_YES smoker_NO \\\n", |
|
|
192 |
"0 0 1 0 0 1 \n", |
|
|
193 |
"1 0 1 0 0 1 \n", |
|
|
194 |
"2 0 1 0 0 1 \n", |
|
|
195 |
"3 0 1 0 0 1 \n", |
|
|
196 |
"\n", |
|
|
197 |
" smoker_YES feel_ill_today_YES \n", |
|
|
198 |
"0 0 0 \n", |
|
|
199 |
"1 0 0 \n", |
|
|
200 |
"2 0 0 \n", |
|
|
201 |
"3 0 0 \n", |
|
|
202 |
"\n", |
|
|
203 |
"[4 rows x 58 columns]" |
|
|
204 |
] |
|
|
205 |
}, |
|
|
206 |
"execution_count": 46, |
|
|
207 |
"metadata": {}, |
|
|
208 |
"output_type": "execute_result" |
|
|
209 |
} |
|
|
210 |
], |
|
|
211 |
"source": [ |
|
|
212 |
"df = pd.read_csv('data/merged.csv', index_col=0)\n", |
|
|
213 |
"df.head(4)" |
|
|
214 |
] |
|
|
215 |
}, |
|
|
216 |
{ |
|
|
217 |
"cell_type": "code", |
|
|
218 |
"execution_count": 47, |
|
|
219 |
"metadata": {}, |
|
|
220 |
"outputs": [ |
|
|
221 |
{ |
|
|
222 |
"data": { |
|
|
223 |
"text/plain": [ |
|
|
224 |
"Index(['net_acc_mean', 'net_acc_std', 'net_acc_min', 'net_acc_max',\n", |
|
|
225 |
" 'ACC_x_mean', 'ACC_x_std', 'ACC_x_min', 'ACC_x_max', 'ACC_y_mean',\n", |
|
|
226 |
" 'ACC_y_std', 'ACC_y_min', 'ACC_y_max', 'ACC_z_mean', 'ACC_z_std',\n", |
|
|
227 |
" 'ACC_z_min', 'ACC_z_max', 'BVP_mean', 'BVP_std', 'BVP_min', 'BVP_max',\n", |
|
|
228 |
" 'EDA_mean', 'EDA_std', 'EDA_min', 'EDA_max', 'EDA_phasic_mean',\n", |
|
|
229 |
" 'EDA_phasic_std', 'EDA_phasic_min', 'EDA_phasic_max', 'EDA_smna_mean',\n", |
|
|
230 |
" 'EDA_smna_std', 'EDA_smna_min', 'EDA_smna_max', 'EDA_tonic_mean',\n", |
|
|
231 |
" 'EDA_tonic_std', 'EDA_tonic_min', 'EDA_tonic_max', 'Resp_mean',\n", |
|
|
232 |
" 'Resp_std', 'Resp_min', 'Resp_max', 'TEMP_mean', 'TEMP_std', 'TEMP_min',\n", |
|
|
233 |
" 'TEMP_max', 'BVP_peak_freq', 'TEMP_slope', 'subject', 'label', 'age',\n", |
|
|
234 |
" 'height', 'weight', 'gender_ female', 'gender_ male',\n", |
|
|
235 |
" 'coffee_today_YES', 'sport_today_YES', 'smoker_NO', 'smoker_YES',\n", |
|
|
236 |
" 'feel_ill_today_YES'],\n", |
|
|
237 |
" dtype='object')" |
|
|
238 |
] |
|
|
239 |
}, |
|
|
240 |
"execution_count": 47, |
|
|
241 |
"metadata": {}, |
|
|
242 |
"output_type": "execute_result" |
|
|
243 |
} |
|
|
244 |
], |
|
|
245 |
"source": [ |
|
|
246 |
"df.columns" |
|
|
247 |
] |
|
|
248 |
}, |
|
|
249 |
{ |
|
|
250 |
"cell_type": "code", |
|
|
251 |
"execution_count": 48, |
|
|
252 |
"metadata": {}, |
|
|
253 |
"outputs": [ |
|
|
254 |
{ |
|
|
255 |
"data": { |
|
|
256 |
"text/plain": [ |
|
|
257 |
"array([0, 1, 2])" |
|
|
258 |
] |
|
|
259 |
}, |
|
|
260 |
"execution_count": 48, |
|
|
261 |
"metadata": {}, |
|
|
262 |
"output_type": "execute_result" |
|
|
263 |
} |
|
|
264 |
], |
|
|
265 |
"source": [ |
|
|
266 |
"np.unique(df['label'])" |
|
|
267 |
] |
|
|
268 |
}, |
|
|
269 |
{ |
|
|
270 |
"cell_type": "code", |
|
|
271 |
"execution_count": 49, |
|
|
272 |
"metadata": {}, |
|
|
273 |
"outputs": [], |
|
|
274 |
"source": [ |
|
|
275 |
"labels = {\n", |
|
|
276 |
" 0: \"Amused\",\n", |
|
|
277 |
" 1: \"Neutral\",\n", |
|
|
278 |
" 2: \"Stressed\"\n", |
|
|
279 |
"}" |
|
|
280 |
] |
|
|
281 |
}, |
|
|
282 |
{ |
|
|
283 |
"cell_type": "markdown", |
|
|
284 |
"metadata": {}, |
|
|
285 |
"source": [ |
|
|
286 |
"### Feature Selection" |
|
|
287 |
] |
|
|
288 |
}, |
|
|
289 |
{ |
|
|
290 |
"cell_type": "code", |
|
|
291 |
"execution_count": null, |
|
|
292 |
"metadata": { |
|
|
293 |
"tags": [ |
|
|
294 |
"nbconvert_remove" |
|
|
295 |
] |
|
|
296 |
}, |
|
|
297 |
"outputs": [], |
|
|
298 |
"source": [ |
|
|
299 |
"# nbconvert_remove\n", |
|
|
300 |
"\n", |
|
|
301 |
"import matplotlib.pyplot as plt\n", |
|
|
302 |
"import seaborn as sns\n", |
|
|
303 |
"\n", |
|
|
304 |
"plt.figure(figsize=(2,100))\n", |
|
|
305 |
"cor = df.corr()\n", |
|
|
306 |
"n_targets = len(df.columns)\n", |
|
|
307 |
"cor_target = cor['label'].values.reshape(n_targets, 1)\n", |
|
|
308 |
"cor_features = cor['label'].keys()\n", |
|
|
309 |
"ax = sns.heatmap(cor_target, annot=True, cmap=plt.cm.Accent_r)\n", |
|
|
310 |
"ax.set_yticklabels(cor_features)\n", |
|
|
311 |
"plt.show()" |
|
|
312 |
] |
|
|
313 |
}, |
|
|
314 |
{ |
|
|
315 |
"cell_type": "code", |
|
|
316 |
"execution_count": 51, |
|
|
317 |
"metadata": {}, |
|
|
318 |
"outputs": [ |
|
|
319 |
{ |
|
|
320 |
"data": { |
|
|
321 |
"text/plain": [ |
|
|
322 |
"((1178, 15), (1178,))" |
|
|
323 |
] |
|
|
324 |
}, |
|
|
325 |
"execution_count": 51, |
|
|
326 |
"metadata": {}, |
|
|
327 |
"output_type": "execute_result" |
|
|
328 |
} |
|
|
329 |
], |
|
|
330 |
"source": [ |
|
|
331 |
"selected_feats = [\n", |
|
|
332 |
" 'BVP_mean', 'BVP_std', 'EDA_phasic_mean', 'EDA_phasic_min', 'EDA_smna_min', \n", |
|
|
333 |
" 'EDA_tonic_mean', 'Resp_mean', 'Resp_std', 'TEMP_mean', 'TEMP_std', 'TEMP_slope',\n", |
|
|
334 |
" 'BVP_peak_freq', 'age', 'height', 'weight'\n", |
|
|
335 |
" ]\n", |
|
|
336 |
"\n", |
|
|
337 |
"X = df[selected_feats]\n", |
|
|
338 |
"y = df['label']\n", |
|
|
339 |
"\n", |
|
|
340 |
"X.shape, y.shape" |
|
|
341 |
] |
|
|
342 |
}, |
|
|
343 |
{ |
|
|
344 |
"cell_type": "markdown", |
|
|
345 |
"metadata": {}, |
|
|
346 |
"source": [ |
|
|
347 |
"## ML Model" |
|
|
348 |
] |
|
|
349 |
}, |
|
|
350 |
{ |
|
|
351 |
"cell_type": "code", |
|
|
352 |
"execution_count": 52, |
|
|
353 |
"metadata": {}, |
|
|
354 |
"outputs": [], |
|
|
355 |
"source": [ |
|
|
356 |
"from sklearn.model_selection import train_test_split\n", |
|
|
357 |
"from sklearn.ensemble import RandomForestClassifier" |
|
|
358 |
] |
|
|
359 |
}, |
|
|
360 |
{ |
|
|
361 |
"cell_type": "code", |
|
|
362 |
"execution_count": 53, |
|
|
363 |
"metadata": {}, |
|
|
364 |
"outputs": [ |
|
|
365 |
{ |
|
|
366 |
"data": { |
|
|
367 |
"text/plain": [ |
|
|
368 |
"((1060, 15), (118, 15))" |
|
|
369 |
] |
|
|
370 |
}, |
|
|
371 |
"execution_count": 53, |
|
|
372 |
"metadata": {}, |
|
|
373 |
"output_type": "execute_result" |
|
|
374 |
} |
|
|
375 |
], |
|
|
376 |
"source": [ |
|
|
377 |
"X_train, X_test = train_test_split(X, test_size=0.1, random_state=0)\n", |
|
|
378 |
"y_train, y_test = train_test_split(y, test_size=0.1, random_state=0)\n", |
|
|
379 |
"\n", |
|
|
380 |
"X_train.shape, X_test.shape" |
|
|
381 |
] |
|
|
382 |
}, |
|
|
383 |
{ |
|
|
384 |
"cell_type": "code", |
|
|
385 |
"execution_count": null, |
|
|
386 |
"metadata": {}, |
|
|
387 |
"outputs": [], |
|
|
388 |
"source": [ |
|
|
389 |
"model = RandomForestClassifier()\n", |
|
|
390 |
"model.fit(X_train,y_train)" |
|
|
391 |
] |
|
|
392 |
}, |
|
|
393 |
{ |
|
|
394 |
"cell_type": "code", |
|
|
395 |
"execution_count": 65, |
|
|
396 |
"metadata": {}, |
|
|
397 |
"outputs": [], |
|
|
398 |
"source": [ |
|
|
399 |
"def accuracy(predicted, actual):\n", |
|
|
400 |
" n = 0\n", |
|
|
401 |
" for p, a in zip(predicted, actual):\n", |
|
|
402 |
" if p == a:\n", |
|
|
403 |
" n += 1\n", |
|
|
404 |
" return n/len(predicted) * 100" |
|
|
405 |
] |
|
|
406 |
}, |
|
|
407 |
{ |
|
|
408 |
"cell_type": "code", |
|
|
409 |
"execution_count": 66, |
|
|
410 |
"metadata": {}, |
|
|
411 |
"outputs": [], |
|
|
412 |
"source": [ |
|
|
413 |
"def predict(arr):\n", |
|
|
414 |
" arr = np.array(arr)\n", |
|
|
415 |
"\n", |
|
|
416 |
" global model\n", |
|
|
417 |
" result = model.predict(arr.reshape(1,-1)).flatten()\n", |
|
|
418 |
" # _prob = model.predict_proba(arr.reshape(1,-1)).flatten()\n", |
|
|
419 |
" return result" |
|
|
420 |
] |
|
|
421 |
}, |
|
|
422 |
{ |
|
|
423 |
"cell_type": "code", |
|
|
424 |
"execution_count": 68, |
|
|
425 |
"metadata": { |
|
|
426 |
"tags": [ |
|
|
427 |
"nbconvert_remove" |
|
|
428 |
] |
|
|
429 |
}, |
|
|
430 |
"outputs": [ |
|
|
431 |
{ |
|
|
432 |
"data": { |
|
|
433 |
"text/plain": [ |
|
|
434 |
"95.76271186440678" |
|
|
435 |
] |
|
|
436 |
}, |
|
|
437 |
"execution_count": 68, |
|
|
438 |
"metadata": {}, |
|
|
439 |
"output_type": "execute_result" |
|
|
440 |
} |
|
|
441 |
], |
|
|
442 |
"source": [ |
|
|
443 |
"predicted = []\n", |
|
|
444 |
"for data in X_test.values:\n", |
|
|
445 |
" predicted.append(predict(data))\n", |
|
|
446 |
"predicted\n", |
|
|
447 |
"\n", |
|
|
448 |
"accuracy(predicted, y_test.values)" |
|
|
449 |
] |
|
|
450 |
}, |
|
|
451 |
{ |
|
|
452 |
"cell_type": "markdown", |
|
|
453 |
"metadata": {}, |
|
|
454 |
"source": [ |
|
|
455 |
"### Saving the trained model in a pickle file to be later used by the API function to predict" |
|
|
456 |
] |
|
|
457 |
}, |
|
|
458 |
{ |
|
|
459 |
"cell_type": "code", |
|
|
460 |
"execution_count": 69, |
|
|
461 |
"metadata": {}, |
|
|
462 |
"outputs": [], |
|
|
463 |
"source": [ |
|
|
464 |
"import pickle\n", |
|
|
465 |
"\n", |
|
|
466 |
"filename = 'trained_model.sav'\n", |
|
|
467 |
"pickle.dump(model, open(filename, 'wb'))" |
|
|
468 |
] |
|
|
469 |
} |
|
|
470 |
], |
|
|
471 |
"metadata": { |
|
|
472 |
"kernelspec": { |
|
|
473 |
"display_name": "Python 3.10.7 ('venv': venv)", |
|
|
474 |
"language": "python", |
|
|
475 |
"name": "python3" |
|
|
476 |
}, |
|
|
477 |
"language_info": { |
|
|
478 |
"codemirror_mode": { |
|
|
479 |
"name": "ipython", |
|
|
480 |
"version": 3 |
|
|
481 |
}, |
|
|
482 |
"file_extension": ".py", |
|
|
483 |
"mimetype": "text/x-python", |
|
|
484 |
"name": "python", |
|
|
485 |
"nbconvert_exporter": "python", |
|
|
486 |
"pygments_lexer": "ipython3", |
|
|
487 |
"version": "3.10.7" |
|
|
488 |
}, |
|
|
489 |
"orig_nbformat": 4, |
|
|
490 |
"vscode": { |
|
|
491 |
"interpreter": { |
|
|
492 |
"hash": "b56aae866cfdd3dd1993badfb61811822ff858e2a83b734b90ea6aa544e22f54" |
|
|
493 |
} |
|
|
494 |
} |
|
|
495 |
}, |
|
|
496 |
"nbformat": 4, |
|
|
497 |
"nbformat_minor": 2 |
|
|
498 |
} |