|
a |
|
b/analytics/Analysis_Björn.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 1, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import pandas as pd\n", |
|
|
10 |
"import matplotlib.pyplot as plt" |
|
|
11 |
] |
|
|
12 |
}, |
|
|
13 |
{ |
|
|
14 |
"cell_type": "markdown", |
|
|
15 |
"metadata": {}, |
|
|
16 |
"source": [ |
|
|
17 |
"# Glucose Analysis " |
|
|
18 |
] |
|
|
19 |
}, |
|
|
20 |
{ |
|
|
21 |
"cell_type": "markdown", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [] |
|
|
24 |
}, |
|
|
25 |
{ |
|
|
26 |
"cell_type": "markdown", |
|
|
27 |
"metadata": {}, |
|
|
28 |
"source": [ |
|
|
29 |
"# Sleep Analysis" |
|
|
30 |
] |
|
|
31 |
}, |
|
|
32 |
{ |
|
|
33 |
"cell_type": "code", |
|
|
34 |
"execution_count": 2, |
|
|
35 |
"metadata": {}, |
|
|
36 |
"outputs": [], |
|
|
37 |
"source": [ |
|
|
38 |
"# Load dataset\n", |
|
|
39 |
"df = pd.read_csv('../data/garmin/sleep.csv', sep=',')\n", |
|
|
40 |
"\n", |
|
|
41 |
"# Drop not needed columns\n", |
|
|
42 |
"df = df.drop(columns=['User Id', 'User Last Name', 'User Email', 'Team Names', 'Group Names', \n", |
|
|
43 |
" 'Calendar Date (UTC)', 'Start Time (UTC)', 'End Time (UTC)',\n", |
|
|
44 |
" 'Source', 'Validation', 'Time Zone (s)', 'Timezone (Local)', 'Summary Id'])\n", |
|
|
45 |
"\n", |
|
|
46 |
"# Convert data types\n", |
|
|
47 |
"df['Calendar Date (Local)'] = pd.to_datetime(df['Calendar Date (Local)'])\n", |
|
|
48 |
"df['Start Time (Local)'] = pd.to_datetime(df['Start Time (Local)'])\n", |
|
|
49 |
"df['End Time (Local)'] = pd.to_datetime(df['End Time (Local)'])\n", |
|
|
50 |
"df['Processing Time'] = pd.to_datetime(df['Processing Time'])\n", |
|
|
51 |
"df['SleepPhaseStartTime'] = pd.to_datetime(df['SleepPhaseStartTime'])\n", |
|
|
52 |
"#df['SleepPhaseEndTime'] = df['SleepPhaseEndTime'].str.replace('T',' ')\n", |
|
|
53 |
"df['SleepPhaseEndTime'] = pd.to_datetime(df['SleepPhaseEndTime'], format='mixed')" |
|
|
54 |
] |
|
|
55 |
}, |
|
|
56 |
{ |
|
|
57 |
"cell_type": "code", |
|
|
58 |
"execution_count": null, |
|
|
59 |
"metadata": {}, |
|
|
60 |
"outputs": [], |
|
|
61 |
"source": [ |
|
|
62 |
"# Select user = P14 and day = 2023-12-24\n", |
|
|
63 |
"df_p12 = df[df['User First Name'] == 'P12']\n", |
|
|
64 |
"df_p12_xmas = df_p12[df_p12['Calendar Date (Local)'] == '2023-12-24']\n", |
|
|
65 |
"\n", |
|
|
66 |
"# Print\n", |
|
|
67 |
"df_p12_xmas" |
|
|
68 |
] |
|
|
69 |
} |
|
|
70 |
], |
|
|
71 |
"metadata": { |
|
|
72 |
"kernelspec": { |
|
|
73 |
"display_name": "Python 3", |
|
|
74 |
"language": "python", |
|
|
75 |
"name": "python3" |
|
|
76 |
}, |
|
|
77 |
"language_info": { |
|
|
78 |
"codemirror_mode": { |
|
|
79 |
"name": "ipython", |
|
|
80 |
"version": 3 |
|
|
81 |
}, |
|
|
82 |
"file_extension": ".py", |
|
|
83 |
"mimetype": "text/x-python", |
|
|
84 |
"name": "python", |
|
|
85 |
"nbconvert_exporter": "python", |
|
|
86 |
"pygments_lexer": "ipython3", |
|
|
87 |
"version": "3.11.4" |
|
|
88 |
} |
|
|
89 |
}, |
|
|
90 |
"nbformat": 4, |
|
|
91 |
"nbformat_minor": 2 |
|
|
92 |
} |