a b/analytics/Analysis_Björn.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import pandas as pd\n",
10
    "import matplotlib.pyplot as plt"
11
   ]
12
  },
13
  {
14
   "cell_type": "markdown",
15
   "metadata": {},
16
   "source": [
17
    "# Glucose Analysis "
18
   ]
19
  },
20
  {
21
   "cell_type": "markdown",
22
   "metadata": {},
23
   "source": []
24
  },
25
  {
26
   "cell_type": "markdown",
27
   "metadata": {},
28
   "source": [
29
    "# Sleep Analysis"
30
   ]
31
  },
32
  {
33
   "cell_type": "code",
34
   "execution_count": 2,
35
   "metadata": {},
36
   "outputs": [],
37
   "source": [
38
    "# Load dataset\n",
39
    "df = pd.read_csv('../data/garmin/sleep.csv', sep=',')\n",
40
    "\n",
41
    "# Drop not needed columns\n",
42
    "df = df.drop(columns=['User Id', 'User Last Name', 'User Email', 'Team Names', 'Group Names', \n",
43
    "                      'Calendar Date (UTC)', 'Start Time (UTC)', 'End Time (UTC)',\n",
44
    "                     'Source', 'Validation', 'Time Zone (s)', 'Timezone (Local)', 'Summary Id'])\n",
45
    "\n",
46
    "# Convert data types\n",
47
    "df['Calendar Date (Local)'] = pd.to_datetime(df['Calendar Date (Local)'])\n",
48
    "df['Start Time (Local)'] = pd.to_datetime(df['Start Time (Local)'])\n",
49
    "df['End Time (Local)'] = pd.to_datetime(df['End Time (Local)'])\n",
50
    "df['Processing Time'] = pd.to_datetime(df['Processing Time'])\n",
51
    "df['SleepPhaseStartTime'] = pd.to_datetime(df['SleepPhaseStartTime'])\n",
52
    "#df['SleepPhaseEndTime'] = df['SleepPhaseEndTime'].str.replace('T',' ')\n",
53
    "df['SleepPhaseEndTime'] = pd.to_datetime(df['SleepPhaseEndTime'], format='mixed')"
54
   ]
55
  },
56
  {
57
   "cell_type": "code",
58
   "execution_count": null,
59
   "metadata": {},
60
   "outputs": [],
61
   "source": [
62
    "# Select user = P14 and day = 2023-12-24\n",
63
    "df_p12 = df[df['User First Name'] == 'P12']\n",
64
    "df_p12_xmas = df_p12[df_p12['Calendar Date (Local)'] == '2023-12-24']\n",
65
    "\n",
66
    "# Print\n",
67
    "df_p12_xmas"
68
   ]
69
  }
70
 ],
71
 "metadata": {
72
  "kernelspec": {
73
   "display_name": "Python 3",
74
   "language": "python",
75
   "name": "python3"
76
  },
77
  "language_info": {
78
   "codemirror_mode": {
79
    "name": "ipython",
80
    "version": 3
81
   },
82
   "file_extension": ".py",
83
   "mimetype": "text/x-python",
84
   "name": "python",
85
   "nbconvert_exporter": "python",
86
   "pygments_lexer": "ipython3",
87
   "version": "3.11.4"
88
  }
89
 },
90
 "nbformat": 4,
91
 "nbformat_minor": 2
92
}