|
a |
|
b/t-test.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "code", |
|
|
5 |
"execution_count": 5, |
|
|
6 |
"metadata": {}, |
|
|
7 |
"outputs": [], |
|
|
8 |
"source": [ |
|
|
9 |
"import numpy as np\n", |
|
|
10 |
"import scipy\n", |
|
|
11 |
"import pandas as pd" |
|
|
12 |
] |
|
|
13 |
}, |
|
|
14 |
{ |
|
|
15 |
"cell_type": "code", |
|
|
16 |
"execution_count": 6, |
|
|
17 |
"metadata": {}, |
|
|
18 |
"outputs": [], |
|
|
19 |
"source": [ |
|
|
20 |
"from dataset import load_dataset, load_labels, split_data, format_labels\n", |
|
|
21 |
"from features import time_series_features, fractal_features, entropy_features, hjorth_features, freq_band_features\n", |
|
|
22 |
"import variables as v" |
|
|
23 |
] |
|
|
24 |
}, |
|
|
25 |
{ |
|
|
26 |
"cell_type": "markdown", |
|
|
27 |
"metadata": {}, |
|
|
28 |
"source": [ |
|
|
29 |
"## Variables" |
|
|
30 |
] |
|
|
31 |
}, |
|
|
32 |
{ |
|
|
33 |
"cell_type": "code", |
|
|
34 |
"execution_count": 7, |
|
|
35 |
"metadata": {}, |
|
|
36 |
"outputs": [], |
|
|
37 |
"source": [ |
|
|
38 |
"data_type = \"ica_filtered\"\n", |
|
|
39 |
"test_type = \"Arithmetic\"" |
|
|
40 |
] |
|
|
41 |
}, |
|
|
42 |
{ |
|
|
43 |
"cell_type": "markdown", |
|
|
44 |
"metadata": {}, |
|
|
45 |
"source": [ |
|
|
46 |
"## Load Data" |
|
|
47 |
] |
|
|
48 |
}, |
|
|
49 |
{ |
|
|
50 |
"cell_type": "code", |
|
|
51 |
"execution_count": 8, |
|
|
52 |
"metadata": {}, |
|
|
53 |
"outputs": [], |
|
|
54 |
"source": [ |
|
|
55 |
"dataset_ = load_dataset(data_type=data_type, test_type=test_type)\n", |
|
|
56 |
"dataset = split_data(dataset_, v.SFREQ)" |
|
|
57 |
] |
|
|
58 |
}, |
|
|
59 |
{ |
|
|
60 |
"cell_type": "code", |
|
|
61 |
"execution_count": 9, |
|
|
62 |
"metadata": {}, |
|
|
63 |
"outputs": [], |
|
|
64 |
"source": [ |
|
|
65 |
"label_ = load_labels()\n", |
|
|
66 |
"label = format_labels(label_, test_type=test_type, epochs=dataset.shape[1])" |
|
|
67 |
] |
|
|
68 |
}, |
|
|
69 |
{ |
|
|
70 |
"cell_type": "markdown", |
|
|
71 |
"metadata": {}, |
|
|
72 |
"source": [ |
|
|
73 |
"## Compute Features" |
|
|
74 |
] |
|
|
75 |
}, |
|
|
76 |
{ |
|
|
77 |
"cell_type": "code", |
|
|
78 |
"execution_count": 10, |
|
|
79 |
"metadata": {}, |
|
|
80 |
"outputs": [], |
|
|
81 |
"source": [ |
|
|
82 |
"# features = time_series_features(dataset)\n", |
|
|
83 |
"# freq_bands = np.array([1, 4, 8, 12, 30, 50])\n", |
|
|
84 |
"# features = freq_band_features(dataset, freq_bands)\n", |
|
|
85 |
"# features = fractal_features(dataset)\n", |
|
|
86 |
"features = hjorth_features(dataset)\n", |
|
|
87 |
"# features = entropy_features(dataset)" |
|
|
88 |
] |
|
|
89 |
}, |
|
|
90 |
{ |
|
|
91 |
"cell_type": "markdown", |
|
|
92 |
"metadata": {}, |
|
|
93 |
"source": [ |
|
|
94 |
"## Split Data" |
|
|
95 |
] |
|
|
96 |
}, |
|
|
97 |
{ |
|
|
98 |
"cell_type": "code", |
|
|
99 |
"execution_count": 11, |
|
|
100 |
"metadata": {}, |
|
|
101 |
"outputs": [], |
|
|
102 |
"source": [ |
|
|
103 |
"stressed_data = features[np.where(label != 0)]\n", |
|
|
104 |
"non_stressed_data = features[np.where(label == 0)]" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "markdown", |
|
|
109 |
"metadata": {}, |
|
|
110 |
"source": [ |
|
|
111 |
"## Compute t-tests" |
|
|
112 |
] |
|
|
113 |
}, |
|
|
114 |
{ |
|
|
115 |
"cell_type": "code", |
|
|
116 |
"execution_count": 12, |
|
|
117 |
"metadata": {}, |
|
|
118 |
"outputs": [], |
|
|
119 |
"source": [ |
|
|
120 |
"P = np.zeros(features.shape[1])\n", |
|
|
121 |
"for j, i in enumerate(range(features.shape[1])):\n", |
|
|
122 |
" _, p = scipy.stats.ttest_ind(stressed_data[:, i], non_stressed_data[:, i])\n", |
|
|
123 |
" P[j] = p" |
|
|
124 |
] |
|
|
125 |
}, |
|
|
126 |
{ |
|
|
127 |
"cell_type": "code", |
|
|
128 |
"execution_count": 13, |
|
|
129 |
"metadata": {}, |
|
|
130 |
"outputs": [], |
|
|
131 |
"source": [ |
|
|
132 |
"pd.set_option('display.max_rows', None)\n", |
|
|
133 |
"pd.set_option('display.max_columns', None)" |
|
|
134 |
] |
|
|
135 |
}, |
|
|
136 |
{ |
|
|
137 |
"cell_type": "code", |
|
|
138 |
"execution_count": 14, |
|
|
139 |
"metadata": {}, |
|
|
140 |
"outputs": [ |
|
|
141 |
{ |
|
|
142 |
"name": "stdout", |
|
|
143 |
"output_type": "stream", |
|
|
144 |
"text": [ |
|
|
145 |
" 0\n", |
|
|
146 |
"0 8.565707e-09\n", |
|
|
147 |
"1 4.199706e-01\n", |
|
|
148 |
"2 9.243714e-04\n", |
|
|
149 |
"3 2.969316e-01\n", |
|
|
150 |
"4 7.612570e-03\n", |
|
|
151 |
"5 7.449619e-01\n", |
|
|
152 |
"6 9.528565e-02\n", |
|
|
153 |
"7 8.299859e-01\n", |
|
|
154 |
"8 6.632852e-01\n", |
|
|
155 |
"9 7.414754e-03\n", |
|
|
156 |
"10 5.860924e-05\n", |
|
|
157 |
"11 2.434920e-02\n", |
|
|
158 |
"12 1.278021e-01\n", |
|
|
159 |
"13 2.940169e-05\n", |
|
|
160 |
"14 7.768960e-07\n", |
|
|
161 |
"15 1.016899e-05\n", |
|
|
162 |
"16 1.985319e-02\n", |
|
|
163 |
"17 1.070608e-01\n", |
|
|
164 |
"18 5.213117e-06\n", |
|
|
165 |
"19 1.358506e-22\n", |
|
|
166 |
"20 1.255365e-18\n", |
|
|
167 |
"21 2.182334e-06\n", |
|
|
168 |
"22 3.866509e-08\n", |
|
|
169 |
"23 1.044755e-05\n", |
|
|
170 |
"24 4.995159e-03\n", |
|
|
171 |
"25 2.483783e-01\n", |
|
|
172 |
"26 4.591010e-05\n", |
|
|
173 |
"27 5.557755e-05\n", |
|
|
174 |
"28 5.001415e-04\n", |
|
|
175 |
"29 8.098234e-01\n", |
|
|
176 |
"30 1.842379e-01\n", |
|
|
177 |
"31 2.943885e-01\n", |
|
|
178 |
"32 1.492710e-02\n", |
|
|
179 |
"33 2.327972e-03\n", |
|
|
180 |
"34 3.122502e-06\n", |
|
|
181 |
"35 4.874759e-02\n", |
|
|
182 |
"36 6.426229e-01\n", |
|
|
183 |
"37 2.972795e-02\n", |
|
|
184 |
"38 8.022454e-03\n", |
|
|
185 |
"39 8.336686e-01\n", |
|
|
186 |
"40 4.752397e-01\n", |
|
|
187 |
"41 2.231969e-02\n", |
|
|
188 |
"42 2.065300e-04\n", |
|
|
189 |
"43 1.022721e-01\n", |
|
|
190 |
"44 8.809528e-01\n", |
|
|
191 |
"45 4.398541e-06\n", |
|
|
192 |
"46 1.541289e-07\n", |
|
|
193 |
"47 1.503279e-03\n", |
|
|
194 |
"48 8.190212e-01\n", |
|
|
195 |
"49 3.946622e-01\n", |
|
|
196 |
"50 1.518190e-02\n", |
|
|
197 |
"51 3.568426e-16\n", |
|
|
198 |
"52 8.320353e-16\n", |
|
|
199 |
"53 1.328597e-03\n", |
|
|
200 |
"54 2.122381e-04\n", |
|
|
201 |
"55 4.511848e-03\n", |
|
|
202 |
"56 1.170364e-02\n", |
|
|
203 |
"57 8.785522e-01\n", |
|
|
204 |
"58 7.475689e-04\n", |
|
|
205 |
"59 5.430692e-03\n", |
|
|
206 |
"60 7.998087e-02\n", |
|
|
207 |
"61 7.635854e-02\n", |
|
|
208 |
"62 8.381844e-03\n", |
|
|
209 |
"63 8.201117e-03\n" |
|
|
210 |
] |
|
|
211 |
} |
|
|
212 |
], |
|
|
213 |
"source": [ |
|
|
214 |
"print(pd.DataFrame(P))" |
|
|
215 |
] |
|
|
216 |
}, |
|
|
217 |
{ |
|
|
218 |
"cell_type": "code", |
|
|
219 |
"execution_count": null, |
|
|
220 |
"metadata": {}, |
|
|
221 |
"outputs": [], |
|
|
222 |
"source": [] |
|
|
223 |
} |
|
|
224 |
], |
|
|
225 |
"metadata": { |
|
|
226 |
"kernelspec": { |
|
|
227 |
"display_name": "Python 3.9.7 ('init')", |
|
|
228 |
"language": "python", |
|
|
229 |
"name": "python3" |
|
|
230 |
}, |
|
|
231 |
"language_info": { |
|
|
232 |
"codemirror_mode": { |
|
|
233 |
"name": "ipython", |
|
|
234 |
"version": 3 |
|
|
235 |
}, |
|
|
236 |
"file_extension": ".py", |
|
|
237 |
"mimetype": "text/x-python", |
|
|
238 |
"name": "python", |
|
|
239 |
"nbconvert_exporter": "python", |
|
|
240 |
"pygments_lexer": "ipython3", |
|
|
241 |
"version": "3.9.7" |
|
|
242 |
}, |
|
|
243 |
"orig_nbformat": 4, |
|
|
244 |
"vscode": { |
|
|
245 |
"interpreter": { |
|
|
246 |
"hash": "6a0b16b431f91af56543167d2335ade6a4f69621936ac10d0388e1e58aabcd37" |
|
|
247 |
} |
|
|
248 |
} |
|
|
249 |
}, |
|
|
250 |
"nbformat": 4, |
|
|
251 |
"nbformat_minor": 2 |
|
|
252 |
} |