253 lines (252 with data), 5.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import scipy\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from dataset import load_dataset, load_labels, split_data, format_labels\n",
"from features import time_series_features, fractal_features, entropy_features, hjorth_features, freq_band_features\n",
"import variables as v"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Variables"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"data_type = \"ica_filtered\"\n",
"test_type = \"Arithmetic\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"dataset_ = load_dataset(data_type=data_type, test_type=test_type)\n",
"dataset = split_data(dataset_, v.SFREQ)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"label_ = load_labels()\n",
"label = format_labels(label_, test_type=test_type, epochs=dataset.shape[1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute Features"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# features = time_series_features(dataset)\n",
"# freq_bands = np.array([1, 4, 8, 12, 30, 50])\n",
"# features = freq_band_features(dataset, freq_bands)\n",
"# features = fractal_features(dataset)\n",
"features = hjorth_features(dataset)\n",
"# features = entropy_features(dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split Data"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"stressed_data = features[np.where(label != 0)]\n",
"non_stressed_data = features[np.where(label == 0)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Compute t-tests"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"P = np.zeros(features.shape[1])\n",
"for j, i in enumerate(range(features.shape[1])):\n",
" _, p = scipy.stats.ttest_ind(stressed_data[:, i], non_stressed_data[:, i])\n",
" P[j] = p"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"pd.set_option('display.max_rows', None)\n",
"pd.set_option('display.max_columns', None)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 0\n",
"0 8.565707e-09\n",
"1 4.199706e-01\n",
"2 9.243714e-04\n",
"3 2.969316e-01\n",
"4 7.612570e-03\n",
"5 7.449619e-01\n",
"6 9.528565e-02\n",
"7 8.299859e-01\n",
"8 6.632852e-01\n",
"9 7.414754e-03\n",
"10 5.860924e-05\n",
"11 2.434920e-02\n",
"12 1.278021e-01\n",
"13 2.940169e-05\n",
"14 7.768960e-07\n",
"15 1.016899e-05\n",
"16 1.985319e-02\n",
"17 1.070608e-01\n",
"18 5.213117e-06\n",
"19 1.358506e-22\n",
"20 1.255365e-18\n",
"21 2.182334e-06\n",
"22 3.866509e-08\n",
"23 1.044755e-05\n",
"24 4.995159e-03\n",
"25 2.483783e-01\n",
"26 4.591010e-05\n",
"27 5.557755e-05\n",
"28 5.001415e-04\n",
"29 8.098234e-01\n",
"30 1.842379e-01\n",
"31 2.943885e-01\n",
"32 1.492710e-02\n",
"33 2.327972e-03\n",
"34 3.122502e-06\n",
"35 4.874759e-02\n",
"36 6.426229e-01\n",
"37 2.972795e-02\n",
"38 8.022454e-03\n",
"39 8.336686e-01\n",
"40 4.752397e-01\n",
"41 2.231969e-02\n",
"42 2.065300e-04\n",
"43 1.022721e-01\n",
"44 8.809528e-01\n",
"45 4.398541e-06\n",
"46 1.541289e-07\n",
"47 1.503279e-03\n",
"48 8.190212e-01\n",
"49 3.946622e-01\n",
"50 1.518190e-02\n",
"51 3.568426e-16\n",
"52 8.320353e-16\n",
"53 1.328597e-03\n",
"54 2.122381e-04\n",
"55 4.511848e-03\n",
"56 1.170364e-02\n",
"57 8.785522e-01\n",
"58 7.475689e-04\n",
"59 5.430692e-03\n",
"60 7.998087e-02\n",
"61 7.635854e-02\n",
"62 8.381844e-03\n",
"63 8.201117e-03\n"
]
}
],
"source": [
"print(pd.DataFrame(P))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.7 ('init')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "6a0b16b431f91af56543167d2335ade6a4f69621936ac10d0388e1e58aabcd37"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}