[07bbdd]: / tests / unit / fft_test.py

Download this file

204 lines (143 with data), 6.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import logging
import numpy as np
import unittest
import random
from cloudbrain.modules.transforms.fft import FrequencyBandTransformer
_LOGGER = logging.getLogger(__name__)
_LOGGER.level = logging.DEBUG
_LOGGER.addHandler(logging.StreamHandler())
def generate_sine_wave(number_points,
sampling_frequency,
alpha_amplitude,
alpha_freq,
beta_amplitude,
beta_freq):
sample_spacing = 1.0 / sampling_frequency
x = np.linspace(start=0.0,
stop=number_points * sample_spacing,
num=number_points)
alpha = alpha_amplitude * np.sin(alpha_freq * 2.0 * np.pi * x)
beta = beta_amplitude * np.sin(beta_freq * 2.0 * np.pi * x)
y = alpha + beta + min(alpha_amplitude,
beta_amplitude) / 2.0 * random.random()
return y
def generate_mock_data(num_channels,
number_points,
sampling_frequency,
buffer_size,
alpha_amplitude,
alpha_freq,
beta_amplitude,
beta_freq):
sine_wave = generate_sine_wave(number_points,
sampling_frequency,
alpha_amplitude,
alpha_freq,
beta_amplitude,
beta_freq)
buffers = []
# if number_points = 250 and buffer_size = 40, then num_buffers = 6 + 1
num_buffers = int(number_points / buffer_size)
if number_points % buffer_size != 0:
num_buffers += 1 # you need to account for the almost full buffer
t0 = 0
sample_spacing = 1.0 / sampling_frequency
for i in range(num_buffers):
if (i + 1) * buffer_size < len(sine_wave):
y_chunk = sine_wave[i * buffer_size:(i + 1) * buffer_size]
else:
y_chunk = sine_wave[i * buffer_size:]
buffer = []
for j in range(len(y_chunk)):
timestamp_in_s = t0 + (buffer_size * i + j) * sample_spacing
timestamp = int(timestamp_in_s * 1000)
datapoint = {'timestamp': timestamp}
for k in range(num_channels):
datapoint['channel_%s' % k] = y_chunk[j]
buffer.append(datapoint)
buffers.append(buffer)
return buffers
def plot_cb_buffers(num_channels, cb_buffers):
maxi_buffer = []
for cb_buffer in cb_buffers:
maxi_buffer.extend(cb_buffer)
plot_cb_buffer(num_channels, maxi_buffer)
def plot_cb_buffer(num_channels, cb_buffer):
import matplotlib.pyplot as plt
f, axarr = plt.subplots(num_channels)
for i in range(num_channels):
channel_name = 'channel_%s' % i
data_to_plot = []
for data in cb_buffer:
data_to_plot.append(data[channel_name])
axarr[i].plot(data_to_plot)
axarr[i].set_title(channel_name)
plt.show()
def generate_frequency_bands(alpha_freq, beta_freq, frequency_band_size):
"""
Make sure to choose the frequency band size carefully.
If it is too high, frequency bands will overlap.
If it's too low, the band might not be large enough to detect the frequency.
"""
alpha_range = [alpha_freq - frequency_band_size / 2.0,
alpha_freq + frequency_band_size / 2.0]
beta_range = [beta_freq - frequency_band_size / 2.0,
beta_freq + frequency_band_size / 2.0]
frequency_bands = {'alpha': alpha_range, 'beta': beta_range}
return frequency_bands
class FrequencyBandTranformerTest(unittest.TestCase):
def setUp(self):
self.plot_input_data = False
self.window_size = 250 # Also OK => 2 * 2.50. Or 3 * 250
self.sampling_freq = 250.0
self.buffer_size = 10
self.alpha_amplitude = 10.0
self.alpha_freq = 10.0
self.beta_amplitude = 5.0
self.beta_freq = 25.0
self.num_channels = 8
self.freq_band_size = 10.0
self.number_points = 250
self.cb_buffers = generate_mock_data(self.num_channels,
self.number_points,
self.sampling_freq,
self.buffer_size,
self.alpha_amplitude,
self.alpha_freq,
self.beta_amplitude,
self.beta_freq)
def test_cb_buffers(self):
if self.plot_input_data:
plot_cb_buffers(self.num_channels, self.cb_buffers)
num_buffers = self.number_points / self.buffer_size
if self.window_size % self.buffer_size != 0:
num_buffers += 1
self.assertEqual(len(self.cb_buffers), num_buffers)
self.assertEqual(len(self.cb_buffers[0]), self.buffer_size)
self.assertTrue('channel_0' in self.cb_buffers[0][0].keys())
def test_module(self):
self.frequency_bands = generate_frequency_bands(self.alpha_freq,
self.beta_freq,
self.freq_band_size)
self.subscribers = []
self.publishers = []
module = FrequencyBandTransformer(subscribers=self.subscribers,
publishers=self.publishers,
window_size=self.window_size,
sampling_frequency=self.sampling_freq,
frequency_bands=self.frequency_bands)
for cb_buffer in self.cb_buffers:
# where the real logic inside the subscriber takes place
bands = module._compute_fft(cb_buffer, self.num_channels)
if bands:
for i in range(self.num_channels):
channel_name = 'channel_%s' % i
alpha_estimated_ampl = bands['alpha'][channel_name]
beta_estimated_ampl = bands['beta'][channel_name]
ratio = self.beta_amplitude / self.alpha_amplitude
estimated_ratio = beta_estimated_ampl / alpha_estimated_ampl
_LOGGER.debug("Alpha: estimated=%s | actual=%s" %
(alpha_estimated_ampl, self.alpha_amplitude))
_LOGGER.debug("Beta: estimated=%s | actual=%s" %
(beta_estimated_ampl, self.beta_amplitude))
assert np.abs((estimated_ratio - ratio) / ratio) < 0.01