128 lines (127 with data), 3.9 kB
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2019-06-17T19:14:54.249772Z",
"start_time": "2019-06-17T19:14:54.237352Z"
},
"code_folding": []
},
"outputs": [],
"source": [
"def pickle_to_csv_chest(ID):\n",
" import pickle as pkl\n",
" import pandas as pd\n",
" with open('S' + str(ID) + '/S'+str(ID) + '.pkl', 'rb') as f:\n",
" u = pkl._Unpickler(f)\n",
" u.encoding = 'latin1'\n",
" p = u.load()\n",
" df = pd.DataFrame()\n",
" df['chestACCx'] = [item[0] for item in p['signal']['chest']['ACC']]\n",
" df['chestACCy'] = [item[1] for item in p['signal']['chest']['ACC']]\n",
" df['chestACCz'] = [item[2] for item in p['signal']['chest']['ACC']]\n",
" df['chestECG'] = [item for sublist in p['signal']['chest']['ECG'] for item in sublist]\n",
" df['chestEMG'] = [item for sublist in p['signal']['chest']['EMG'] for item in sublist]\n",
" df['chestEDA'] = [item for sublist in p['signal']['chest']['EDA'] for item in sublist]\n",
" df['chestTemp'] = [item for sublist in p['signal']['chest']['Temp'] for item in sublist]\n",
" df['chestResp'] = [item for sublist in p['signal']['chest']['Resp'] for item in sublist]\n",
" df['ID'] = ID\n",
" df['label'] = p['label']\n",
" df = df[['ID','chestACCx','chestACCy','chestACCz','chestECG','chestEMG','chestEDA','chestTemp','chestResp','label']]\n",
" df.to_csv('S' + str(ID) + 'chest.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2019-06-17T19:40:19.352229Z",
"start_time": "2019-06-17T19:14:57.985458Z"
}
},
"outputs": [],
"source": [
"for i in range(1,18):\n",
" if i != 1 and i != 12:\n",
" pickle_to_csv_chest(i)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2019-06-17T19:43:12.702035Z",
"start_time": "2019-06-17T19:40:19.354185Z"
}
},
"outputs": [],
"source": [
"!cat *chest.csv > allchest.csv"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"ExecuteTime": {
"end_time": "2019-06-17T20:08:30.037790Z",
"start_time": "2019-06-17T19:43:52.786621Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The following options are in effect for this COMPRESSION.\n",
"Threading is ENABLED. Number of CPUs detected: 16\n",
"Detected 33628700672 bytes ram\n",
"Compression level 7\n",
"Nice Value: 19\n",
"Show Progress\n",
"Verbose\n",
"Remove input files on completion\n",
"Temporary Directory set as: ./\n",
"Compression mode is: LZMA. LZO Compressibility testing enabled\n",
"Heuristically Computed Compression Window: 213 = 21300MB\n",
"Output filename is: allchest.csv.lrz\n",
"File size: 9488548771\n",
"Will take 1 pass\n",
"Beginning rzip pre-processing phase\n",
"allchest.csv - Compression Ratio: 7.274. Average Compression Speed: 6.130MB/s.\n",
"Total time: 00:24:37.12\n"
]
}
],
"source": [
"!lrzip -v -D allchest.csv"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}