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Overview

m Psychological stress in humans has constantly been rising, over
74% of people interviewed in [1] were unable to cope with stress.

m Chronic stress has fatal consequences, including cancer, heart
disease and suicide.

m Early detection of stress is key, possible through continuous
monitoring using wearables and physiological sensor data.

m Data must be kept private, and real-time affective state classifi-
cation must be quick, accurate and efficient.

m On-device classification eliminates need for a remote server, as
well as problems of privacy and latency.

m We thus discuss scalable deep learning models for stress and
affect detection on resource-constrained devices.
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Datasets

We focus on stress and affect detection from physiological modali-
ties, which are great indicators of stress and can be recorded on a
wearable device.

WESAD — Wearable Stress and Affect Detection Dataset [2]
m 3 affective states — Neutral, Stress, Amusement.

m Physiological and motion sensor data from chest-worn and wrist-
worn devices.

m We use chest-worn device data, due to better classification
performance as shown in [2].

m ECG, EEG, EMG, EDA, Temperature, Respiration, Accelerometer.
m Benchmark — 87.18% ANN [3].
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Datasets

SWELL-KW — SWELL Knowledge Work Dataset [4]
m 3 conditions — Neutral (N), Interruption (I), Time-Pressure (T).
m Binary classification of N versus I1&T.
m Various modalities, physiological modalities are HRV and SC.
m Benchmark — 64.10% SVM [5].

DREAMER — Database for Emotion Recognition [6]

m 3 affective states — Arousal, Dominance, Valence — values range
from 1 to 5.

m Multi-class classification for each.
m EEG and ECG signals.

m Benchmark — 61.84% for Arousal and Dominance, 62.32% for
Valence, SVM [6].
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Data Analysis

m Respiration, Neutral State, WESAD

Sequential Data-Points

In the neutral state, values lie between -5 and 5. We may understand
values in this range to be representative of this class.

Inductive Respiration Plethysmograph
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Data Analysis
m Respiration, Stress State, WESAD

Inductive Respiration Plethysmograph

Sequential Data-Points

It is evident that quite a few values lie between -5 and 5. Fewer
values lie outside this range, and are representative of stress.
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Multiple Instance Learning

: Bag y: ‘Class signature ‘

Sub-instance A A :
width w A—‘: "

m Class signature — Points which best represent the class.
m Noise — Points which do not truly represent the class.
m Class signature is infrequent compared to noise.

m MIL is a technique employed to choose the best data points to
train the model. We use the technique illustrated in [7].
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Multiple Instance Learning

m The dataset is split into bags of equal sizes. Class labels are
bag-level.

m Every consecutive set of e points in a bag constitutes a sub-
instance.

m We choose the best k consecutive sub-instances to train the
model.

m Helps in minimizing learning from noise, maximizing learning
from class signature.

This exploits the fact that the class signature is present in consecu-
tive data points, which is a property of such time-series data.

Nanda H Krishna Scalable DL for Stress Detection December 19, 2019 8/18



Early Stopping

m LSTMs iterate through all data-points before a prediction is
made.

m Computationally expensive, increases inference time.

m With Early Stopping, the output of every step of the LSTM is
piped to a classifier.

m If a prediction is made with a probability greater than a threshold
p, the LSTM delivers the prediction without iterating through
the rest of the steps.

m It is efficient to predict the probability after every k steps.

m Leads to greatly reduced inference times on resource-constrained
devices.
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EMI-RNN

Yi| Yi| Yi|
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m Joint architecture incorporating MIL and Early Stopping.

m MIL reduces the number of sub-instances learned from, Early
Stopping delivers early predictions.

m Great reduction in inference time, overall benefit greater than
sum of parts [7].

m We employ the EMI-RNN for stress and affect detection, with
parameters chosen carefully for each dataset.
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Choice of EMI-RNN Parameters

m Bag size (T)

B={b:" <b<' beN}

T =arg max f(b),be B
b

m Sub-instance width (w)

WZ{Q)SZ%SQ)SS%,OOSEN}

ow = arg max g(ws), ws € W

ws

m Parameters chosen for each dataset
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Models Used

m We use EMI-LSTM, EMI-GRU and EMI-FastGRNN.

m LSTMs and GRUs are popular RNN architectures, perform well
on sequential data.

m FastGRNN [8] out-performs unitary RNNs with respect to training
time, prediction cost and accuracy.

m It learns a classifier of very low model size and inference time,
but near state-of-the-art accuracy.

m These models are compared with the current state-of-the-art
models for each dataset with respect to accuracy and inference
time.
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Evaluation Metrics

m We use accuracy and inference time to evaluate the perfor-
mance of our models.

m Additionally, we introduce the metrics ncomp Or computational
savings and ngg or early savings.

Noomp = £ ,-B v % 100

1 n Tpred-
NEs = (1 - nZT'> x 100
i=1

m Accuracy and inference time are given greater weightage in
choosing the best model.

Nanda H Krishna Scalable DL for Stress Detection December 19, 2019 13/18



Results

WESAD

m EMI-FastGRNN performs best.

m Accuracy 97.55% and inference time 12.8 ms.

m Inference time 13x lesser than the benchmark.

m Leads to 92% computational saving, 96.07% early saving.
SWELL-KW

m EMI-FastGRNN performs best.

m Accuracy 87.87% and inference time 3 ms.

m Inference time 35x lesser than the benchmark.

m Leads to 97.10% computational saving, 29.55% early saving.
DREAMER

m EMI-LSTM performs best.

m Accuracy for Arousal, Dominance and Valence were 67.75%,

68.87% and 65.60%.
m Inference time 49.2 ms, 8.5x lesser than the benchmark.
m Leads to 87.88% computational saving, 20.52% early saving.
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Conclusion

m EMI models outperformed the benchmark models with respect
to accuracy and inference time.

m On average, there was an absolute increase of 10% in overall
accuracy and 18x reduction in inference times compared to the
benchmark models.

m Average computational savings across the 3 datasets was
95.39%.

m The EMI-FastGRNN outperformed the EMI-LSTM and EMI-GRU
for the WESAD and SWELL-KW datasets.

m EMI models are suitable for use on resource-constrained devices
to make real-time and on-device predictions, with high accuracy
and low inference time.
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