[d395cf]: / DREAMER / DREAMER_Dominance_FastGRNN_48_16.ipynb

Download this file

826 lines (825 with data), 37.5 kB

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# DREAMER Dominance FastGRNN 48_16"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Adapted from Microsoft's notebooks, available at https://github.com/microsoft/EdgeML authored by Dennis et al."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from tabulate import tabulate\n",
    "import os\n",
    "import datetime as datetime\n",
    "import pickle as pkl\n",
    "from sklearn.model_selection import train_test_split\n",
    "import pathlib\n",
    "from os import mkdir"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "def loadData(dirname):\n",
    "    x_train = np.load(dirname + '/' + 'x_train.npy')\n",
    "    y_train = np.load(dirname + '/' + 'y_train.npy')\n",
    "    x_test = np.load(dirname + '/' + 'x_test.npy')\n",
    "    y_test = np.load(dirname + '/' + 'y_test.npy')\n",
    "    x_val = np.load(dirname + '/' + 'x_val.npy')\n",
    "    y_val = np.load(dirname + '/' + 'y_val.npy')\n",
    "    return x_train, y_train, x_test, y_test, x_val, y_val\n",
    "def makeEMIData(subinstanceLen, subinstanceStride, sourceDir, outDir):\n",
    "    x_train, y_train, x_test, y_test, x_val, y_val = loadData(sourceDir)\n",
    "    x, y = bagData(x_train, y_train, subinstanceLen, subinstanceStride)\n",
    "    np.save(outDir + '/x_train.npy', x)\n",
    "    np.save(outDir + '/y_train.npy', y)\n",
    "    print('Num train %d' % len(x))\n",
    "    x, y = bagData(x_test, y_test, subinstanceLen, subinstanceStride)\n",
    "    np.save(outDir + '/x_test.npy', x)\n",
    "    np.save(outDir + '/y_test.npy', y)\n",
    "    print('Num test %d' % len(x))\n",
    "    x, y = bagData(x_val, y_val, subinstanceLen, subinstanceStride)\n",
    "    np.save(outDir + '/x_val.npy', x)\n",
    "    np.save(outDir + '/y_val.npy', y)\n",
    "    print('Num val %d' % len(x))\n",
    "def bagData(X, Y, subinstanceLen, subinstanceStride):\n",
    "    numClass = 5\n",
    "    numSteps = 128\n",
    "    numFeats = 16\n",
    "    assert X.ndim == 3\n",
    "    assert X.shape[1] == numSteps\n",
    "    assert X.shape[2] == numFeats\n",
    "    assert subinstanceLen <= numSteps\n",
    "    assert subinstanceLen > 0\n",
    "    assert subinstanceStride <= numSteps\n",
    "    assert subinstanceStride >= 0\n",
    "    assert len(X) == len(Y)\n",
    "    assert Y.ndim == 2\n",
    "    assert Y.shape[1] == numClass\n",
    "    x_bagged = []\n",
    "    y_bagged = []\n",
    "    for i, point in enumerate(X[:, :, :]):\n",
    "        instanceList = []\n",
    "        start = 0\n",
    "        end = subinstanceLen\n",
    "        while True:\n",
    "            x = point[start:end, :]\n",
    "            if len(x) < subinstanceLen:\n",
    "                x_ = np.zeros([subinstanceLen, x.shape[1]])\n",
    "                x_[:len(x), :] = x[:, :]\n",
    "                x = x_\n",
    "            instanceList.append(x)\n",
    "            if end >= numSteps:\n",
    "                break\n",
    "            start += subinstanceStride\n",
    "            end += subinstanceStride\n",
    "        bag = np.array(instanceList)\n",
    "        numSubinstance = bag.shape[0]\n",
    "        label = Y[i]\n",
    "        label = np.argmax(label)\n",
    "        labelBag = np.zeros([numSubinstance, numClass])\n",
    "        labelBag[:, label] = 1\n",
    "        x_bagged.append(bag)\n",
    "        label = np.array(labelBag)\n",
    "        y_bagged.append(label)\n",
    "    return np.array(x_bagged), np.array(y_bagged)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "mkdir('/home/sf/data/DREAMER/Dominance/Fast_GRNN')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Num train 61735\n",
      "Num test 17149\n",
      "Num val 6860\n"
     ]
    }
   ],
   "source": [
    "subinstanceLen=48\n",
    "subinstanceStride=16\n",
    "extractedDir = '/home/sf/data/DREAMER/Dominance/'\n",
    "mkdir('/home/sf/data/DREAMER/Dominance/Fast_GRNN/48_16')\n",
    "rawDir = extractedDir + '/RAW'\n",
    "sourceDir = rawDir\n",
    "outDir = extractedDir + 'Fast_GRNN' '/%d_%d/' % (subinstanceLen, subinstanceStride)\n",
    "makeEMIData(subinstanceLen, subinstanceStride, sourceDir, outDir)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:06.272261Z",
     "start_time": "2018-08-19T12:39:05.330668Z"
    }
   },
   "outputs": [],
   "source": [
    "from __future__ import print_function\n",
    "import os\n",
    "import sys\n",
    "import tensorflow as tf\n",
    "import numpy as np\n",
    "os.environ['CUDA_VISIBLE_DEVICES'] = '0'\n",
    "\n",
    "# FastGRNN and FastRNN imports\n",
    "from edgeml.graph.rnn import EMI_DataPipeline\n",
    "from edgeml.graph.rnn import EMI_FastGRNN\n",
    "from edgeml.graph.rnn import EMI_FastRNN\n",
    "from edgeml.trainer.emirnnTrainer import EMI_Trainer, EMI_Driver\n",
    "import edgeml.utils"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:06.292205Z",
     "start_time": "2018-08-19T12:39:06.274254Z"
    }
   },
   "outputs": [],
   "source": [
    "# Network parameters for our FastGRNN + FC Layer\n",
    "NUM_HIDDEN = 128\n",
    "NUM_TIMESTEPS = 48\n",
    "NUM_FEATS = 16\n",
    "FORGET_BIAS = 1.0\n",
    "NUM_OUTPUT = 5\n",
    "USE_DROPOUT = False\n",
    "KEEP_PROB = 0.9\n",
    "\n",
    "# Non-linearities can be chosen among \"tanh, sigmoid, relu, quantTanh, quantSigm\"\n",
    "UPDATE_NL = \"quantTanh\"\n",
    "GATE_NL = \"quantSigm\"\n",
    "\n",
    "# Ranks of Parameter matrices for low-rank parameterisation to compress models.\n",
    "WRANK = 5\n",
    "URANK = 6\n",
    "\n",
    "# For dataset API\n",
    "PREFETCH_NUM = 5\n",
    "BATCH_SIZE = 32\n",
    "\n",
    "# Number of epochs in *one iteration*\n",
    "NUM_EPOCHS = 2\n",
    "\n",
    "# Number of iterations in *one round*. After each iteration,\n",
    "# the model is dumped to disk. At the end of the current\n",
    "# round, the best model among all the dumped models in the\n",
    "# current round is picked up..\n",
    "NUM_ITER = 4\n",
    "\n",
    "# A round consists of multiple training iterations and a belief\n",
    "# update step using the best model from all of these iterations\n",
    "NUM_ROUNDS = 10\n",
    "\n",
    "# A staging direcory to store models\n",
    "MODEL_PREFIX = '/home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Loading Data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:06.410372Z",
     "start_time": "2018-08-19T12:39:06.294014Z"
    }
   },
   "outputs": [],
   "source": [
    "# Loading the data\n",
    "path='/home/sf/data/DREAMER/Dominance/Fast_GRNN/48_16/'\n",
    "x_train, y_train = np.load(path + 'x_train.npy'), np.load(path + 'y_train.npy')\n",
    "x_test, y_test = np.load(path + 'x_test.npy'), np.load(path + 'y_test.npy')\n",
    "x_val, y_val = np.load(path + 'x_val.npy'), np.load(path + 'y_val.npy')\n",
    "\n",
    "# BAG_TEST, BAG_TRAIN, BAG_VAL represent bag_level labels. These are used for the label update\n",
    "# step of EMI/MI RNN\n",
    "BAG_TEST = np.argmax(y_test[:, 0, :], axis=1)\n",
    "BAG_TRAIN = np.argmax(y_train[:, 0, :], axis=1)\n",
    "BAG_VAL = np.argmax(y_val[:, 0, :], axis=1)\n",
    "NUM_SUBINSTANCE = x_train.shape[1]\n",
    "print(\"x_train shape is:\", x_train.shape)\n",
    "print(\"y_train shape is:\", y_train.shape)\n",
    "print(\"x_test shape is:\", x_val.shape)\n",
    "print(\"y_test shape is:\", y_val.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Computation Graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:06.653612Z",
     "start_time": "2018-08-19T12:39:06.412290Z"
    }
   },
   "outputs": [],
   "source": [
    "# Define the linear secondary classifier\n",
    "def createExtendedGraph(self, baseOutput, *args, **kwargs):\n",
    "    W1 = tf.Variable(np.random.normal(size=[NUM_HIDDEN, NUM_OUTPUT]).astype('float32'), name='W1')\n",
    "    B1 = tf.Variable(np.random.normal(size=[NUM_OUTPUT]).astype('float32'), name='B1')\n",
    "    y_cap = tf.add(tf.tensordot(baseOutput, W1, axes=1), B1, name='y_cap_tata')\n",
    "    self.output = y_cap\n",
    "    self.graphCreated = True\n",
    "\n",
    "def restoreExtendedGraph(self, graph, *args, **kwargs):\n",
    "    y_cap = graph.get_tensor_by_name('y_cap_tata:0')\n",
    "    self.output = y_cap\n",
    "    self.graphCreated = True\n",
    "    \n",
    "def feedDictFunc(self, keep_prob=None, inference=False, **kwargs):\n",
    "    if inference is False:\n",
    "        feedDict = {self._emiGraph.keep_prob: keep_prob}\n",
    "    else:\n",
    "        feedDict = {self._emiGraph.keep_prob: 1.0}\n",
    "    return feedDict\n",
    "\n",
    "    \n",
    "EMI_FastGRNN._createExtendedGraph = createExtendedGraph\n",
    "EMI_FastGRNN._restoreExtendedGraph = restoreExtendedGraph\n",
    "if USE_DROPOUT is True:\n",
    "    EMI_FastGRNN.feedDictFunc = feedDictFunc"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:06.701740Z",
     "start_time": "2018-08-19T12:39:06.655328Z"
    }
   },
   "outputs": [],
   "source": [
    "inputPipeline = EMI_DataPipeline(NUM_SUBINSTANCE, NUM_TIMESTEPS, NUM_FEATS, NUM_OUTPUT)\n",
    "emiFastGRNN = EMI_FastGRNN(NUM_SUBINSTANCE, NUM_HIDDEN, NUM_TIMESTEPS, NUM_FEATS, wRank=WRANK, uRank=URANK, \n",
    "                           gate_non_linearity=GATE_NL, update_non_linearity=UPDATE_NL, useDropout=USE_DROPOUT)\n",
    "emiTrainer = EMI_Trainer(NUM_TIMESTEPS, NUM_OUTPUT, lossType='xentropy')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "x_train shape is: (61735, 6, 48, 16)\n",
      "y_train shape is: (61735, 6, 5)\n",
      "x_test shape is: (6860, 6, 48, 16)\n",
      "y_test shape is: (6860, 6, 5)\n"
     ]
    }
   ],
   "source": [
    "print(\"x_train shape is:\", x_train.shape)\n",
    "print(\"y_train shape is:\", y_train.shape)\n",
    "print(\"x_test shape is:\", x_val.shape)\n",
    "print(\"y_test shape is:\", y_val.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:39:14.187456Z",
     "start_time": "2018-08-19T12:39:06.703481Z"
    },
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "tf.reset_default_graph()\n",
    "g1 = tf.Graph()    \n",
    "with g1.as_default():\n",
    "    # Obtain the iterators to each batch of the data\n",
    "    x_batch, y_batch = inputPipeline()\n",
    "    # Create the forward computation graph based on the iterators\n",
    "    y_cap = emiFastGRNN(x_batch)\n",
    "    # Create loss graphs and training routines\n",
    "    emiTrainer(y_cap, y_batch)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# EMI Driver"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:51:45.803360Z",
     "start_time": "2018-08-19T12:39:14.189648Z"
    },
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Update policy: top-k\n",
      "Training with MI-RNN loss for 5 rounds\n",
      "Round: 0\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02630 Acc 0.47396 | Val acc 0.39242 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1000\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02545 Acc 0.47917 | Val acc 0.40262 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1001\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02509 Acc 0.47917 | Val acc 0.41399 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1002\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02476 Acc 0.53125 | Val acc 0.42274 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1003\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1003\n",
      "Round: 1\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02451 Acc 0.55208 | Val acc 0.43921 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1004\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02395 Acc 0.56771 | Val acc 0.46487 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1005\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02386 Acc 0.57292 | Val acc 0.46778 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1006\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02396 Acc 0.58854 | Val acc 0.47755 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1007\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1007\n",
      "Round: 2\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02389 Acc 0.60417 | Val acc 0.48294 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1008\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02375 Acc 0.58333 | Val acc 0.49213 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1009\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02292 Acc 0.61979 | Val acc 0.50029 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1010\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02309 Acc 0.58333 | Val acc 0.50131 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1011\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1011\n",
      "Round: 3\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02265 Acc 0.60417 | Val acc 0.50102 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1012\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02233 Acc 0.61458 | Val acc 0.50073 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1013\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02249 Acc 0.59896 | Val acc 0.51662 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1014\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02244 Acc 0.59375 | Val acc 0.51618 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1015\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1014\n",
      "Round: 4\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02244 Acc 0.59375 | Val acc 0.51618 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1016\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02242 Acc 0.55208 | Val acc 0.51531 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1017\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02217 Acc 0.59896 | Val acc 0.52172 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1018\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 0.02183 Acc 0.61458 | Val acc 0.52041 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1019\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1018\n",
      "Round: 5\n",
      "Switching to EMI-Loss function\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.15738 Acc 0.53125 | Val acc 0.50058 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1020\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.16199 Acc 0.54167 | Val acc 0.50875 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1021\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.15353 Acc 0.54688 | Val acc 0.51545 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1022\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.13855 Acc 0.55208 | Val acc 0.52157 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1023\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1023\n",
      "Round: 6\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12964 Acc 0.58854 | Val acc 0.52187 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1024\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.11410 Acc 0.59375 | Val acc 0.52289 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1025\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.11220 Acc 0.59896 | Val acc 0.52172 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1026\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.10395 Acc 0.60417 | Val acc 0.52318 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1027\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1027\n",
      "Round: 7\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.11053 Acc 0.60417 | Val acc 0.52536 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1028\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12034 Acc 0.57812 | Val acc 0.53120 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1029\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12177 Acc 0.57292 | Val acc 0.52959 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1030\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12257 Acc 0.58854 | Val acc 0.53265 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1031\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1031\n",
      "Round: 8\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.14379 Acc 0.58333 | Val acc 0.52857 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1032\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.13761 Acc 0.61458 | Val acc 0.53207 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1033\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.13618 Acc 0.59375 | Val acc 0.53265 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1034\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12991 Acc 0.59375 | Val acc 0.53222 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1035\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1034\n",
      "Round: 9\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.12991 Acc 0.59375 | Val acc 0.53222 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1036\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.10665 Acc 0.60938 | Val acc 0.52901 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1037\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.10800 Acc 0.60938 | Val acc 0.53207 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1038\n",
      "Epoch   1 Batch  1925 ( 3855) Loss 1.08893 Acc 0.61458 | Val acc 0.53265 | Model saved to /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn, global_step 1039\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1039\n"
     ]
    }
   ],
   "source": [
    "with g1.as_default():\n",
    "    emiDriver = EMI_Driver(inputPipeline, emiFastGRNN, emiTrainer)\n",
    "\n",
    "emiDriver.initializeSession(g1)\n",
    "y_updated, modelStats = emiDriver.run(numClasses=NUM_OUTPUT, x_train=x_train,\n",
    "                                      y_train=y_train, bag_train=BAG_TRAIN,\n",
    "                                      x_val=x_val, y_val=y_val, bag_val=BAG_VAL,\n",
    "                                      numIter=NUM_ITER, keep_prob=KEEP_PROB,\n",
    "                                      numRounds=NUM_ROUNDS, batchSize=BATCH_SIZE,\n",
    "                                      numEpochs=NUM_EPOCHS, modelPrefix=MODEL_PREFIX,\n",
    "                                      fracEMI=0.5, updatePolicy='top-k', k=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluating the  trained model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:51:45.832728Z",
     "start_time": "2018-08-19T12:51:45.805984Z"
    }
   },
   "outputs": [],
   "source": [
    "# Early Prediction Policy: We make an early prediction based on the predicted classes\n",
    "#     probability. If the predicted class probability > minProb at some step, we make\n",
    "#     a prediction at that step.\n",
    "def earlyPolicy_minProb(instanceOut, minProb, **kwargs):\n",
    "    assert instanceOut.ndim == 2\n",
    "    classes = np.argmax(instanceOut, axis=1)\n",
    "    prob = np.max(instanceOut, axis=1)\n",
    "    index = np.where(prob >= minProb)[0]\n",
    "    if len(index) == 0:\n",
    "        assert (len(instanceOut) - 1) == (len(classes) - 1)\n",
    "        return classes[-1], len(instanceOut) - 1\n",
    "    index = index[0]\n",
    "    return classes[index], index\n",
    "\n",
    "def getEarlySaving(predictionStep, numTimeSteps, returnTotal=False):\n",
    "    predictionStep = predictionStep + 1\n",
    "    predictionStep = np.reshape(predictionStep, -1)\n",
    "    totalSteps = np.sum(predictionStep)\n",
    "    maxSteps = len(predictionStep) * numTimeSteps\n",
    "    savings = 1.0 - (totalSteps / maxSteps)\n",
    "    if returnTotal:\n",
    "        return savings, totalSteps\n",
    "    return savings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:51:46.210240Z",
     "start_time": "2018-08-19T12:51:45.834534Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test Accuracy (k = 2): 0.528194\n",
      "\n",
      "Total Savings: 0.629757\n"
     ]
    }
   ],
   "source": [
    "k = 2\n",
    "ORIGINAL_NUM_TIMESTEPS = 128\n",
    "predictions, predictionStep = emiDriver.getInstancePredictions(x_test, y_test, earlyPolicy_minProb, minProb=0.99)\n",
    "bagPredictions = emiDriver.getBagPredictions(predictions, minSubsequenceLen=k, numClass=NUM_OUTPUT)\n",
    "print('Test Accuracy (k = %d): %f\\n' % (k,  np.mean((bagPredictions == BAG_TEST).astype(int))))\n",
    "mi_savings = (1 - NUM_TIMESTEPS / ORIGINAL_NUM_TIMESTEPS)\n",
    "emi_savings = getEarlySaving(predictionStep, NUM_TIMESTEPS)\n",
    "total_savings = mi_savings + (1 - mi_savings) * emi_savings\n",
    "print(\"Total Savings: %f\" % total_savings)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T12:51:46.677691Z",
     "start_time": "2018-08-19T12:51:46.212285Z"
    },
    "scrolled": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "   len       acc  macro-fsc  macro-pre  macro-rec  micro-fsc  micro-pre  \\\n",
      "0    1  0.529535   0.448461   0.626394   0.424688   0.529535   0.529535   \n",
      "1    2  0.528194   0.454806   0.504050   0.435102   0.528194   0.528194   \n",
      "2    3  0.481777   0.417933   0.478811   0.430978   0.481777   0.481777   \n",
      "3    4  0.396058   0.375566   0.522220   0.401936   0.396058   0.396058   \n",
      "4    5  0.336055   0.343254   0.570104   0.381710   0.336055   0.336055   \n",
      "5    6  0.292437   0.315475   0.611050   0.365957   0.292437   0.292437   \n",
      "\n",
      "   micro-rec  \n",
      "0   0.529535  \n",
      "1   0.528194  \n",
      "2   0.481777  \n",
      "3   0.396058  \n",
      "4   0.336055  \n",
      "5   0.292437  \n",
      "Max accuracy 0.529535 at subsequencelength 1\n",
      "Max micro-f 0.529535 at subsequencelength 1\n",
      "Micro-precision 0.529535 at subsequencelength 1\n",
      "Micro-recall 0.529535 at subsequencelength 1\n",
      "Max macro-f 0.454806 at subsequencelength 2\n",
      "macro-precision 0.504050 at subsequencelength 2\n",
      "macro-recall 0.435102 at subsequencelength 2\n"
     ]
    }
   ],
   "source": [
    "# A slightly more detailed analysis method is provided. \n",
    "df = emiDriver.analyseModel(predictions, BAG_TEST, NUM_SUBINSTANCE, NUM_OUTPUT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Picking the best model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "ExecuteTime": {
     "end_time": "2018-08-19T13:06:04.024660Z",
     "start_time": "2018-08-19T13:04:47.045787Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1003\n",
      "Round:  0, Validation accuracy: 0.4227, Test Accuracy (k = 2): 0.425622, Additional savings: 0.000027\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1007\n",
      "Round:  1, Validation accuracy: 0.4776, Test Accuracy (k = 2): 0.477346, Additional savings: 0.001708\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1011\n",
      "Round:  2, Validation accuracy: 0.5013, Test Accuracy (k = 2): 0.499738, Additional savings: 0.003691\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1014\n",
      "Round:  3, Validation accuracy: 0.5166, Test Accuracy (k = 2): 0.507377, Additional savings: 0.004199\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1018\n",
      "Round:  4, Validation accuracy: 0.5217, Test Accuracy (k = 2): 0.516182, Additional savings: 0.004893\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1023\n",
      "Round:  5, Validation accuracy: 0.5216, Test Accuracy (k = 2): 0.504111, Additional savings: 0.009568\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1027\n",
      "Round:  6, Validation accuracy: 0.5232, Test Accuracy (k = 2): 0.515832, Additional savings: 0.011143\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1031\n",
      "Round:  7, Validation accuracy: 0.5327, Test Accuracy (k = 2): 0.519331, Additional savings: 0.012006\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1034\n",
      "Round:  8, Validation accuracy: 0.5327, Test Accuracy (k = 2): 0.520555, Additional savings: 0.012196\n",
      "INFO:tensorflow:Restoring parameters from /home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn-1039\n",
      "Round:  9, Validation accuracy: 0.5327, Test Accuracy (k = 2): 0.528194, Additional savings: 0.012686\n"
     ]
    }
   ],
   "source": [
    "devnull = open(os.devnull, 'r')\n",
    "for val in modelStats:\n",
    "    round_, acc, modelPrefix, globalStep = val\n",
    "    emiDriver.loadSavedGraphToNewSession(modelPrefix, globalStep, redirFile=devnull)\n",
    "    predictions, predictionStep = emiDriver.getInstancePredictions(x_test, y_test, earlyPolicy_minProb,\n",
    "                                                               minProb=0.99, keep_prob=1.0)\n",
    " \n",
    "    bagPredictions = emiDriver.getBagPredictions(predictions, minSubsequenceLen=k, numClass=NUM_OUTPUT)\n",
    "    print(\"Round: %2d, Validation accuracy: %.4f\" % (round_, acc), end='')\n",
    "    print(', Test Accuracy (k = %d): %f, ' % (k,  np.mean((bagPredictions == BAG_TEST).astype(int))), end='')\n",
    "    print('Additional savings: %f' % getEarlySaving(predictionStep, NUM_TIMESTEPS)) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Network parameters for our FastGRNN + FC Layer\n",
    "NUM_HIDDEN = 128\n",
    "NUM_TIMESTEPS = 48\n",
    "NUM_FEATS = 16\n",
    "FORGET_BIAS = 1.0\n",
    "NUM_OUTPUT = 5\n",
    "USE_DROPOUT = False\n",
    "KEEP_PROB = 0.9\n",
    "\n",
    "# Non-linearities can be chosen among \"tanh, sigmoid, relu, quantTanh, quantSigm\"\n",
    "UPDATE_NL = \"quantTanh\"\n",
    "GATE_NL = \"quantSigm\"\n",
    "\n",
    "# Ranks of Parameter matrices for low-rank parameterisation to compress models.\n",
    "WRANK = 5\n",
    "URANK = 6\n",
    "\n",
    "# For dataset API\n",
    "PREFETCH_NUM = 5\n",
    "BATCH_SIZE = 32\n",
    "\n",
    "# Number of epochs in *one iteration*\n",
    "NUM_EPOCHS = 2\n",
    "# Number of iterations in *one round*. After each iteration,\n",
    "# the model is dumped to disk. At the end of the current\n",
    "# round, the best model among all the dumped models in the\n",
    "# current round is picked up..\n",
    "NUM_ITER = 4\n",
    "# A round consists of multiple training iterations and a belief\n",
    "# update step using the best model from all of these iterations\n",
    "NUM_ROUNDS = 10\n",
    "\n",
    "# A staging direcory to store models\n",
    "MODEL_PREFIX = '/home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [],
   "source": [
    "params = {\n",
    "    \"NUM_HIDDEN\" : 128,\n",
    "    \"NUM_TIMESTEPS\" : 48, #subinstance length.\n",
    "    \"ORIGINAL_NUM_TIMESTEPS\" : 128,\n",
    "    \"NUM_FEATS\" : 16,\n",
    "    \"FORGET_BIAS\" : 1.0,\n",
    "    \"UPDATE_NL\" : \"quantTanh\",\n",
    "    \"GATE_NL\" : \"quantSigm\",\n",
    "    \"NUM_OUTPUT\" : 5,\n",
    "    \"WRANK\" : 5,\n",
    "    \"URANK\" : 6,\n",
    "    \"USE_DROPOUT\" : 0, # '1' -> True. '0' -> False\n",
    "    \"KEEP_PROB\" : 0.9,\n",
    "    \"PREFETCH_NUM\" : 5,\n",
    "    \"BATCH_SIZE\" : 32,\n",
    "    \"NUM_EPOCHS\" : 2,\n",
    "    \"NUM_ITER\" : 4,\n",
    "    \"NUM_ROUNDS\" : 10,\n",
    "    \"MODEL_PREFIX\" : '/home/sf/data/DREAMER/Dominance/48_16/models/Fast-GRNN/model-fgrnn'\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "   len       acc  macro-fsc  macro-pre  macro-rec  micro-fsc  micro-pre  \\\n",
      "0    1  0.529535   0.448461   0.626394   0.424688   0.529535   0.529535   \n",
      "1    2  0.528194   0.454806   0.504050   0.435102   0.528194   0.528194   \n",
      "2    3  0.481777   0.417933   0.478811   0.430978   0.481777   0.481777   \n",
      "3    4  0.396058   0.375566   0.522220   0.401936   0.396058   0.396058   \n",
      "4    5  0.336055   0.343254   0.570104   0.381710   0.336055   0.336055   \n",
      "5    6  0.292437   0.315475   0.611050   0.365957   0.292437   0.292437   \n",
      "\n",
      "   micro-rec  \n",
      "0   0.529535  \n",
      "1   0.528194  \n",
      "2   0.481777  \n",
      "3   0.396058  \n",
      "4   0.336055  \n",
      "5   0.292437  \n",
      "Max accuracy 0.529535 at subsequencelength 1\n",
      "Max micro-f 0.529535 at subsequencelength 1\n",
      "Micro-precision 0.529535 at subsequencelength 1\n",
      "Micro-recall 0.529535 at subsequencelength 1\n",
      "Max macro-f 0.454806 at subsequencelength 2\n",
      "macro-precision 0.504050 at subsequencelength 2\n",
      "macro-recall 0.435102 at subsequencelength 2\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|    |   len |      acc |   macro-fsc |   macro-pre |   macro-rec |   micro-fsc |   micro-pre |   micro-rec |\n",
      "+====+=======+==========+=============+=============+=============+=============+=============+=============+\n",
      "|  0 |     1 | 0.529535 |    0.448461 |    0.626394 |    0.424688 |    0.529535 |    0.529535 |    0.529535 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|  1 |     2 | 0.528194 |    0.454806 |    0.50405  |    0.435102 |    0.528194 |    0.528194 |    0.528194 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|  2 |     3 | 0.481777 |    0.417933 |    0.478811 |    0.430978 |    0.481777 |    0.481777 |    0.481777 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|  3 |     4 | 0.396058 |    0.375566 |    0.52222  |    0.401936 |    0.396058 |    0.396058 |    0.396058 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|  4 |     5 | 0.336055 |    0.343254 |    0.570104 |    0.38171  |    0.336055 |    0.336055 |    0.336055 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n",
      "|  5 |     6 | 0.292437 |    0.315475 |    0.61105  |    0.365957 |    0.292437 |    0.292437 |    0.292437 |\n",
      "+----+-------+----------+-------------+-------------+-------------+-------------+-------------+-------------+\n"
     ]
    }
   ],
   "source": [
    "fgrnn_dict = {**params}\n",
    "fgrnn_dict[\"k\"] = k\n",
    "fgrnn_dict[\"accuracy\"] = np.mean((bagPredictions == BAG_TEST).astype(int))\n",
    "fgrnn_dict[\"total_savings\"] = getEarlySaving(predictionStep, NUM_TIMESTEPS)\n",
    "fgrnn_dict[\"y_test\"] = BAG_TEST\n",
    "fgrnn_dict[\"y_pred\"] = bagPredictions\n",
    "\n",
    "# A slightly more detailed analysis method is provided. \n",
    "df = emiDriver.analyseModel(predictions, BAG_TEST, NUM_SUBINSTANCE, NUM_OUTPUT)\n",
    "print (tabulate(df, headers=list(df.columns), tablefmt='grid'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Results for this run have been saved at /home/sf/data/DREAMER/Dominance/Fast_GRNN/ .\n"
     ]
    }
   ],
   "source": [
    "dirname = \"/home/sf/data/DREAMER/Dominance/Fast_GRNN/\"\n",
    "pathlib.Path(dirname).mkdir(parents=True, exist_ok=True)\n",
    "print (\"Results for this run have been saved at\" , dirname, \".\")\n",
    "\n",
    "now = datetime.datetime.now()\n",
    "filename = list((str(now.year),\"-\",str(now.month),\"-\",str(now.day),\"|\",str(now.hour),\"-\",str(now.minute)))\n",
    "filename = ''.join(filename)\n",
    "\n",
    "#Save the dictionary containing the params and the results.\n",
    "pkl.dump(fgrnn_dict,open(dirname  + filename + \".pkl\",mode='wb'))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}