--- a +++ b/WESAD/WESAD_Data_Numpy.py @@ -0,0 +1,32 @@ +import pandas as pd +import numpy as np +from sklearn.utils import shuffle + +df = pd.read_csv("../allchest.csv") +df_list = list(map(lambda x: df[df['ID'] == x], [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17])) +df_list = list(map(lambda x: x[x['label'] <= 4], df_list)) +del df + +train = [] +test = [] + +for df in df_list: + df.reset_index(inplace=True, drop=True) + df = shuffle(df, random_state=42) + df.reset_index(inplace=True, drop=True) + train.append(df.iloc[:int(0.6 * df.shape[0]), :]) + test.append(df.iloc[int(0.6 * df.shape[0]):, :]) +del df_list + +train = pd.concat(train, axis=0) +test = pd.concat(test, axis=0) +train.reset_index(inplace=True, drop=True) +test.reset_index(inplace=True, drop=True) +train = train[['label', 'ID', 'chestACCx', 'chestACCy', 'chestACCz', 'chestECG', 'chestEMG', 'chestEDA', 'chestTemp', 'chestResp']] +test = test[['label', 'ID', 'chestACCx', 'chestACCy', 'chestACCz', 'chestECG', 'chestEMG', 'chestEDA', 'chestTemp', 'chestResp']] + +train = np.array(train, dtype=np.float32) +test = np.array(test, dtype=np.float32) + +np.save("train.npy", train) +np.save("test.npy", test)