[d395cf]: / WESAD / WESAD_Analysis.ipynb

Download this file

146 lines (145 with data), 3.0 kB

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# WESAD Dataset Analysis"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib as mpl\n",
    "import matplotlib.pyplot as plt\n",
    "import seaborn as sns\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv(\"../../WESAD/allchest.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = df[df['ID'] == 2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.reset_index(inplace=True, drop=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df['label'].unique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sns.set_context(\"paper\", rc={\"lines.linewidth\": 2.5})\n",
    "sns.set_palette(\"binary_d\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Neutral\n",
    "sns.lineplot(data=df[df['label'] == 1].reset_index(drop=True)['chestResp'])\n",
    "plt.ylabel('RESP')\n",
    "plt.xlabel('Sequential Data-Points')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
   "source": [
    "# Stress\n",
    "sns.lineplot(data=df[df['label'] == 2].reset_index(drop=True)['chestResp'])\n",
    "plt.ylabel('RESP')\n",
    "plt.xlabel('Sequential Data-Points')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Neutral\n",
    "sns.lineplot(data=df[df['label'] == 1].reset_index(drop=True).iloc[400000:420000]['chestResp'])\n",
    "plt.ylabel('RESP')\n",
    "plt.xlabel('Sequential Data-Points')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Stress\n",
    "sns.lineplot(data=df[df['label'] == 2].reset_index(drop=True).iloc[50000:70000]['chestResp'])\n",
    "plt.ylabel('RESP')\n",
    "plt.xlabel('Sequential Data-Points')\n",
    "plt.show()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}