[dd62f3]: / admins / views.py

Download this file

55 lines (44 with data), 2.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from django.shortcuts import render
from django.contrib import messages
from users.models import UserRegistrationModel,UserImagePredictinModel
from .utility.AlgorithmExecutions import KNNclassifier
# Create your views here.
def AdminLoginCheck(request):
if request.method == 'POST':
usrid = request.POST.get('loginid')
pswd = request.POST.get('pswd')
print("User ID is = ", usrid)
if usrid == 'admin' and pswd == 'admin':
return render(request, 'admins/AdminHome.html')
elif usrid == 'Admin' and pswd == 'Admin':
return render(request, 'admins/AdminHome.html')
else:
messages.success(request, 'Please Check Your Login Details')
return render(request, 'AdminLogin.html', {})
def AdminHome(request):
return render(request, 'admins/AdminHome.html')
def ViewRegisteredUsers(request):
data = UserRegistrationModel.objects.all()
return render(request, 'admins/RegisteredUsers.html', {'data': data})
def AdminActivaUsers(request):
if request.method == 'GET':
id = request.GET.get('uid')
status = 'activated'
print("PID = ", id, status)
UserRegistrationModel.objects.filter(id=id).update(status=status)
data = UserRegistrationModel.objects.all()
return render(request, 'admins/RegisteredUsers.html', {'data': data})
def AdminStressDetected(request):
data = UserImagePredictinModel.objects.all()
return render(request, 'admins/AllUsersStressView.html', {'data': data})
def AdminKNNResults(request):
obj = KNNclassifier()
df, accuracy, classificationerror, sensitivity, Specificity, fsp, precision = obj.getKnnResults()
df.rename(
columns={'Target': 'Target', 'ECG(mV)': 'Time pressure', 'EMG(mV)': 'Interruption', 'Foot GSR(mV)': 'Stress',
'Hand GSR(mV)': 'Physical Demand', 'HR(bpm)': 'Performance', 'RESP(mV)': 'Frustration', },
inplace=True)
data = df.to_html()
return render(request, 'admins/AdminKnnResults.html',
{'data': data, 'accuracy': accuracy, 'classificationerror': classificationerror,
'sensitivity': sensitivity, "Specificity": Specificity, 'fsp': fsp, 'precision': precision})