[569f14]: / SignalQuality.m

Download this file

278 lines (208 with data), 10.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
% Use basic and diagnostic quality classifier
clear all
close all
clc
load('basic_classifier.mat');
load('diagnostic_classifier.mat');
% Put in parent_dir the path to the folder to be processed (for single
% subject)
parent_dir = 'C:\Users\Alice\OneDrive - Alma Mater Studiorum Università di Bologna\Perso nal_Health_Systems_Lab\Tutor\WearableSensors2021\Tesina\Rec\1';
PPGraw = importdata('Rec/7/BVP.csv');
ACCraw = importdata('Rec/7/ACC.csv');
% PPGraw = importdata('Rec/7/BVP.csv');
% ACCraw = importdata('Rec/7/ACC.csv');
% PPGraw = load(fullfile(parent_dir,'BVP.csv'));
% ACCraw = load(fullfile(parent_dir,'ACC.csv'));
template_struct = load('Template_v3.m','-mat');
template = template_struct.template;
start = datetime(PPGraw(1),'convertfrom','posixtime','timezone','Europe/Rome');
PPG = PPGraw(3:end);
N_PPG = length(PPG);
fs_PPG = PPGraw(2);
Ts_PPG = 1/fs_PPG;
t_PPGs = (0:1:N_PPG - 1) * Ts_PPG;
t_PPG = start + seconds(t_PPGs);
ACC = ACCraw(3:end,:);
N_ACC = length(ACC);
fs_ACC = ACCraw(2,1);
Ts_ACC = 1/fs_ACC;
t_ACCs = (0:1:N_ACC - 1) * Ts_ACC;
t_ACC = start + seconds(t_ACCs);
g = 9.8; %[m/s^2]
ACC_g(:,1) = ACC(:,1) / (64);
ACC_g(:,2) = ACC(:,2) / (64);
ACC_g(:,3) = ACC(:,3) / (64);
% Modulus from the three accelerometer components
ACC_mod = sqrt(ACC_g(:,1).^2 + ACC_g(:,2).^2 + ACC_g(:,3).^2);
PPG_filt = PPG_preproc(PPG,fs_PPG);
L = length(PPG_filt);
[sys_peak, I_peak, sys_foot, I_foot] = ab_detection(PPG_filt,Ts_PPG);
I_foot_acc = round((I_foot .* Ts_PPG) .* fs_ACC);
for i = 1:length(I_foot) - 3
pulse_analysis_nozscore = PPG_filt(I_foot(i):I_foot(i+1));
pulse_analysis = zscore(PPG_filt(I_foot(i):I_foot(i+1)));
P = length(pulse_analysis);
pulse_analysis(pulse_analysis == 0) = 0.01;
%In such this way, log(0) is replaced by log(0.01), that is not -Inf
% Signal Quality
% By Moody's algorithm
SNR(i) = moody(pulse_analysis);
% Accelerometer peak2peak amplitude
pp_amp(i) = peak2peak(ACC_mod(I_foot_acc(i):I_foot_acc(i+1)));
% Spectral Coherence, MSE, and PSNR
if length(template) < length(pulse_analysis)
N = length(pulse_analysis);
template_2 = interp1(1:numel(template),template,linspace(1,numel(template),numel(pulse_analysis)));
R_mat = corrcoef(template_2,pulse_analysis);
R_corr(i) = R_mat(1,2);
Cxy(i) = mean(mscohere(template_2,pulse_analysis,[],[],[],64));
MSE(i) = mean((template_2 - pulse_analysis').^2);
PSNR(i) = 10*log10(max(template_2)^2/MSE(i));
elseif length(template) > length(pulse_analysis)
N = length(template);
pulse_analysis_2 = interp1(1:numel(pulse_analysis),pulse_analysis,linspace(1,numel(pulse_analysis),numel(template)));
R_mat = corrcoef(template,pulse_analysis_2);
R_corr(i) = R_mat(1,2);
Cxy(i) = mean(mscohere(template,pulse_analysis_2,[],[],[],64));
MSE(i) = mean((template - pulse_analysis_2).^2);
PSNR(i) = 10*log10(max(template)/MSE(i));
else
N = length(pulse_analysis); % = length(template);
R_mat = corrcoef(template,pulse_analysis);
R_corr(i) = R_mat(1,2);
Cxy(i) = mean(mscohere(template,pulse_analysis,[],[],[],64));
MSE(i) = mean((template - pulse_analysis').^2);
PSNR(i) = 10*log10(max(template)^2/MSE(i));
end
% By Jang18: Correlation coefficient between two adjancent pulses
if i == 1
Sig_sim(i) = 1;
else
pulse_analysis_prev = PPG_filt(I_foot(i-1):I_foot(i));
if length(pulse_analysis_prev) < length(pulse_analysis)
pulse_analysis_prev_2 = interp1(1:numel(pulse_analysis_prev),pulse_analysis_prev,linspace(1,numel(pulse_analysis_prev),numel(pulse_analysis)));
Sig_sim_mat = corrcoef(pulse_analysis_prev_2,pulse_analysis);
Sig_sim(i) = Sig_sim_mat(1,2);
elseif length(pulse_analysis_prev) > length(pulse_analysis)
pulse_analysis_2 = interp1(1:numel(pulse_analysis),pulse_analysis,linspace(1,numel(pulse_analysis),numel(pulse_analysis_prev)));
Sig_sim_mat = corrcoef(pulse_analysis_prev,pulse_analysis_2);
Sig_sim(i) = Sig_sim_mat(1,2);
else
Sig_sim_mat = corrcoef(pulse_analysis_prev,pulse_analysis);
Sig_sim(i) = Sig_sim_mat(1,2);
end
end
% Skewness
mean_sd = mean(pulse_analysis) / std(pulse_analysis);
vec_mean_sd = mean_sd * ones(size(pulse_analysis));
S(i) = 1/P * sum((pulse_analysis - vec_mean_sd).^3)';
% Kurtosis
Kur(i) = 1/P * sum((pulse_analysis - vec_mean_sd).^4);
% Relative Power
[PSD,F] = pwelch(pulse_analysis,[],[],[],fs_PPG);
f_1Hz = 1; %Hz
f1 = 2.25; %Hz
f2 = 8; %Hz
index_f1Hz = find(F == f_1Hz);
index_f1 = find(F == f1);
index_f2 = find(F == f2);
RelP(i) = sum(PSD(index_f1Hz:index_f1))/sum(PSD(1:index_f2));
% Statistical parameters
StdSig(i) = std(pulse_analysis_nozscore);
MedianSig(i) = median(pulse_analysis);
% By Sukor11: morphological features
trough_depth(i) = abs(pulse_analysis(1) - pulse_analysis(end));
pos_foot(i,1) = I_foot(i);
pos_foot(i,2) = I_foot(i+1);
% Updated 18.05
% # of detected peaks
[pks] = findpeaks(pulse_analysis);
if isempty(pks)
Npeaks(i) = 0;
else
Npeaks(i) = length(pks);
end
% Derivative zerocrossing rate
der = diff(pulse_analysis);
P_der = length(der);
der_zerocross = length(find (der < 0));
Z_der(i) = 1/P_der * sum(der_zerocross);
end
disp('end loop')
FeaturesNames_basic = cellstr({'Peak2peak ACC','Signal Similarity','Skewness','Trough depth','MedianPulse','StdPulse noZ','Npeaks','Z der rate','SigCoh','PSNR'});
Matrix_basic = [pp_amp', Sig_sim', S', trough_depth', MedianSig', StdSig', Npeaks', Z_der', Cxy', PSNR'];
Table_basic = array2table(Matrix_basic,'VariableNames',FeaturesNames_basic);
FeaturesNames_diagnostic = {'Peak2peak ACC','Signal Similarity','Kurtosis','Rel Power','Skewness','MedianPulse','StdPulse noZ','SNR Moody','Npeaks','Z der rate','MSE','PSNR'};
Matrix_diagnostic = [pp_amp', Sig_sim', Kur', RelP', S', MedianSig', StdSig', SNR', Npeaks', Z_der', MSE', PSNR'];
Table_diagnostic = array2table(Matrix_diagnostic,'VariableNames',FeaturesNames_diagnostic);
%% Preprocess features - Basic classifier
% Box-Cox transformation
% To make the features normally-distributed
% Requirements: data > 0
min_features = zeros(size(Matrix_basic,2),1);
New_Matrix = zeros(size(Matrix_basic));
var_trans = zeros(size(Matrix_basic,2),1);
Norm_Matrix = zeros(size(Matrix_basic));
lambda = zeros(size(Matrix_basic,2),1);
Matrix_min = zeros(size(Matrix_basic));
for i = 1:size(Matrix_basic,2)
min_features(i) = min(Matrix_basic(:,i));
if min_features(i) < 0 || min_features(i) == 0
New_Matrix(:,i) = Matrix_basic(:,i) + abs(min_features(i)) + eps;
var_trans(i) = 1;
else
New_Matrix(:,i) = Matrix_basic(:,i);
end
[Norm_Matrix(:,i), lambda(i)] = boxcox(New_Matrix(:,i));
if min_features(i) < 0 || min_features(i) == 0
Matrix_min(:,i) = Norm_Matrix(:,i) - abs(min_features(i)) - eps;
else
Matrix_min(:,i) = Norm_Matrix(:,i);
end
end
Matrix_basic_zscored = zscore(Matrix_min);
%% Preprocess features - Diagnostic classifier
% Box-Cox transformation
% To make the features normally-distributed
% Requirements: data > 0
min_features = zeros(size(Matrix_diagnostic,2),1);
New_Matrix = zeros(size(Matrix_diagnostic));
var_trans = zeros(size(Matrix_diagnostic,2),1);
Norm_Matrix = zeros(size(Matrix_diagnostic));
lambda = zeros(size(Matrix_diagnostic,2),1);
Matrix_min = zeros(size(Matrix_diagnostic));
for i = 1:size(Matrix_diagnostic,2)
min_features(i) = min(Matrix_diagnostic(:,i));
if min_features(i) < 0 || min_features(i) == 0
New_Matrix(:,i) = Matrix_diagnostic(:,i) + abs(min_features(i)) + eps;
var_trans(i) = 1;
else
New_Matrix(:,i) = Matrix_diagnostic(:,i);
end
[Norm_Matrix(:,i), lambda(i)] = boxcox(New_Matrix(:,i));
if min_features(i) < 0 || min_features(i) == 0
Matrix_min(:,i) = Norm_Matrix(:,i) - abs(min_features(i)) - eps;
else
Matrix_min(:,i) = Norm_Matrix(:,i);
end
end
Matrix_diagnostic_zscored = zscore(Matrix_min);
Table_diagnostic_zscored = array2table(Matrix_diagnostic_zscored,'VariableNames',FeaturesNames_diagnostic);
%% Basic classifier
% y_basic = 1 if the pulse can be used to estimate the HR, 0 otherwise
y_basic_double = basic_classifier(Matrix_basic_zscored');
y_basic = logical(round(y_basic_double));
% Find the foot indices of pulses that can be used to estimate the HR
ind_basic = find(y_basic == 1);
% E.g.: Interbeat Interval
IBI = (I_foot(ind_basic+1) - I_foot(ind_basic)) .* Ts_PPG;
%% Diagnostic classifier
% y_diagnostic = 1 if the pulse can be used for morphological analysis, 0 otherwise
y_diagnostic = diagnostic_classifier.predictFcn(Table_diagnostic_zscored);
ind_diagnostic = find(y_diagnostic == 1);
for i = 1:length(ind_diagnostic) - 1
% E.g.: Crest Time
CT(i) = (I_peak(ind_diagnostic(i)+1) - I_foot(ind_diagnostic(i))) * Ts_PPG;
% + 1 in I_peak because the ab_detection algorithm detect the I_peak
% first and then the I_foot
end