
IoT Project Summary Report

Appnea

Introduction

Background: Sleep apnea is a medical condition that affects a significant

portion of the population, leading to serious health complications if left

untreated. Despite its prevalence, many remain undiagnosed due to the lack

of accessible, user-friendly detection methods. In our project, we define an

apnea event as a time span of at least 8 seconds without a sign of breathing.

Objective:

We propose a smart monitoring system that leverages modern technology to

monitor vital signs indicative of sleep apnea or hypopnea. By tracking

breathing rate during sleep, our system aims to identify abnormalities that

signal the condition, all from the comfort of one's home.

Market analysis:

Currently, many available solutions are either too specialized for home use or

come with a steep price, limiting accessibility. For instance, the WatchPAT

ONE, though innovative, is priced at $190, making it less attainable .

Our system not only focuses specifically on sleep apnea but also aims to be a

more affordable, home-based solution.

System Architecture and Design

ESP-32: The system's hardware component is spearheaded by an ESP-32

microcontroller, which is connected to our sensor and transmits Bluetooth

messages to our app.

Accelerometer: Allows tracking of chest movements.

Pulse Oximeter(oxygen saturation sensor): It monitors the oxygen levels in the

blood, and BPM providing crucial data for apnea detection .

Android Application: The Android application serves as the user interface, a

comfortable and interactive app through which users interact with and receive

insights from their collected health data.

Python Integration: By leveraging Python, the system can conduct

sophisticated data processing tasks such as signal filtering and peak detection.

Arduino IDE code recap

Multi threading- In order to sample from both the IMU and the saturation

sensor simultaneously, we utilizing the multi threading capabilities of the ESP-

32. We dedicated a separate thread for sampling from the saturation sensor as

follows:

In this task, we used the manufacturer’s algorithms as provided in Arduino IDE

example libraries.

Android Studio code recap

The 3 most important modules are:

MainActivity.java - Serves as the main entry point of the app, handling the

setup of the app's main interface and initial permissions.

TerminalFragment.java - Manages the terminal interface for serial

communication, processes incoming data, Visualizes data using a line chart,

handles Python script integration for data analysis.

LoadCSV.java - Allows users to analyze their recorded data, showing charts for

both HR and spO2, displays a list of all apneas events that were detected

during the period.

Finding apnea events – general workflow

• We try to find new apnea events every fixed number of minutes.

• We keep track of IMU data during that time (then reset).

• Whenever the fixed time span ends, we call our algorithm.

• We start by applying a low pass filter to the magnitude of the

acceleration values.

• Using the filtered data, we try to find peaks – each peak is a sharp

movement of the chest – a sign of breathing.

•

Data Preprocessing Techniques:

• Noise Reduction: A low-pass filter is applied to the collected data,

particularly effective for motion data from accelerometers and

gyroscopes. This step is crucial for mitigating the impact of sensor noise

and external vibrations, ensuring that subsequent analyses are based

on accurate representations of the user's movements . Since the

frequency of breathing during rest is 0.2-0.4 hz, we chose a cutoff

frequency that's slightly higher – 0.7, to eliminate as much noise as

possible.

Finding peaks – details

Without any parameters to find_peaks, any local maximum is a peak. This

could make peaks out of noise – we want only peaks from breathing!

The parameters define what we consider a peak:

Prominence: defined as the height of a peak relative to the lowest contour line

surrounding that peak and not containing any higher peak. This helps filter out

minor peaks that are probably caused by noise. By trial and error on captured

data, we adjusted this parameter so that it will not detect "noise peaks", and

on the other hand will not ignore "real peaks".

Distance: Makes sure peaks are not too close to each other. In our case it

means that there must must be a difference of at least 0.8 seconds between

peaks.

Visualizations:

An example of typical IMU data received during normal breathing

An example of apnea event detection used to spot Apnea\Hypopnea from the SpO2 sensor

