[39d39d]: / py_version / model.py

Download this file

111 lines (89 with data), 2.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
import torch
import torch.nn as nn
import torch.nn.functional as F
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel, stride):
super(ConvBlock, self).__init__()
self.layer = nn.Sequential(
nn.Conv1d(in_channels = in_channels, out_channels = out_channels, kernel_size = kernel, stride = stride),
nn.BatchNorm1d(out_channels),
nn.ReLU()
)
def forward(self, x):
out = self.layer(x)
return out
class CNN1D(nn.Module):
def __init__(self, num_classes):
super(CNN1D, self).__init__()
self.layer = nn.Sequential(
ConvBlock(16, 16, 10, 4),
ConvBlock(16, 16, 5, 2),
ConvBlock(16, 16, 5, 2),
ConvBlock(16, 32, 5, 2),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(32, 32, 4, 1),
ConvBlock(32, 32, 4, 1),
ConvBlock(32, 64, 4, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(64, 64, 3, 1),
ConvBlock(64, 64, 3, 1),
ConvBlock(64, 128, 3, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(128, 128, 2, 1),
ConvBlock(128, 128, 2, 1),
ConvBlock(128, 256, 2, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2)
)
self.linear = nn.Sequential(
nn.Linear(1280, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 128),
nn.ReLU(),
nn.Linear(128, num_classes)
)
def forward(self, x):
batch_size = x.shape[0]
out = self.layer(x)
out = out.view(batch_size, -1)
out = self.linear(out)
return out
class CNN1D_F(nn.Module):
def __init__(self, num_classes):
super(CNN1D_F, self).__init__()
self.layer = nn.Sequential(
ConvBlock(16, 16, 10, 4),
ConvBlock(16, 16, 5, 2),
ConvBlock(16, 16, 5, 2),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(16, 16, 5, 2),
ConvBlock(16, 16, 5, 2),
ConvBlock(16, 32, 5, 2),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(32, 32, 4, 1),
ConvBlock(32, 32, 4, 1),
ConvBlock(32, 64, 4, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(64, 64, 3, 1),
ConvBlock(64, 64, 3, 1),
ConvBlock(64, 128, 3, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2),
ConvBlock(128, 128, 2, 1),
ConvBlock(128, 128, 2, 1),
ConvBlock(128, 256, 2, 1),
nn.MaxPool1d(kernel_size = 2, stride = 2)
)
self.linear = nn.Sequential(
nn.Linear(1280, 512),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, 128),
nn.ReLU(),
nn.Linear(128, num_classes)
)
def forward(self, x):
batch_size = x.shape[0]
out = self.layer(x)
out = out.view(batch_size, -1)
out = self.linear(out)
return out