|
a |
|
b/py_version/models_ml.py |
|
|
1 |
import numpy as np |
|
|
2 |
import matplotlib.pyplot as plt |
|
|
3 |
import pandas as pd |
|
|
4 |
import seaborn as sn |
|
|
5 |
|
|
|
6 |
# Machine Learning libraries |
|
|
7 |
from sklearn.ensemble import RandomForestClassifier |
|
|
8 |
from sklearn.svm import SVC |
|
|
9 |
from sklearn.linear_model import LogisticRegression |
|
|
10 |
from sklearn.neighbors import KNeighborsClassifier |
|
|
11 |
|
|
|
12 |
# Model evaluation libraries |
|
|
13 |
from sklearn.model_selection import cross_val_score |
|
|
14 |
from sklearn.metrics import accuracy_score |
|
|
15 |
from sklearn.metrics import confusion_matrix |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
|
19 |
### Random Forest Classfier |
|
|
20 |
rf = RandomForestClassifier() |
|
|
21 |
|
|
|
22 |
### Support Vector Classifier |
|
|
23 |
svc = SVC() |
|
|
24 |
|
|
|
25 |
### Logistic Regression |
|
|
26 |
lr = LogisticRegression(solver='liblinear') |
|
|
27 |
|
|
|
28 |
### K Nearest Neighbors |
|
|
29 |
knn = KNeighborsClassifier() |
|
|
30 |
|
|
|
31 |
x_data = np.load('featurized_data.npy', allow_pickle = True) |
|
|
32 |
y_data = np.load('labels.npy', allow_pickle = True) |
|
|
33 |
|
|
|
34 |
if __name__ == "__main__": |
|
|
35 |
rf_f_scores = cross_val_score(rf, x_data, y_data, cv=5) |
|
|
36 |
rf_f_acc = np.mean(rf_f_scores) |
|
|
37 |
|
|
|
38 |
svc_f_scores = cross_val_score(svc, x_data, y_data, cv=5) |
|
|
39 |
svc_f_acc = np.mean(svc_f_scores) |
|
|
40 |
|
|
|
41 |
lr_f_scores = cross_val_score(lr, x_data, y_data, cv=5) |
|
|
42 |
lr_f_acc = np.mean(lr_f_scores) |
|
|
43 |
|
|
|
44 |
knn_f_scores = cross_val_score(knn, x_data, y_data, cv=5) |
|
|
45 |
knn_f_acc = np.mean(knn_f_scores) |
|
|
46 |
|
|
|
47 |
# Visualize performance |
|
|
48 |
data_r = {'RF':rf_f_acc, 'SVC':svc_f_acc, 'LR':lr_f_acc, 'kNN':knn_f_acc} |
|
|
49 |
algorithm = list(data_r.keys()) |
|
|
50 |
accuracy = list(data_r.values()) |
|
|
51 |
fig = plt.figure(figsize = (10, 5)) |
|
|
52 |
plt.bar(algorithm, accuracy, color ='red', width = 0.4) |
|
|
53 |
plt.xlabel("ML models", fontsize = 18) |
|
|
54 |
plt.ylabel("5 fold accuracy", fontsize = 18) |
|
|
55 |
plt.title("Result", fontsize = 18) |
|
|
56 |
plt.xticks(fontsize = 14) |
|
|
57 |
plt.yticks(fontsize = 14) |
|
|
58 |
plt.ylim([0, 1]) |
|
|
59 |
plt.show() |
|
|
60 |
|
|
|
61 |
print('Random Forest Accuracy: ', rf_f_acc*100) |
|
|
62 |
print('Support Vector Classifier Accuracy: ', svc_f_acc*100) |
|
|
63 |
print('Logistic Regression Accuracy: ', lr_f_acc*100) |
|
|
64 |
print('K Nearest Neighbours Accuracy: ', knn_f_acc*100) |
|
|
65 |
|
|
|
66 |
|
|
|
67 |
### Retraining RF on shuffeled data |
|
|
68 |
X_train = [] |
|
|
69 |
X_test = [] |
|
|
70 |
y_train = [] |
|
|
71 |
y_test = [] |
|
|
72 |
for i in range(7): |
|
|
73 |
current_class_data = x_data[i*20: i*20 + 20] |
|
|
74 |
X_train.append(current_class_data[0: 16]) |
|
|
75 |
X_test.append(current_class_data[16: ]) |
|
|
76 |
current_class_labels = y_data[i*20: i*20 + 20] |
|
|
77 |
y_train.append(current_class_labels[0: 16]) |
|
|
78 |
y_test.append(current_class_labels[16: ]) |
|
|
79 |
X_train = np.array(X_train).reshape(-1, 320) |
|
|
80 |
X_test = np.array(X_test).reshape(-1, 320) |
|
|
81 |
y_train = np.array(y_train).reshape(-1) |
|
|
82 |
y_test = np.array(y_test).reshape(-1) |
|
|
83 |
|
|
|
84 |
rf = RandomForestClassifier() |
|
|
85 |
rf.fit(X_train, y_train) |
|
|
86 |
predictions = rf.predict(X_test) |
|
|
87 |
accuracy = accuracy_score(predictions, y_test) |
|
|
88 |
print('Accuracy: ', accuracy) |
|
|
89 |
|
|
|
90 |
# Confusion Matrix |
|
|
91 |
conf_matrix = confusion_matrix(y_test, predictions) |
|
|
92 |
df_cm = pd.DataFrame(conf_matrix, index = [i for i in "0123456"], columns = [i for i in "0123456"]) |
|
|
93 |
plt.figure(figsize = (10,7)) |
|
|
94 |
sn.set(font_scale=1.4) |
|
|
95 |
sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}) |
|
|
96 |
plt.ylabel('True label') |
|
|
97 |
plt.xlabel('Predicted label') |
|
|
98 |
plt.show() |
|
|
99 |
|
|
|
100 |
|
|
|
101 |
# Dropping class 4 Datapoints |
|
|
102 |
idx = (y_data != 4) |
|
|
103 |
x_data = x_data[idx] |
|
|
104 |
y_data = np.array([i for i in range(6) for j in range(20)]) |
|
|
105 |
|
|
|
106 |
#Retrain shallow ML algorithms without class 4 |
|
|
107 |
rf = RandomForestClassifier() |
|
|
108 |
rf_f_scores = cross_val_score(rf, x_data, y_data, cv=5) |
|
|
109 |
rf_f_acc = np.mean(rf_f_scores) |
|
|
110 |
|
|
|
111 |
svc = SVC() |
|
|
112 |
svc_f_scores = cross_val_score(svc, x_data, y_data, cv=5) |
|
|
113 |
svc_f_acc = np.mean(svc_f_scores) |
|
|
114 |
|
|
|
115 |
lr = LogisticRegression(solver='liblinear') |
|
|
116 |
lr_f_scores = cross_val_score(lr, x_data, y_data, cv=5) |
|
|
117 |
lr_f_acc = np.mean(lr_f_scores) |
|
|
118 |
|
|
|
119 |
knn = KNeighborsClassifier() |
|
|
120 |
knn_f_scores = cross_val_score(knn, x_data, y_data, cv=5) |
|
|
121 |
knn_f_acc = np.mean(knn_f_scores) |
|
|
122 |
|
|
|
123 |
|
|
|
124 |
data_r = {'RF':rf_f_acc, 'SVC':svc_f_acc, 'LR':lr_f_acc, 'kNN':knn_f_acc} |
|
|
125 |
algorithm = list(data_r.keys()) |
|
|
126 |
accuracy = list(data_r.values()) |
|
|
127 |
fig = plt.figure(figsize = (10, 5)) |
|
|
128 |
plt.bar(algorithm, accuracy, color ='red', width = 0.4) |
|
|
129 |
plt.xlabel("ML models", fontsize = 18) |
|
|
130 |
plt.ylabel("5 fold accuracy", fontsize = 18) |
|
|
131 |
plt.title("Result", fontsize = 18) |
|
|
132 |
plt.xticks(fontsize = 14) |
|
|
133 |
plt.yticks(fontsize = 14) |
|
|
134 |
plt.ylim([0, 1]) |
|
|
135 |
plt.show() |
|
|
136 |
|
|
|
137 |
|
|
|
138 |
print('Random Forest Accuracy: ', rf_f_acc*100) |
|
|
139 |
print('Support Vector Classifier Accuracy: ', svc_f_acc*100) |
|
|
140 |
print('Logistic Regression Accuracy: ', lr_f_acc*100) |
|
|
141 |
print('K Nearest Neighbours Accuracy: ', knn_f_acc*100) |
|
|
142 |
|
|
|
143 |
|
|
|
144 |
|
|
|
145 |
# Creating train and test set without class 4 |
|
|
146 |
X_train = [] |
|
|
147 |
X_test = [] |
|
|
148 |
y_train = [] |
|
|
149 |
y_test = [] |
|
|
150 |
for i in range(6): |
|
|
151 |
current_class_data = x_data[i*20: i*20 + 20] |
|
|
152 |
X_train.append(current_class_data[0: 16]) |
|
|
153 |
X_test.append(current_class_data[16: ]) |
|
|
154 |
current_class_labels = y_data[i*20: i*20 + 20] |
|
|
155 |
y_train.append(current_class_labels[0: 16]) |
|
|
156 |
y_test.append(current_class_labels[16: ]) |
|
|
157 |
X_train = np.array(X_train).reshape(-1, 320) |
|
|
158 |
X_test = np.array(X_test).reshape(-1, 320) |
|
|
159 |
y_train = np.array(y_train).reshape(-1) |
|
|
160 |
y_test = np.array(y_test).reshape(-1) |
|
|
161 |
|
|
|
162 |
# Training the best model (Random Forest) |
|
|
163 |
rf = RandomForestClassifier() |
|
|
164 |
rf.fit(X_train, y_train) |
|
|
165 |
predictions = rf.predict(X_test) |
|
|
166 |
accuracy = accuracy_score(predictions, y_test) |
|
|
167 |
print('Accuracy: ', accuracy) |
|
|
168 |
|
|
|
169 |
# See new confusion matrix of best model without class 4 |
|
|
170 |
conf_matrix = confusion_matrix(y_test, predictions) |
|
|
171 |
df_cm = pd.DataFrame(conf_matrix, index = [i for i in "012356"], columns = [i for i in "012356"]) |
|
|
172 |
plt.figure(figsize = (10,7)) |
|
|
173 |
sn.set(font_scale=1.4) |
|
|
174 |
sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}) |
|
|
175 |
plt.ylabel('True label') |
|
|
176 |
plt.xlabel('Predicted label') |
|
|
177 |
plt.show() |
|
|
178 |
|
|
|
179 |
|