|
a |
|
b/civil_structure_fault_classification.ipynb |
|
|
1 |
{ |
|
|
2 |
"cells": [ |
|
|
3 |
{ |
|
|
4 |
"cell_type": "markdown", |
|
|
5 |
"id": "d298c50e", |
|
|
6 |
"metadata": {}, |
|
|
7 |
"source": [ |
|
|
8 |
"# Civil Structure Fault Classification using Vibration Signals" |
|
|
9 |
] |
|
|
10 |
}, |
|
|
11 |
{ |
|
|
12 |
"cell_type": "markdown", |
|
|
13 |
"id": "17a02c7b", |
|
|
14 |
"metadata": {}, |
|
|
15 |
"source": [ |
|
|
16 |
"## Motivation" |
|
|
17 |
] |
|
|
18 |
}, |
|
|
19 |
{ |
|
|
20 |
"cell_type": "markdown", |
|
|
21 |
"id": "25179f33", |
|
|
22 |
"metadata": {}, |
|
|
23 |
"source": [ |
|
|
24 |
"Thousands of lives are lost due to faults in civil structures each year. Detecting potential faults in large civil structures is key to preventing such mass calamities. Structural health monitoring (SHM) is an important and growing field with widespread application in civil engineering and architecture design. Structural health monitoring (SHM) will play a crucial role in making structures safer by detecting potential failures well before they actual happen.\n", |
|
|
25 |
"\n", |
|
|
26 |
"In this project, we want to create a model that will be able to predict the types of fault in a civil structure." |
|
|
27 |
] |
|
|
28 |
}, |
|
|
29 |
{ |
|
|
30 |
"cell_type": "markdown", |
|
|
31 |
"id": "793ef327", |
|
|
32 |
"metadata": {}, |
|
|
33 |
"source": [ |
|
|
34 |
"## Dataset" |
|
|
35 |
] |
|
|
36 |
}, |
|
|
37 |
{ |
|
|
38 |
"cell_type": "markdown", |
|
|
39 |
"id": "c5f71dc3", |
|
|
40 |
"metadata": {}, |
|
|
41 |
"source": [ |
|
|
42 |
"There are civil structure design benchmarks available for Structural Health Monitoring (SHM) prupose. One such benchmark model was established in the Earth-quake Engineering Research Facility at the University of BritishColumbia (UBC, Canada). The model used is a four-storey with two-bay-by-two-bay steel frame scale structure. The size of each plane is 1.5 m × 1.5 m, the height of each floor is 0.9 m, and each floor has eight braces. The benchmark model is shown in the following figure.\n" |
|
|
43 |
] |
|
|
44 |
}, |
|
|
45 |
{ |
|
|
46 |
"cell_type": "markdown", |
|
|
47 |
"id": "ebac2b42", |
|
|
48 |
"metadata": {}, |
|
|
49 |
"source": [ |
|
|
50 |
"Civil structure layout used for simulation" |
|
|
51 |
] |
|
|
52 |
}, |
|
|
53 |
{ |
|
|
54 |
"cell_type": "markdown", |
|
|
55 |
"id": "c3ac6644", |
|
|
56 |
"metadata": {}, |
|
|
57 |
"source": [ |
|
|
58 |
"" |
|
|
59 |
] |
|
|
60 |
}, |
|
|
61 |
{ |
|
|
62 |
"cell_type": "markdown", |
|
|
63 |
"id": "e4ad17d5", |
|
|
64 |
"metadata": {}, |
|
|
65 |
"source": [ |
|
|
66 |
"Sensor placement setup" |
|
|
67 |
] |
|
|
68 |
}, |
|
|
69 |
{ |
|
|
70 |
"cell_type": "markdown", |
|
|
71 |
"id": "b1af31f2", |
|
|
72 |
"metadata": {}, |
|
|
73 |
"source": [ |
|
|
74 |
"" |
|
|
75 |
] |
|
|
76 |
}, |
|
|
77 |
{ |
|
|
78 |
"cell_type": "markdown", |
|
|
79 |
"id": "71655795", |
|
|
80 |
"metadata": {}, |
|
|
81 |
"source": [ |
|
|
82 |
"#### Experimental conditions" |
|
|
83 |
] |
|
|
84 |
}, |
|
|
85 |
{ |
|
|
86 |
"cell_type": "markdown", |
|
|
87 |
"id": "941049b0", |
|
|
88 |
"metadata": {}, |
|
|
89 |
"source": [ |
|
|
90 |
"A 140 data points - dataset is recorded with the help of 16 sensors. Each datapoint represents a vibration signal of length 40000. These signals are categorized in 6 types of fault and a normal class. In total, 7 classes that are used for classification by Machine learning models.\n", |
|
|
91 |
"\n", |
|
|
92 |
"The layout shown above was used to generate data in simulation software. The simulation software used for generating the data is **DataGen2e**. The software has a set of libraries and civil benchmark structures. After selecting the structure layout, we need to create conditions under which we want to create the data. The data for this project is collected with the following conditions.\n", |
|
|
93 |
"\n", |
|
|
94 |
"1. Undamaged case\n", |
|
|
95 |
"2. All braces of 1st story are broken\n", |
|
|
96 |
"3. all braces of 1st and 3rd story are broken\n", |
|
|
97 |
"4. 1 brace on 1st story is broken\n", |
|
|
98 |
"5. 1 brace on 3rd story is broken\n", |
|
|
99 |
"6. condition 5 + unscrew the element 18\n", |
|
|
100 |
"7. Area of brace 1 is reduced to 2/3rd of story 1\n", |
|
|
101 |
"\n", |
|
|
102 |
"After selecting the conditions, the structure is then excited using twice the natural frequency for 40 seconds under each condition. The vibration signals at each sensor are collected with 1000 Hz frequency. We have collected 20 datapoints for each condition.\n", |
|
|
103 |
"\n", |
|
|
104 |
"\n" |
|
|
105 |
] |
|
|
106 |
}, |
|
|
107 |
{ |
|
|
108 |
"cell_type": "markdown", |
|
|
109 |
"id": "7e67d4fb", |
|
|
110 |
"metadata": {}, |
|
|
111 |
"source": [ |
|
|
112 |
"## Steps" |
|
|
113 |
] |
|
|
114 |
}, |
|
|
115 |
{ |
|
|
116 |
"cell_type": "markdown", |
|
|
117 |
"id": "190044d7", |
|
|
118 |
"metadata": {}, |
|
|
119 |
"source": [ |
|
|
120 |
"**1. Data Processing and Visualization**\n", |
|
|
121 |
"\n", |
|
|
122 |
"**2. Feature Engineering**\n", |
|
|
123 |
"\n", |
|
|
124 |
"**3. Machine Learning methods and performace evaluation**\n", |
|
|
125 |
"\n", |
|
|
126 |
"**4. Deep Learning method and performace evaluation**\n", |
|
|
127 |
"\n", |
|
|
128 |
"**5. Conclusion**\n", |
|
|
129 |
"\n", |
|
|
130 |
"\n", |
|
|
131 |
"**Appendix**" |
|
|
132 |
] |
|
|
133 |
}, |
|
|
134 |
{ |
|
|
135 |
"cell_type": "markdown", |
|
|
136 |
"id": "84f8b5b6", |
|
|
137 |
"metadata": {}, |
|
|
138 |
"source": [ |
|
|
139 |
"We will import all the required libraries here" |
|
|
140 |
] |
|
|
141 |
}, |
|
|
142 |
{ |
|
|
143 |
"cell_type": "code", |
|
|
144 |
"execution_count": 24, |
|
|
145 |
"id": "c3a52379", |
|
|
146 |
"metadata": {}, |
|
|
147 |
"outputs": [], |
|
|
148 |
"source": [ |
|
|
149 |
"# Regular libraries\n", |
|
|
150 |
"import numpy as np\n", |
|
|
151 |
"import pandas as pd\n", |
|
|
152 |
"import scipy.stats\n", |
|
|
153 |
"import os\n", |
|
|
154 |
"\n", |
|
|
155 |
"# Graphing libraries\n", |
|
|
156 |
"import matplotlib.pyplot as plt\n", |
|
|
157 |
"import seaborn as sn\n", |
|
|
158 |
"\n", |
|
|
159 |
"# Machine Learning libraries\n", |
|
|
160 |
"from sklearn.ensemble import RandomForestClassifier\n", |
|
|
161 |
"from sklearn.svm import SVC\n", |
|
|
162 |
"from sklearn.linear_model import LogisticRegression\n", |
|
|
163 |
"from sklearn.neighbors import KNeighborsClassifier\n", |
|
|
164 |
"\n", |
|
|
165 |
"# Model evaluation libraries\n", |
|
|
166 |
"from sklearn.model_selection import cross_val_score\n", |
|
|
167 |
"from sklearn.metrics import accuracy_score\n", |
|
|
168 |
"from sklearn.metrics import confusion_matrix\n", |
|
|
169 |
"\n", |
|
|
170 |
"# Warning handling library\n", |
|
|
171 |
"import warnings\n", |
|
|
172 |
"warnings.filterwarnings('ignore')" |
|
|
173 |
] |
|
|
174 |
}, |
|
|
175 |
{ |
|
|
176 |
"cell_type": "markdown", |
|
|
177 |
"id": "918460b1", |
|
|
178 |
"metadata": {}, |
|
|
179 |
"source": [ |
|
|
180 |
"## 1. Data Processing and Visualization" |
|
|
181 |
] |
|
|
182 |
}, |
|
|
183 |
{ |
|
|
184 |
"cell_type": "markdown", |
|
|
185 |
"id": "7400ab43", |
|
|
186 |
"metadata": {}, |
|
|
187 |
"source": [ |
|
|
188 |
"Let us now load the data. The data is stored as an array in '.npy' file format. Labels are also stored in the same file format. After loading the data, we will print the shape and visualize the data." |
|
|
189 |
] |
|
|
190 |
}, |
|
|
191 |
{ |
|
|
192 |
"cell_type": "code", |
|
|
193 |
"execution_count": 25, |
|
|
194 |
"id": "1ee26af0", |
|
|
195 |
"metadata": {}, |
|
|
196 |
"outputs": [], |
|
|
197 |
"source": [ |
|
|
198 |
"data = np.load('data.npy', allow_pickle = True)\n", |
|
|
199 |
"labels = np.load('labels.npy', allow_pickle = True)" |
|
|
200 |
] |
|
|
201 |
}, |
|
|
202 |
{ |
|
|
203 |
"cell_type": "code", |
|
|
204 |
"execution_count": 26, |
|
|
205 |
"id": "986b5711", |
|
|
206 |
"metadata": {}, |
|
|
207 |
"outputs": [ |
|
|
208 |
{ |
|
|
209 |
"name": "stdout", |
|
|
210 |
"output_type": "stream", |
|
|
211 |
"text": [ |
|
|
212 |
"Number of data points: 140\n", |
|
|
213 |
"Number of sensors: 16\n", |
|
|
214 |
"Signal length: 40000\n", |
|
|
215 |
"Classes: [0 1 2 3 4 5 6]\n" |
|
|
216 |
] |
|
|
217 |
} |
|
|
218 |
], |
|
|
219 |
"source": [ |
|
|
220 |
"print('Number of data points: ',data.shape[0])\n", |
|
|
221 |
"print('Number of sensors: ',data.shape[1])\n", |
|
|
222 |
"print('Signal length: ',data.shape[2])\n", |
|
|
223 |
"print('Classes: ', np.unique(labels))" |
|
|
224 |
] |
|
|
225 |
}, |
|
|
226 |
{ |
|
|
227 |
"cell_type": "markdown", |
|
|
228 |
"id": "cbbd8b28", |
|
|
229 |
"metadata": {}, |
|
|
230 |
"source": [ |
|
|
231 |
"The data loaded above is in raw format. We will process the data as per the requirement of models we will be using.\n", |
|
|
232 |
"\n", |
|
|
233 |
"Let us now plot the signal captured by different sensors." |
|
|
234 |
] |
|
|
235 |
}, |
|
|
236 |
{ |
|
|
237 |
"cell_type": "code", |
|
|
238 |
"execution_count": 27, |
|
|
239 |
"id": "c866d903", |
|
|
240 |
"metadata": {}, |
|
|
241 |
"outputs": [ |
|
|
242 |
{ |
|
|
243 |
"data": { |
|
|
244 |
"text/plain": [ |
|
|
245 |
"[Text(0, 0.5, 'Amplitude'), Text(0.5, 0, 'Time')]" |
|
|
246 |
] |
|
|
247 |
}, |
|
|
248 |
"execution_count": 27, |
|
|
249 |
"metadata": {}, |
|
|
250 |
"output_type": "execute_result" |
|
|
251 |
}, |
|
|
252 |
{ |
|
|
253 |
"data": { |
|
|
254 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAIXCAYAAAD0a0MGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADEsklEQVR4nOzdd3gUVdsG8HtTIQkQCCH0Tui9d4iK+lpeRVFBQSkKfoCiFAGxN1TaS1HpKgIiKEgTUXrvPaGGTnpIIz2Z74+wy5bZ3ZndmZ3d5P5dl5dkdnbmZLI7Z55TnqMTBEEAERERERGRwry0LgARERERERVPDDaIiIiIiEgVDDaIiIiIiEgVDDaIiIiIiEgVDDaIiIiIiEgVDDaIiIiIiEgVDDaoxLh8+TLGjh2Lbt26oVmzZujatStGjx6NEydOaF00VURFRaFZs2a4fv261kUhIvJIJa3eAIDhw4cjIiJC62JQMcJgg0qES5cu4YUXXkBcXBwmTJiAhQsX4r333kNycjJefvll7NixQ+siKurixYt4/fXXkZeXp3VRiIg8UkmrNwDgt99+w86dO7UuBhUzOi7qRyXB5MmTsXfvXvz777/w8/MzbM/NzUXfvn2h0+mwYcMGDUuojNzcXKxYsQKzZs2Cv78/UlJSsHXrVtSqVUvrohEReZSSUm/o3bx5E08//TTKli0Lb29vbN++XesiUTHBng0qEZKSkqDT6Sy2+/n5Yfz48ejXr5/J9uPHj2PgwIFo1aoV2rdvj7FjxyIuLs7w+qFDh9CwYUMcPnwYb7zxBlq1aoWOHTviww8/RFZWlmG/qKgoDBkyBO3bt0erVq0wYMAA7Nu3z+RcZ8+exbBhw9CxY0e0adMGb7zxBi5cuGBxrtWrV+Phhx9G69atsXXrVtHfc/fu3Zg9ezZGjBiBcePGOXStiIio5NQbAFBYWIgJEybg0UcfRfv27WVfKyJbGGxQiRAREYHY2Fi8+OKLWL58Oa5cuWJ4rWfPnhg0aJDh52PHjhl+/vbbbzF58mScOHECr7zyCjIyMkyOO2bMGDRq1Ahz587FgAEDsGrVKvzwww8AgIyMDAwePBj+/v749ttvMWvWLPj6+mL48OG4efMmAODgwYN46aWXkJOTg08//RSffvopYmJi8NJLL+Hy5csm5/rmm2/w1ltv4aOPPrJaGTRv3hzbt2/HiBEj4O3t7fyFIyIqoUpKvQEAixYtQkxMDN5//33nLhqRGIGohJgzZ47QsmVLITw8XAgPDxc6duwojBkzRjhw4IDJfi+99JLQp08fIScnx7Dtxo0bQtOmTYUffvhBEARBOHjwoBAeHi58/fXXJu/t37+/8OSTTwqCIAgnT54UwsPDhWPHjhleT0pKEr788kvh4sWLgiAIwvPPPy/06dNHyMvLM+yTkpIidOjQQRg5cqTJub755htZv+/vv/8uhIeHC9euXZP1PiIiKlIS6o2oqCihWbNmwt69ewVBEISxY8cKvXv3lnyNiOxhzwaVGKNGjcLevXsxe/ZsDBgwACEhIdi8eTNeffVVfP311wCA7OxsnDx5Er1794aXlxfy8/ORn5+PKlWqoGnTpti7d6/JMdu2bWvyc5UqVZCZmQkAaNCgAUJDQ/Hmm2/ik08+wbZt2+Dn54dJkyahQYMGyMzMxJkzZ/DYY4/Bx8fHcIxy5cqhd+/eOHz4sMmxw8PD1bgsRERkRXGvN3JzczF+/Hg899xz6Nq1q8PXicgWH/u7EBUfQUFBePTRR/Hoo48CAKKjozFlyhQsWbIEzz77LMqVK4fCwkIsXboUS5cutXh/7dq1TX4uXbq0yc86nQ7C/ZwLAQEBWLlyJebPn4+///4bK1asgJ+fH/r06YOPP/4YmZmZEAQBoaGhFuepWLEi0tPTTbaJ7UdEROoqzvXGrFmzkJmZibFjxyI/Px8ADGXJz8+Hl5cXvLzYLk3OYbBBxV5sbCyeffZZjBo1Ci+//LLJa3Xr1sXkyZPx3HPP4fLly+jZsyd0Oh0GDhyIp59+2uJYxhlJpKhRowY+//xzCIKA8+fPY/PmzVi8eDHKlSuHcePGQafTISEhweJ98fHxCA4OlnUuIiJSRkmpN7Zs2YLbt2+jXbt2Fq81bdoUo0aNwujRo2Udk8gcw1Uq9kJDQ1GqVCmsWLEC9+7ds3hdP6EuPDwcgYGBaNq0Ka5cuYLmzZsb/mvYsCHmzZuHXbt2ST7vli1b0KlTJ8THx0On06Fx48YYO3Ys6tati9u3byMgIADNmjXDli1bDC1KAJCWloadO3dadLUTEZFrlJR64/vvv8eaNWtM/uvRowdCQ0OxZs0avPDCC7KORySGPRtU7Hl7e+Pjjz/GyJEj0bdvXwwYMAANGjRAXl4eDh06hOXLl6N///6oX78+AGDs2LEYNmwY3nrrLUMr1bJly3D06FG89tprks/bpk0bCIKAESNGYNiwYShXrhz27NmDS5cuYdiwYYZzDR06FIMHD8bAgQORl5eHBQsWICcnB6NGjVL8WhARkX0lpd5o2LChxbZy5crBz88PzZs3l3UsImsYbFCJ0LNnT6xZswYLFy7Ejz/+iMTERPj4+KBhw4b48MMP0bdvX8O+Xbp0wdKlSzF37lyMGzcOPj4+aNy4MRYtWoROnTpJPmelSpWwZMkSzJo1C59++inu3buHOnXq4Msvv8QzzzwDAOjcuTOWLl2KOXPmYPz48fD19UW7du3wzTffiFYCRETkGqw3iJTBFcSJiIiIiEgVbjlnIyMjA19++SUiIiLQunVr9O3bF9u2bdO6WERE5IZYZxARuS+3DDYmTZqEnTt34vPPP8e6devQp08fjBo1CgcOHNC6aERE5GZYZxARuS+3G0aVkJCAbt26Yf78+ejVq5dh+6uvvoqKFSti+vTp2hWOiIjcCusMIiL35nYTxEuXLo2FCxeiTZs2Jtt1Oh1SU1M1KhUREbkj1hlERO7N7YZRBQUFoUePHggKCjJsO3nyJA4ePGjSakVERMQ6g4jIvbndMCpzV65cwauvvopq1arhl19+ga+vr9ZFIiIiN8U6g4jIvbjdMCpjR44cwahRo1C1alXMnz9fVqVx9+49FBbKj6NCQoKQlJQh+30lFa+XdLxW0vFayePo9fLy0qF8+UAVSqQNZ+oMgPWGK/BaycPrJR2vlXSurjPcNthYv349Jk+ejA4dOmD27NkmXeRSFBYKDlUa+veSdLxe0vFaScdrJU9Jv17O1hkA6w1X4bWSh9dLOl4r6Vx5rdxuzgYAbNiwARMmTMDjjz+O+fPnO1RpEBFRycA6g4jIfbldz0ZsbCw++OADdOzYEePHj0dKSorhNV9fXwQHB2tWNiIici+sM4iI3JvbBRtbt25FVlYWDh48iO7du5u81qZNG6xcuVKjkhERkbthnUFE5N7cLtgYNGgQBg0apHUxiIjIA7DOICJyb245Z4OISra76dlITMnSuhhERESqKywUcDUmTetiqIbBBhG5nUEf/40JPxzQuhhERESqW7/vKj776WixDTgYbBAp7GZ8BnacuK11McjDJaZk4bcdl1Ho3uuuEhGRk27EFa15kZKeo3FJ1OF2czaIPN1HSw4DAHq3rqZxSciTff/nWVyNSUfHxmGoVbmM1sUhIiJyCHs2qNjbceI23l94UOtiEMlSUMAeDSJSV3xKFgT2npLKGGxQsbfs7wuIScrUuhhERERu48rtVEz84QB2nryjdVGomGOwQUQlWnZuPrJy8rUuBhGRS8UmFzXCXbmdqnFJSK+49jEx2NDIhRt3cfFmitbFICrxRs/ag5Ezd2tdDCIiKqF0Oq1LoC4GGxr5esUJTF1+XOtiEJV4BYXu2ZbknqUiKj6OnI/H4ag4rYtBEhw9H49jFxK0LgY5iMGGBthlSURSFfcWLyJXWbb1At6du9fw8/frzuKHP8/ZfV9mdj5+/CsK2bkcbqmV79adxby1Z7QuBjmIwYYGdnEylsOSUrOx/J+LKHTT1mgiInJPO47fRkpGruz3bTp4DbtPxWDHcefWT0q7l4vh03biyh33aHBkEirXyC8oRH5BoaR9i+vfhMEGeZRFGyOx7dgtXHaid2j1jsv4cPFhBUtFRETFlVIPgOdv3EVefiG2Hr6pzAEVws5Tdf3fjF14Z85e+zsWYww2PMie03ewYIP9Lt/iTInVlP86dAO3EjIUKE3xIAhCscuzvvPkbcSnZGldDCIiKuHyCwTcyy7ZQ/AYbHiQpZvP4+A5z5rMlpNbgMwS/iVzF4IgYM/pOxZpXqevOomhX+/QqFTKyy8oxM9bLuCrZcdEX7+XnefRw/CycvLx2/bLkrvliYqDQkFQpLGJ5Jn52ynsPOnc8DEiBhsulJKRg+ux6Zr3Wd5Nz8GNuHSXnGv89/sxahbTirqD6DtpWLr5PH7++4LJ9shrdzUqkboysvIstmXn5mP0rD34dfslDUokj7XnqnV7rmLL4RvYezrGtQUi0tCwr3fgSysNCKorwTHOmegk/Lzlgv0dSXFno5OcGjLuThhsuMD47/Zj4/5rmPjDAXzy4xGti4Ox8/bh46XqleNabBq++uUY8vILRB/4iqPY5EzFF4a7m56D5VsvoqBQmRbsnLwCAEWTFEuq7Nyia3AkKl7jkjhO36PBVl4qaaLvpGlbgGI2uUEoyVGUHRv2XcWQqds1GGL84HwzfjulXYCtMAYbLpCUlo0/dkcjN79kDHtYvvUiLt1KxfW4kjMvYvKCg/h6hbLrpvz413lsO34LUTZ6HvILCpGZLS2gi7ruXA/G8n8uYuP+a04dQ+/XbZcwZOp2RY7lCFdUH/kFhTgYGVvs5sOQbTFJ9zBk6nacuMg1AchDFLMgSglr91wFAOhclHvcVefRCoMNDyAIAmKS7ql+nmuxacgrIQGRGm4oHFxJabme+dspjJq1x+5+Z6KTsOnAdafKs+3YLfyxO9qpY+htPaJNNhZX3s7X7bmKBesjcepKkgvPSlq7GlPU+n70gvO9Z4mpWRgydTsu3kxx+ljFUX5BIX786zzupudoXRQiVX2w+BBmrDqpdTEcxmBDA3IfeA5GxuH9hYdUKYteYkoWPv3xKJb/o9zYzAJOYFWd1N4Kscq48P6EcVKH/prfy8rDuavJnNBNsp2/ngIA2HOK31MxZ6OTsfvUHfy85byq51FjuJEgCJjz+2mcjWZjhFrGztuHr34pHsOQbifcw9mryVoXw2EMNsxkZOZiyNTt2HbsltZFMVBqMndOXgE2Hbgm+po+Ldu1GOvnyskrkDR/QH9b/nrFCblFlMxdh6Z4UgvbvjMxWLpZvJLOyS3AkKnb8Y9GPRDFycWbKZi+6iT+3HvV5n7bj9/CGZkPHgkpWVi3J9ptvw+kvCFTt2P2mtMm2y7fSsXSzVEl7nOgDwLkDkFJTstGXHKm7PPpFOwbzc0vxIlLiZjx2ynFjumsW/EZqqcMf/0b1030v5ueg0u3iscEa0/HYMNMYmo2ABS7VG/Lt17Em9N34fddjg+DeXP6Lny39qyCpZLP3Uc1jp23T+si2JWTV4C3/rfHZhrl9MyiSeRqDHcSG6p3Nz0HSzZHuWwYX9q9okYFVwxPTL0/Id/ew80vWy9ipsmDh/iDo/HW2WtOY/2+ay75PchxuXkF+GN3tGKf75OXE01+/mblCew5HcPeM4nGfbcfkxYc1LQMfx++Yfj3VK1a381uMR8uOYyJPxxQ9ZQFhUKxybCkhuLaXsBgQwNazAPadlyZnpoTlxKRnJatyLE82YUbd5GXX6DuSezcdQ5Gxjp02Og7acjIynN6wrgjDpyLxfBpOy22r/jnIvaejsEps4cotal5DVzxPeccK/ex/2xMUWpzEX8duoGN+685nHLZ0eePgsJCvPW/PVi4IVKT77vqPOzBTH9LP3I+3pAZDwAuatz6roOO2e0kiE/JcrjeBWyPUnH3hlRnMdhw0oGzsZjx20mti+FS9rp9xe5Zxal7/07iPXy94gSW/6PsWg07TtzG0fMik0qt3IUWrI+0e8y8/EIMmbrd7hAetV25k4ohU7dj/b5rLjun6EfOiQggOS0bE77fj8RU02EGqfdycfCcZQXkfOVh+wjFvXLyNIs2RuGTH4/gtEhCAH1QuOO4vB5z/cfV0dtnZnY+MrLycOBcLL5dqd6w1uJO7vW/nZCBY3YSBLjbwqJ5eQ8aLpb/c1GRY6Zl5mL/2eKzHtAnS49IqnetOX8jRbnCeBgGG05auDESZ6PVnbQjZ5xodm6+aGUnJr+g0GYQYK3VNCNT/joN/7poDkxiShauxaqbi/3e/VSzdxKVHbqy7O8L+G6dssPUsnOL5uLInUsyQeGu9OMXitKAWhtKpGS1a3hAEzlqaobjc2r2no5BYmo29pwyrTxnrzmNBRsiDcOl7BkydTuWbo5yuBzk3g67eA2Xc1eTNWvMuZ14r1g1JCnlg8WHMU9kyPH5G57RuyRnzurOE7cxcb54fTHvjzNYtDFK1dEQI6btNBt+qh6l1tL6fdcVTP/VdvB/uZjNNWGwYY1C90+pN+JTlxMxZOp2JKWKfCmtxBoZWXkYMnU7Dhi1qi7ZFIVZq08h7q79yW9vfLsTu06KZzmJS87E8Gk7se+MMq0SchZj2nr4Bi6I3JTfX3jQbnfzhB8O4NMfj2LNzit215+4Fpvm0CRBtWVm52nS6rVs6wWcvJSIX7dpt7q2EkOP9MG52FdPjcmCd9OLvrPW/mZi5djD1b9JAWejkzB91UkUKHi/KCgsROQ10wa0u+k5Fj16UdeS8cGiQ9jlZKask5cSkZsnfUjqX4eKUnhv3H8NUTYe3rNz81Wdy3TgXCzW7ZE+B/LctWSr9a2YgsJCtx4mufd0DN6evQc//30B8XezcCs+A2evJuHo+XjE33/+0Ddy5atYn+XmF8pOrKGVVdsuISMrD5sOXMc5G+tnAcCXxSSLlh6DDTNKD01YItqCaXmWvfcfPvQ52o1Ze4jRPygbt0LEJhdVCDm50m7eh6OKJglf148lvF+0WwlFa0acuOTaMfQA8Ov2y6KZrGKSpAcGmw9ex287rtjc59MfjyoySTDRSvYO/fjt6atOYvSs3QCKxnwOmbodt+Ktr8kxatYerNp+2elyybXj+G3M/v20ZmtgyHHuWrJ4YG7G3sKBqg5FMu9hEYmkcvMKcM6D0xmSq4jXAXfNeuqU6GTYsO8apv16EueN5niMnbcPE743bb2OvVt037thZZ6KFFdj0jD799NYadbAkZtXYDUAWX3/vv7H7mj8e7So7hNrpJj52ylVU8Yv3BCJ9fuu4Xpsukmj4qiZu0X3T5HZuzz915Oi89uclZdfgD2n7kAQnEvo+/Pf55Ge+aBB78MlhzFj1Sl8t+4spixSN1W/Ozt9JdFqHSoAWL3DNXV7Xn6BYj0xSmCwYUN+QSGuOJk1Yd8ZxycTuYp+YSRjSveMH4qMkz0B7eLNFENWJHNfrziB5Vttjyt1VWYWa0OOPvnxCICiYQ761ML6cbz77Ixj1QeBAJzqZXObAQ52nurlDsWY/utJ1Su09Mxci9ZcwIFrauMNK/69iOmrTloJPt3mr0cqKxQE/LL1gqEB6Ux0EoZM3W54mHP0k+DIqsSx98sgdVigMzLv3xcTzBpsRs7cjTdn7HLq2K5KefrJj0fwz9EHDX6ZEh/w7A1tVWt8/x+7o7H0r/M4adyQqIOiLS/5BSX33jVr9WmbowOU7IW05cPFhzHSLPDNy7fstXQVBhtGMrPzMGraDsPPq7ZdxhfLjuG20dj8nLwCTPh+v9tn9jh+MQH/W33KcDO3RaznRN81rmR2INHJzzZMXX4c39hYq0OpDFvGMrLyMHrWbqeDTD3zCsXWEB8pbsZnYMnmKMXWXnHWyUuJuGmjl0Y+6TVejoyhF9ZPZ3m+7Nx8DJm6HW/P3mvamiuzMjb8rW3so++ts/WAYvHAaPThUWOxMVJXemYuzplV+LfiM7D9+G3DOP9/jha1jLrL99yVrsWmoaBQgCAoPy/OngNnY3H8YoLV163FbrZ6qq3JyBIf5lsoCDh71bFhQbHJmfh6+XHDXD0xafeDyCwb+9iTkZUnO6AoFATN1i/732rTOR15+YWio0iUtFuDhTgLBcEwfDzurmVD2a/bLmHaryc1ua8w2DByx2iYTqEg4EZ80R/kntFN4U7iPSSmZtvsCtt18jb+3HsVB85q16uxft81nLqSJH/Oxf37h35oR0GhIDtIsCZb4tAuY7clVDaFgoCZv51SJGK/dDMF97LzsenAdaePBQD/W2N6k/NyJLuMUQX30ZLD2Hs6Bh8vPeJ84aScWqRyzc7Nx9Cvt+PExQTM/v00Plpy2OHjn41OQnxKFtKtVLxA0ffJWsUsxloO94ysPIuHerFnB7FzCYIg/4Hi/sFVGyZl9MdRcrExUte0X09i+q8nRRdIVTpdsq3GGnukBrJKh7uf/njU8G+lei9Xbb8k6Xu4cGMk5v5xRpFz2mOtN/efIzcxY5X4hOfLt1Nt9jit3nEZF26mIFJkPoCUeZxSHRDJvmeLDsDBc7EmWa4ORcZZHbmgtFNXkvDXwQd1+op/L+Kzn44aFjBcs/MKhkzdjsu3UvHTlvPYarQGiph9Z2LsZnh0NAPkd+vOmvY6mbl4M8Xqaxv3XcOoWXusZhPTz2G6J6ERWmk+Lj+jh8jOLUBQaV8A4jeFa7Hp2HlCPI3hT1su2Dy23ArF1vg/Z0npZo+8fhftGlUy/JyWmYdRM3dj7js9ZJ/vemw6ft91BW893wI+3srEulk5+TgTnWTRG2H+Z1u94zLOOJk5bOTM3WhQvZzk/e+ZP7jq9D0brmmRljMxX6q45CwIAvDnPuk3U2sPw/bSKN+Mz8BPWy7g32O38NnQjpLONXX5cdHtb/1vj833/fz3BQx6tKHoaxsPXMfRC9ZbPI2dupyI/605jdYNKppslxq0J6VmY9qqkw5lfSP3p2+tl3ILECz+YepelulDg/lu+rl3YnJyC+Dv522/EFbov9GXbqUiJukeqoQEOnwse5x9UP778E38fdi95qJZGyZla77el8uOoXwZf0wf2dXmsa/FpiHtXi56ta6GQkHAsK+LRmyMfq65YR9XJxHLyjFtbJy//hzCawRj4sttHDre2egkhAaXtti+7O8LaF43BK3M7r+rd17B451qAQCuxRQ1JBf1ApTG5vuBiNRJ2Ys3Fc3F/W+3Onb3FUuLbs/xS9brmqnLj2PJxAjR1/R1lFY9SLawZ8MG/c10+T+XRLMW/fy37aDCVYwf49RYSGznidsWE231LcRDPt+KJfe/eLcT7xVNfrZRwf3413mcvZpsss/pK0mmcxRkkJOt469DN6yWLTM7Hz9vOW93aE5WzoPUwo60yjxIyyrdncRMh9L5Xo9Nx+w1p2W/z53cvv/3up2g/nAKa40Hmdn5WLvbOOuM7b+efmVgW98Dm+U4eRtxyZkmrU/5BYU2h3eQ5xoydbvVoPtQZNF90donzmI4r8Qby4Ubd/HmjF04E52E33ddsdlzaO9zdyfxHt5feAiFhUXDf2JVyPBnr/fUkbkpcjj6YC5nGFjktWRsOWS7RR2QlsZ84/7r+PnvC7gWm2YylLqod1b8WmnRN6rP5Ccm/m4mVu+8bNEwpx/mOuO3U6IJXnacKEp04i5+32U7UY1BMe+cZs+GLfdvYLcSMjB37Rl8NrSjKq0Bu0/dsRjDK8n9sly5kwZBEERvuLkyV7m+EZ8hmnbWmoS7WUi4m4UhTzTGsfstt3LT9c26P56yQ+Mwq5O6rfUERN9JRfVKQQDEx71vlzivY9OBa9h58o5h2NbJy4mIvpMGAQLqVRXvyRAbE2nOvDXHy6hn4256Dkr7e6OUn+2voX6ymbXWDGtS7zm+poRe4v2MT3OMbt6unCewYMODBZRy8wqQnpknOmk7v6AQb3y7Ey8/Ei7r+Oa/yduz95hkWAGAUbPEs8uYO3I+HgfPxeLa/ew8CSmO5ZYXG8I3/89zOHYxAe++2NKhY5J704+jT1NwUrbYXLzbifdQrWKgIYW4fn2CpNRsvPF0U9HjnJc4P/HDJYcND9f6e1VaZi4CS/nA28t+u+amA9dgbe5sbp57pIC1+jxo5YUpiw5Jvm9P+/WkI0UyYV5NfvrjUbQJD7X7PrWec/XlOXoh3pBFTKo5v5/B7cR76Na8ikmvmdw1o9zNFRVGG3gC9mwYMe69cFXKsMu3U/HjX+dlzWc4cC7WYniMtVznv++SngdcTyztrBT2HkEjryWLjlM29vlPR0W3O9KynZCahV/sZKwCisZA/nW/Rcn4d/j856P44udjNifb2WNt4q8gFKWT/GKZOrm0f991BbNWK9e6I5YC2drQqEJBwG/bL5ukplWi4fGzn49i/Pf7DQEQ8CCbjf46i42TzS8otDrGeJlZ76R5oCHHr9suGQINKQoKCw3fe1tzhHafvINj91uXM7LykOeiLGsknbXGkKJFVk2/O7ay0Vgbj+/IsEuxBBrWVrUW+0wtWB+J36zMTfx12yWLnn3zVvzs3HyMmb0XK/61v26PIBTVVaY9iEWkzJUyv724KhOh1u6m59idl+nMROjv1orPX1kp4W9qPJzVWqBh62PtyNocSUYNUWPn7ZP9frnyCwox4zfxCdfWgiIl1vZy9PlUy/U3GWwY2bD/muHf2bkFsqL9mKR7SLuXK6lSMD7ul2YPmzl5BYaW2zPRSaIL0y3cEInPfzZ9KE9IycKthAzZmYGux6a7bLLQ4ah43LofNFibAHXDSvnlps0FgAKJFc73dlbt/veo9d4RexPJzOkfuvU3C1tBlJzf2Pxzp9QEd/Fz2X79akwathy+gfkbzsk+tq2gROxaSel1WLfnKhYa9ZA4S6kb9ndrzxq+r7YWpTJ+aMzNK/SIdNolzWajusPY0s3nMWv1adkPGEpM+BdbtbmwULD7IG7cQ77l0A3R+5CUtXj0gfSO4+LDE4tOZvcw+FBKAgqz4xxxchX3MXP2Iv5uJu7cHxp86oq0rIxyJ047a9qvJ7B4U5SkrJMAsHbPVVmBmNR5amJsTWTWS5SwVpI5W/ff2atOGv4t9rC/7O8L2HP6zoN1xZx0PTYdZ6OTXT6kPu3+EO6YpHsmI1Gs1Z8/bzmPIVO348L9v4kWI7Y4jEoh7y88BD8fL3w/tqdTx9FPPJo5upuhi9sa8+EsHy6WnxUoMycfX1uZUCuXnNY3sSxTtjJP2Tq0s18ck9ZEkfP8sTsa8XezsFekBelXmYvv6XO/H4x8MEfl8q1UrBVZifZGnPTA8d+jt9CpaRjKBPi5bPXx+BQrD1D3T+9IOa7GpEnq9pcjJUOdbvfbCRn4wIHvnJ4jC2ausJJlhLS1z0rPsn5ic7bIXLBx8/ahR6tqTp33rJUg9cj5eNEJ0ev3XcP6fddE35NfUAgvL8u76WWz9SocSfuenpmLMgF+FtvVSGBx+koSFm50rnEh7V4u9pyOQaXyRROQ4yUMmU3LzLXZqKHktJK8/EK8PXuP0YgI6ffaI1YSVag87UWSxNQsTPj+ADo1DbMaoNuaV5kkMsTW2I4TtwHHE7S5jNQ/hX7RSntD9XbKWLleLW7fszF//nz0799fk3NfMIrM8wsEDJm63WY6s1yZcxVskbuGgEXWIyP2WjLirayAraa45EyLNTxspRPWL5CnFbFAwxH5Ip+RRRsjLSrw3PwCWeleV267hM/uD0FbLyNLlDPM56MoQY0eGaW7jvW9EaeuOJYL3xnG9xgdtO0WJ+ekZeZho5UeEWfTzlobLmXLG9/uxE9mi7sCloHStyvlP629PXuvxbbIa8miw6YcUWC05oOqqWutPJHrzMqgtvTMXJOh147ciwThQQNhTl4BMrJs944UFBZixT8XZc2ZSBLpXbNFn7L34DnrCWOsPYNdj01HjIvXZVFyGLQrYz1XLSxozK2DjeXLl2PmzJlaFwPAg9ZRW8MdpJISZUodAqS3+5T1h+E3vt0p61hSHXOii/VWwj38T2KmJFs5pz2N1NYjsQd5ez1H+i5pV62ca8x8BWCgqNXSFRmU0u7l2mzYU3pow+krSVi3J9rlFZst7tAqScoYM8fywVzsqy82TMXZ5A17TsdYTlJXKaJ1ZmijeXbEk5cTHQqCiouFGyKdWkTucFS83TkOUdfv4t9jt7DIyV4jc4IgYOvhG1bnKxUKpr3k1hLQfPLjEUUbfPU2Hbhmdx9Pu/3aSq+sFrcMNuLi4jBixAhMmzYNderYz2PsCrkOLEjnjMNOjjl1hXlWJo/JISULl+Np7NzrFrBy6wWnUjRKWcjvyu1U1YYN6Yk9e5gMmTL6FR1pZZS7GOaYOXsNLTWueuhev+8a9mm4aCcAJKfnGALM2CT3CXyoiKOLOabdy8VVs+FFp0Varq2tJ+MsW8Oklm6OUuWcSqw75MjwLls2HbiOpZste3rkEgQBuTJHKjjix7/OizaGKpa96f6fSOnrfCvhHn7dfhnvzNkrOqLj25UnMOybHYafXd2w4kiSHWNJabavf05egcWcVEe/DWKXRmw1ekfTsjvDLYONc+fOITAwEOvXr0fLlu6R6lHqH1+pNiApq0+62xCKNAcy+Uw3SvfnyO/z+65ofGolg5Xya9s6Z8Xf50VvlFKHsUmZ/P/FsmOISVI+z70xW62n56/fNfmbOsKR8dYr/i15cxmMs/ToF6miIq4efht9O8VimyP3Qz3zpB05eQU4fjHB6loweqevJMlKXS6FceabPacdH05qPmTMuCXb2gJ3SlByAdWbcen4aMlh0cQt1qzcdgkjpu9yaDI0ADw19k+LXouUDPFeADWHx9hbgNVRxp+vNTsts1YpmQ5aLZk5+cgvKLRo6Eu10/C39fANvDl9l6SsmSbM/syFgmA1ic5eJ76zSnLLCeIRERGIiJC3poAilPieutfzrUvZqwjtcWSI2uXb1ocMXXXgAczW8UqqP3abVgBiY5NTMnJQUChg/vpzstI4K8WZIX2upGRK7ZMmc55K8I3HjH74bevWrV12TnsZ/Rzt5TAmpZfwhz+LMsB1aFzJ6fPpORM0GftjdzQ6NQ1DaGgZRY4nZueJ2xZzFDdYmRfjCH1v5mkZdZU+m6EzQ0p//Os8erSsavhZid7r8zfuokF18TWkXMm4h07uGl3OOnguzmQND0fFJGWKDle/aicVuj7BjLPPTsO+3oH6Vv6WStx7lOCWwYYSQkKCZL/H29v5jp6bya6bbB0pIbWcq3y/Xn6a05LIxfdSRWzcbzppW2z4hq21WUJDy6BUKV/FyqPP2CbGmXUyXGHkTGkLBDpCzYc4TxAXF4ePPvoIhw4dcunw2xwNgmtPpX+YVGsdDLEUpOv2qJ8wI/JastW07XpysguK0ac7Vcr+s7FuEWzIpeQoqq1HbqraOHbNwTVOzHsjDkbaH7JrnjVOz1VLG9hTbIONpKQM2ak35U7KFhN9U9kubFvWK5TJQwlHIq1nj6AHjjuQJcbTJSSk43cbmcbIeYJQdJ3l8vLSOdQw446Mh9/OmzcP16+rt9aMMWsL3wHKrJfhCLlz/tTIpGRr9JK9tY1cLS45E2UCZDSImP1uSWk5dsfmO8s446RSPaS2/uqXbqUocg6lKZ0ARUov0ZCp2/HuC/KH9FtLMy3XVpE01p6m2AYbmnG3iRREGlMjlz6ROa2G36bLSFHtrhSbRGxkuY01YRxZY0ZNkxYcRFiFAMn739EgIYN+TQXAdu+uUr76RZ0EBM5SI+OUFK645lJ9veI4hvynsdbFkIXBBhGpSqnVWonU5kgvzxUb87w85bPv66tsrpjQ0DKicxTm/HEG7w0qpei5lCJnlff0rOIxdK5sGff8W7iSn5+0x2CxBS9d5ZrZ3I+UjFxFJuy7cugtgw2FsV+DiMgzOTL8VslJ/1qxNt7bUdaG9MUmZWLOqpOKnksLu07c0roIikhPdyxDVnFyNEraEHC59wVP4Mqht26Z+lYrzi6IBEB+CjOiYm6ZyKRNUhZHbxKRXD9t4b1ZKmuLDpI0bt+zMXXqVK2LQEREJIqrt1uyNek2+g7TixOVNOzZICLyeOza0Ap7lSy9O3ef1kUgIjfCYIOIiIiIqIQ4f821i/0x2CAi8nBsXTc1depUrFy50iXn4jAqIvI04+fscen5GGwYYYVNRETyMNogIrKFwQYREREREamCwQYREREREamCwQYREREREamCwQYRkYfjdDMiInJXshb1O3XqFPbu3Yu4uDiMGDECly9fRrNmzVChQgW1ykdERB6M9QYRUckmKdjIy8vDhAkTsGXLFuh0OgiCgBdffBELFy7E9evXsXz5ctSoUUPtshIRkQjBDVPplZR6g7moiIhskzSMas6cOdixYwemTZuGw4cPGyq2Tz/9FP7+/pg1a5aaZSQiIg/DeoOIiACJwcaff/6J0aNH44knnkDp0qUN2+vUqYORI0fi0KFDqhWQiIg8D+sNIiICJAYbycnJaNCggehrFStWRFpamqKFIiIiz8Z6g4iIAInBRu3atbF9+3bR1w4cOIDatWsrWSYiIvJwrDeIiAiQOEH8tddew/vvv4/8/Hw89NBD0Ol0iI6Oxr59+/Dzzz/jgw8+ULucRETkQUpKvaHjDHEiIpskBRvPPfcc7t69i3nz5uH333+HIAgYP348/Pz88MYbb+CFF15Qu5xERGSFGyajYr1BREQAZKyzMWzYMLz00ks4ceIEUlJSULZsWbRs2RLBwcEqFo+IiOy5eicVvVtW0boYFlhvEBGRrEX9goKC0L17d7XKQkREDth76g6GPN5I62KIYr1BRFSyWQ02Xn75ZVkHWr58udOFISIiz8V6g4iIzFnNRuXl5WXy3+nTp3Hq1CnodDqEhYXBz88PkZGRiIyMRFhYmCvLTEREbqgk1hvuOF+GiMidWO3ZWLZsmeHfy5cvR3x8PBYvXozq1asbticmJmLo0KGoVauWuqUkIiK3VxLrjcycfK2LQETk1iSts7FgwQKMHj3apMIAihZmGjFiBFatWqVK4VyNLVRERMooKfUGERHZJinYSE9Ph6+vr+hr+fn5yM3NVbRQRETk2VhvEBERIDHYaNu2LebNm4ekpCST7bdv38acOXPQpUsXVQpHRESeifUGEREBElPfTpw4Ef3798dDDz2EFi1aoEKFCkhMTMSpU6cQEhKCSZMmqV1OIiLyIKw3iIgIkNizUa9ePWzevBkDBw5Ebm4uoqKiUFBQgOHDh2PDhg2oUsX9FpMiIiLtsN4gIiJAxqJ+FStWxNixY9UsixvgDHEiIqWUjHqDiIhskRRsHDlyxO4+7du3d7owRERUPLDeICIiQGKwMXDgQOh0OgCAcD8/rP5nvaioKIWLRkREnor1BhERARKDjaVLl1psy8jIwKFDh7BlyxbMnTtX8YJpQ2d/FyIisqvk1BtERGSLpGCjc+fOotsfeeQRBAYGYtGiRaw4iIjIgPUGEREBErNR2dKpUyfs379fibIQEVEJwHqDiKjkcDrYOHr0KPz9/ZUoi+YEZqMiIlJdcao3iIjINknDqCZMmGCxraCgADExMThx4gT69++veMG0kJyWo3URiIiKhZJSbxARkW2Sgo2jR49abNPpdAgKCsKIESMwfPhwxQtGRESei/UGEREBEoON7du3q10OE4WFhZg7dy5Wr16NtLQ0tG3bFh999BFq1arl0nIQEZFjXF1vEBGRe5I0Z2PSpEm4ceOG6GuXL19WvIVq3rx5WLlyJT7//HOsWrUK3t7eGDp0KHJyOMyJiMgTuLreICIi92S1Z+PQoUMoLCwEAKxduxZNmjRB/fr1LfbbvXs3Dh48qFiBcnNzsWTJEowbNw49e/YEAMycORPdunXDX3/9hWeeeUaxcxERkXK0qjeIiMh9WQ021q1bh7Vr10Kn00Gn0+HLL780rAILFI291f+sZAAQFRWFzMxMdOrUybAtKCgITZo0wdGjRxlsEBG5Ka3qDSIicl9Wg43Jkyfj2WefhSAIePXVVzFlyhSEh4eb7OPl5YWyZcuiQYMGihUoLi4OABAWFmayvVKlSoiJiVHsPEREpCyt6g0iInJfVoONMmXKoEOHDgCAr776Cj179kSFChVUL1BWVhYAwM/Pz2S7n58fcnNzJR8nJCRI0XIREbmz0NAyWhdBs3qDiIjcl9Vg48CBA2jevDmCgoJQuXJlXLhwweaBOnfurEiBSpUqBaBo7oZxwJGbm4uAgADJx0lKykBhIRfpI6KSISEhXfZ7vLx0ijbMaFVvAMxiSETkrqwGG4MHD8aKFSvQpk0bDB482GSsrZ5+m06nQ1RUlCIFqlKlCgAgPj4eQUEPKsH4+HjRiYZEROQetKo3gAdZDKdOnYqwsDBMnz4dQ4cOxaZNm7haORGRhqwGGz///LNhrO3PP//ssgI1atQIQUFBOHz4MOrWrQsAyMjIQGRkJAYMGOCychARkTxa1RvMYkhE5L6sBhv6cbfm/1abn58fXnnlFcycORMVK1ZE9erVMX36dISFhaFPnz4uKwcREcmjVb3BLIZERO7LarCxZs0aWQd6/vnnnS6M3ltvvYWCggJ8+OGHyMrKQtu2bbFo0SKLSeNEROQ+tKo3mMWQiMh9WQ02pkyZIvkgOp1O0WDD29sb48aNw7hx4xQ7JhERqUureoNZDImI5HFlBkOrwca2bdtcVggiIvJ8WtUbzGJIRCSPKzMYWg02qlWrJvtgRERUcmlVbzCLIRGR+7IabJg7d+4c5s+fjyNHjiAtLQ0VKlRAly5d8Oabb6J27doqFpGIiDyRq+oNZjEkInJfkoKNAwcO4PXXX0dwcDAiIiIQEhKChIQE7N69G//88w9WrFiBRo0aqV1WIiLyEK6sN5jFkIjIfUkKNmbMmIHWrVtj0aJFJosjZWVlYciQIfj222+xePFi1QpJRESexdX1BrMYEhG5Jy8pO126dAmDBw+2WIW1dOnSGDp0KI4fP65K4YiIyDO5ut7QZzHcv38/Tpw4gUWLFqFGjRqKnoOIiOSTFGxUqVIFN27cEH0tKSkJoaGhihaKiIg8G+sNIiICJAYbEydOxPfff49169ahoKDAsH3nzp2YPXs2Jk2ahMLCQsN/RERUsrHeICIiANAJgmA3qXjPnj2RmpqKnJwceHt7o3z58khNTUVeXh4EQYBOp3twQJ0OkZGRqhZaCkfypQ+Zul2l0hARqWvJxAjZ73E0Z7oUrDeIiNyXK+sMSRPE+/XrJ/vARERUcrHeICIiQGKwMWrUKLXLQURExQjrDSIiAmQs6pednY3o6GikpqaKvt65c2fFCkVERJ6P9QYREUle1O/dd99FSkoKjKd46HQ6w9jbqKgo1QpJRESehfUGEREBEoONr776CsHBwfjoo49Qvnx5k4l9RERE5lhvEBERIDHYuH79OqZNm4ZHHnlE7fIQEVExwHqDiIgAiets1K1bFxkZGWqXhYiIignWG0REBEgMNsaOHYt58+Zh7969yMjIMFmIiQsyERGROdYbREQESBxGVa1aNXh7e+P1118Xfd1dFmQiIiL3wHqDiIgAicHGpEmTkJycjH79+qFSpUpql4mIiGTw8nK/ydesN4iICJAYbERFReGLL77Ak08+qXZ5iIhIpsBSkpdMchnWG0REBEicsxEWFgY/Pz+1y0JERA5oUidE6yJYYL1BRESAxGBj+PDhmD17Ni5duqR2eYiISKYAN+zZYL1BRESAxGFUGzduRGxsLJ5++mkEBgYiMDDQYoGmnTt3qlE+IiLyQKw3iIgIkBhsVK5cGZUrV7b6elpammIFIiIiz8d6g4iIAInBxldffSW6/dy5c1ixYgX279+vaKGIiEg6QesCiGC9QUREgMRgw1hOTg42bdqElStX4uzZsxAEAW3atFGjbEREVAyw3iAiKrkkBxtXr17Fr7/+inXr1iEtLQ1VqlTBiBEj8Oyzz6JmzZpqlpGIiDwQ6w0iIrIZbBQUFODff//FypUrcejQIfj6+qJnz574999/MW3aNLZMERGRCdYbRERkzGqwMXv2bKxevRoJCQlo2rQppkyZgqeeegre3t5o27atK8tIREQegPUGERGZsxpsfPfdd2jYsCFmz56N1q1bG7ZnZma6pGBERCSNv6+31kUAwHqDiIgsWV3Ur1+/frh9+zYGDhyIV199FWvXrkVWVpYry0ZERBIMfrKp1kUAwHqDiIgsWQ02PvvsM+zduxefffYZCgoKMGnSJHTt2hUffvghdDqdxeJMRESkjcDSvloXAQDrDSIisqQTBEFSivbr169jzZo1WLduHRISElC1alU88cQTeOKJJ9CoUSO1yylbUlIGCgvlZZ8fMnW7SqUhIlLPhun/RUJCuuz3eXnpEBISpEKJirDeICJyT0smRsh+j6N1huRgQ6+wsBC7d+/G6tWrsWvXLhQUFKBu3brYtGmT7JOriZUGEZUU7hps6LHeICJyL64MNmQv6ufl5YVevXqhV69eSE5Oxtq1a/HHH3/IPjEREZUMrDeIiEouq3M2pKhQoQKGDh2qWuvU/Pnz0b9/f1WOTURErqd2vUFERO7FqWBDTcuXL8fMmTNdek5/P/dIH0kkV6/W1bQuAmmkduUyWheBiIjIKrcLNuLi4jBixAhMmzYNderUcem5G9UIdun5nNWqfkXVjv1w2+qqHZuUV5qBstvo16ueS883ZVA7l56PiIhIDrcLNs6dO4fAwECsX78eLVu2dOm53TEtY2Ap69NqRvZt5tAEH0nc71IQqar/ww0UOU6l8qUVOY4Uz/WsCy8vflmJiMh9uV2wERERgenTp6NGjRpaF8UtPNO9rtXXdApEBB2bhIlu59AM9+bNB0zFPdLO/j3nq+GdUKdKWZv7tGqgXo+jOR9vt7uFExERmZCdjcoZ169fR58+fay+vm3bNlSvrszwHUdSc/n5ufRySNKxRVWcjk7GmSuJFq9VDC3j9EPnmP5tsHn/NSz7K8pk+9O9GmDRxigr7yqeBj7e2OI6OOPrUd3w3ty9ih3PWOWQANxOuGf4OSDAT5XzFFeVypdG/F3Tla1DQ+0H2M3Cw9ClZQquxqQBKOp5vJedb3i9Rf2KqBxWDs9HNMCa7ZeULbSIwEB/Q7mllJ+IiMjVXPp0XbVqVWzevNnq62Fh4q3sjnAkX3pubr79nVwsOfke8vLEy5WYmA4vJ4d+Zd3LQe+WVSweshMTMxAaXAoJKdkOHbdW5TK4His/7z8A1KlS1vAwZ65+tXLw8/VC5LW7JtuDg/yQkpHr0Pn02tQPwTKR7R0aV8LhqHjZx0tPe3DtPh/WEVMWHXKidKbyC0w/2w2q2m5tJ1PVKgZaBBtS1qlISEjHvXs5hp8/GdIB477bb/g5NzcfCQnp+E+HGujYMBTjv98vdhhRM0d1xdmryVi8SXrAm5GRg4SEdISGlnHrdTaIiKjkcmkfvK+vL+rVq2f1P19fX1cWx6YqIQFaF8EufZjx6dAOGPlsM8WP/9rjjR1+b5nSjv8tK5Txt/ra5IFtMeK/zdC8bojp+Zxo2dfPi/H20onOgWnXsJJDxzWOA6tWDHToGFJ8MqQDwiUmN2gbHqpaOTxJkBOfT70nu9RGhbKlFChNkXJB/ujavIrNfSqWU+58RERErsABv0Zeeqi+4d+PtFd+zsiSiRF4umtt2e+rFmq75bF6aBDaOvhAbEvlCtoEXNUrif++fj5FH9eg0r545wXXJg9Q2riXWilynEfa1UANK9dLTJfmlRU5r9o2TP8vhj/d1OY+34/t6dCxWzeoiLYNPTPo6mYnGCHt2UrqQeTu+j+kTKIMImMMNoxUKh+AMgHyWjxb25kMWtdseIu1Cd+2Us2+GFFfdLta2bOmjuisynGlaFEvxPqLKvy6IQ60TLtF67JQNIyqbKC8z2tpO/OSjD/PTWqXF92ncS3x7WL8fLzw5jOO9br53g8uW9WviPnjelm87u/rbfH9kmL0cy3Qol5FPNmltkPlskWQN3LToHNT+0NIdTrgqa618cmQDg/OBwdPWIxpvRis1F5GInfUSMb9nUgqBhtmnu5RlCM/qJT1h7iu91uHA0v5YFTf5jaPJzUH/oBHwq2+5uqMM5WCFUjd6WBgMKZfS+tvtfFc5cjpfhjbE1++0cliu72/mbfEv4etWFAso1FwkLqTvOtVLYuGNYNt7lPKKBjxtfJ7ygnQdDodmtetgAB/60FObzsLEup0DwIPOZ6yE0z07VEXocHiv8tnwzpabJPyPZTTy2TsYQmZsPx8vaHT6UzPwVjDhBaLwYrx9+W6N+SZmOeQ1ODWwcbUqVOxcuVKl56zX0QDjPhvU7RtGIryInMHKpYrhaFPNMH0kV3x9YjO0Ol0+ODVdnhvQGuHz9nHgSFbL1np7VCS2tlV336+BYKD/CT//jo7BfpkSAf07WHZc/RE51qi+/v5eos+xNatWhZj+rVEs7oVTLYZymHl/OYtmj5e1r9epW08fEvhyDNmhyZhivSGPdm1Nh5uVx3fvNkZA/uIB8n6z6cAAaX8fDD3nR6i+9aoFIRgK3N0WtQLQY+WVfFKn4ZWy2LrtzG/RnIyt5UP8sOE/q3xxtNNDNuMh1la42+0uKKvr/q3V8YaRbRcDFZJ9hqviIg8kVsHG1rw9vZCh8ZFD2Virc/fvNkFAFC+jD8C7vd+1KlSFg1rWnY9vvVcC9FzlDNrwW5ua+iQCD8fL/TpUFPy/s+brWgs1morplyQP9o3Un4uiF7L+hUxY1Q3i2Fi1rpx7Q1fqlEpCE92qY1vzIaBBTgwhrpFvRD4+zx4cBz/Ums836sexsqYa+Ht7dltROYPsi/0ro961cqiYtlSGPBwOCqWK43KIaYT39vpPy8iQU3vNg+GClpb38WYj7cXXnu8kWjQ74iZo7th2v91Mdn2mI3vUaNa5dGpyYM5LvpgpWW9oqFmrepbDqE0HkZVlumIXUbLxWCV1EZGAge5Q35LujAXLrZJJFdxn+vFYMOG159s4lCvg561xb2+fN1y6I4cclszH+9YE5NfaQugaLG+ajIyI735TDNFMveYM+4JMm9tD68RjDCRyenjXmwl6dgVzYaBObr4YY9WVQEU9Wr4+3njP51qoWntCtbfYDZgX4lehKZ1xM/nyPoqzpbmsY418f7AdjZXrA7wvx+g2Zm8YOsh35rPJQbJ1gSV9rXIHmUcAElVq3IZLJkYITpfxN6Cf6QOd1oMVq25dObsDT8kU2rUY0r76LX2WhcBAPD+wLZaF8Fp1e0k1jHXuam2yVN8HBgq7EmKdyjlJH8/xyag2uP0EBqZ0YZOp3NpK7u/rzee7FwbZ6OTre5jr7Xa16i8vj5eyMsvRLkg0/e88VQTLNgQWfRvO5mLzPVuY7+ibl43RDQVrvGzxHM96+L3XdGyzi2HPgPXfzrVwuaD1wEUDQsrKBAQk3RD1rGkPASFlHO8F+HprrUt1zqx81nVAZI/0GqmD1bCtP/r4nAqXEcnlpeEB053XwzWnL+/D/QjKMMqBCAuOVPye+UszBgQoEyPX0nR/9FG+HzpYcPPrz7RBD9titSwRJbaNa+qdRFQoUIgalUpi9r/XsI1K+tduYK/nzdycgscfn+n5lXQv09DPDdxo6T9AzTuKZz8WgfVFgG2xpULwTLYcAO1wpT5g388uD0+XnrEqWPMGt3NYpvUhrox/Yqy/NiiDxzkmDmqq8UidgDQqWllQ7Ah90HUS6SdX5D4xFexXGnEJBU9QBg/XOp0Oozp1xKLNkYiIysPpfzEJ4k6O3n0uZ71sHrnZaeOYW72292xaGMknu1eFxv3X5f9/kY1g/FM97r4act5RctllwtHqtn7dCi55oY9XjodCgUBfi6YF6I1d18M1lxOTr4heCwokHevM16Y8bEONRFY2sdqY0ZmZo7odk/y8iPhWP7PRZecy3gxTgDIznJuEVg1OLIwp7lKwaURn5Jlf0crku/eQ4CPDtVDAzUNNt56rgW+XXnC4fdnZuYiNaWonq5btSyi79j+XbKz8hw+V79e9bB65xXJ+/v5eCHX7DkoVOUEMWJcuRBs8a+pNFJJ4vjQJRMjFOverSkStMiduF420LEPfHiNYLuBBiD92dB4LkBAKV+HyyWF3GEPw59uYjKxvHpoUVmHPdkELeqFYNr/dcGUQe0QbNYT8+3o7niyS23RDFj2y2j6c2i5os+XI6l7xXp1gkr7FmUC0+nQpVlRd7Kjre2ezEUjYGQLqxCAwY83MvysH+Ln6BBBT+JJi8HK8Wx3+xPZn+hcW9UyfOXAvUgpgx5tiMDSbO+Uq0/7GjaHQn88RJmhWO08aC0iW8Ny54/riZHPqpt4oVCksrS1JpK1jJdy0sp7GgYbKvhhbE+nx5fbJu0psF418YnrSmtUMxj/5+BaCtYM+U8j+zvZ8Ey3BxW50g+QAaV8TVbinjKoHWa/3R0h9yew+xmt/zD0icZodD/dbKPaFdC3R13DELKmdSpg2JMPVml/SWQxped71UN4jWD8p5NpRq2erapi7EutJE20NlfFzmKNQ/7TGN+/K23BvPrVyqJxrfIY8LB4ViqxT2r9auUkHVsSsxM4UkF6GX1ARvdtgVqVy5ikAHa1L163vHd89UYndGj84G/9Sp9wfD+2p835M6QNHezfcx7tUANPda0j2tA07f+6oEyAL3reDyjlJKWQS2xunCt1bKxMr5T56ABH7otKaWQnvbiz6lYti6esLA7s7+vt9L1L6zuKtREBtjza0Xqw4evjLe0+qfAvbm1xYlvkzKf1NAw27GhUszy8vYq6FK2lUNXr0LgoE4+fr7eqa2O4usXZ3newR6uqknsepBbd2Rvm090sWw2rhAQoVrka/x5+vt5We6e6Nq+CCQPaiL429sVW6NLsQetHB5GKt0pIICa+3MYwzye8etGDuk6nQ9PaFUR7ZWo6uNaDnpeXziSFqy2+Pt4Y37+15BvrzNHdLFdPVzAaNL0e0j5t37zZ2TAhslWDivjotfbilZOK3zvjxfmqhARi/rhehlZnsWF3Xjod13JwVxI+zrbm7VUoWwr/e6u74V5lMymFkZYysxrK0bXZg8mzrRtURGl/+Z+9MgG+6NbCtLVXqcn05sMJh8ucwyfFx4Ol9RhEOJB0Qg7j+t88e5myi3wq+/TtzPIA9pRTYORDIycaZj1hFMAzEnpS1cRgw46ygX5YOKE3Ph3aEc/1rGdz3+FPN8Wi93pbbJ88sC3efcH16RjdbYjF4x1rou39lmexYKKeCpPxjTWrE4KxLxb9Hbq3tN7FKYfSV7itjdSXCyf0woSXxQMXY+9LXEjSHkcqLnvXo1ygH/x8vQ3piKtXCkJpB1qyzE/YVqRHo11DaWmbK5QthXpK9raIaF5X3oOgr48XwioEYOSzzfHp0A7230BuyZFWWqV98+aDVOAdGldyOsVm9dAgzHunp+zj/O+t7hjyn8b2d7RCH5c0rlUe34/tiYlW7oVj+hXd4/UZGA3vN9tP7gNizbAykpK76HQ6jO9v/cHauGdX33gkV63KRT05Fqnp3eih97XHG+HVxx6skdSwZnlUCVG/J02/mKvcOFasDpFKbL6nnDWg9OQOqZ85uhumDpc2FNLZxETOYrChIJ1OZzIkQ69+tXJo5sDDBiB9tWp7KlcIgA7A010diG4Van3q17s+Bj/eCB8Pbm/REzJ3THerPQDOMi59xXKlsWRihOj8Fq083bW2YYXtN59thkUTLANWAPD28hL9fJlzZLVtUc5UXPfLaW0V8tDg0pj4chsMerShoRdQP2zEEeWDLDPzuFOqy3deaOnQ8Iq2DUMRGsz1AeTQYjFYS0Wf/6FPNLGzn+OkJhapWO7B52fEf+UNd+3c1PpwpJceamA1QYGvjxcWizS8KcXf19tiEdXZb3fHd+/2QIv7PTz1q5fDVLM1l8yN+G9TWfcdqfPtbPX0D3vqwWeik4PpVsPKB2DJxAinHpCt8ZXRY9qkdlFvgFhWvB4tq6JnK9PtX7zeyWYA7u/rbXjcqBkWhIfbSu8leqhtdbw3qJ1y9Z8MzlSV00d2NawN9h87o2fMlQv0Q6Xy4gFc9xbKNKgqhcGGG1oyMQLf/l8XDOwTLjqGz5Euu9L+Plg8McLq2h+A9SxJSrbe+/p4iz7oB5Tydegm4cw6KOa0ahR6pntdzH2nB4Ci4TGOjsN/uF11PCuygrq9yrRfb9s9do7w9fHCcz3rYrKNfO3hNYLhZ/aZe+u5FpKGK9QwG7YVdD9tYcVg0+xg7qSlyCKAeoGl3CcwIueUMQpyQ4NL2Xxgd0ZrGQsAOsraAqtA0RDRH8b2svq6ve+fkvdbH28vBJX2tegxr2QnUO/QOAyvPvZgfqBYqnNjUobrlPb3RrWKgVbXzDAuk5SU9K3M/s626nA53h/UFi/0Nl1Q9/+eaWZxzcqX8ccHr5r2lvv7eWNgn3C88XRTPNWlNlorVCbjoeo66DDgEfG5gGJefiQc3Vpqkwq8jBMNW+XL+BvWBlNy+P1g815EjXu9GGxoqIGNLtSyAX5WFxzzUuGv9t6A1qITU6XQsuX1pYca2K0g9JQdz+p+BjwcbuhCNmbexWve6vZ4R/HWFGev1hOda8tKSSwIRRWplF4n/RAK/VDBxrXKY/RzzfFs9wfBVnCQn2jwpZU+7Wtg9tvdRV+rrPFEXVJO1xZVDBOUrTagyPxy1ali/zshlslG7sJmVhk9E6t5F+3k4MTup61MmDYmdSHUd15oic/MEryMfs5+NqNuzatg6BONDX8H/VAnW6QMdX63fxvMHNXV8LOtuVpy/jb1qpYzKWOLeiFoZzQsSx8rVqsYiDpVyppMum9UIxi921RH2YCie6yrG3beV3ho+kyRlP9yKDUCRSnmn1934F5XqASZ904P0XGdLSRM8isTYL11pUalIITqW3dlfP8b1izv0DoB302IQL2q6o53d5qbtXC70uOdasLrfnSqvwwW43wV9Ej7Gihfxh9t5LR0OfDnERt/2rpBqEnLkE6nEw2+HOXIQ1Zto8pcp9O51dAuUkf5IH+88kg4Zr/dHb4+pg+Gne73cug/S1Ifroc92QT1q5dDGRsLjz0i0ssrZb6PotnhnCR3cVY9KQlFbPXSGGteN8RiREHrBvZ7kfx9vdG1eRVZD97Gu5r31horF+SPOlXKoJzCazEYB6hv2hliZ5w50VywE+Xq0bKqzTSxYvMY68kcmh4gktDAeI6olB6r53rKa7hydN0lZ9NRj+nX0mpWKy1T6zLY0Ehpfx+LLrP543pKakGx5ZMhHZQfJ2zj3lnDjeY+WKMfI1pawXSm+m5jd//9+/V60E2u/zOq2QpVJSQQ00d2tVjtvTj74NV2+GSI+EPdlFfbWZ2DQ8VPu0aVUKFsKXh5PQgs24Q/CO7Nh6gYp7v+zEZgUCUkEJNfaWtoaDKfuxVYysfiey11AvfkgW0tUpcHlfbF3DHivXBqCQ1Wd1FMtVvf69sYqdCpSZhJz0BgKR+LOTdDn7A9ef6DV9tj5ijTFnglU1/by0BoqxemWmiQ1Xvgox1Mg2DzP8Nrjzcy9LaL/Yme6+X8MF/zoB8AXnrYNNW8n8g+UolNEG8TXhHjX2qFOWO6y5o/EVYhAG8/3wKj+iq/NoiWCSsYbLgRXx9veCswRkr/gapQRtsHPindyK7QrXkVvBhRH092kTf5ypYOjcMwf1yvYp0X2x3z+b31fAs8ZpRTXf9ZV3O9CfN0nebqVClrtVXSmTk45HkeElkwU2wSr/7hxPizUU3GkKdPzBZuExuuZb6oqC3mWYKqhgQgoJSvYciOkg011ihR99nToXElyWlSjRfRtGfa/3WxubbHgEfCMfzppoYhv3PG9MBHg9sbbrFdmlW2Onw0yEZvlpdOZzKMWMlbdr2q5VC+jD/+K5JGXoy1e+CLEdKHOgNAg+rBAB7MZ6lcIQCfDOmAZnUr3H9dnZ44pe/TOp0OjWtXQGApX4tshxXL2Q6sW9aviDbhoYYFdh1l0pOuA158qIGk0TNqYLBRDNUMK4PhTzc1mfjmDCldyGImv9IW8+5PfNaSl5cOj3aoKdq64Qwtsl64kqtCDf0wjjbh9odetapf0WRS47Anm6Bvj7qoW8V62uQR/20qOUe+GB+VgwVnU5GSeygX6OeSRVQls/Kx7dTE8gGmWmgQxr7YCt+M6Ixerapi5P1W1XaNKuGF3vXtpn23RspD5ldvdIK/nzde6SN9MrCjRvy3mWEomz3dW0rPUmVvyIwzwyfl1Ft+DtRJHw9uLzq3LaCUD6aP7KpqWvAR/7UcNvfmf5vhkyEdTOam1KgUhHdfaIWv3uiEd+zM1ejUJAyBpXzsNhLZIncNI3t1pXnPh9Q0tGJrb9lSJSTAJBib9VY3RBg1gFQKLm1IDe1qxftpqQTr2CRMsbzKLz/SANNHdrW/oxlfHy/Nczvba0EoEdywh8JY9dAgLJkYgRb15Gc0KRvohye71LY5RKJD4zC3SnVszl56TiI9/YKdzix62v/hBniuZ12Lh7amdSqgYnBpDHqskclwrcc61rQ5xOaxDtZXb5YirEIAvn+3J5qYLV5onrBEn8iiOE3BE/tdItpUk734bLM6RdfuZRnZm/RqhpWRPbetuQKt4yOfbSY6f9Dfz9tqL0lYhQC7n/2KwaUxZ0wPhFlJCSsl2UKA3AYglapYKWU19sXrnUyeubx0OrfJysgmNbLL28sL5Z0YklUrrAyux6UrWCJpJvRvjSoShjkN/29TbNp/DUHFPf2oyE1HbBFKPTePUYoNpr0tHp6SkBHJWa893ggRbaojxIlGFC8vHZ7oXNvh99uapK6ExzvWRJvwUFQJeXDvblW/Ivr2qIvc/AKr2fOKi1f6FC2EN2Tqdsnv0T9QBpZW8ZHOqPoQW1cDAOpWLYvoO2mSDte4VgVNHoS7Na+CqzHpJuvPGNPpgPdeboPPfjyCe9n5Li6dqTIBflgyMQLL/7mIbcduKXpsVw9zZ7DhgXpZ+aLLEVLWH0lpOQqUxr7x/VshISXbJecyJjX7SNPaFdDUrFWtpJCySGBJpx8i4UwudSq+fH28kJdfaDOjjp6zD1d+vt42JyK7wkNmKdnbNAzFlsM3FDt+P7O1H4CiQM7LS4cBD5u23NeoFISb8RlO93a8N6C1Jkkt9ENx1ZgTU6GsPxrXKo99Z2IVP7a1z/GUQe1kBUl67RtVwuaD122uRaSUXq2roVfraqK/wzdvdoafr7dh6YGN+69JOqba7XIvRtR3PNgQKdzEl9ugWXgl5GblOlcwGRhseBg5E61s+WhwB6RnuuaDFlDKF7Uq80FNjk+GdEBOboHWxSAUpQ+uEhKANi5YRI1KnvcGtMadpEzFj6tWM4L5RNr61cqhTXgojl9MkHcgGV2ndWzMyXKU8bpLas21ebxTTZsNOu0aVUK/1Gz0Fkks4IypwzuhbKAfSvn5oEW9ivh+3Vmnjynn82Rr+PKj7Wti3d6rJqvP16pcRrFnG3tsBfzWeju05uPthWd71MXJS4m4GiOt58ic8W8dXiMY5YL8kcBgg9QWVNqXOf/dmK2c666iz/TUtXlldG8hfbJkcePt5YW2DZVdm6RD40rIzMnHpVupih6XPIPxc3bDmuXda2K5B3FkqKeUhfTk+N9b1heEM049LsZLp8PjnZQfFlbJaL6C3MnO1uh0Orw3oDWycmw3gi2c0Mvm6093q4OnJWa48hRSM5w546kutdGzZVWMmbNX9XOpgcEGUTHXq3U17D0Ti5YyJ/W99ngj1K16B//pVMttJpkVB3PH9IC/n5dLUn2S+vx9vZGXXyhpX6W/Rf1618PqHVcMPz/RuRZ8fbywbs9Vhc8kj5IPX654kHNUYCkfm4vsupqU4Kt53RD0Fck+JYWUoLi43Nfahodi4/5rqBISgEwbczfefr6F3XSyzeoon27WeB5ttdBApGfmKX4OJTHYICrmaoaVwYLxvWS/r0yAn1MTSUmc7Ewn5NYmvdIGl2PS4adQC7IcfdrXwOHIePS9v7rxcz3rIfVeLtbtuarpsL/3BrRR5DifDe1gWPDNHblLI4ycYjzZpZbbrIHlzsyHdm06cA1AUW/UsKcaY8H6SACQNM8kpFwpLJkYYTKf5dMhHQxrichVJsDXJEPoZ0M72tjbPbDWIyIiclCVkEC0aFQZCQnSM+4pNaHU28sLH5mtIVMu0A+z3+7u0qC2T/sahjkbnZqEScqWJWURNTkLHRY3I59thmBFFuY1/bQxy6BjujWvgkOR8RjTrwUqlC1lCDbM1atWVlLvTnUXDZWuVqkoq1slK6mAXYXBBknWsUkYDkXGGX5uUpvjjN1Vg+rlOB+AyN24qCFcrfl4pf3Fe2/CawTj9aeaYOEGywewiS+3EZ083lVC9i57BjzcAMu2XkBlG+tSvD+wLc7fuOv0uVxN6Xli5JxyQf74dGgHq6+P798aFcr6W13fQys9W1ZFncplNe/NYrBBkg1/uqkh2Jg1upvVioe0996ANihkExaRWxjx36aoHhqEoxfitS6Kw2a/3R3eEnojzIXXCEZ4jWCL7T7ezo/tb1SrPL54vZPNfepVKye+CjZvj6SgxhJT7TtDn8GrdQPpKYJ1Op3mgQbAYIMc5M7jaKloiIKXq5pR3UznpmE4cC7O/o5ELtKhcVjRPy5oWw5nFJvshTJuix0aV0JhIaOS4urzYR0hONgo9/6gti5fCLiUnw9mjOrqkd9FBhsky8xRXaFzoHWLyFVef6opXn+qqdbFILKBD7CeYMR/m2ldBEn0vUTuMmHdU1StGGh/JyvqVdVmcc1gDRafVAKDDQ9RsVwplAnQPprVYpVVUt7bz7fAgXPKryxLRNbxURB4pmc9+LHBSlGDHm2IsPKl0axOBYvXzBvuAz2wVZw8H4MND/HNm120LgIVIy3rV5SUso+ISElDn24mK3MX2Vc20A/9etteQLBxrfJ4pnsdVHOiNZ/IUcVj9RUiIiIPURxzNzS6v+Bbr9bVNC6JNMXwT2CTr48XGlQP1roYVEKxZ4OIiMgVivGY+vJl/E0WQXNXzv4FHm5XHb4+Xjh//S7+262OImUix1QKLu0xwW1Jx2CDiIiISIIBD4drXQS6b+qIzloXgSTiMCoiIiKiYki/NoqvDx/3SDvs2SAiInKB4juIitxVkzoV8FSX2ni4XXWti1LihZT1R7tGJXNleAYbRERERMWQl06HZ3vU1boYBODb/+uqdRE043b9ahkZGfjyyy8RERGB1q1bo2/fvti2bZvWxSIiInJK0P21kjxxBeDiIrR8aQBASNlSGpeEqORwu56NSZMm4cKFC/j8889RrVo1/PXXXxg1ahSWLFmCzp05GYiIiDxTj5ZV4evthU5Nw7QuSonVs2VVVC4fgIY1g7UuClGJ4VY9GwkJCdi6dSsmT56MLl26oFatWhgxYgQ6dOiANWvWaF08IiIih3npdOjavAq8vdyq6i1RdDodGtUqD10xTkNM4tibpR236tkoXbo0Fi5ciDZt2phs1+l0SE1N1ahUpCU/ZtAgInJKuUA/pN7L1boYRJr5angnlOHwRc24VbARFBSEHj16mGw7efIkDh48iClTpmhUKtLKB6+2Q3CQv9bFICLyaB8P6YDE1Cyti0GkmbDyAVoXoURzabBx/fp19OnTx+rr27ZtQ/XqD9KzXblyBaNGjULLli3x4osvyjpXSEiQw+UMDS3j8HtLIrWuV3H8OxTH30ktvFby8HqRNeUC/VAu0E/rYhBRCeXSYKNq1arYvHmz1dfDwh5Mmjty5AhGjRqFqlWrYv78+fD1ldf9lZSUgcJCQXYZQ0PLICEhXfb7SipeL+l4raTjtZLH0evl5aVzqmGGiIjIHpcGG76+vqhXr57d/davX4/JkyejQ4cOmD17NoKCWBkSEREREXkat5t9u2HDBkyYMAGPP/445s+fz0CDiIiIiMhDudUE8djYWHzwwQfo2LEjxo8fj5SUFMNrvr6+CA4O1qxsREREREQkj1sFG1u3bkVWVhYOHjyI7t27m7zWpk0brFy5UqOSERERERGRXG4VbAwaNAiDBg3SuhhERERERKQAtwo2lOTl5fjqoM68tyTi9ZKO10o6Xit5HLlevMamWG+4Bq+VPLxe0vFaSefKOkMnCIL8/LBERERERER2uF02KiIiIiIiKh4YbBARERERkSoYbBARERERkSoYbBARERERkSoYbBARERERkSoYbBARERERkSoYbBARERERkSoYbBARERERkSoYbBARERERkSoYbNxXWFiI2bNno3v37mjZsiWGDBmC69eva10sVc2fPx/9+/c32RYVFYWBAweiVatW6NWrFxYvXmzyupTrpMQx3EFGRga+/PJLREREoHXr1ujbty+2bdtmeJ3XylRcXBzeffdddOzYEa1bt8Ybb7yBS5cuGV7n9RJ39epVtG7dGqtXrzZs47VyfyX1+rHesI31hnSsMxzjkXWGQIIgCMLs2bOFTp06CTt37hSioqKEYcOGCQ899JCQnZ2tddFU8csvvwgNGzYUXnrpJcO2pKQkoUOHDsL7778vXL58Wfjjjz+EFi1aCKtWrTLsY+86KXEMdzFq1CjhkUceEfbt2ydcu3ZN+P7774VGjRoJ+/fv57UyU1hYKDz11FNC//79hTNnzgiXL18WRo8eLXTp0kXIyMjg9bIiNzdX6Nu3rxAeHi789ttvgiDwe+gpSuL1Y71hH+sNaVhnOMZT6wwGG4Ig5OTkCK1atRJ++eUXw7b09HShZcuWwtq1a7UrmApiY2OF4cOHC61atRIee+wxk0rj+++/F7p27Srk5eUZts2cOVN46KGHBEGQdp2UOIY7iI+PF8LDw4UdO3aYbB80aJDw7rvv8lqZiY+PF8aMGSNER0cbtkVFRQnh4eHC8ePHeb2smD59ujBw4ECTioPXyv2VtOvHekMa1hvSsc5wjKfWGRxGhaKuo8zMTHTq1MmwLSgoCE2aNMHRo0c1LJnyzp07h8DAQKxfvx4tW7Y0ee3o0aNo164dfHx8DNs6duyImzdvIi4uTtJ1UuIY7qB06dJYuHAh2rVrZ7Jdp9MhNTWV18pMaGgoZs6ciTp16gAAEhMTsXjxYlSqVAnh4eG8XiKOHDmCVatW4euvvzbZzmvl/kra9WO9IQ3rDelYZ8jnyXUGgw0UjRsEgLCwMJPtlSpVQkxMjBZFUk1ERASmT5+OGjVqWLwWFxeHypUrm2yrVKkSACAmJkbSdVLiGO4gKCgIPXr0QFBQkGHbyZMncfDgQfTq1YvXyoaJEyeia9eu2LJlC7766isEBgbyeplJS0vDhAkTMGXKFFSpUsXkNV4r91fSrh/rDWlYbziGdYZ9nl5nMNgAkJWVBQDw8/Mz2e7n54fc3FwtiqSJ7Oxs0WsAADk5OZKukxLHcEdXrlzBqFGj0LJlS7z44ou8VjYMHToUa9aswZNPPomRI0fi7NmzvF5mPv74Y7Rq1QpPPfWUxWu8Vu6P1+8Bfl6tY70hDesM+zy9zmCwAaBUqVIAYHHBcnNzERAQoEWRNFGqVCnRawAAAQEBkq6TEsdwN0eOHMGAAQMQGhqK+fPnw9fXl9fKhgYNGqB58+b44osvUK1aNSxbtozXy8i6detw9OhRfPzxx6Kv81q5P16/B/h5Fcd6QzrWGbYVhzqDwQZg6JKKj4832R4fH2/RZVScVa5cWfQa6F+Tcp2UOIY7Wb9+PQYPHoymTZti2bJlCA4OBsBrZS4+Ph4bNmyAIAiGbV5eXqhfv76he5bXq8jvv/+OpKQk9OrVC61bt0br1q0BAJ9++imeeOIJXisPwOv3AD+vllhv2Mc6Q7riUGcw2ADQqFEjBAUF4fDhw4ZtGRkZiIyMRIcOHTQsmWu1b98ex44dQ35+vmHbwYMHUbt2bYSGhkq6Tkocw11s2LABEyZMwOOPP4758+ebjMPltTIVExODcePG4dixY4ZteXl5iIyMRL169Xi9jEybNg2bN2/GunXrDP8BwKhRo7BgwQJeKw/A6/cAP6+mWG9IwzpDumJRZziYfavYmTFjhtChQwfhn3/+MeQP7tOnj5CTk6N10VTz3nvvmaQwTExMFNq3by+MHz9euHTpkrB27VqhRYsWwu+//27Yx951UuIY7iAmJkZo2bKlMGjQICEuLk6Ij483/Hf37l1eKzMFBQXCwIEDhccff1w4cuSIcOHCBeGdd94R2rZtK9y4cYPXyw7jNIa8Vp6hpF4/1hvWsd6QjnWGczytzmCwcV9+fr7w7bffCp07dxZatWolDB06VLhx44bWxVKVeaUhCIJw+vRp4cUXXxSaNWsm9O7dW/jpp59MXpdynZQ4htZ++uknITw8XPQ//TXjtTKVkpIiTJkyRejatavQokULYciQIcL58+cNr/N6WWdccQgCr5UnKKnXj/WGdaw35GGd4ThPqzN0gmA0YI6IiIiIiEghnLNBRERERESqYLBBRERERESqYLBBRERERESqYLBBRERERESqYLBBRERERESqYLBBRERERESq8NG6AETubuLEiVi7dq3NfapVq4bbt29j6dKl6NKli4tKRkRE7oj1BtEDXGeDyI5r164hMTHR8PP8+fNx9uxZzJkzx7CtsLAQXl5eaNiwIcqUKaNFMYmIyE2w3iB6gD0bRHbUrl0btWvXNvy8Zs0a+Pr6ol27dtoVioiI3BbrDaIHOGeDSAGHDh1Cw4YNsX//fgDAnDlz8Mgjj2D79u148skn0bx5czz99NM4fvw4zp49i/79+6NFixbo06cPNm/ebHKs2NhYjB07Fh07dkTLli3xyiuv4OTJkxr8VkREpBbWG1RSMNggUklCQgI+++wzDBs2DDNmzEBaWhrefvttvPXWW3j88ccxc+ZMVKhQARMmTMCdO3cAAHfv3sVLL72EEydOYMKECZg2bRq8vb0xaNAgnD17VuPfiIiI1MR6g4ojDqMiUklWVhamT5+Ohx56CAAQHR2NGTNm4KOPPsKAAQMAAKGhoejXrx/OnDmDqlWr4scff0RiYiI2btxo6ILv1asXnnnmGcycOROLFy/W6tchIiKVsd6g4og9G0Qqatu2reHfoaGhAIA2bdoYtpUvXx4AkJaWBgA4ePAgwsPDUb16deTn5yM/Px86nQ69e/fGoUOHkJub68LSExGRq7HeoOKGPRtEKgoMDLTYVrp0acO/dTqdyWt3797F9evX0bRpU9Hj3b17F2FhYcoWkoiI3AbrDSpuGGwQqci8UrCnTJkyaNu2LSZNmiT6ur5Fi4iIiifWG1TccBgVkRvp0KEDrl69ilq1aqF58+aG/zZv3owff/wRvr6+WheRiIjcCOsNcncMNojcyODBg+Hl5YVBgwbhzz//xN69e/Hxxx9jyZIlqFevnuwWLyIiKt5Yb5C74zAqIjdSqVIl/Prrr5gxYwa+/PJLZGdno2bNmiaZSIiIiPRYb5C70wmCIGhdCCIiIiIiKn44jIqIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYIOIiIiIiFTBYINKjMuXL2Ps2LHo1q0bmjVrhq5du2L06NE4ceKE1kVTTH5+PhYsWIA+ffqgVatW+O9//4uNGzdqXSwiIrdXEuoIY1FRUWjWrBmuX79u8dru3bvRv39/tGvXDt26dcPo0aNx48YNDUpJxQGDDSoRLl26hBdeeAFxcXGYMGECFi5ciPfeew/Jycl4+eWXsWPHDq2LqIjZs2dj5syZ+M9//oM5c+agZcuWGDt2LDZt2qR10YiI3FZJqSP0Ll68iNdffx15eXkWr+3evRtvvPEGwsLC8O233+K9995DdHQ0+vXrh9jYWA1KS55OJwiCoHUhiNQ2efJk7N27F//++y/8/PwM23Nzc9G3b1/odDps2LBBwxIqo0uXLujSpQumTZtm2PbCCy/Ax8cHK1as0LBkRETuq6TUEbm5uVixYgVmzZoFf39/pKSkYOvWrahVq5Zhn/79+6OgoACrVq2CTqcDAMTGxqJ3794YMWIE3n77ba2KTx6KPRtUIiQlJRlumsb8/Pwwfvx49OvXz2T78ePHMXDgQLRq1Qrt27fH2LFjERcXZ3j90KFDaNiwIQ4fPow33ngDrVq1QseOHfHhhx8iKyvLsF9UVBSGDBmC9u3bo1WrVhgwYAD27dtncq6zZ89i2LBh6NixI9q0aYM33ngDFy5csDjX6tWr8fDDD6N169bYunWr6O+Zk5ODMmXKmGwrX748UlJSJF8rIqKSpqTUEbt378bs2bMxYsQIjBs3TnSfVq1a4ZVXXjG5HpUrV0aZMmUQHx9v4yoSiWOwQSVCREQEYmNj8eKLL2L58uW4cuWK4bWePXti0KBBhp+PHTtm+Pnbb7/F5MmTceLECbzyyivIyMgwOe6YMWPQqFEjzJ07FwMGDMCqVavwww8/AAAyMjIwePBg+Pv749tvv8WsWbPg6+uL4cOH4+bNmwCAgwcP4qWXXkJOTg4+/fRTfPrpp4iJicFLL72Ey5cvm5zrm2++wVtvvYWPPvoI7du3F/09Bw0ahHXr1mH37t3IyMjA+vXrsWfPHjzzzDNOX0MiouKqpNQRzZs3x/bt2zFixAh4e3uL7vPee+/h6aefNtl29OhRpKamIjw8XMrlJDIlEJUQc+bMEVq2bCmEh4cL4eHhQseOHYUxY8YIBw4cMNnvpZdeEvr06SPk5OQYtt24cUNo2rSp8MMPPwiCIAgHDx4UwsPDha+//trkvf379xeefPJJQRAE4eTJk0J4eLhw7Ngxw+tJSUnCl19+KVy8eFEQBEF4/vnnhT59+gh5eXmGfVJSUoQOHToII0eONDnXN998Y/d3TE9PF4YMGWL4HcPDw4WJEyfKuUxERCVSSagjjP3+++9CeHi4cO3aNZv7JSUlCX369BF69OghpKenyzoHkSAIAns2qMQYNWoU9u7di9mzZ2PAgAEICQnB5s2b8eqrr+Lrr78GAGRnZ+PkyZPo3bs3vLy8kJ+fj/z8fFSpUgVNmzbF3r17TY7Ztm1bk5+rVKmCzMxMAECDBg0QGhqKN998E5988gm2bdsGPz8/TJo0CQ0aNEBmZibOnDmDxx57DD4+PoZjlCtXDr1798bhw4dNjm2vRSk3Nxcvv/wyzp07h48++gjLli3Du+++i7/++guffPKJw9eNiKgkKO51hCNiY2MxaNAgJCQkYO7cuQgKClL8HFT8+djfhaj4CAoKwqOPPopHH30UABAdHY0pU6ZgyZIlePbZZ1GuXDkUFhZi6dKlWLp0qcX7a9eubfJz6dKlTX7W6XQQ7udcCAgIwMqVKzF//nz8/fffWLFiBfz8/NCnTx98/PHHyMzMhCAICA0NtThPxYoVkZ6ebrJNbD9jf//9N86fP4+FCxeiR48eAIAOHTqgTJky+OSTT/DCCy+gcePGti8QEVEJVpzrCLnOnDmDN998E3l5eViyZAmaN2+u6PGp5GCwQcVebGwsnn32WYwaNQovv/yyyWt169bF5MmT8dxzz+Hy5cvo2bMndDodBg4caDFmFYBJlhIpatSogc8//xyCIOD8+fPYvHkzFi9ejHLlymHcuHHQ6XRISEiweF98fDyCg4NlnevOnTsAgDZt2phsb9euHYCi1I4MNoiITJWUOkKOHTt24J133kHFihWxbNky1KlTR7VzUfHHYVRU7IWGhqJUqVJYsWIF7t27Z/G6fpJdeHg4AgMD0bRpU1y5cgXNmzc3/NewYUPMmzcPu3btknzeLVu2oFOnToiPj4dOp0Pjxo0xduxY1K1bF7dv30ZAQACaNWuGLVu2ID8/3/C+tLQ07Ny506L73Z66desCAI4cOWKy/ejRowCKKjUiIjJVUuoIqY4ePYrRo0ejXr16+O233xhokNPYs0HFnre3Nz7++GOMHDkSffv2xYABA9CgQQPk5eXh0KFDWL58Ofr374/69esDAMaOHYthw4bhrbfeMrRcLVu2DEePHsVrr70m+bxt2rSBIAgYMWIEhg0bhnLlymHPnj24dOkShg0bZjjX0KFDMXjwYAwcOBB5eXlYsGABcnJyMGrUKFm/Z0REBFq2bImJEydi1KhRqFu3Lk6dOoUFCxagV69eaN26tazjERGVBCWljpAiPz8fEydOhI+PD958801ER0cjOjra8HpISAiDD5KNwQaVCD179sSaNWuwcOFC/Pjjj0hMTISPjw8aNmyIDz/8EH379jXs26VLFyxduhRz587FuHHj4OPjg8aNG2PRokXo1KmT5HNWqlQJS5YswaxZs/Dpp5/i3r17qFOnDr788ktDKtrOnTtj6dKlmDNnDsaPHw9fX1+0a9cO33zzDRo2bCjrd/T29jacb8GCBUhJSUGNGjUwYsQIDBkyRNaxiIhKkpJQR0gRGRlpSLs7cuRIi9efeuopk0VjiaTgCuJERERERKQKztkgIiIiIiJVMNggIiIiIiJVuGWwkZGRgS+//BIRERFo3bo1+vbti23btmldLCIiIiIiksEtg41JkyZh586d+Pzzz7Fu3Tr06dMHo0aNwoEDB7QuGhERERERSeR2E8QTEhLQrVs3zJ8/H7169TJsf/XVV1GxYkVMnz5du8IREREREZFkbpf6tnTp0li4cKHFKsg6nQ6pqamSj3P37j0UFsqPo0JCgpCUlCH7fSUVr5d0vFbS8VrJ4+j18vLSoXz5QBVK5JlYb6iP10oeXi/peK2kc3Wd4XbBRlBQEHr06GGy7eTJkzh48CCmTJki+TiFhYJDlYb+vSQdr5d0vFbS8VrJw+vlPNYbrsFrJQ+vl3S8VtK58lq5XbBh7sqVKxg1ahRatmyJF198UfL7QkKCHD5naGgZh99bEvF6ScdrJR2vlTy8XkRE5I7cOtg4cuQIRo0ahapVq2L+/Pnw9fWV/N6kpAyHorbQ0DJISEiX/b6SitdLOl4r6Xit5HH0enl56ZxqmCEiIrLHLbNRAcD69esxePBgNG3aFMuWLUNwcLDWRSIiIiIiIhncMtjYsGEDJkyYgMcffxzz589HUBBb3oiIiIiIPI3bDaOKjY3FBx98gI4dO2L8+PFISUkxvObr68seDiIiIiIiD+F2wcbWrVuRlZWFgwcPonv37iavtWnTBitXrtSoZGTs1OVE+Pp4oScnpRIRERkUFBZi0/7reKR9DZT2d7vHLCKXc7tvwaBBgzBo0CCti0F2/G/NaQBAz/a1NC4JERGR+zgcFY91e68iPTMPL/cJ17o4RJpzyzkbRERERJ4oL78QAJCTX6BxSYjcA4MNIiIiIiJSBYMNIiIiIqJiKr+gEFdup2p2fgYbRERERETF1G/bL+OLZcdwOyFDk/Mz2CAiIqJib/GmSEz4fr/WxSByuRvxRUFGRlaeJud3u2xURETpmbnIysln2kgiUsy+M7GuPaHg2tMRuSv2bBCVcHHJmTh1OVHrYpgY8MFfeGfuXq2LQUQkm07rAhC5GQYbxVBWTj7yRFLuHbsQj6ycfA1KpIyMrDzMXnNas27A4mrSgoOGdVPcSW5eodZFIHILkdeSsWD9Oa2LQUQKyMkrwJnoJK2L4VIMNoqhkTN349Ofjppsi03OxLy1Z7FoY6TTxy8s1KZveNuxWzh5ORH/Hr2pyfmJiLQw7deTOBgZp3UxiEgBP2+5gJm/ncKdxHuuO6mg7Zg+Bhsqupedh78OXoegwR/5doLphzgnt6inIyk12+lj5xewxZmIiMgRV2PSEJucqXUxSCP6v31WrueONJGLwYaKft5yAat3XkHU9btaF4WIiDR0LTYNafdytS4GuYHPfjqKyQsOal0Ml1q98zKOX0zQuhikEQYbKtLPjyjQaNiRGPcpCZB6Lxenr5SscYvu4tKtFBRq3K1KVJJ8+uNRfLT0sNbF0ExObgFy8iznEno6QRDw67ZLrh0S44H+OngDc/84o3UxSCMMNtxIfkEhvl15AlfuKL/Ko84N02N8s+I4Zq0+pdkcEKVdjUlDZrb7T14/G52Er345jn+OcO4LkSulZpTcno03Z+zC27P3aF0MxSWlZWPrkZuY+dspi9f2nomRdayMrDykZuQoVTQkpGRhyNTtOBhZlPL3yp3UYhnwkftjsKEiuY/QsUmZiLp+Fz/+dV6V8rib2KT7Y1YVCoROXEzQbD6JIAj47KejmCFS4aglMzsPkdeSZb8vMa1o3k5Mku0xw4Ig4NiFeBQUco4OETmvWGaYE6voHazT3vrfHrwzd5/k/fPyC/HlL8esNlDeur+Q2+HIeKRl5uKLn48pkiTGlqFfb8eQqdtVPQd5HgYbLuBOnQrFdeTM2egkzPnjDP7ce1XTckTfSXPZueb8fgbTfj2JzGx1JpmduJSIeWvPYtOB66oc31PE383EkKnbcZvDJIiKtVmrT+GbFcdlvUfLKvVO4j1cvpWKZX9fsLtv7v0kMddi0mWd4/LtVMmjLdIyczV7xrhw4y6ORjFjmzVaP/ox2HBzl2+n4vJt5YdVFTfpmUXDl5LSnM+25Sn0D79q9TykZRYN+UhOU65b3xMdOR8PADhw1sWrDxORXT9vOY8hU7crMh/g9JUknL+R4tB73XGoshTr913FO3OsL6D65bJj+OLnYxbb/z58A18vNw3MBA2HRH+94gQ+WaTepPvM7HyPXqdMT6fRB5XBhpoUCPG/XHYMXy6z/KJrSesIuaQQBAE7jt8ypC1W7sBF/9t96g6uxriuJ0ZphyLjcPFmitbFIHKpzOx8bD1yU5OU6u6isFAwJLjYefIOABTbTEc7j9/CeRUzWq7bcxWpDmRJW7X9Mi5odP9Nzchx+fzIUbN2Y9TM3S49pyOiriXj5v3hc2K0um8w2HAFt2rxKBkVVF5+ISYvOIizElbpzMrJR67RpLnktGy3qMjPRCdh2daLWLX9kqT9d5+6gyFTt+OejJvwZ2aLP4rT/lqImb/+HKYulzfkwV38c+Qm/jlyE+ev38WQqduRkeVYxXnhxl3lg1FyypqdV3DycqKkffMLCmU/NC3/5wJ+3XZJlZTqObkFOHDO9T14N+LSZQ0HHTF9J953k9Sx9u6OiSlZTh1/+vJj+GblCQBFnxdHW9cnGa6XsvdzLVr735m7D+O/3+/y8xpfuYORsW7Z2PXtryfx0RLLrHdaP4Yy2CghnO06yy8oRF6+7eE6ialFmS+OXYiXdEw1H2GT07IRm5yJX/65aHffkTN34735BwAAMUn3MO67/dhy6IaKpZMm5/5kSnsPom/P3ou45ExsO3YLgDILNwLa35xcYdOBa/hZwnhnABAU/MSu3HYJK7ddwuZDRfNh9HN98vILMWTqdkmZwu6m5+DrFSewaJO6Ez5Jns0Hr2P2mtOS9v3f6lMYNUtehqZ79x/K7d2PHbH8n4tYuCESl26lKH5sWz5eegQzfjspef/8AgFxd517iFfM/YapxNRs0bkN0Qr2Hn+78gRGOti6rlYK/lXbLz/4QYEhOgWFhZIazLJytG1kWbA+0onGLvdswFMTgw0VGX+c/jp0HfvPykuDJ8XOk7cxdp707BWOGv/9fgyfttPmPtdji7ru9ssc267EQ63UB8HM7Dxs2H/NYo0JfUpK/YN6pIctxHhUYoAHeN5tLjM7X/RvJiY2OVNWRrLfd0Vj54nbzhTPKeatufpWwo0Hrtl9rz6F5S0bXebkfm4lPPh7nbvmXveZu/fTrirVW3bldqrk76Ot5BqZ2fke0YMnNrdBSZduuWb+Zl5+IfLypV1vpVPp/vTXBYyetcdiLuLR8/EYMnW7wwtjjp61G3N+l9YI4Cq6EtGkV4TBhgvooMPqHVewaGOUoscVBAE/b7mAu+nSJ/A6+qDpKfnh7X11l/9zCWt3R7v1YoJpmbm4EWc/Y4jDQ71cOEQs9V6u03njf91W9Dc7dcn20JTUe7mYvOAglkvozXIXrsxeRu7hw8WHbY7BX7wpEn/sjnZhidRxMz4DXyw7ht93XbF4TRAE7DsTY/FAe+5qsmh9NmrWboz7zn6jWmGhgEUbI22OWVeaeOZb05ooMzsPmw5IazBxlZzcAhy7ID7P5e3ZezB82i6L7b9tv4whU7erOsz4YGRRRinz9be2Hy/quXc0K+C97HycsFOHFGdaf/IYbLjAQZXGwN5KsP2lKxQEwxCc4hQ/n4l+sLbEwg3nsPe09B4jfStMgUbrcUgxZvZefLz0iNbFMHCmXnlnzl5ZeePFZOcWtfbn2xkGoB/77mg2GUekZOTYHOYWk3QPMUlMmVsSHT1vvbcx3sY4/n1nYrFx/zVJ55ix6qTJA+P12HQMmbpdtWFQu07eRorExgN9C7TYg/+Z6CQs3hSFNTtNg6rpq07i05/E7333JMzpiLubif1nY/HdurOSyugKOp0Oy/+5iN93ReNstPx1kZQmAPhu7Rm8OWMX5q0Vz+CVfb8X6ZzZOk5bDlsOLzZuGHNk0nbc3UyX984WFEofrmpP9J00DJm63e78jWuxadh96o6iizbGp2Thwg15vaPRd9JUS5dvC4MNF9inUspMeylP1++9irf+t8ehTBNKyM7NN9yIBEGw2Z1+4cZdyd3txhmUDpyLw5LNyvYYKe27tWfsLnI0ZOp2/Lb9ssMPpmJzctIzc50aeiBnns/qHZdt3vRy8wrw7coTuJ0gXqmk3ct1aIFCNR27EI9lW43mc4jEOu/O3Ycxs62njXx/4SG8v/CQCqV7QOsWKxJn/MCbnqnOPfjs1WSTB8azV4t6bE9dlt9zm2wnbfjd9Bz8tOUC/mdjPkravVxsOXTDbsv3ncSiBUX/OXoT88xS1npKL7oc+vkFSjZy3U3PQYI+aJV5EzhqpUfD3PRfT9rdxzgIXOrAgsST5h/Eh0sOIzM7z+YzgJKdKfrFJf/Y43wPoj4gO2OWjOZWQoZh5XYA+PTHo/jxr/NON74Zm/jDAXy94oToa78Zz6UxsnrnFczWYDgZgw0Vad1jevxiUZehSSStRJmMjhF/1/oq1PPWnsXHS48gL78A/xy9hTe+3Ska+NyIy8DXK05Y/XKowdrfRu7lEQTB7phVqTf2LYdvKDL+Vf+7vT17Lz7+0bKVUI2P5V+Hbli96QFFY42jrt/Fym1FmbUu3kzBFaP1Y75ecRzTJFRs1izaGKn4Q/28tWex4/htu0GXkkMjbB0pMTULUUYBWXHqrSzuxLJTJTiZpUhJZ6OTMO67/Th31TLg333qDi7cuGto3MqwETgt3BiJ33Zcxvd/nrN5vt92PLjXH3NRytqPl1pm6FGEna+/Wt/TsfP2OdSDo+ZziTMt5qNm7cGc3+2vleIOmSKl+HDxYSxYr13yDrFeKL3rEoZpK43BRjFhPr7Rgkp3vKGf/2P1tUv3uxULCgVDOkWx1jN9y8AdFYebTPh+Pzbuvyb5Mkjdb9SsPXhz+i6TccaFhUJRF+1R57toAenBgXGZ9Tnn45KtB4NqyMkrwI7jt+xWCFOXH8cX99ePmfHbScQk2S+nrWPKTUpwO/Ge4hMbnZWakWMI3sU+f5MXHMS3TgRk5F7e++GA4d+Ho+IwZOp2p3tAHE04ZO3h4/jFBPz413mbDQl6giAYgpWj5+NNhltJXYFajFK9QjfiHvSqHj0fj3+duD9nZucZ7kfml/yvg9etvs+Zx2RbwzXzCgqdusZ612PTrQ6tMh6unKJS75N574AYufd6qecdMnW7Rwx51Q8r9jQMNoqJlf9KW4vBFfSTsHLvp2bceeKOzbvsmp0PJhBeuZ2KL5YdlZ3W0bgiASxPl5iarcqkS332oESjdLP6sotNjFSL+cOpEqvp6smpIFfvuIxlWy/ilIwJ+PbGMevP/8Of5xRpDc7NK8AHiw5hvp3WV1d7Z+4+fPWL9VSK+QVFVyInrwDDvt4hKwMZuTd9w0RcsvTP9+Xblg+Xa+3c4woFAev2RCNN4gO88bwTe+t6XLltmuxAnxI18tpdp7I0vW1jmKI543qwUBDw79GbJmso6X237ixWOFBn7jsTg3lrz2DUrD3YfapoMUHzRpDVOy3v+8ado4mpjt3DYm00HMUkZeKLn49Z3B/nyKwH5q8/Z3XSuPFwZZMMmEa/v3E9NHvNafuNoDLoj2RvXQ+pa9wYOxxVNCld7DvlTq7cScX/zdjt0AKWWvcHMdjwMImpWYYvm/E97thFx9e22HTgGv46ZL01xhHGQ0uMb4Dz/zyHH/+yPsdi2d8XcOV2Gu7IzDixx9DqYqdP4v7Lan7xbM2lee+H/Viw3vpDrljjvZRelp0yJm5KkZFVlD2lqFAPtguCgPX7rlqt+PStb+ZzRaz1IsjNxuRoJhJj+of2CzflTaxT8zNj0bJsY+hWUmo2CgUBa3dfVb9gpAqprer3svOsDtPbdED+PfvC9btYv+8afrI3tl7k47dh3zWbbzHPLGWtJT7JwYdtKc7e71nRoShQWvHvJayVMC7/THSSzZ4BfY/j4k1RhodxRzMaFhSo94W1NozJkQdwqaz9NicvJzpVJ1nryLY3rFVsjRt9JiutvPU/eWvpWHMtpqie2HnytsncVT1rSSkys/MRfVvbzIcMNhx0Iy4de0/HIO6ueF7/xNQsSelL5Zrw/QF8/rOUVZ9N2fp6/r4rGqt3KNsKf8dKpqz4lCzsPqX8eiPmrP2+5tultvDJoV+kKy+/0CKNY0JKtiG1n7OMb8YJKdlIy5SWCUTKkNeftpxHQorlkLf0zDys23MV03+1P6zCmHFPi3FXtSOfZa1kZOZhz+k7qhzbVov09dh00cYABdbPIo1YZBIU+U7ey87D6Fl78LtRS/lnPx116CE3PiULF2+mGBZ2y5XQc7z9+C2TIUz63ltrjdUHJN7X3plpmVJVDfqMSlKyWM387ZTV3pcz0UmYOP8gtsrIXGT83XTke6pvaS/OCgVBtOfD/HolpGRZZMUyJgiC3WQ5v2y1kg5d5LOcl18ga4itvd5EwP7CvFIl3R+GfjY6GZ/9ZFl3/mVlMeL/rTmledplH03P7sby8gsw87dTeOmhBqgZVsbidfPUpG881QSdmlY2/Dzh+wPmb1GM2Ph2d2vcNJ9/oeTqy0qyNWzFWYIAVRdczLTTnWyNvdVZ/9h9xaQr3fhvp79h5Ru1zomNqbb29xYEKD6Re8xsy1ajtHu58PH2gre3DhmZeQgpV8rh4+uH+e09E4O9Z2LQsEYwKpUPsLr/X4euo7SfD3q1rmbxWk5uAbYekbc6/Scik/ypmDJ60Lp3/wHFeLicWGsmUPR5LxvoZ/WwE+/PD3n3hZair5s/h9xOuGe6MrQRa0NcpaYgl7MulCIpUQX7mbaklOHXbc4PVRYEaXX1D3+eQ4fGYU6dy9rYfqUfOvUf2WuxabJWKZ+1+pToEFrzz9fE+QcgCEB49XKix/lpywXDkDapbAWA78zZh8ycfCyZGCHrmHI4+ifYYiWYsOdqjOsnhJtjz4YVV2PScf5GCn7556LdqBkAFmyIlHUTdQX9UBd9mjdAw0wOEk5rqwFIybGfwIPrIHUC9Rc/H30wrEgDHyw6hA0Sc+/bE2Vn1eKN+21McLz/ZzC+WadL7FFxhPlwLbHPiFiPzpg5ezFmzl68OX0Xxn+/X/TYxl+FqzFpkluzktNsf89X77iCn/++IPran3uvYu2eq3bPIacx1F0DeZLO2b/gmDmm8xqsBvtmP89ffw6nryRZzGezl4Y8KTXbJXXJh0tMM0idvpJkcxiqMePvkBqTivXsX4YHJTF/0B//3T5Fh78a+78Zu0W3K51aWEBRb/WnPx61Oa/EnNQ1R8yvr/m9USzQeH/hQavz+67cSbXZ0+BoI567Pf+5GwYbdly+lYrXv9kpqRts7Lx9SErNthi7akzKsJ3bCfdw+oq8MZapGbkmE62BBxXGhZt3TZ4OT11OFB3b99lPR3EmOsluJeLIw80NCS1U1o567moyhn2zw2LylmmaRollcnDsyZU7afh9VzTOXUs25LJ3lXvZ+bideE9Sdy0g3hKekZVnkvNbjsJCAUs2ReHctWTDZ8PauFkpQxbkmLzgoMNPYtYemPRFzzaaV/LZT0exaKO0NIXfrDyBpNRs3LKyZogt2SpkwPKQTJAlktwH8gNGD8UZWeplndF/ew9FxmHW6lMWr9tq28nIysP47/fj78PKZNuTY9bqU5KHoS6zNnRGgqTUbExecNDmA6SUDHqAaZXz/bqzhsUOASApLcfm4o+eQBCsJzY45cRckQs3U/DxEst0xVKexWKSMrHtmPg8jS9+Poavl8sbBizF/rOxknuNzKvP2wkZkhYGlMuRRRbVwmBDohSJUev89ecwfJr1MalSswQt3BCJRDuZdy6YrZS82UbKPWP/W3Ma3607i+uxpl1rV2PSMPO3U9h54jYu3061mpVCih8cyPSTnJYj2qQ7fdVJALBYNE6/HXjwwHXAzmrtYplJ9OLuZmLmb5YVr8k5fz2JGats76M0e1lgpPhu7RksWB/p0AKIB87FYe+ZGEz/9aShO9ZLVzTpbN2eaJMbrD4APBKlTgXq7DyF/IJCqy2J16wMURFzNyPHodWAYxVMragfsmCcCY08kz5Rwo4Ttw3b9POZxOZOiZk03/7Q3T33W4Fz8gps3gvXSZhU/duOy4Zgyt3SSAMPGhscaRzbdeo2YpMzsdfGHC19K769o5v3yieJfF+vxshPimKLq9dwOWYlM96yrRfxz5GbmC+xN8rYzN9OmTRS6q/iBYkP5PkFhVYbnJKMhtVdupWCfWcsnxsO2OgNE/sbOuPc/dEGtjIMiq2BY6xQECyCnQcZ17RvkeKcDYnO37iLckF+KBNgfVwsALtjFi/fkpZa7V52Pib8YLvyMF4YyRGf/HhEdFyicYuQIuMWJT4gGnfBpmTk4OsZx01an6UaMnU7GtcqL/qafnJlmsjigqu2uW5RwYORsejUpLL9HRWSfD9Y3ns6BtVDAx0+jj4Hu06nw6/bL2Hv6Rh4e1n+gU9cSnQ4xaNt9j9MtobG/fz3Bcljy+W4m56D8mX8TcshsuDlebMGAkdwYrh7EgTB5CFGb/Ss3Yr3+ImJu2v/+6ZfYPTSrVSMmG69UUxqh8ylW6kIrxGMN20cy52dvJSIVg0qWmzXP9j9c/QWHu9U0+Yxtou0oBs/jH637izahIcafhZr/Rab7Dvn99MY/VwLw8/GDZ7m2f7MuXKBXAA4Y+NBeKUCc10csf34bew7E4vvx/a0uo8Aweq8zYUbI1G3WlmEiczPszY0FwDOX7+Lf630qhjOe/8jYG/+pDHjxlUxXy8/btGAfPR8PB5uV13yOdTEng0zefmF+OHPsxYPCiv+vYS3Z+/Fl7/YzhdubQKfsQXrz2H9Xvvjth0xYtpO0e3Wnk+GTN0u+xwWmVRUMPePMw4FGnr2egPsZmPRFU2wW7PzikM5re2RsrLoHpGxqOO+24fktGybK7fbo0QbR2JqtqHCy8kTv5anLisz3Mx4heHFmxxbkfX0lSTk5RfisIQhGDFJ9zDjt5Oyjj923j7sOxNj8n2aZaeXzCbdg7KQfPPnz0f//v1des4dJ26LJgZxRaChFSXX8zFn/uDkMBs3vNm/W6ZJBR5MqLU3ZEcQBJPeKL11ZvW78XC6f49KS8OqX69Kz7jnw1ajZm5egayJ2nqFhYKsORd6GVl5oo13SnOkbM72uF0RWXfDXpbR/605bfLMsOJfy+F8+s/2kk3SRhpIub6XRBqyc/ML8emP7pHxkT0bZiKjk3A4Kt7qA6bUnglb9GNOn+5Wx/QFGS2W1oIEKSkNnWWt5dhai+uO45Y3Y3vEb5Y6WKs5rAUmchqBzXORbzpwXfLQNEf8ffgGqlUMtJov/6xIa1FyWg7GfWe9VUWK2zaCRTmpaPXrvVi7Rsv/cXzMtDWOTkaPTbqHBevP2fx+pN7LxeGoOCzcEOlQZb3zpOnn3N4kW5vun16rVkFPtnz5csycOROtW7d26XmVHm/tCZRK6SlGShY2ay38jjyYqsk4cDDv/ZI6DNI09a74/Sn1Xo7D2ev2nlE/Jb0zHL33y5ljaT48atHGKHRpVsVkm3kmUnvEgkv9Xy8jKw//HLlpN9PZe3ZGudiTr+LaLlK5fc+Gq1uoIu9/MF31x/lpy3nMud+6kp2j/rhXd5lM6qqJS9Z+XXsTN/PzC2WvYi7Xqu2XMeO3U5LHoLqCnEX2xIIhJdgbIuDIwn6/br9sN8tIfoGAH/4851CgYY/cFrbU+y1Z9jJf0QNxcXEYMWIEpk2bhjp16th/gwtodbv96+ANzLAz7KI4eHOG88O37CVtUXoNKnO21u8wblSU0pA4a7V4T40UZ6Jdk/hEaqITKaSMzJAzx3K9nYUr7UlKzZZ9rzdpUDK6YeQXFBrm7brjnCi53DrY0LdQudKKreIpK9Wy6+QdnLiUiHNXk+0O0XKGo+O81++7isUSs/TIoV/4zlHO5E2XQomx9Y5QI33eldupiJcwntsdXLqVYvcBYpWbtPbbm3iaZBQovDl9l2Lpm5XoXS2Ozp07h8DAQKxfvx4tW4qvJ6EmscBw2Nc7XF4OvbNXk/HZT1yjJeVermHOmhi7q6m7Cad6SiVwJiGMHEqlcHeV7Nx8ycNZ9XMalbB083lM+OGA1fVSnJGTWyA57b9S3HIYVVxcHD766CMcOnTIbVqo1BBptCqmlNZtZ9LIOWqd2ZoAF2+mWL0pOdLiLIdxwCR1KFH83SzsFBlTKwj2WwvUXD/CGjXGQH+xTFoQay1VoJJS7Yw9lbLIopt0zlmyUzBHekzEMtQs9ZCHI1eLiIhARIR6C3HZI2W+nqtdjUnHlEXKLqJpzt53Wmv2sviYz42Q4+A5rVb69uwsEWLzXLSQa2W+oTFr65WIkTsawrxO+PfYLfR/uAF0Op2hp0mt3u3PlxzCh6+2U+XYYtwy2DBuoZo3bx6uX1dv3LwjbKVEk0Nua/P/1jjWRXojLgO/7yrqunT2QW3qcusPg0p2j4pxdFiT2AJrWTn5djOo2Eqj+8HiQ/h0SAfDz/YqNE+gxhwLc0qmd9TS34dvoGalIFnvsZeW2dw+Nx9DXRyFhMj7mxpTY/idEtT+zn237qzixwwNLaP4MdVwy4HWYWtrFMlRsaLjn1N3sMzKoqeezsfH+cFCyZn5aFS7gmE+1I8SrpUj35ecvAKXfs/cMtjQuoXKnoUqDCtyJruQPUeMFg3KUmmuhCtaxZX016EbTr3/dsI9kzG0ntY17MkSU7JU6VqW49iFBJy5Im+Ms9yhf4slZioh5SQlZTg03M1THo7VcEmFOWcJCQplolJZtgMT5NMlLOxrT2Ki/AVFSX35CszzPH0hDiGBvoafUyTUG3diHBta68j3zMtL51CjjFsGG0pwpoXKVeKMMh8ctrMIWqlAf5uvS6XGvPfMAsElreLuZuRM6d2rgOM9M2Qq7m4WZjgxEVIpFhM2RdYbMebs5EN7SvIDLxUvYr3R7kir4UD/HnP96u1knxK9Vn/sjkbvNg/WxpCSrWy4lSUP3EmxDTYcaaEynkPhCn/LSKu6aK0yD1f3VEhVmJBQMltZ5H6++k3aqFJJSp7LbpTBS++KhhO3L1xPRoUAX/s7mnG0lYpITWLz7OgB87mU5B6UmkljbwE/T+TW2ahcTc01FZzlnqOBi5ivL0Di3HVMN3m+W/ElM+AnInIXSiTJycopcM0cUBc/jjDY8BDZdtYI0NKuk5YrXRMRlRSpGVwPhYicV+iixdCkpvNVSrEdRlXcHNAsxR4RkWeZOnWqy86VmJqFCRIWFyMiKqnYs0FEROQgrvJORGSb2/dsuLKFykW9V0REilIgCQo5yNWJRYiIPA17NoiIiBx0ScMsZEREnoDBBhERERERqYLBBhERkYMcWXGciKgkYbBBROTxOGlDKxfccIFJIiJ3wmCDiIiIiIhUwWCDiIiIiIhUISv17alTp7B3717ExcVhxIgRuHz5Mpo1a4YKFSqoVT4iIvJgrDeIiEo2ScFGXl4eJkyYgC1btkCn00EQBLz44otYuHAhrl+/juXLl6NGjRpql5WIiDwE6w0iIgIkDqOaM2cOduzYgWnTpuHw4cMQ7q9+9+mnn8Lf3x+zZs1Ss4xERGSDOy7qx3qDiIgAicHGn3/+idGjR+OJJ55A6dKlDdvr1KmDkSNH4tChQ6oV0JUELiFORKSIklJvEBGRbZKCjeTkZDRo0ED0tYoVKyItLU3RQmklOT1H6yIQERULJaXeICIi2yQFG7Vr18b27dtFXztw4ABq166tZJk0E383S+siEBHJFp+cqXURLJSUeoOIiGyTNEH8tddew/vvv4/8/Hw89NBD0Ol0iI6Oxr59+/Dzzz/jgw8+ULucRERkRUZWntZFsMB6g4iIAInBxnPPPYe7d+9i3rx5+P333yEIAsaPHw8/Pz+88cYbeOGFF9QuJxEReRDWG0REBMhYZ2PYsGF46aWXcOLECaSkpKBs2bJo2bIlgoODVSweERF5KtYbREQka1G/oKAgdO/eXa2yEBFRMcN6g4ioZLMabLz88suyDrR8+XKnC0NERPLp3GShDdYbRERkzmo2Ki8vL5P/Tp8+jVOnTkGn0yEsLAx+fn6IjIxEZGQkwsLCXFlmIiJyQ6w3iIjInNWejWXLlhn+vXz5csTHx2Px4sWoXr26YXtiYiKGDh2KWrVqqVtKIiJye6w3iIjInKR1NhYsWIDRo0ebVBhA0cJMI0aMwKpVq1QpHBEReSbWG0REBEgMNtLT0+Hr6yv6Wn5+PnJzcxUtFBERSZdfUKh1ESyw3iAiIkBisNG2bVvMmzcPSUlJJttv376NOXPmoEuXLqoUjoiI7BMKBa2LYIH1BhERARJT306cOBH9+/fHQw89hBYtWqBChQpITEzEqVOnEBISgkmTJqldTiIi8iCsN4iICJDYs1GvXj1s3rwZAwcORG5uLqKiolBQUIDhw4djw4YNqFKlitrlJCIiK85GJ9nfycVYbxARESBjUb+KFSti7NixapaFiIgccC0mTesiiGK9QUREkoKNI0eO2N2nffv2TheGiIiKB9YbREQESAw2Bg4caFihVhCKJiKar1gbFRWlcNGIiMhTsd4gIiJAYrCxdOlSi20ZGRk4dOgQtmzZgrlz5ypeMCIi8lysN4iICJAYbHTu3Fl0+yOPPILAwEAsWrSIFQcRERmw3iAiIkBiNipbOnXqhP379ytRFiIiKgFYbxARlRxOBxtHjx6Fv7+/EmUhIqISgPUGEVHJIWkY1YQJEyy2FRQUICYmBidOnED//v0VLxgREXku1htERARIDDaOHj1qsU2n0yEoKAgjRozA8OHDFS8YERF5LtYbREQESAw2tm/frnY5iIioGGG9QUREgMQ5G5MmTcKNGzdEX7t8+TJbqIiIyATrDSIiAmz0bBw6dAiFhYUAgLVr16JJkyaoX7++xX67d+/GwYMH1SshERF5BC3rjcLCQsydOxerV69GWloa2rZti48++gi1atVS9DxERCSP1WBj3bp1WLt2LXQ6HXQ6Hb788kvDKrBA0dhb/c/PPPOMooVipUFE5Hm0rDfmzZuHlStXYurUqQgLC8P06dMxdOhQbNq0iZmviIg0ZDXYmDx5Mp599lkIgoBXX30VU6ZMQXh4uMk+Xl5eKFu2LBo0aKBooVhpEBF5Hq3qjdzcXCxZsgTjxo1Dz549AQAzZ85Et27d8Ndffyke2BARkXRWg40yZcqgQ4cOAICvvvoKPXv2RIUKFVQvECsNIiLPpFW9ERUVhczMTHTq1MmwLSgoCE2aNMHRo0dZbxARachqsHHgwAE0b94cQUFBqFy5Mi5cuGDzQJ07d1akQKw0iIg8k1b1RlxcHAAgLCzMZHulSpUQExOjyDmIiMgxVoONwYMHY8WKFWjTpg0GDx5sMtZWT79Np9MhKipKkQIpVWmEhAQpUh4iIk8QGlpG6yJoVm9kZWUBAPz8/Ey2+/n5ITc3V/JxWG8QUUnhyjrDarDx888/G8ba/vzzzy4rkFKVRlJSBgoLBfs7EhEVAwkJ6bLf4+WlU/QBW6t6o1SpUgCKhuEa1x25ubkICAiQfBzWG0RUUriyzrAabOjH3Zr/W21KVRpERORaWtUbVapUAQDEx8cjKOhBRRgfHy+aepeIiFzHarCxZs0aWQd6/vnnnS4MwEqDiMhTaVVvNGrUCEFBQTh8+DDq1q0LAMjIyEBkZCQGDBigyDmIiMgxVoONKVOmSD6ITqdjpUFEVMJpVW/4+fnhlVdewcyZM1GxYkVUr14d06dPR1hYGPr06aPIOYiIyDFWg41t27a5shwGrDSIiDyTVvUGALz11lsoKCjAhx9+iKysLLRt2xaLFi2ymP9HRESuZTXYqFatmivLYYKVBhGR59Gy3vD29sa4ceMwbtw4zcpARESWrAYb5s6dO4f58+fjyJEjSEtLQ4UKFdClSxe8+eabqF27tqKFYqVBROT5XFlvEBGRe5IUbBw4cACvv/46goODERERgZCQECQkJGD37t34559/sGLFCjRq1EjtshIRkYdgvUFERIDEYGPGjBlo3bo1Fi1aBH9/f8P2rKwsDBkyBN9++y0WL16sWiGJiMizsN4gIiIA8JKy06VLlzB48GCTCgMASpcujaFDh+L48eOqFI6IiDwT6w0iIgIkBhtVqlTBjRs3RF9LSkpCaGioooUiIiLPxnqDiIgAicHGxIkT8f3332PdunUoKCgwbN+5cydmz56NSZMmobCw0PAfERGVbKw3iIgIAHSCIAj2durZsydSU1ORk5MDb29vlC9fHqmpqcjLy4MgCNDpdA8OqNMhMjJS1UJLkZSUgcJCu7+aiSFTt6tUGiIi9VSvFIRPh3SQ/T4vLx1CQoJUKBHrDSIid7ZkYoTs9zhaZ0iaIN6vXz/ZByYiItfw8/HWuggWWG8QEREgMdgYNWqU2uUgIiIHJadla10EC6w3iIgIkLGoX3Z2NqKjo5Gamir6eufOnRUrFBERSZeSkaN1EUSx3iAiIsmL+r377rtISUmB8RQPnU5nGHsbFRWlWiGJiMizsN4gIiJAYrDx1VdfITg4GB999BHKly9vMrGPiIjIHOsNIiICJAYb169fx7Rp0/DII4+oXR4iIioGWG8QEREgcZ2NunXrIiMjQ+2yEBFRMcF6g4iIAInBxtixYzFv3jzs3bsXGRkZJgsxcUEmIiJtjXi2udZFsMB6g4iIAInDqKpVqwZvb2+8/vrroq+7y4JMREQlUZeWVZGfnad1MUyw3iAiIkBisDFp0iQkJyejX79+qFSpktplIiIiGXRwv8nXrDeIiAiQGGxERUXhiy++wJNPPql2eYiIqBhgvUFERIDEORthYWHw8/NTuyxERFRMsN4gIiJAYrAxfPhwzJ49G5cuXVK7PEREVAyw3iAiIkDiMKqNGzciNjYWTz/9NAIDAxEYGGixQNPOnTvVKB8REXkg1htERARIDDYqV66MypUrW309LS1NsQIREZHnY71BRESAxGDjq6++Et1+7tw5rFixAvv371e0UERE5NlYbxARESAx2DCWk5ODTZs2YeXKlTh79iwEQUCbNm3UKBsRERUDrDeIiEouycHG1atX8euvv2LdunVIS0tDlSpVMGLECDz77LOoWbOmmmV0mbIBvkjLdK+FsYiIPFVJqDeIiMg2m8FGQUEB/v33X6xcuRKHDh2Cr68vevbsiX///RfTpk0rdi1Tj7Svgd93RWtdDCIiWXRutKZfSas3iIjINqvBxuzZs7F69WokJCSgadOmmDJlCp566il4e3ujbdu2riyjy5hnSiEiIulKYr1BRES2WQ02vvvuOzRs2BCzZ89G69atDdszMzNdUjAtCIKgdRGIiDxWSaw3iIjINquL+vXr1w+3b9/GwIED8eqrr2Lt2rXIyspyZdmIiMiDsN4gIiJzVoONzz77DHv37sVnn32GgoICTJo0CV27dsWHH34InU7HIUdERG6iTICf1kUAwHqDiIgsWQ02AKBUqVJ49tln8csvv+Dvv//Gyy+/jEOHDkEQBIwdOxbTp0/H+fPnXVVW1fl427wcRERuycvLfR7iS1q9QUREtukEmRMVCgsLsXv3bqxevRq7du1CQUEB6tati02bNqlVRockJWWgsFDeHIwdx29h2daLKpWIiEgdG6b/FwkJ6bLf5+WlQ0hIkAolMlWc640hU7erVBoiIvUsmRgh+z2O1hmyF/Xz8vJCr1690KtXLyQnJ2Pt2rX4448/ZJ+YiIhKBtYbREQll1PjhipUqIChQ4e6XeuUo5iLiohIXcWt3iAiIts4ScEIM98SERERESmHwQYREREREanCrYON+fPno3///i47n9S58i891EDlkhAREREReT63DTaWL1+OmTNnuvScUkdRBQe5R057Iikebldd6yIQuYyrG6moiI+3Fz56rb3WxSAiN+R2wUZcXBxGjBiBadOmoU6dOi49t9Q5G+0bVVK3IB7I39db6yLIUqOS+uk+rQkq7Wt3nxd617f62qMdasg630NtPC/Y8POwzxO5By0aqahIKT9vlPbn95aILLldsHHu3DkEBgZi/fr1aNmypWtPLjHaKC6r4CoZNIUGl5a1f+Na5RU7tyNeirD+MO8OwipYv57eXvK+tsx74BitP6MknZaNVO4kpGwprYtARGTB7YKNiIgITJ8+HTVqyGu9VUJJeyirU6WsZudu3aCiZucGgLAKAZqe357AUvZ7PzxFlRD517puVWU/m4583ny81bk91q9eTpXjlmRaNlI917OuS89ny7M9Sm6gRZak9KITuYLsRf2ccf36dfTp08fq69u2bUP16soM+XBkhcOAAH9J+4WGlhHd7uOtQ36BZ4QsTeuGoEwZab+vFD4+8h7MAoPsn3v4s80xf+0ZR4tkU8N6oaocVwovL9OeMX8/b+TkFphsq1A+0Or769UsDxy8Lvl8FSpYP5YYP19v5OYV2N9RovmTHsbT49bLes+Ivi0wZuYuxcrQtH5FnLiUKOs9fn7ODwl5d0AbzFhx3GRbj9bVcflWqtPHNmftvlQSREREICJC/mq4SgjkAx0RkU0uDTaqVq2KzZs3W309LCxMsXMlJWWgsFDeg/+9ezmS9ktISEcpP29kmz0gzhjVDW/9b4+sc2qhXJAf3n6uObYfu6XYMfPzC2Xtn5Fh/1oHl/bBkokRGDJ1u6PFsiohIV3xY1qjAzB5UFv4+Pnik0UHLT6XPVpUxT9Hb5psS0nNtHq8VnXKY3z/1vh25QnDtiohAYhJEn9PcvI9WeWtVjEAV2OUuz6JiRmy31NL4V63e/dyJe/bol4ITl9JQk5uvtPnbVYzGM/3qoc1O68AAFrVr4hypdW57Trymfby0jnUMONK7t5IFRTkPkOXypSRN5zVnsohAYi1cl8x5+WlQ9Uq7t1rN2NMD6zZfgn7T8doWo6alcvgRqz6dZB5wxaRMVc2ULk02PD19UW9evVceUpZBBkDqR7rWBPr9lw12RZYyqWX02EVyvjbHCIyZ0x3jJ7lPkFT6wbyW6XdSYt6IahXtRz8Sj/IYtaoZjDO30hx6Hg6nU7x+QThNYKRnZOPG/G2A4Np/9cF477br+i5xSheRYrMx6pUvjTi72ZZbC+lQI+Gsf90qmUINt54uglK+fmga7PK2Hc21uFjPtWlNjbsv6ZQCd2buzdSZaRnK3Z+Z9UIMQ02xvRriVmrTzl8vI9ea483p0vrYRQEAfnZebLPMapvc8z9Q50ebHPBpXyQm+N8I4KzQsr4uyTYkPtZtiekbCkkpbnP511tj3WsiS2Hbqh6jhd610d6Zi7+Uvk8YlzZQOV2czY0JeN7GdGmOlrUC8HTXWurVhy1GFo7FJzo3rGJvMnmWmSvevv5Fi4/JwC89ngjAEXDLfx8vPBiRH00rVPB8HqjmsEW75HywNu5qXIPWQAwYUBrfDy4PWw96ldwswmoXZpVttj27guWY/bFvtql/dRpHPD388bo55pj9HPNLV4rdf+cfXvWc2oy77M93GeegNr0jVTW/vP11XgYkxs1HgebDU915hZfys9b1n1aajZHc0pcvrbhoWhWt4L9HclJ8v/I/WWsS/ZSRH28I3L/VpvxvMJnutdBv173G8UFoGaYuj2/j3WsiUYlIBkJgw0jhTLulkGlfTGmX0tUNvqQ6nQ6fDy4PapVlDZGvmvzynisY03Z5bTnzWea2d7h/q/p6E1+VF/Th6inutRGy3qWE3CtpZcNK18aXZtXljyxsmI554cG/N8zzdCyvusnpT/crjrK3X8A8PH2wg/jeqFr8yom+7QOt5w/Uj1U/No9bvR5ef2ppoZ/Oxq8GWckCyjli5phD7pVe7SsIvYWt9esboik/apXEv+e1q/m/FCQ1g1C0bqB9XlB5cv449v/6+L0eQDg82EdFTkOacvPV/nq2JkkB56UyGBk3+YI8JfWeODuyUHcWW2Vk8oElvZFc4n3b1UZPRw5k33U3u8ilrikV+tqeH9QW4fP+eFr7QAANTVM7y+GwYbCaoaVwZNdagOwn4awUvkAyYGJGrq1cOxhso3Zw7F5K2v96uXwyZAOeG9Aa8M2P18vwzCzMS+0hLeXF57oXFvS+Z7vVc8iwCkJxDKJWBuD29mohb+VUVBlb0G/iDbVrL7WvWVV1LOSFao45NOvUEb8+1km4P5wN8/I9YCqGt5DSDneKoyvF+s1lez+5/+ZbtIyXEl9Jnuiax3MGt3N8LPc5CLO+q/E30ct+p5uABj2ZGNZ75X7CRFsNKB+8Go7mUcDfG38rXy8xUvn8RmxnKgHere2Xr+KaVanAgY92hA1K5Wx+t2VsmTB4vd6o//D0nuUXMGtg42pU6di5cqVLjufo93A5jo2CcOSiREILmN7pXFH0nFK6ZJsVV88mm7X0DRIKO3vg0fayUsxrJ8rMNjohimmRqUgBFhJ3yo3rauvj5dFgKNXTJY8MWjXqBIeblsUIIQGP3gYttdqp38PAIzs+6Bna8DD4QqXEBjx36b4aHAHm/s80bmW4ucVo8R3tmyA6eexuH2mSGWKBaXKf/CUWBPq6W51sGRihOSgw54OTSubNJo0q2M6/Mm4xJ2ahuHNZ5ph5LN2eush/cFObm/P2BdbOXRPKBdou/4HAH9f7eZ5lgmQVw8HlvKx+Ql9f6Bl8FK/ejl0sjPcV+25rj7eOkMgv2B8L3z7Zhf0aFnV6v7BQf5oXqfoGapNQ+eyVjauVR4DH21o+Nm8x8L8+6m/lfj6eGHCgDaix3z1MdvPXmLHdQduHWy4mpSbg7laYY7P5pfaq2H8oB0g4Yvp62PZ6vzmM83Qp4PzQ7b0w3W62/iyKqVB9WDVz6E2ncwHiNcea4gBjxQFCGIP0tbuIcY3F/NF/8ormOIYADo0DkMlO4s4PtfTyUQQTt4sZ4zqiv8zGk4oFuDqT9HbaIX1V/qEo7TE4RiuVK+admvieBpXN1JJocXfr2crZe/Rj3eqied71cO8d3rgvQGt0ae9aUOV5KQVAuBlZZiKeev4ixEN0L5RJbRtaNqaK9bq27BmeSyZqHz646Z1KuCHsb3w+pNNZN0bwmsEK16WCmXl38uL5uFp49nude0++DryYNy1ueVcPVumDGqH/3SqBW8vHULKlTLpXQKKeru6NquMfr3roXuLKqheKQhLJkY4PaTW38/bJAg2fx7Qmf3fnDPDII2vq9iQqil2GgyVxmDDSNcWVTBxUHuTbr+PXrP9Ra0SYiNgUKjFy3iBMyWyENkq1jdvdnbsoHbuF+0ayptA/s4LLWWn7TMe8mM+zEfuInGPdaxp9W//dNfaeOPpJhbbywXJD1bNKdVI2q15FUPPmb+vNzo3Lbo5a7UqthpDRADr8y6Cg/wNgXlpf2+bK7IDDx4MItqIDzvzslIhSh0nLsVnInMvFozvhUUTemPSK46P4SXtye1BFiP3u2vcogpY9uABth+Ize9Fvj7e+E+nWijt74OGNS3LMvQJ6UOCzHu99ffOr0dIm8fUSsb8O3+Z2eUmvWLZouzr44XOzSojtFxRb3OLetrMKxjVtwXC7cyleSmivuHfggCTeXjOKCdhbSxzatU3ZQPk1bW1KpfB873qiQY2z3Svgw6NwzD0ySZ4vGMtt+wVMOal0FN7x2aunZPJYMOIl06Hri2rYvh/H0y8rVXZ/hdVzphE4/Gixh/qzk3D8MPYnnYbdCuULeVw642Ur5CfSK9I0Xn9oQPwaAfHKk3zlgR7HJkkZtwKYN6SLZZFyXjcMGAaoDSvG2L1b1+hbCm0aRCKprXLG4Yveel0mDmqm8W+SqdRlWrIE40x+jnL7Ftaleer4Z3wxlOWAZozwquXw6MdauKdF1qir43sTLUrlzU8OVnrTRzTr4VhorVOpLlJbGXmdo0qKZrHvqLIZ9TH2wteXjp46XQmPTXk3uaO6W7ys3lvoyPG928tuv3t51ugX696FnPwrAXIxibcn1fnTAuqnr5HfUw/+dmEpgxshxH/bSqrF9bROYe2LJkYYbNHvez90Q/WGiWMed/vpVEq8+KS/2/vzqOjqvJ9gX9PpSpkDplHSEJiEkJIZSIJCQkhmFwiQyM2HQaJAoIoQZEhguBrrgNeGyEu6H529IHaupZtN7Y09KP72Qvbd68DNqi0ouhTZPAqEKBpEQVC5Lw/kqrUcKrqnKo6VaeS72ct1iKnKqd2dlWdffbev/3baxqQkRyJUTZt47p5ZS5v6j0NVVo4eSRWthQHyjI2RabVOA8PlLMlwv9qn2D+v7MBW+WZrexfO8Qii6LUumBvLQfwNnY2pNi8Wa5u7te3lsm6mc5KicQkJ6FMwQ4uSt66nfHkMxgRasD2NQ2SI1q2pMrrjcZM+rX6X83y7zMtZEtLCMf8m/rfG8vZjygZYXMTLdZCbFxchWUzRqO2KAXBhiCsnFWClok5Tn4bmFLtfO2CacZBPvc+Df4YrLll/AhzZoz46FBUKf5bnctMiYJOEDB6RJw5KYOl7LRojEiNQovFSN9Qi9mnOmMqkmLDUFuUgpBgvXmh9ciMGEwsTcf85v6RWtPI9KIpBZjXJL0Oxtmgw0MLK7D0Zs+SHJTnJ+L+OSVY36p8YSf5luXI/QMyZ6Xc/Yoac+LRXJWBBTc5n1kol1hYqhME3D+nBI8trnLz1XvdOa1/gM42xMnRjK/lbGdcdAgqRvbG9jtqp2xnYWQPYEmccEJpmtPQtqQYzzMgChB617rUOr+Z/dV9dZLHWyflyZoRy0qJwooW5x28bcvrsGNNg9sDlTWjU7wajjvdatAVkv93xtnMkm3q8zVzvTcrPKshRzLBgOWgk7PsmUrvg2w7DqbZw81La9A6KQ8VI5VFjPgTOxtekBgT5nTBkcmDt42xm9L11U2gZaynr+871c5TLSUnLRpzG3Oxdm4paov635v755bi1yvHyz7P3MZcbL23FvfPKUFybBhKchMkp1ktRz8s1/FIrZ8B+me1TDe/3hj9GuqFMC5vmjw2s3dWwUJlgfRiwRl1I6zqTc5n1NUIzhBDENa3lveGEUicMDYqBI8trrKb9QrS6TC3KdeqcQ02BGHHmgaMLUxGuINOxSibha6W0hMiUObhYkOgNy7dFBK4bl5ZQO7zM9CU5yci20loS056NEL6Zk2Vxpp7k6NkEXnDYxAXLZGZTeYQ6c8m5Dj8XgPAxNJ0dK6qtzv++JKxWDdP/o3gvT8tshrBlzNz48i8pjzJBc0mDmdNPGg8TbMLctdq1henYfaNN8Bok0hGqgiOZs68Pcjt7p9v2xmq6Pu8KA1xM92sO1ufY5v63FEIdVVBEmoVzo7FDw3FT8Zl4cHbyr2T1Uxmhf5kXBbuuaXInDY/JnII6ov714KEh+j9cp+lBDsbCklt1OVNN1VJjIS7+EC6yiqRHBuG7NT+xtDyAmQ3RajgavLz28dgRV/GBEe/9svldYoaFGekpoJNe3XYZj8ShN5ZCdvYYH2QzuEMku2GWCYRoQaHMzq2C7423VWN++dKhzs4Y9qTxJMGdMOCCofrTEz3DXISDFhKV5CrW06mtDunjbJKn9i7niKsd2ai709fN68MOp1gdTFv9nQ/Go1OLXsiOy0a02sHz+Z+WhURasCT99WbZ7aekNg/pSAjBrc350t+R0ybjUa6kaBECW+G/MlVZ0zFjeXpMOh15o5CXF+WvdioEGQrWIAbOkTvcP8hf5NagGt7Ka8uTMHmpTXITos2J1jJTI60WhSfKRG6+9DiajzTXm/+2Vvr30zrzRxlxXS1ud7We2udPu6M6bMYK3O2RCcISE8Ix8N3VGCJRZi7JxZPG4X5LmYDHclKifJJCmXTmuDJYzNQ7CR76aTK4U7XmlR6eQNgd7CzoZCzjbrcYWqgYvpy/t8yPhv/scTNRdoOZKb0XsA8uURJpZ7NSI7EhDLn07xhIXqHo/tKSV3cmqsysOmuaqcx+3IsmlKAVbOUdxJsxUWHmGMqlazlueenRVjZUmyV7UTJIkigd9GcqzVG+cNjrBa3j0iNwqisWNzaKD3qOefGXKy9tRSPLa6yS3ds+ffFRA5xuaeHlF/dN74/hKOvQ2BqiCwv5kHeCsPT8OI/vV67ZSP5pPaNEAQBdcZUyYEOY0485t+Uj9Wzis3HbBd3KxEVZrDb+8jbGenkMOh1uL0533w9XDmrGBsXVyEjWV6yjsljM+wWtU+uzkB5fqKibIiWYZTeo3yQThD634finHjsWNOAuOgQGPRBWDSlQOqsAHqvh5YzF64yYiW4yBRoEhZiQEdbDe62SSv8bxXDUDEy0ek6kGk1mR7tn5EQHYIp1Zm496dFuLlvwCQmcojDtZpPt9fj3xdUICkmzBxu58yaudJpYwPNqtnFWNFi9CgMXSp8f6OHYZPu0F6ORw2QsyBI3nmkPXhbOd777CyA3oXId00vdGvPDZPEmFB898M1h4/LuYWpGpUEfZAOkaEG/HC1x+qxXy6vM4cByKHWLZOjnrtkCIBMd08vREhwkN3UqyfnBHpHhZRs2BgRarALw5lSk4nT//wB+z85Yz7mbt1aVl1VQTIKMmPR03MdBn0QVrYUO/w9g15nXjBpu/PuI4sqsXzrm73PC9KpmsVj5PCh+NPbqp3eYwa9Do3lw/CuxXulVJBOhx1rGrDgP173YslIq351Xx26e64DgFWoJ9C7Z8TuN4/h2++7FZ/3yXusB2U6V42X9d2c1ZCDA5924eg3FwF4fzJQJwhIVrB798119mlTo8KCrRIl/M8VdU7Tiz9waxly0qPxm//zmeTjT60cj7s2/1+Hv297Q216LTkRZqZSmdasOOvwJccp39U8KTYMI1Ii7cZPSnIT0D67BL946QOX6Y+lMky1NLieoU6UWNNiuQYyJDgIV7p/dPj7giCYBwgTY8JQ72KPFLkz/rf2DYhleXGn85S4cJw8c0nysTpjCv7zH6cA9IZl7ffg+i8lKiwYhVlOkuXIqBa9RNus5HvoLexsOBHv4Q2nydTqTMRbbNCWlRJl/jIIgmC3I6SSW7a7pxeiu+dHHP36otXx5qrh+Prs9/jw6Hm735G6UGYmR9nlTTdRGnoTSGwXTSbHhuH0P39wuY+EHZs6dZVNK7KvEYt0ksJPJwiIcBEit3pWMb45/4O8MlpQmjpQrXNYcfLBH5kZi85V43HnE45vDJwxhW6ptZvtprurYXBj9OkXd41F+1PvqFAi0rrQIXqE2tzr3XNLkVdSaFuSO7PcVDEcTRXD/d7ZFSC/o2OZmcfW06vrXY4Iu1orV2u0jul3ds87rSYTu986bne8cmQSgvVBimeqHTHVTf7woQ43eMvPiMHTq+tVSzkuxfKlNi+tQc+P180/ZyZHKXpf3dVyYx7Onv3Oq+e8fVI+Pvh/Z9Hdc92uibq9eSRu70sksmhqAe6YIj/jYrBeZ55xMIVwS4XRDRQMo3LCGxkpgN7MCbYjV+6Q2tCnPD8RafH28aIz63PsMxWoed3xUXhK66Q8WSkPCzIdL9Z15n/cXo6OZfYpbB3q+7OVXkRrilKwaEoBGsfICz1yVL0jM2OtMmYNZJ6E4+UOG4pbm3LR6kF4ii3btyTY0Hs5vVlBLK+zzCUUoJxcDFxdJotviHc6KvvrleMxMiMGMyd4uGnmIOCVDIgyL+zhIQZMrx2BjrYauygFQRBQmpvgdM1MWnw40hLCMXviDVg+swgPLXC94Zrt2WzXNEqNaLsilbFMjpn12VazJKFD9FYDaaZslkq5yta4cPJIPLRQ3c3phgQHybqfEATB/B672gsFAH69qt68Zik9MQIb5o8xh5TJZRqoNkp0ZE3hdKawM6m1ZL40cIesvWzsqGQcP33R9RN9pKOtBleu9U5TZiRHoqOtBvf98i2r5xRlxyMpJlR60bkTvowcX3pzIf7zH6fQWJ6Onh9FbH3lQ6fPry9OQ31xGt788JTD5yy7ZbTba2tCgvUIUTCw6G5d6QQBYwtlZKbpa+waxwzD+W+vYJKbC6VHZcbi7cOnvb7Asjw/EQc/7fJ9ijMJ+iCd1WiaJUEQZOXG94QpDEqp1bOK8d/nvrc77q+Nw8g9Su7r5ISF3DltFH7x0gdWx4INQeb9Nn7/t6OKygf0JnFIjgtDx+/+4fK5Ws3X7wtKbtLnNuZiTN/AXnTEEJTckIAPPj+n6PWCDUF4eKH9pp6SHLwx/76gAqfcmOW25O5ePs0K7zHkWjS1AIuc7M9kys702OIqq8Qj/l6at3JWCa719LdFCUNDnGZsA9zbfDEzOcrc5tj+yTGRQ6xmt6T2GvMldjZkcvaB9zY535PoiCGItvnZVkSoAY/d6WKxucR1KyzEgOnjsrDrzWMySiJBwTe9LC8RZQp3F3dk5oRs7PjfR/y2S7aaQoP1bmfOAICxhckYnR3n9TCiW+pG9HY2FKgrSsW+9//b49e2jYHedNdYXLrseO2SVo3MjMVIiZEzdzZHI+0QBMc37HLWBeZnxGDb8lose/K/vFamRgehsqSM5btnO7NsWu+XpnbmLJt2NjYqxO83lP5iu57Q9L3zZRiZJYNeZ9X5eXyJf2YV1NrfzB3aKYmWeGlEp6wvg5OvLgBpCc4XJKfFhyM8RC+Zucn2KznNB2ndvC07NRqPLqpyGsc7mKm1XkGp2Y2uFyC6cvf0Qrs1RtERQ9Rv4NH/fR6mIC2wEkpzz5M2bVlag0cXWY9WO1vMLCW8L3V3uRf2aBnMZtZno87o/R3HpYzMiMGDt5WjqYIdO3/z9wwH9eNdmTMeflInVQ5HfUmay1R1rkSG9sb1TB6b6fR56+aV4YcrPQ4fDwnWY9ty6d1KPSVnQXXN6BS8duArBEukhiRpIX2fHdN6AK1xp1/uyV4iJu7GFntDTlo0HrytHBnJkXjtwFdeP/+mu6px+arj7zEFhuiIIXYzzu5kOnxy2bgBnaTDF7we5uPibfRmNiSFL+1XRdlxyLPZQX5AYefFbbyCqUgQBLc6Gra52KPCDbJiwXvXG/jnLTXodehYNg73bXvT4QjSzxpyML02y+GmegDwiyVjcf7iFbWKGXCmVmcgdEiQrEXx/uSNa3AgXcfVvJmICDVoZhaKlPP2zWCUypv9eZtpkazU3kyBxva91NI1yh9lmVCSjnc+PoN8B5vcMvSTHGFnQ4OiwoOxenYJ0uLDceiLcy7TqKplTH6iZAYsR6LDg512inSC4LIzFD80FPFK0876kZp7SwC9GZiaK9VZfEdE3iPnSqA0jCoQ6YN02NJW43mHWYTf7u4H/rvknpz0aLs2vrnKvaQlajLtgTgQOrxyZSRH4vjp7zQ7C6rNUpF5kXOdgp1Sve0uNzNTEBFRYLtlvPP0uqa1S1L7ggyVSFgimy82ZLAwKisWHx/7p6Lf8dbGv+5QI0vY1ntrJY/rgwT0/Oj4Bd3JvucLQTovdXgDyJwbczGuKAVJMb7fsE8OdjYkqL0BmJZMqhyOk12X5KVhJbJh2sjOV7NRK35mxH85SXvsa3XGVOzdfwIhLjYHIwJ6lwHqg3Roacjxd1FcGpHqPFTwxrJ0xEeH2O0rEWjuuaUIdz7xhqznqj2TrYgXi+LoXmdL2zh0X3O8E7iWedThtSEGQB5og16H7FTX+3v4CzsbEkwbgFUVDPwb8NioEKyZW+rvYij26KJKnDxzyd/FGJAKs2Jx7NRFDA13fbGOiw7B0psLke+jdMOFI+JQ6KewQim3jB+Bn4zLskpzSIOckxsTQRDw9Op635VFRTqdMCDCVALtu2tK5xrkg45PRKgB8MOg67iiFFlJZ3xtMIRBqoWdDQm+2ACMPJMSF46UOOepfn2pysWGPYHkJ7VZGF+cKjtls7f2SSnLS8Dx09/Z7Z+hZYIgwKBnA0Rgns0BpNaYio+P/9MuvbYW1IxOwTfnv8f0ccp2mzZJig3Dxe+verlU3rXAgz2lSJvY2SDy0LbltRgygMJodILgl82hbqrKQENpusepookGi8xk5bsOk2sRoQasmlVidzw9MQKHvjiHaBmzvmox6HWYc2Ou27//2OIqL5aGlGqdlIcRKmYz1Cq26kQeMm28RZ5xN1U00WDUsWwcQjzYANLZREx89ODcidqV6eOyYMyOw4jUKDSUpuH197/2d5EowNQXp/m7CH7Blp2IfG7RlAKkxssLg9PqhoZEUny1lDTag/03Ni+tcbhWYdWsYqTJ/G5qUUFmjGozszqdgOy03kW4cxtzMfvGG1R5HdKWieXp+MfR88hK4Uyiu9jZICKfk5v9bP5N+chNH6puYYi8IJBWbDhbF1WQGevDktiLCg/Gt5e63f59qfAnNQiC4JNF2uR/hVlxmk3zGyjY2SAizaot8t8+M0Tke+tuLcOnJ/9l3omciAIfOxtERESkCfFDQzFOg2lPich97GwQkdesay3DEP3AycxFpFQA7P9FNoL1OnT3XPd3MYgGLHY2iMhrtLyDKZGqGPUTsLa01eDaj+wlEqmFnQ0iIiIatMKYvpxIVexsENGgsmH+GIZMEBH5WHPlcESEsmM3GLGzQUSDyvAk5konIvK1mRNy/F0E8hPulkVERERERKpgZ4OIiMhDXB9ORCSNnQ0iIiIiIlIFOxtERERERKQKzXU2Ll26hI0bN6KhoQElJSWYMWMG9u3b5+9iEdEgVDgi1t9FoADRXJUBAAgPYd4VItKe8BA9Qof45/qkuavi2rVr8dlnn+GRRx5BWloa/vznP6OtrQ07duzA2LFj/V08IhpElv/UiOvcEppkaCwfhsbyYf4uBhGRpCfvGee319bUzMbZs2fx2muv4YEHHkB1dTUyMjKwZMkSVFRUYOfOnf4uHhENMjqdAH2Qpi6TREREigXpdAjS+ac901QrGhoaimeeeQbl5eVWxwVBwLfffuunUhERkZYx/JaISLs01dmIiIhAXV0dIiIizMcOHTqE/fv3o76+3n8FIyIizVq7di3eeOMNPPLII9i1axeamprQ1taGd955x99FIyIa9Hy6ZuPEiRNoampy+Pi+ffuQnp5u/vno0aNoa2uD0WhES0uLoteKi4tw/SQHEhK4w7ASrC/5WFfysa6UGaz1ZQq/7ezsRHV1NQBgyZIleOedd7Bz506u9SMi8jOfdjZSU1Oxd+9eh48nJSWZ/3/gwAG0tbUhNTUVnZ2dMBgMil7r/PlLuH5d+cLOhIRInD37neLfG6xYX/KxruRjXSnjbn3pdIJHAzNaYAq/LS0ttTrO8FsiIm3waWfDYDAgOzvb5fN2796NBx54ABUVFdi6datVWBUREZGJKfzWkin8dv369X4qFRERmWgu9e2ePXvQ3t6OqVOnYuPGjYpnNEx0OsHtMnjyu4MR60s+1pV8rCtl3KmvQKhjht8OPKwrZVhf8rGu5PNlXQmiqJ0k8qdPn8akSZNgNBqxadMmCEJ/Q2gwGDB06FD/FY6IiHzu2rVrOHnypMPHhw8fbh6Usgy/ffbZZ9lmEBFpgKY6G7/5zW/w6KOPSj5WWlqKl156ycclIiKiQMDwWyIibdJUZ4OIiEipPXv2YPXq1R6H3xIRkfexs0FERAGL4bdERNqmuQXiREREcr322mu4fPky9u/fj9raWqvHGH5LROR/nNkgIiIiIiJV6PxdACIiIiIiGpjY2SAiIiIiIlWws0FERERERKpgZ4OIiIiIiFTBzkaf69evY+vWraitrYXRaMSCBQtw4sQJfxdLVZ2dnZg9e7bVsSNHjmDevHkoLi5GfX09tm/fbvW4nHryxjm04NKlS9i4cSMaGhpQUlKCGTNmYN++febHWVfWzpw5gxUrVqCyshIlJSVYvHgxPv/8c/PjrC9px44dQ0lJCX7/+9+bj7GutG+w1h/bDefYbsjHNsM9AdlmiCSKoihu3bpVrKqqEt944w3xyJEj4h133CFOnDhRvHLlir+LpooXX3xRzMvLE2fNmmU+dv78ebGiokJct26d+MUXX4h/+MMfxKKiIvHll182P8dVPXnjHFrR1tYmNjY2im+99ZZ4/Phx8amnnhLz8/PFt99+m3Vl4/r16+LUqVPF2bNnix999JH4xRdfiMuWLROrq6vFS5cusb4c6O7uFmfMmCHm5uaKv/vd70RR5PcwUAzG+mO74RrbDXnYZrgnUNsMdjZEUbx69apYXFwsvvjii+Zj3333nWg0GsVXX33VfwVTwenTp8U777xTLC4uFidNmmTVaDz11FNiTU2NeO3aNfOxjo4OceLEiaIoyqsnb5xDC7q6usTc3Fzxb3/7m9Xx1tZWccWKFawrG11dXeLy5cvFL7/80nzsyJEjYm5urvj++++zvhzYvHmzOG/ePKuGg3WlfYOt/thuyMN2Qz62Ge4J1DaDYVTonTr64YcfUFVVZT4WERGBgoICHDx40I8l876PP/4Y4eHh2L17N4xGo9VjBw8eRHl5OfT6/r0eKysr8dVXX+HMmTOy6skb59CC0NBQPPPMMygvL7c6LggCvv32W9aVjYSEBHR0dCArKwsAcO7cOWzfvh2JiYnIzc1lfUk4cOAAXn75ZTz++ONWx1lX2jfY6o/thjxsN+Rjm6FcILcZ7GygN24QAJKSkqyOJyYm4tSpU/4okmoaGhqwefNmDBs2zO6xM2fOIDk52epYYmIiAODUqVOy6skb59CCiIgI1NXVISIiwnzs0KFD2L9/P+rr61lXTqxZswY1NTX4y1/+gsceewzh4eGsLxsXL15Ee3s71q9fj5SUFKvHWFfaN9jqj+2GPGw33MM2w7VAbzPY2QBw+fJlAEBwcLDV8eDgYHR3d/ujSH5x5coVyToAgKtXr8qqJ2+cQ4uOHj2KtrY2GI1GtLS0sK6cWLhwIXbu3IkpU6Zg6dKlOHz4MOvLxoYNG1BcXIypU6faPca60j7WXz9+Xh1juyEP2wzXAr3NYGcDQEhICADYVVh3dzfCwsL8USS/CAkJkawDAAgLC5NVT944h9YcOHAAc+bMQUJCAjo7O2EwGFhXTtxwww0YPXo0Hn30UaSlpeGFF15gfVnYtWsXDh48iA0bNkg+zrrSPtZfP35epbHdkI9thnMDoc1gZwMwT0l1dXVZHe/q6rKbMhrIkpOTJevA9JicevLGObRk9+7dmD9/PkaNGoUXXngBQ4cOBcC6stXV1YU9e/ZAFEXzMZ1Oh5ycHPP0LOur1yuvvILz58+jvr4eJSUlKCkpAQA89NBDmDx5MusqALD++vHzao/thmtsM+QbCG0GOxsA8vPzERERgb///e/mY5cuXcInn3yCiooKP5bMt8aMGYP33nsPPT095mP79+9HZmYmEhISZNWTN86hFXv27EF7ezuam5vR2dlpFYfLurJ26tQprFq1Cu+995752LVr1/DJJ58gOzub9WXhiSeewN69e7Fr1y7zPwBoa2vD008/zboKAKy/fvy8WmO7IQ/bDPkGRJvhZvatAWfLli1iRUWF+Ne//tWcP7ipqUm8evWqv4ummvvvv98qheG5c+fEMWPGiKtXrxY///xz8dVXXxWLiorEV155xfwcV/XkjXNowalTp0Sj0Si2traKZ86cEbu6usz/Lly4wLqy8eOPP4rz5s0Tm5ubxQMHDoifffaZeN9994llZWXiyZMnWV8uWKYxZF0FhsFaf2w3HGO7IR/bDM8EWpvBzkafnp4ecdOmTeLYsWPF4uJiceHCheLJkyf9XSxV2TYaoiiKH374odjS0iIWFhaKEyZMEJ9//nmrx+XUkzfO4W/PP/+8mJubK/nPVGesK2v/+te/xPXr14s1NTViUVGRuGDBAvHTTz81P876csyy4RBF1lUgGKz1x3bDMbYbyrDNcF+gtRmCKFoEzBEREREREXkJ12wQEREREZEq2NkgIiIiIiJVsLNBRERERESqYGeDiIiIiIhUwc4GERERERGpgp0NIiIiIiJShd7fBSDSujVr1uDVV191+py0tDR8/fXXePbZZ1FdXe2jkhERkRax3SDqx302iFw4fvw4zp07Z/65s7MThw8fxrZt28zHrl+/Dp1Oh7y8PERGRvqjmEREpBFsN4j6cWaDyIXMzExkZmaaf965cycMBgPKy8v9VygiItIsthtE/bhmg8gL3n33XeTl5eHtt98GAGzbtg2NjY14/fXXMWXKFIwePRrTpk3D+++/j8OHD2P27NkoKipCU1MT9u7da3Wu06dPY+XKlaisrITRaMStt96KQ4cO+eGvIiIitbDdoMGCnQ0ilZw9exYPP/ww7rjjDmzZsgUXL17Evffei3vuuQfNzc3o6OhAbGws2tvb8c033wAALly4gFmzZuGDDz5Ae3s7nnjiCQQFBaG1tRWHDx/2819ERERqYrtBAxHDqIhUcvnyZWzevBkTJ04EAHz55ZfYsmULfv7zn2POnDkAgISEBMycORMfffQRUlNT8dxzz+HcuXP405/+ZJ6Cr6+vx/Tp09HR0YHt27f7688hIiKVsd2ggYgzG0QqKisrM/8/ISEBAFBaWmo+FhMTAwC4ePEiAGD//v3Izc1Feno6enp60NPTA0EQMGHCBLz77rvo7u72YemJiMjX2G7QQMOZDSIVhYeH2x0LDQ01/18QBKvHLly4gBMnTmDUqFGS57tw4QKSkpK8W0giItIMths00LCzQaQi20bBlcjISJSVlWHt2rWSj5tGtIiIaGBiu0EDDcOoiDSkoqICx44dQ0ZGBkaPHm3+t3fvXjz33HMwGAz+LiIREWkI2w3SOnY2iDRk/vz50Ol0aG1txR//+Ee8+eab2LBhA3bs2IHs7GzFI15ERDSwsd0grWMYFZGGJCYm4re//S22bNmCjRs34sqVKxg+fLhVJhIiIiITthukdYIoiqK/C0FERERERAMPw6iIiIiIiEgV7GwQEREREZEq2NkgIiIiIiJVsLNBRERERESqYGeDiIiIiIhUwc4GERERERGpgp0NIiIiIiJSBTsbRERERESkCnY2iIiIiIhIFf8fKZ9/KDFshu4AAAAASUVORK5CYII=\n", |
|
|
255 |
"text/plain": [ |
|
|
256 |
"<Figure size 1080x576 with 4 Axes>" |
|
|
257 |
] |
|
|
258 |
}, |
|
|
259 |
"metadata": {}, |
|
|
260 |
"output_type": "display_data" |
|
|
261 |
} |
|
|
262 |
], |
|
|
263 |
"source": [ |
|
|
264 |
"fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 8))\n", |
|
|
265 |
"fig.subplots_adjust(hspace=.35)\n", |
|
|
266 |
"((ax1, ax2), (ax3, ax4)) = axs\n", |
|
|
267 |
"plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)\n", |
|
|
268 |
"ax1.plot(data[0, 0, :], label = 'Vibration signal')\n", |
|
|
269 |
"ax1.set_title('Sensor 1')\n", |
|
|
270 |
"ax1.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
271 |
"ax2.plot(data[0, 4, :], label = 'Vibration signal')\n", |
|
|
272 |
"ax2.set_title('Sensor 4')\n", |
|
|
273 |
"ax2.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
274 |
"ax3.plot(data[0, 8, :], label = 'Vibration signal')\n", |
|
|
275 |
"ax3.set_title('Sensor 8')\n", |
|
|
276 |
"ax3.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
277 |
"ax4.plot(data[0, 12, :], label = 'Vibration signal')\n", |
|
|
278 |
"ax4.set_title('Sensor 12')\n", |
|
|
279 |
"ax4.set(ylabel='Amplitude', xlabel='Time')" |
|
|
280 |
] |
|
|
281 |
}, |
|
|
282 |
{ |
|
|
283 |
"cell_type": "markdown", |
|
|
284 |
"id": "b359b90d", |
|
|
285 |
"metadata": {}, |
|
|
286 |
"source": [ |
|
|
287 |
"These signals are very much alike. Vibration signals are generally normalized before we start feature extraction. The normalization of the signal comes under preprocessing step. There are a few other steps as well that are performed during preprocessing such as noise removal, outlier analysis. For the purpose of this project, we will only normalize the signals." |
|
|
288 |
] |
|
|
289 |
}, |
|
|
290 |
{ |
|
|
291 |
"cell_type": "markdown", |
|
|
292 |
"id": "c8e34e06", |
|
|
293 |
"metadata": {}, |
|
|
294 |
"source": [ |
|
|
295 |
"Normalization is a rescaling of the data from the original range so that all values are within the range of 0 and 1.\n", |
|
|
296 |
"Normalization can be useful, and even required in some machine learning algorithms when your time series data has input values with differing scales." |
|
|
297 |
] |
|
|
298 |
}, |
|
|
299 |
{ |
|
|
300 |
"cell_type": "markdown", |
|
|
301 |
"id": "89f2b19e", |
|
|
302 |
"metadata": {}, |
|
|
303 |
"source": [ |
|
|
304 |
"There are different normalization techniques such as RMS normalization, mean normalization. Here we will be using Min-Max scaling method." |
|
|
305 |
] |
|
|
306 |
}, |
|
|
307 |
{ |
|
|
308 |
"cell_type": "code", |
|
|
309 |
"execution_count": 28, |
|
|
310 |
"id": "68f82f0e", |
|
|
311 |
"metadata": {}, |
|
|
312 |
"outputs": [], |
|
|
313 |
"source": [ |
|
|
314 |
"data = (data - np.min(data, axis = 2, keepdims = True))/(np.max(data, axis = 2, keepdims = True) - \\\n", |
|
|
315 |
" np.min(data, axis = 2, keepdims = True))" |
|
|
316 |
] |
|
|
317 |
}, |
|
|
318 |
{ |
|
|
319 |
"cell_type": "markdown", |
|
|
320 |
"id": "a4d4255e", |
|
|
321 |
"metadata": {}, |
|
|
322 |
"source": [ |
|
|
323 |
"### Scaled data after Normalization" |
|
|
324 |
] |
|
|
325 |
}, |
|
|
326 |
{ |
|
|
327 |
"cell_type": "code", |
|
|
328 |
"execution_count": 29, |
|
|
329 |
"id": "0addd20f", |
|
|
330 |
"metadata": {}, |
|
|
331 |
"outputs": [ |
|
|
332 |
{ |
|
|
333 |
"data": { |
|
|
334 |
"text/plain": [ |
|
|
335 |
"[Text(0, 0.5, 'Amplitude'), Text(0.5, 0, 'Time')]" |
|
|
336 |
] |
|
|
337 |
}, |
|
|
338 |
"execution_count": 29, |
|
|
339 |
"metadata": {}, |
|
|
340 |
"output_type": "execute_result" |
|
|
341 |
}, |
|
|
342 |
{ |
|
|
343 |
"data": { |
|
|
344 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAx8AAAIXCAYAAAD9gON8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADd6ElEQVR4nOzdd3gUVdsG8HtTNiEktBBClR6QFnpHiq/o+9nlRQVBpYiogGIAsSEiKiJNivSiCIiAoEgRMfQWQg8JNdSQ3vsm2fn+SHbZMrs723eT+3ddXpLZ2ZmTye6cOec85zkyQRAEEBERERER2ZmHswtAREREREQVAxsfRERERETkEGx8EBERERGRQ7DxQUREREREDsHGBxEREREROQQbH0RERERE5BBsfFCFdePGDYSFhaF3795o06YNevXqhfHjx+PcuXPOLppdxMTEoE2bNrhz546zi0JE5JYqWr0BAG+//TYGDBjg7GJQOcLGB1VI169fx8svv4zExERMmTIFK1euxEcffYS0tDS89tprOHDggLOLaFPXrl3DW2+9haKiImcXhYjILVW0egMAfvvtNxw8eNDZxaByRsZFBqki+uSTT3D06FHs378fcrlcvV2hUOCll16CTCbDzp07nVhC21AoFNi4cSMWLFgAHx8fZGRkYN++fWjYsKGzi0ZE5FYqSr2hcu/ePTz33HOoUqUKPD09ER4e7uwiUTnBkQ+qkFJTUyGTyfS2y+VyTJ48GYMHD9bafvbsWQwfPhzt27dHly5dEBYWhsTERPXrp06dQosWLRAREYExY8agffv26NatG6ZNm4b8/Hz1fjExMRg5ciS6dOmC9u3bY+jQoTh27JjWuaKiojB69Gh069YNHTt2xJgxY3D16lW9c23ZsgX/+c9/0KFDB+zbt0/09zx8+DAWLlyIsWPHYtKkSRZdKyIiqjj1BgAolUpMmTIFTz75JLp06WL2tSIyho0PqpAGDBiAhIQEvPLKK9iwYQNu3rypfq1v3754/fXX1T+fOXNG/fP333+PTz75BOfOncOwYcOQk5OjddwPPvgALVu2xOLFizF06FBs3rwZy5YtAwDk5ORgxIgR8PHxwffff48FCxbA29sbb7/9Nu7duwcAOHnyJF599VUUFhZixowZmDFjBuLj4/Hqq6/ixo0bWueaPXs2JkyYgC+++MJg5dC2bVuEh4dj7Nix8PT0tP7CERFVUBWl3gCAVatWIT4+Hp9++ql1F41IjEBUQS1atEgIDQ0VQkJChJCQEKFbt27CBx98IJw4cUJrv1dffVUYOHCgUFhYqN529+5doXXr1sKyZcsEQRCEkydPCiEhIcJ3332n9d4hQ4YIzzzzjCAIgnD+/HkhJCREOHPmjPr11NRU4ZtvvhGuXbsmCIIg/O9//xMGDhwoFBUVqffJyMgQunbtKrz33nta55o9e7ZZv++2bduEkJAQ4fbt22a9j4iISlWEeiMmJkZo06aNcPToUUEQBCEsLEzo37+/5GtEZApHPqjCGjduHI4ePYqFCxdi6NChCAwMxO7du/HGG2/gu+++AwAUFBTg/Pnz6N+/Pzw8PFBcXIzi4mLUqVMHrVu3xtGjR7WO2alTJ62f69Spg7y8PABA8+bNERQUhHfeeQdffvkl/v33X8jlcnz88cdo3rw58vLycOnSJTz11FPw8vJSH6Nq1aro378/IiIitI4dEhJij8tCREQGlPd6Q6FQYPLkyRg0aBB69epl8XUiMsbL9C5E5Ze/vz+efPJJPPnkkwCA2NhYfPbZZ1izZg1efPFFVK1aFUqlEmvXrsXatWv13t+oUSOtnytVqqT1s0wmg1CW08HPzw+bNm3C8uXL8ffff2Pjxo2Qy+UYOHAgpk+fjry8PAiCgKCgIL3z1KxZE9nZ2VrbxPYjIiL7Ks/1xoIFC5CXl4ewsDAUFxcDgLosxcXF8PDwgIcH+63JOmx8UIWTkJCAF198EePGjcNrr72m9VqTJk3wySefYNCgQbhx4wb69u0LmUyG4cOH47nnntM7lmbGEykaNGiAmTNnQhAEXLlyBbt378bq1atRtWpVTJo0CTKZDMnJyXrvS0pKQrVq1cw6FxER2UZFqTf27t2LuLg4dO7cWe+11q1bY9y4cRg/frxZxyTSxeYrVThBQUHw9fXFxo0bkZubq/e6aoJeSEgIKleujNatW+PmzZto27at+r8WLVpgyZIlOHTokOTz7t27F927d0dSUhJkMhkeffRRhIWFoUmTJoiLi4Ofnx/atGmDvXv3qnucACArKwsHDx7UG5onIiLHqCj1xtKlS7F161at/x577DEEBQVh69atePnll806HpEYjnxQhePp6Ynp06fjvffew0svvYShQ4eiefPmKCoqwqlTp7BhwwYMGTIEzZo1AwCEhYVh9OjRmDBhgroXa/369YiMjMSbb74p+bwdO3aEIAgYO3YsRo8ejapVq+LIkSO4fv06Ro8erT7XqFGjMGLECAwfPhxFRUVYsWIFCgsLMW7cOJtfCyIiMq2i1BstWrTQ21a1alXI5XK0bdvWrGMRGcLGB1VIffv2xdatW7Fy5UqsW7cOKSkp8PLyQosWLTBt2jS89NJL6n179uyJtWvXYvHixZg0aRK8vLzw6KOPYtWqVejevbvkc9aqVQtr1qzBggULMGPGDOTm5qJx48b45ptv8MILLwAAevTogbVr12LRokWYPHkyvL290blzZ8yePVu0UiAiIsdgvUFkG1zhnIiIiIiIHIJzPoiIiIiIyCHY+CAiIiIiIodg44OIiIiIiByCjQ8iIiIiInIINj6IiIiIiMgh2PggIiIiIiKHqDDrfKSn50KpND+rcGCgP1JTc+xQovKH18o8vF7S8VpJZ+m18vCQoXr1ynYokftivWF/vFbS8VqZh9dLOkfXGxWm8aFUChZVIqr3kjS8Vubh9ZKO10o6XivbYL3hGLxW0vFamYfXSzpHXiuGXRERERERkUM4tfGxfPlyDBkyxOg+6enpCAsLQ9euXdGlSxd8/vnnyM3NdVAJiYjIlbDeICJyb05rfGzYsAHz5883ud+ECRNw9+5drF27FosXL8bx48cxbdo0B5SQiIhcCesNIiL35/A5H4mJifjiiy9w6tQpNG7c2Oi+Z8+eRUREBHbt2oVmzZoBAGbOnIkRI0YgLCwMdevWdUSRiYjIiVhvEBGVHw4f+bh8+TIqV66MP//8E6GhoUb3jYyMRGBgoLoCAYBOnTpBJpMhMjLS3kUlIhcRl5yD3IIiZxeDnIT1BhFVJDn5RUhMy3N2MezG4SMfAwYMwIABAyTtm5SUhNq1a2ttk8vlqF69OhISEsw6b2Cgv1n7awoKCrD4vRUNr5V5eL2keTbsD9QO9MPKT55wdlHcQnn7XLHeKN94raTjtTKPu16vSV/+jbSsAuyc+7zDzunIa+XSqXbz8/Mhl8v1tsvlchQWFpp1rNTUHIvSiAUFBSA5Odvs91VEvFbizlxNhq/cE60b19DazutlnoTUvAp9vaJupSItqxCPhRoPG7L0c+XhIbPqYdtVsN5wL7xW0vFamcedr1daVgEAOKz8jq43XLrx4evrC4VCobddoVDAz8/PCSUiMt+S7ZcAAGumSuu5JRIzb/MFADDZ+KjoWG8QEbk2l17no3bt2khKStLaplAokJ6erjesTiTVsj+i8PPeK84uBhHZAesNIssUlyiRmlng7GJQBeDSjY8uXbogOTkZsbGx6m2qCYOdO3d2VrHIzUXEJOHg+QfOLgYR2QHrDSLLbNp/HZOXHkdOPpN7kH25VOOjpKQEycnJKCgobXmHhoaiY8eOCAsLw8WLFxEREYFp06bh+eefR3BwsJNLS0TlUXaeAsUlSmcXgyRivUFkG5diUwEA+YXFTi4JlXcu1fiIj49H7969sXv3bgCATCbD4sWL0aBBA7zxxhsYP348evbsienTpzu3oHZwIiqBw51ELuD9hUex+PdLzi4GSVSR6w0iInfk1Anns2bN0vq5fv36uHr1qta2wMBALFy40JHFcrgSpRIr/4pGjSo+mPNuL2cXh6jCu3gz1dlFIANYb5C97Dx+G6FNA/FIsHumZ61I/jp+Gx2a10S9IPfP0FcRudTIR0X159HbAIDMHP0MLURERGR7U5Yex7o9Meqftx+OxZdrT5t83634LOw4EmtyP7KP4hIlfj8ci6/Xn3F2UchCbHy4gJ3Hbzu7CG4r6lYq/j1z39nFICIiN5OSWYDDF+K1tklZ1eWrnyLx57HbVp///I0UjF9wGIqiEquPZQuC+UvaOFVRsXvOzVMUlUDpbhfbxtj4ILc2b/MFbPjnmlXH+HLdafz673UblYiIiMi0LQduILegGCkuNt9T5uwClGMlSiXGzj2EjVY+t7g7Nj5ciLkN4Z//vop/Iu/ZpzAVyJ2EbOw7zeuoIggChHLUK1NUXIKdx28zgxURETlVSUlp3XrkYryJPcs3Nj7c2MFzcdi037167HPyi1BU7BpDzBVdXkExjorcAEd9dwDzNp93fIHsZG/EPWw/HIvws3Gir7t7Tvs7CdnshKAKR6ksX50k7iAnvwgfLTuO+0k5zi4KuTk2PpzoflIO0rKcP9x6NzEb6dmFDjnXhB+O4PtfzzvkXGTcur1XsGZ3DG7FZ+m9dvl2uhNKZB+qeGqxuOqImERM+OEIbj7IdHSxbObLdafdrhOCyBrZeQqMnn0A/3DE2qGiYlORnFGAXSfvOLsoFdKh83EOe1azNzY+HCwtqwAjZ4Xj5oNMTFsTgUk/Hnd2kTB97WmELTlmt+MfPBeHn/9+mArzxn33fdCT6nZCls175WJup9m0ss3MKb2JueukPVuIuVPayLqXyJ48IneRllV67zoeleDkkpQ37jWS5MiBr69+Oo0v15nOhGYvGTmF+GnvVfyw5YLTymBLbHw42OXbaQBKH8h1CW72xZfq57+viv6+5VVUbCpmrIu0+e/8/a/nscnExPj8wmJJmVMKFMW4Gac/4iFViVKJr9dHIrrs82ytKUuP4xsnpk10xDcvNbNA3dihimPvqbsYOSucq0aT+3DxGecyJ5TvVnw27iRkO/7EZZTK0loq283DhFXY+HBDhUUlSMnMt+s5lErBrUNRnCkxvfRvcz8l1+Hnfm/+YUxeano0bcWf0Val+svMUeBmXBZW74oxvbMEKZkFuBHn+M+bI+uwT1eexPebzjnwjOQKDpwrTQWenWf9Ok7HLsVj5Kxwl0nN6mqS0vPwy76rFT6NaUVRXjtsTSkqVmLkrHC3XmaAjQ83tHDrRUxZesKu5/jj6C18/fMZxD6wvHdcV0WsEJwxITI7z3TPyJ1E/R6czFwFzlxNtkeRXIKzP32KsvC2QkUJrt7lCAiZb8eRWwCArFwuSCtm6Y7LCD8bh7si9zdXl5FTiK9/jkSmC/9tnX0PVZFZ0G2kKCrByFnh+Dvirh1K5Fh5ZaOoO4/dcnJJLMfGhwknLj3AyFnhSMqw70iDOWwVuhGfmou1u8V7ru+VZbNQzQsQY24YwZYDN8zavzw4e819Hubn/noeS7ZfEn0t6lYqRs4KR0JanoNLVf6s3ROD7zaeMzp6qRQEbPznGlLMvO9ExabiwBlOwq0oMnMKMXJWOI5d0s5ad+BcXIXMgKbqCTf34fR+Uo7Ts95tDr+Bmw+ycOi864Qox9xOE63nbTVinFdQjJGzwh2S6j63oPT3KA+Nj/KAjQ8TDpQNa911YqyfPUxcfBSfrjxlca7p2wlZeG/+YZy+kiT5PWJpXcuzyCtJWLI9ytnFMOnmg0y8O+8Q7icbnnR96nIigIfJAmw1oKMUBNH1N6Jvp+Gv47dtcxIJth+OxchZ4Q451/3k0nC8QoXh0Jnb8dnYf+Y+lv952axjz/vtAuZtPGtV+cj+HqTkIvys9SETqs4A3fv4+r+vMgOaGaaticCXayOcWoZT0aX32B1HbmHLQed01Gne1jNyCvH9r+excme03c6XUda56UoNLnuzRdUZXxbSnSUhysFVsfHhShw4ppmZY93Qrmri1dIdUeqJUBVVcYkSV0RGo6SEP9mKUhCw68Rti9675+RdFBh5EDbG2ol/C7dexJjvD+ptn/Prefx+ONa6g5vB2b2eulQ9uBX8q+W2lEoBO4/dQl6B+Odq2uoI/LLvmsWZ5iz9WNxLysGo78Kx9eBNs0fV3IIV35fULMenMFV14kTFpmpt33PSub3zMsjUdfyFmylOLYsoVb3j5PvjlTvpuH4/w6L3WpNlMuqWbRK9OBMbHzb2y76r+OOo+8bhWeLE5Yqd7vC38BuYvemcTTNhCIKAjfuvIc7IaISmy7fSsO2Q6Yf1y7fSMHJWuNNzhe84UjrScPFmqumdbUVsuMaK1lPklSR8/XOk3rye2wlZnNNRwUVEJ2D7kVvY9O91JGfor+Wkmv+218wQENXH1dJnrkPn4yAIwO6TdzCbyQ8c5uLNVNH1lFR+DXe9kGTVaJog4GGEg5UP+3cSsm0SNu4ibQ/M3nQO3/7CkWZLsPFhY+Fn41yq8ZGUnofbCdImjYuFv6gIgmCwpW5J5hVHTZiMfZCF1Ez7LuT4ILV0CNSWveepWQXYH3kf8yXm9C6W2Ity7rr5c1DiUnJxzMb59P88dtumxzPG2APbmavSwwZ1Ld0RhZsPsvSOO2NdJL7bKO3BLiUzHyNnheP8dRfsXSSLqe6VhUXGv5fGQu8sUaAoxrV7GZL2zSuwberfomIlktI5J0zMgi0X8NVPkVrbChUlbjOHbt0enbmhRvpslv0Rpb9/mS/XnRbN+GerMN6c/CKMnBWOwxce2OaADvL1+kiTYcaaIe7OSDVsa2x8OJjUL9nPe69glJkx6OeuJWPkrHB1HCUATF1+EjPWRRp510Njvj9ocMX1vafu4u05B5FlRbpImcY3Jk/iZPXiEiV+2XdVNAOIlBj9mT9HYvLS4/jr+G2Tmacu3kxxuVz8MjgvJGje5vNIzSzA56tO6b3mjikOVZmCNDkyNE5F83N4O750tEx3wrAbXl5yASt3RmPWBtv2xGblKvSyR8Wl5Oo1XtbticHU5SetuocWFpXgwg3pDfG7STm4k5CNomIl1u6OMZopKj27UKtutLXfDtwwqzNj1V/mzaUoKlaixEgHoa2Zm6lx5c5o/LgjChExSTh8IR4Xb6YiLjkH/0TeQ1GxeCPb1g/RqiQeB866xxySHUdiIQgCbsZlGQ0zLiwqwWaN0bHykDiUjQ8TbP3lWLfnSuk/RD48mpsOnn9g9vPHgbJF7VSZqiyRnJEPQRAexjGW/f6q0Cpr54qY68KNFISfjcOGfVdN72zE74djTY6ALNhyESvMnOArRiyNLfAwc9jIWeHqLGNHL8Zj3PzDBufNpGYVYsIPR5yy5krUrTTsOGI8lMsVOmAEQcCJqASDI3dKjc0frzjpoFJJIHJzScsq0ArfKw89XGQHBp4+7JFi9rNVpzB9rfbKzp+vOqXXyLl8uzScxpo1SH75+yp+2HoR93XqsLyCYpQoxb/fJy4n4Oy1ZBy5GK9ufIh9b8KWHMOHi49ZXDZT9p66iyXbo7RCZVXZnMQYqicMeXvOQXz4w2GryigmKSMfl8rmnFjzUHvicgIiNXrnF2y5gM9XR2DT/usOHek2xdHP7XtP3dWb06Py57HbSJEQmWGLebX5hcVWzTOxNTY+zJCZq0B8quMXjnO0Ixfj1WnpVEp0PvwyK5+KpIb/qG6G6dmFOHct2eBaISNnhYtO+tY6loTzJaRbPwnTUFavWRqhOKp42l/+uYq8wmIoDPQMqdxLtLxBqcncW1iEiWxmrtABc/ZaClb+FS0p3DHRijCHpIx85IpNILbhRZj043F8ue606R3JtVn5mUjPLsS6PTHqBvXG/dcQtuSY1XM+NFPQSj2GoZFXY9nxLKVaoDVfoV3/jFtwGGt3X7H5+ezh89UR6mtm65GWWDssxPrx8hOY/5t2eK9MJl7HWzribesQP3fy24EbmPebtPBpqQw1xI15b/5hzNpwRmtbenah09bEYePDiKjYVBzXeJCctOQYPl2pHYIS+yALYUuOGcxqYkixg9PYHDofh/V/Sxs9EHtAi08t3WbNyuqaldiWAzclvSe77D03H2Rh0e+XcOi84VjOiwZ6F6xx+VYaPlh01Cax2UnpeepUtSqqG7ylPU7nb6Rg1V/RepW1rRjqKRHLoy8IAv49c9/s74K1VOczNCpnbYjYhRspGDkrHFOXncBnmt9/G45KuEIjjmzP1EdEJgPiknP0evp/2XcVhy/E48KN0nva/sj7SM8utGhxNXenCsM6HpVg8CHWHmGggiDg98OxeJBifoejLefyZOcpjE5WN+ZkdAJ+2mu80WZJ3aP7KbRkEnlGTiFOlKVwd+T9LzNHgT2n7mhvy1Ug0c7zlSxdK04s/O3cNWmhiUXFSq3P4q147YZG2JJjeqOajsLGhxF/6yx8o9v7DwB/HruF9OxCXL8v3iNRVKzEn8du4bfwG1oTv1U5vR3lp71X1WFZZtH5lRdtu+TQVbt1hxulZGlKzSzAVz9FItuK+SkqWw7cQFauwmYTA7/5RbvnwUPVk2nhJV249SKORyVIbsxZ62HP68MCX72bjpGzwnHuego2/HMN6/ZaHiJ3My7TaE9MfmExws/eF/0MGmoYG7pRS834FakRx60K68gvLLb4b6ZqyAOGw6rYGCkfpKyD9PnqCExbI77GhK3D7v61wdoicSYexm352U3PLsQPWy+qf15jYFFcc3rWCxTFWLL9kslRiez8Ivx1/Da+/9W5WcG+Xn9Gb7I6UPpQev56itGQnBV/Rot22BUVlxic32mJHw0sTmvM/N8uqCdZFxeX4PCFB5KfLayNvNhy4KZWg27ioqP4ePnDkNyPl5/A5B+PIeZ2GmZtOGsyicOv/143uaCwqcgMQ0Z9dwCFOqGMms+ixkbzp62JwDvzDuEHiYlrHImND4lMfSW2HYoV/YDuP3MPO47cwt6Iu5InfhtjaOIWYJubvpQvte79Yf2+awZXSjfl8IUH2Bxu28Ww/o64i1vxWTh5WbuBp3t9vlx7Gr/+a/m5k9LzMHJWuHrSsGXKRj6s/OsZm2ipUlSsxG0Le9AMkQH4O6K0ka66ueZaMUH+6/VnjPbEbPjnGn7Zd03dI6zpyt0MvW03H2SKNhzzC4sRtsR4/Lex0MDJPx43+l5NG/Zdw9RlJ/S2n5HwYCpDaUrf72w8iZjckzrs1MDtwry1Kh4eRCkIkudqJKSKP+yoao7TV5JsFmajG46qemDW7Wk3pyMgIiYJZ64mY7updYTKjunMdawKi0qQZCAU+Oy1FCzcdlGvF19MREwiom+Xrg2RkpGPt+ccwiQz7mH2oNn5k5pViHV7ruCchVn/BEHAkQsPoCjLLqeqT/MKitSJU3T9e8ZwQzwxPR+pWaWLLF67l/Fwrq4B+07fw+LfpTXA1uwy/1lJNwxek7F5jKqGyQVHprSXiI0PC6zbc0Vvcuv95BzRLCO2TqWYk2/6pm7vgfkdR2/pfRmPXIxHdp4CI2eFqyed7Y+8ZzIj1bo9V9QPryr/RN6TnB5Y095T5uXMv5OYjX06o1sqt+Kz8Ocx43MIVGtUqDJ3KQUByWYOrVoy8hFzJ92idTo2/Xtdb9gVcK9JzapRkSUaPW3GUkTnG7hpS1lUcX+keOVUVKzUytZmquH479n7okPuO47ekvR3/3FHFK7qdGykZxfqhfCR67C0MyEzp1A9iihGNTnV1o/DG/Zdw9i5h5CSmY8/j90y2gO93ERSjk37r2P1rmgUlyhx7FI8CuwQEvrbAePrYljbM24rusXQvBZikRSa/j1zH3tOGm5YZOWW1gFSGpzL/riMOb+ex424TMsiIMrYO+jB2Gfl4s1UHBFJoRt9Ow2jvjuAtXuu6HVkHr3wAFG30vCHibrckaSMhlYEbHxY4PCFB+q8/Lb+MgqCgC0HLVxwqKwwt4wsdmduyNTSPy7rhS8Zykd9t+y8+yJLH+g37bdsVGHT/uvqUSJDQ+NSQqp0e4QKCotNNlBUdcVXP0VqpWbd9O91xKfmGh3i3HPyjtnhdA/nfAhITM+T9Pf5ftM5fGEgTMOYOwYadOakm1WNakxZ+rAn35FhePeTS0M+SpQCsvMUyMkvwvp91/T2uxGXiZGzws0Ol9P8XWLupOOTFSdx7JL2GifT10q79sej4iWlgzbGUCaUsCXH9EL4yP0l6vRy2/K7pbu2Un7hwwa4al2EKUtPYMeRW0bnORhr7KukZRVizPcHsXpXDH7R+H5mmjEB+8ftlxAVa3ol59LJ0ZIP6xCGyrPhn4fXwlQH0oZ/rtk8S9Q368/odWRYxroLvnZ3jNkp5BdsuYC1IiMQmmt6iHWuuTrLQvDdPzDX4Y0PpVKJhQsXok+fPggNDcXIkSNx547h1n1SUhImTpyIbt26oVu3bnj//feRkOCYFbUvayxh76ih160Hb2LPSfN68Hceu6X1ML79cKzBCsLcXo/iEiV2nTA9rCvG1BWTsiK4/rlLj6p5EzckQ2cC8pYDN0z2mAGlIy+6rt3LwKcrTxkd4jQ1oczYc8TthGx8vPykeiTG1MRSc2/cn68+ZZMbs9hqzWoGipyRU4hf/71u8+/Q+wuPYsIPR7S2qSbIq1JDR9/Wj7NNzSxQhyDo0s21LtZ4iTcQdqJr1V+mh9c1H1I0w15UIzxi4XS/ueBqyPbmTvVGaXnFP+tJGflao7qm5h3ozjtUsaRRYk5jVezo78w9pB7t1fXRsuMGQz9Vv+OJywmYuPiYpBE7QQAiryaL3ucv6SQWkYncLXV/tvdkYqly7Lyu0I24TJOTvy0ZNVdZLRIyFPsgy2hYEFD63PF3xMPnmiMGMkLa2sWyTuKjF+OxcqflafSlNm7jU3Mx59dzenM0ACDcQJiXsfU91OeXdnq34vDGx5IlS7Bp0ybMnDkTmzdvhqenJ0aNGoXCQvEvxIQJExAfH481a9Zg7dq1SEhIwDvvvOPgUsPkege6bsZlSuoh0rVHp2c+M7e0d7e4RInIK0milc72I/phUIIg4HiU/hf8qkhcvKaYO+kOa1Nbk1LUknzVUhc2NDVio8q+onud0rIKJd1INKkW5FLF9d60QypFAIhLtleKaJn6OqgeAXQ/o+v2XMG+0/cMPvDb0sJtF03u8+nKk6KVKACEWzAh11ad02PnHlL/21js816NStySFevdkbvVG3M3is/RmbrshNbcP91RNV0ZVjwoahIEQXTuQHGJ0mD6cl2FRSVYYGDiqtFOiTKquuf4ZSO/s4mnLAHQSwsr5TgLtujfF6R+bbPzijBt9SkoBQF7Tt2RPJpZVKzUW+xOSrinNb5Zf0Z0BXFDdppYVVuToYan1Pu6lE7MrFzzG2fGPr6Hzj28n+vOCczJL8LSHVGIiLFd8p9N+68j+na66Pzfu1asvyZVzJ10SenkP1x81OpReWt5OfJkCoUCa9aswaRJk9C3b18AwPz589G7d2/s2bMHL7zwgtb+aWlpOHfuHJYuXYrWrVsDAMaMGYN3330XqampCAwMdFjZdYfDTfl6/Rk80bkBKvl4WnXeiYuOAgCe7dkIO4/fRu+2dUT3021p5xYUS+p51fXH0Vvw8bauzLait+qzBqO96FZ0E+j2dIud5YetF9GsflWbxNyr4n41e0P/ibxnMHuaVJdvp+HRR6rDw0PmsFXbo26JL1Sl+ltZ8oyeladAFT+55P01RysNUdhpoaV9p+9ZlcBAk5TfAwB+3B5lk/O5MneuN8wxclY4XnqsiV2O/eMO8c/JmO8PomNIkOj8g+ISJbw8TfdPisXhi815Ua3OffBcHIY83gzeXvr1jKl7qiW99n8cvWXR+j6av8H95FwolYLB3msxfx67hf06+9sm5Enf7YQsixLamJx0ryZDkgNGj3TnfBy7FI/Vu2LQr0M98w4kobJRNabcYQ6G7siLoV9P1fBcM3WA0ePpRoU4g0NHPmJiYpCXl4fu3burt/n7+6NVq1aIjNT/4vj5+cHPzw87duxATk4OcnNz8ddff6FRo0aoVq2aA0uuTxVTbmyhpXtJtos/PFOWxu2okQdyTYZGBpRKweQCNboNGUOTsm0p5k66XopVsd5ppbL0d3N29gZbT/ZV/b0ElPaeRFp5Q5z763n8fbq0h/yzVadM7G0bqnAkW1awqy1oQGtyxHwUVVjJtkOWpzs2labREFOTVsuD8lRvmKI7cipl9WMpzlw1/PkS++zFPsjCmO8PqjsUjBGLw9ck9hX8fLX+vKmfTaxHAejPWwEg2tlUUvLwpIYWH70rIexXKrEHc3Pm0lkrXGeExdIOJ9X9MjuvyGj2M5msNHz113+vS77HmhsqDDz8Phw0Ei4utvCrAMtT21ojSmKnETm48ZGYWDq8FRwcrLW9Vq1aiI/Xf6j29fXFt99+i4iICHTu3BmdO3dGZGQkVqxYAU9P5/bO/1P2QG5N/KQ5zA3hMrQo0ZlryZi6zPC8BWvElTXELBl4+H7TOUmL3VyKTZU0b8PdmLp/i8Usm0pnqQqzsOln1IpRpcW/XzJ7oSVLKlGlUlB3DTki682UpSewYd81i0IBy2c0r22Vp3rDEmKx6rr3i2v3MhCfarvQSlWI1B9HxB/crSUWAnbQyAKyxuw9dVcv6cSX606b7NG2ZRiM2NwyZ/pp7xVcv59h8fu/XHfa5IP0ip2Xse/0PdEU59bIKyjCnpN3DDZqlEpBK1RQbLd7STmYbUb4mTmkhLq6213dGaucOzTsKj+/9IYjl2uHUcjlcigU+j0agiAgOjoaoaGhGDNmDEpKSrBgwQK8++67+PXXXxEQECD53IGB/tYVXrdsEvaRy73g5+djk/MZyvWtPpe39p+ycmXD50214eJCmhb9dh4A4O3tiaAg6X8bTTtNTLa/l5SDe0YqjaCgAPhVEg/T8bYgnMzLy37t80iNWFO5vPTv5+Mj/pXUTUcMAOMWHDZ6/EPnH6BvpwZWlFBfpUreWn9bT0+Z6HXV3Ede9jsVFSux/cgtfDaym+Tz5RUW44SZo0CLd0ShTs3KAAxfT8MsqzYsXbytalVfi94nRvOaW/r9c0Xlpd7IVlgW7nfisn5MekGJgKCgACRopFn9dKX+CKelnwNf39Lvzc0HxlOenzIwonI38eE9Wi4vrQ98fL0Nlk23nEqZ9ffdpTui8H9zn9fbHhBg+jsXFBQAL1/tevLdeYf1OgFV5fbXOWZgoD8qVdL+fVVqBPpblXxDdc7K/qXn9PD0QCWde3BETBIiYsTvm4Y6o4KCAuDhIX7dZTLA3//h7+jr6w0Pz9LjWLK6uSF+fj7YcugWDp27j7i0PHh66N+PR88+gHbNaqp/9pHb7jHW0PdFc07Tom2XsFPkc6WpalU/0WPVrGn8fhIUFID8wmJU0qm3qlevrP63h4d+ggXdcxn73v8uMhKoLPu7O7LecGjjw9e39MOrUCi0KhKFQgE/Pz+9/Xfv3o0NGzbg4MGD6gpj6dKl6N+/P3777TeMGjVK8rlTU3McvlhQUVEJcnMdMzJSqBMraWjCoyMUFZUgOdmylvR2S9MMl5kw54DBUZ8iiYtoaSq20/wAAJi55uHDwrGLpb1+x22cBWTGatuGXOXnF2n9bUtKBL3PHgD1PntP3cVZjcZDYWGxWZ+NBym5WGkgXt2Q89eSkVw2UlRo5siJo+bHqGQaWJXdEifPP2wAWfL98/CQ2byTxhbKS73xtcQUzVLMXBuBQX2bmAy7+3VvDDo0r2l0HzEFIqEsYpZLWNlaoSitDwp1jrn3aCw6tQhCUFCA3ud19i/WL8gLiH8PcrJNd74lJ2frZe8Siz7YEX4NF26molXD6lrbU1NzkJ8vHlf//twDkjI9GvJs2B+Y825P5OSU/h7hkffQu534XFBzJCdnQ2kgJFsQBPX5AODi9WSbhQRqlSE1F6mZpfduY3XhxRsPE3Ioimx3z05OzhYN49L925u6v8YlZKJBYCW9v/N1E2GM3/0UgaMX4/HR0A5a2+MTHz7TiN2PdMuTmJhlMEPXXyKND1U95Mh6w6GNjzp1Sr8gSUlJ8Pd/WNikpCQ0a9ZMb/8zZ86gYcOGWj1VVatWRePGjY2mWXQVD1Jz0bReVWcXwyksie+0BUMNj9LXzP9iGRtlqYhSMwu01k9JzSpAnUD9B8C45Bz4+8mdFiJnv+xetmVZqJa4r9eXz3U/Klq9IdW2Q6YnC2/455pFGdzsQudhaMn2SyYnxlrr98P687BOGMu2ZSbVvETdxocx1jQ8VCKvJsPb07bBPeaE7dmj4QFYPoJsKxExiQgwI8GJISt2RmPFzmiz33e0rMGlm9HN2JwtMaNnH8DQ/zQ3+/yO5NA5Hy1btoS/vz8iIh72AOXk5CA6Ohpdu3bV27927dq4e/euetgdAPLy8nD//n00atTIEUW2SqYDMwrE3EnHDTulaTXX9fuZWGpmbzW5h/M3UrDlgHaFLhYb/PnqCExdfkJvu6PdcUIsqzksqaAqGnerN2w598IWTM0NcwX2KuNfx/Ubm5LnKFiRrOLPY7dx+IL91rL49d/rNk+JLxa25w5s2QRb9sdlowtsaoozkmzIEKlpiXUzMu7WWOk+PbtQ0jzOjRYu8uwoDm18yOVyDBs2DPPnz8f+/ftx5coVTJw4EcHBwRg4cCBKSkqQnJyMgoLSVvULL7wAT09PTJw4EVeuXMGVK1fw4YcfwtvbG4MGDXJk0d2CLXtRrWXLONDyqrxnKio0kNPekeGPjkoIQfbjbvWGqz3EGVr8z+GMfO1NzV9ztNsJWTDnNqUbqnNYJP2wrWmGBFu2SrY+Q79yfmGJ3UY7rHXZxpP9FcWmw7NHzgq3aO6sofWlKiKHLzI4YcIEDB48GNOmTcOQIUMgCAJWrVoFuVyO+Ph49O7dG7t37wZQms1k48aNAIA333wTb775Jjw9PbFp0yZUreou4Uzl+wGTyBwyGcpltjKyr4pXb5QfSel5KCouwbEox60wb60Z6yLVGS2lkBICZ2u/hj+8jzqi49ERKffdibmhUPY0a8NZnLnq+uuVaHLonA8A8PT0xKRJkzBp0iS91+rXr4+rV69qbWvatCmWLVvmqOIRkZ2dtFEvHVUcrDccy5ZdZqlZhYg1kDXr+03nMPVN/dA5V2BsDa/yyt1SxDqTA7K4S3btXoboququzOEjH0RUcTlgzT8istJJkfS+9hBzJx1b/r1mekcnUC0eShXL9XuuMXfWkZzRkHL4yEdFc/66c1fiJnIl5zVSJBJRxeCOnQ733SRjni1lODBJjquSWkc5qoFeXnHkw84q4tAtERGRyt4Iw4vHiq07QOTqdDNSkXnY+CAiIiK7uXiTEQBErqqwyPENKTY+iIiIiIgqoKU7opCd59iQOzY+iIiIiIgqqF/3XTW9kw2x8UFEREREVFE5OOMVGx9ERERERBWVgzPSsfFBRERERFRBXb2b7tDzsfFBRERERFRBXb3DxgcREREREZVDZq1wfuHCBRw9ehSJiYkYO3Ysbty4gTZt2qBGjRr2Kh8REbkx1htERKRJUuOjqKgIU6ZMwd69eyGTySAIAl555RWsXLkSd+7cwYYNG9CgQQN7l5WIiNwE6w0iIhIjKexq0aJFOHDgAObMmYOIiAgIQum0+BkzZsDHxwcLFiywZxmJiMjNsN4gIiIxkhoff/zxB8aPH4+nn34alSpVUm9v3Lgx3nvvPZw6dcpuBSQiIvfDeoOIiMRIanykpaWhefPmoq/VrFkTWVlZNi0UERG5N9YbREQkRlLjo1GjRggPDxd97cSJE2jUqJEty0RERG6O9QYREYmRNOH8zTffxKeffori4mI8/vjjkMlkiI2NxbFjx/Dzzz/j888/t3c5iYjIjbDeICIiMZIaH4MGDUJ6ejqWLFmCbdu2QRAETJ48GXK5HGPGjMHLL79s73ISEZEbYb1BRERiJK/zMXr0aLz66qs4d+4cMjIyUKVKFYSGhqJatWp2LB4REbkr1htERKTLrEUG/f390adPH3uVhYiIbKCwqAQ+3p7OLgYA1htERKTNYOPjtddeM+tAGzZssLowRERkPaVScMp5WW8QEZEpBrNdeXh4aP138eJFXLhwATKZDMHBwZDL5YiOjkZ0dDSCg4MdWWYiInJBrDeIiMgUgyMf69evV/97w4YNSEpKwurVq1G/fn319pSUFIwaNQoNGza0bymJiEgymcw552W9QUREpkha52PFihUYP368VgUClC4UNXbsWGzevFnyCZVKJRYuXIg+ffogNDQUI0eOxJ07dwzuX1RUhLlz56JPnz5o3749hg0bhpiYGMnnIyIix2O9QUREYiQ1PrKzs+Ht7S36WnFxMRQKheQTLlmyBJs2bcLMmTOxefNmeHp6YtSoUSgsLBTdf/r06diyZQu++uorbNu2DTVq1MDo0aO5Oi4RkQtjvUFERGIkNT46deqEJUuWIDU1VWt7XFwcFi1ahJ49e0o6mUKhwJo1azBu3Dj07dsXLVu2xPz585GSkoI9e/bo7X/v3j1s3boVM2fORL9+/dC0aVN8/fXX8PHxwcWLFyWdk4iIHI/1BhERiZGUanfq1KkYMmQIHn/8cbRr1w41atRASkoKLly4gMDAQHz88ceSThYTE4O8vDx0795dvc3f3x+tWrVCZGQkXnjhBa39jx49isqVK6N///7qbQEBAQgPD5d0PiIicg7WG0REJEbSyEfTpk2xe/duDB8+HAqFAjExMSgpKcHbb7+NnTt3ok6dOpJOlpiYCAB6WU5q1aqF+Ph4vf1v376N+vXr4+DBg/jf//6HXr164a233sLNmzclnY+IqCKSwUkzzjWw3iAiIjGSFxmsWbMmwsLCrDpZfn4+AEAul2ttl8vlovG/OTk5iIuLw4IFCzB58mRUq1YNy5Ytw9ChQ7Fr1y7UrFlT8rkDA/2tKjsRkbuoWdMfvj5mrSFrp3Kw3iAicgdBQQEOO5ek2un06dMm9+nSpYvJfXx9fQGUxvBqViQKhQJ+fn56+3t7eyMnJwdz5sxBixYtAADz5s1D3759sW3bNrz99ttSig8ASE3NcdrCW0REjpSSkgMfuXkrnHt4yGz6sM16g4jIfSQnZ5v9HkvrDUmNj+HDh0NWljheEEpvxDKdRPJS0hiqhtmTkpLg7/+wsElJSWjWrJne/rVr14ZMJkPz5s3V23x9fdGgQQPcv39fStGJiMgJWG8QEZEYSY2PtWvX6m3LycnBqVOnsHfvXixevFjSyVq2bAl/f39ERESgSZMm6uNER0dj6NChevt37twZgiAgKioK7dq1AwAUFBTg3r17ePLJJyWdk4ioosktKDJ75MPWWG8QEZEYSY2PHj16iG5/4oknULlyZaxatUpSRSKXyzFs2DDMnz8fNWvWRP369TF37lwEBwdj4MCBKCkpQVpaGgICAuDr64vOnTujZ8+e+OijjzBjxgxUr14dCxcuhEwmw0svvWTeb0pEVEEILhApxHqDiIjESMp2ZUz37t1x/PhxyftPmDABgwcPxrRp0zBkyBAIgoBVq1ZBLpcjPj4evXv3xu7du9X7L168GN27d8f48eMxaNAgZGVl4eeff0ZgYKC1RSciKpdkzk92ZRTrDSKiiksmCNb1kS1atAgbN27EiRMnbFUmu7Bk4uDIWcwLT0TuZ867PVGjiq9Z77H1hHNjWG8QEbmWNVMHmP0eu044nzJlit62kpISxMfH49y5cxgyZIjZJyYiovKL9QYREYmR1PiIjIzU2yaTyeDv74+xY8ealbqQiIjKP9YbREQkRlLjIzycw8hERCQd6w0iIhIjacL5xx9/jLt374q+duPGDfZgERGRFtYbREQkxuDIx6lTp6BUKgEA27dvR6tWrUQXdDp8+DBOnjxpvxISEZFbYL1BRESmGGx87NixA9u3b4dMJoNMJsM333wDzcRYMplM/fMLL7xg94ISEZE0zlrng/UGERGZYrDx8cknn+DFF1+EIAh444038NlnnyEkJERrHw8PD1SpUgXNmze3e0GJiMi1sd4gIiJTDDY+AgIC0LVrVwDAt99+i759+6JGjRoOKxgREbkX1htERGSKwcbHiRMn0LZtW/j7+6N27dq4evWq0QP16NHD5oUjIiL3wXqDiIhMMdj4GDFiBDZu3IiOHTtixIgRWrG6KqptMpkMMTExdi8sERG5LtYbRERkisHGx88//6yO1f35558dViAiInJPrDeIiMgUg40PVdyu7r+JiMi1CXBOuivWG0REZIrBxsfWrVvNOtD//vc/qwtDRETui/UGERGZYrDx8dlnn0k+iEwmYyVCRFTBsd4gIiJTDDY+/v33X0eWg4iI3BzrDSIiMsVg46NevXqOLAcREbk51htERGSKwcaHrsuXL2P58uU4ffo0srKyUKNGDfTs2RPvvPMOGjVqZMciEhGRWZwz31wP6w0iItIlqfFx4sQJvPXWW6hWrRoGDBiAwMBAJCcn4/Dhw/jnn3+wceNGtGzZ0t5lJSIiN8F6g4iIxEhqfMybNw8dOnTAqlWr4OPjo96en5+PkSNH4vvvv8fq1avtVkgiInIvrDeIiEiMh5Sdrl+/jhEjRmhVIABQqVIljBo1CmfPnrVL4YiIyD2x3iAiIjGSGh916tTB3bt3RV9LTU1FUFCQTQtFRETujfUGERGJkdT4mDp1KpYuXYodO3agpKREvf3gwYNYuHAhPv74YyiVSvV/RETkRDJnF4D1BhERiZMJgmAyL0rfvn2RmZmJwsJCeHp6onr16sjMzERRUREEQYBM9rCmk8lkiI6OtmuhLZGamgOl0rwUMCNnhdupNERE9jN7bA/UrFbJrPd4eMgQGOhvszKw3iAich9rpg4w+z2W1huSJpwPHjzY7AMTEVHFxXqDiIjESGp8jBs3zmYnVCqVWLx4MbZs2YKsrCx06tQJX3zxBRo2bGjyvTt37sSkSZOwb98+SfsTEZFzsN4gIiIxkhcZLCgoQGxsLDIzM0Vf79Gjh6TjLFmyBJs2bcKsWbMQHByMuXPnYtSoUdi1a5deVhRNcXFx+PLLL6UWl4iInIz1BhER6ZK8yOCHH36IjIwMaE4Rkclk6tjdmJgYk8dRKBRYs2YNJk2ahL59+wIA5s+fj969e2PPnj144YUXRN+nVCoxefJktG7dGidPnpRSZCIiciLWG0REJEZS4+Pbb79FtWrV8MUXX6B69epaEwXNERMTg7y8PHTv3l29zd/fH61atUJkZKTBSmTZsmUoKirCuHHjWIkQEZlg3hRp+2C9QUREYiQ1Pu7cuYM5c+bgiSeesOpkiYmJAIDg4GCt7bVq1UJ8fLzoey5evIg1a9Zg69at6vdbwpZZXIiIXFmNGpURFFjZqWVgvUFE5D6CggIcdi5JjY8mTZogJyfH6pPl5+cDAORyudZ2uVwOhUKht39eXh4mTZqESZMmoVGjRlZVIpakTCQickdpabnwNHPtDFun2mW9QUTkPpKTs81+j6X1hqRFBsPCwrBkyRIcPXoUOTk5WgtDmbNAlK+vLwDoVRgKhQJ+fn56+8+cORONGjXCq6++Kun4RETkGipivSFh2SwiogpP0shHvXr14Onpibfeekv0dakLRNWpUwcAkJSUBH//hy2lpKQkNGvWTG//bdu2QS6Xo0OHDgCgXiX3+eefx3PPPYcZM2ZIKT4RETlYRaw3SjhKQkRkkqTGx8cff4y0tDQMHjwYtWrVsvhkLVu2hL+/PyIiItCkSRMAQE5ODqKjozF06FC9/fft26f184ULFzB58mQsXboUISEhFpeDiIjsi/UGERGJkdT4iImJwddff41nnnnGqpPJ5XIMGzYM8+fPR82aNVG/fn3MnTsXwcHBGDhwIEpKSpCWloaAgAD4+vrqLQiVkJAAAKhbty4CAwOtKgsRUXnlCv3vrDeIiEiMpDkfwcHBepP9LDVhwgQMHjwY06ZNw5AhQyAIAlatWgW5XI74+Hj07t0bu3fvtsm5iIjIOSpivWFhNmEiogpFJkiYIbdt2zasXbsW8+fPR/PmzR1RLpuzJGvJyFnhdioNEZH9zBrbA7WqVTLrPbbOdlUR6w2lUsDo2QfsWCIiIvtYM3WA2e+xtN6QFHb1119/ISEhAc899xwqV66MypUr6y0YdfDgQbNPTkRE5VOFrDc48kFEZJKkxkft2rVRu3Ztg69nZWXZrEBEROT+KmK9wbYHEZFpkhof3377rej2y5cvY+PGjTh+/LhNC0VERFZwgfUmKmK9oTuyQ0RE+iQ1PjQVFhZi165d2LRpE6KioiAIAjp27GiPshERUTnAeoOIiFQkNz5u3bqFX3/9FTt27EBWVhbq1KmDsWPH4sUXX8QjjzxizzISEZEbYr1BRES6jDY+SkpKsH//fmzatAmnTp2Ct7c3+vbti/3792POnDnsuSIiIi2sN4iIyBiDjY+FCxdiy5YtSE5ORuvWrfHZZ5/h2WefhaenJzp16uTIMhIRkRtgvUFERKYYbHz8+OOPaNGiBRYuXIgOHTqot+fl5TmkYEREZBlnTXxmvUFERKYYXOF88ODBiIuLw/Dhw/HGG29g+/btyM/Pd2TZiIjIAjWr+jrlvKw3iIjIFIONj6+++gpHjx7FV199hZKSEnz88cfo1asXpk2bBplMxpSCREQuyln3Z9YbRERkikwQpCWEv3PnDrZu3YodO3YgOTkZdevWxdNPP42nn34aLVu2tHc5rZaamgOl0rzc9yNnhdupNERE9rNm6gCz3+PhIUNgoL9Ny8F6g4jIPTiy3pDc+FBRKpU4fPgwtmzZgkOHDqGkpARNmjTBrl27zD65I7ESIaKKwlUaHyqsN4iIXJsj6w2zFxn08PBAv3790K9fP6SlpWH79u34/fffzT4xERFVDKw3iIhIxeCcDylq1KiBUaNGuXzvFZEpjWoHOLsIRBUC6w0ioorNqsYHUXnh5Vm+vgptmwQ6uwjkJJ+N6OrsIhARERlUvp64Kji5l+v+OWvX8HN2EYwSYF5ct6trVr+qs4vg9lo+Us3o60Meby7pOK89EWKD0kjTuE4VdGtTx2HnIyIiMpfrPq26oSZ1qzj1/Msm9bNowhAB5aztASY0td7/9Who9PWgapUkHcee94VhA7UbNp8O5yriRETk2tj4cDMvPtbEKec11QtsiocHH4fJvTQMNj0PaMqQDkZff1Xi6IildL9X/J4REZGrY+NDou6tgp1dBADAsz0b2fX4X7zZBW0a19Db/v7gUKuO+79+Ta16v705YuBj5ZR+DjhLqbo1KzvsXBWWDGjZsDqMrZs3oGM9NAwOQGVfsxMLSi0CERGRW2HjQyL/St7OLoJDNKwdgG4iDS0fb0+rjhtgh+v3SLA/6gWJP2SHNKhm1rHEVrv5dkx30X3bN6tp1rFVPD0eft2mvtbRomNIpcreVaWy3K7noYfaNKkh+nf18JBh0QePoXdb8+ZizBzdDZNebW+j0hEREbkGNj4k6t3O9IODq/RCfjC4HT6xYey3q2ZOatWwBr4a1U30ga+S3NzGkn7rI7iGHxa+30dv+zsvtDbz2PrMbRyZY83UAerwG1OfySp+xhuFL/RubKNSlT+61/aD/4XaNLFC3ZqV0aqR/igkERGRO2Pjw4j/dn9E/e9HJMR/m+vHDx+zy4N9u6Y1bbpuRftmpWWs5u9aveiqXv2QBtUMjlJIpRr5CKrma3Jfby/rRoHEDB9om4xIiz/QbywZs2CC8f1rVZc2qdqeQupXxc65z8PL03hT6qvR3Sw6/uB+TdG4jvmTwkXDrRzcA9GQ69O4vL7t6zq7CEQW+/Bl60KuicSw8WHE//rad56Cr9wLbzzVQvS1Li1rGXzf7LE97FUkAPoPVX1C65Ztd/zYzot9pPW8B1vZ41y5LCys66PaIWeunL5YjJ+vbcPbxELwrDGobxPUNxAqZ0qdwNL3ff5GZ7wyoJne6/UsnOfy3+4NMfW1DujRurZF7zfG0q/MhP+1M7nPC70bo1HtKgh7pb1lJyGHcGSqZSJbqxfk7+wiUDnk8CcrpVKJhQsXok+fPggNDcXIkSNx584dg/vfvXsX48ePR48ePdC1a1eMHj0a169fd0hZZTKZpJj5jiFBAIDm9ath1Uf9AQByb/FL20JiuI2xERFHx/HbZAE+Ew9hYnNqOrUIwrO9GlvUmWzuQ3MlHy8smfiYXjYxubcnuj5quCFo7IG3eoCPWWXQZahhaiumMjUBtmtwqq6Fp4cH3vzvo1qvtWv68LNurNGtKomnhwyeFmR1eiz0YQ+07rwdby9PvPVsK4PvnTFKf+G+av6m/75ic4mkkDKvSF42D6u1SIKI8sad6g1d5W0BUyIiazn8rrhkyRJs2rQJM2fOxObNm+Hp6YlRo0ahsLBQb9+cnBy8+eabKCgowJo1a/DLL7+gcuXKeP3115GamuqQ8i4M62f0Ie2pro9g3Ett8fVb3TCoXxN4yGR478W2mDFKPwRkzHP6DzfVRB5QTYWP6D7PdAoJwoRB2j2l5jz0SJnPAlj/MG1Ms3pV8VS3R9ChuWWTuXX5eHti3Ett9Y7Xv2M9g++p5OMFD5GH7VFPP4r3DfREG3uwsHfjwVotG1a3yXG+eLMLBvdviq/f6mZwzoOqASdAQJO6VbBm6gB1GJWfRiYozUaj7kKJ77zYBo93rI/6tSztidP/UkgNK6sf5I83/9sSn73eWb3N3FDMIBcIYXNX7lZv2EpnI41xIiJ35dDGh0KhwJo1azBu3Dj07dsXLVu2xPz585GSkoI9e/bo7X/o0CEkJiZi3rx5ePTRRxESEoLvv/8e+fn5+Pfffx1S5sCqlYw+pL1cFv5RJ7CyOptRpxZBqCWyAFnH5kF628Qeds0NHwltVhPtzXhof0Tj4a1tk0AM/Y+0tQgmv9oBDSx+8DOuVvVKeLl/M4wf1A5jn9ee0D2gY33R95hKX9oxJAjjXmqLj4Y+bDzKvTxER6WM9aN7e3kiVKcnesH43vhPp/p476U2RssgRecW+p8Ld/B/3RviP53qo2HtAPy3W0PUCaysNSqnOUdDJnKFhz9Z2jjzlDi6ElzdD68NDIGHTCZ5gb9WjQx/d2eP7YFpb3TR2iaWZlrlsdC6ogsGPt+rLDRQpv850uwEeLq78UULSZw71hu2EmxGg9XYZ5fIUp4m5toRWcKhjY+YmBjk5eWhe/eHk4P9/f3RqlUrREZG6u3fsWNHrFixAgEB2j2MgiAgIyPD3sXVM+fdnqKNBSlqVasEubenVi+viuohTJM5pxHMWKWimr8c00Z0UYdqDOhYD75y7TIZGjXxkXviy5H64Se2oLkOiO41HvLEw8aRZthaLykZyHQeVAVB/EFYysT/xzvWV88BqVJZjqFPhKBmVcMPB1JHn5wxl8YW/tevKYYaiWc3ZzK0WJiR6qqIXcbQZjXx6eumM7rVCDCcQKBmtUp638cPLZg/8VzvxqUZxkT+jhrZlbkAoIXcvd6whrcZIVuvi9QjJJ0rro3Ur4PhkXpHqeInx3svWt/J5mzvvmDe7/CInTpaqZRDGx+JiYkAgOBg7Xj8WrVqIT4+Xm//OnXqoFevXlrbfvrpJxQWFqJv3772K6gBNar4IriGZaETXmUPrWKZT6r42X4Oh6Hn2a6PBsNDJj1m3trUoV6eMlTy8UTdQOM3dtHwpbKnTs2HOt+yFLoNawfoPew92bWB+t9tNBoTUh7upYwcvTYwBMsm9TO6z/QRD3vS7dmm8NaYCP/mf1va70RWeLFPE/2NGi0JsUagzMC/xTSt+zAsq7WBEQ7Nhrml8y8s4Sv3xPxxvbTWdjHm/zgqYpC71xvW0Ox1btOEIxu29FyvRlo/i83rUnHWOl+2zFppjU4t3D/8L7RZTQwzI6ukszsFpUakuCv7LLtrQH5+PgBALtd+2JbL5VAoFCbfv2fPHixYsABvvvkmWrQwr5cnMNDyVmxQ0MMbgKfOQ7Lma8Z4enogKCgA1VPz9d5bNSFbva1BcACCggJQpUqGwbIUKIq1tlUJ8BUtx1vPt8HKP6K0tvn5yREUFAB52WhH1aqVtN5beu50AED7kCB88mZXVPKx7GPy0xdPokYV06lrVedVqRJfej3kPl56v5fcxwvrpg1EZV9v+OqUa9wrHfF3xD0AQN06Dx9MPTRGdvz85BB7HgwM9NebyC/1b6upU5uHjcuagf4Y+2JbLNt+Se94mv9+pE4V+Iv00AcY6bXXvC0O+k8LrNtzReu4nj6llaWx3nZjv9+MMT1wOTbV6D5ir3mXTYL+5t1eaNu0Jub8eh5A6XUHgMqVfdTvCwgo/Zz5+HqjuKxhUEVjJMmr7Fiqz6qxstQKrCz6uq9G9i/Nf/uIfLZ0aX6GxPYV2ybPKZ2D4O3liWaNpYdCVtJ5uJHy2fP399HbT/WzJZ9dV+Wu9YaKNX+LypUfzrP7YnQPvPLZbiiV4q3oGjYoqzO99lRL7DwSi6xc039TW2hcvzqA2+qfg2sZTrfdrH41nL+ebP9C6fD3l1Z/GlPN3wcZOfpzo6RylXtJl1bBOB2daPH7g4L80bVtXfyy75qk/T2tyHRZq3olJKXnm97RiCH/bYWN+x2bJMORf2uHNj58fUu/SAqFQqsiUSgU8PMz3sP+888/49tvv8ULL7yAKVOmmH3u1NQcgzdtY4KCApCc/LBxUFKi1Hpd8zVjOjQLRHJyNjIz8/Tem5lZULpP85oYP6gdkpOzkZ0t/sFNTs5GoaJEa1tWdoFoORrqpDT1lXuiX2gdJCdnQ1HWgMnMzNd6b+m5S8tTydsDOVn5yJH0G2qbMKgdSgqLkJxcJGl/zTJkZZb+7orCYr3fS1FYDKWiGNmKYhi78prvS89+eOPNz1dA7GOQmpqDwjztB0Cpf9uv3+qGT1ee0ntP7So+qFvNF83f6wVFUYnedZ44pCPiErLwn871ceTCAwBA8/pVcf1+JgCo/w6iNNoUycnZaFDLH/eSctTnUFU2xj7zxn6/+jUqoX6N+khOzoanhwxybw/kFz783NWtWVn0/UVFpftkZuRpvZ6XX/pAkZtbqN6u+v0KC4pQWFj6eVT97TWPVVT2WTVW3oIC/c8KANTVGLkrKHj4WSwU+WzpytYoi9i+Ytuy80p/T0EQJH9+gIfXx9ixVVo3roHb8Vlo1aCqer9KPp4oKi49p+49SyoPD5lNHrZtzR3rDU1S/hYNgwPQvXUwNoff0Nreot7DB+KUlBxMeqU9Zm86J3qMtDRL7tTaPhjcDgu2XLT6OJZ4vH1dnLj4wGGND937q7G/k6Ko2OBr9pSTY6QOKDPq6UexeleM6GsT/tcOyen52PSv5Q+xqutSP8gf95Ot/4xZSlEo7W/QtkkgLsXqJ5ZITs6Bv7cHln7YF2FLjiHPxPGKi0uMvm6M7nOiKcHVKyFRp7FiyT3cEE8PGUok3MccWW84NOyqTp3SGP2kpCSt7UlJSXpD6ipKpRJfffUVvv76a4wePRrffPMNPCSGMriKJRMfw3NlK0U3sMNihVKnfLz7Yhu7hHjpGvKf5ghtZtvFE199vHQI0pKh0Ko6Ixq2HkytoxNStviDPlga1lc96lA9wEe9Dkm/9nXxdI/SEJsBnRvgqW6PwMvTA51a1EKt6pUw4v8epqEVm4cy5rlWeCy0Lt54qjTUSpURasrQDvj8jc56+0vha2I1+B8/7IsF47UXIzQUhjDsiRA82rC66MRsQPujWqdm6TVpqpPVSsXYnA+9fQ38UVs+Uk3Cuw37v+4NjWZIcwTdRb5qV/fDog8e0xpV/GFCH/z44WOOLppDVIR64/M3O+PJro/oba8TWBnvvtAGdQL94O3tgRaPVMOopx8VOYJtNKjl3F5uQ1kFzTVZQhpxR/GzMHJAql5t66BOoHgjvGZVX5uF/3p7ST+Qj7ftF+KVqkYVH6PrfvmYqO9UxMKCrWEsgkRK2nZriM01djaH3o1btmwJf39/REREqLfl5OQgOjoaXbuKx1tOnz4dGzduxLRp0xAWFub0OLz/9WsKH7knqvnLMfnV9kb3laG0t0Azhavug7Dh91r/ezowxF3LE50b2PzvpFp5XLAgcN/DQ4aX++svSqcb82srfr7eBm++rz/VEoNEFq+sUlmOWW/30JpjIxay1r1Vbbz535bqifc9ylLTVvb1tmiVbgAm5/94e3lozTExpn4tf0we0kFvFXixMzStWxWz3+mBvqHWrwBt6DfQ/LhI/eRMe7MzZpUt5Pm/fk0xfKD9J/Ia+763aRKIHyb0xuCypAxiFYmXp0e5XU+iPNQb1ujcsha+fqs7PGQyyGQy9GorLTW6IZoPX5amT9dsJLz2RAgeCbZsxEx3AcYAG3WO6f61xSYbW/uRkDoJe9qILqZ3shHVmmNqgi2fA6RfsHoSFpLVXR7Alp7v3QgA0M2KhWMNrdUmhTnX3NaN02r+0r5D88dpz4sbJPKMZE8Ora3kcjmGDRuG+fPnY//+/bhy5QomTpyI4OBgDBw4ECUlJUhOTkZBQelQ4759+7B582aMGTMGAwcORHJysvq/3NxcRxZdrUPzICz9sC/mjeuNRxsZnwC48qP++HKk/o3n7eda4+u3jK/lYfPuedi+JW+tEf8nPlG6dlkvzqMak4jtUfaBXR7BmGdbobKvFyr5OK+nxhSx9MY1qvhixeR+krKhLJnouj3iNatWgkwmU4+CBGg0zltZkTo0wM/yCaKNalcRTZVtDksaycYE+MnxZLdHMGxgCJ7p2cimx3Z15aHecCXfv9NT/e/B/fQ7QqTQfHDv37Eepo8wPwvimqkD9B+WLSjD1Nc6Ys67PbXW4FHdRxrVDsD0EV3QqYX+WljWkjoJu1a1SggxsriwbgPMEn3bl9YDVSU+eNqb2O1vYJcGmPpaR/XPbZuad383pwPB29Oz7D2a7zfrdOrMlpYQ+/0NnT6kQTW9xkp9C1eV//qtbqJrzImdu6rOaIujO68c3lU2YcIEDB48GNOmTcOQIUMgCAJWrVoFuVyO+Ph49O7dG7t37wYA/PnnnwCAZcuWoXfv3lr/rVixwtFFN5uqp0pXt1bBeqE65jAnta4hT5UN8Tc2EB7jCH3a1cX88b0xu6yXWaV+kD/mj++N/nZIMygI2jeh7q1rY9EHj0nOSuQITepWUS/Kt2pKf3xhoOfMy9ND0g3Z0oQBtqTK2mMoVfWLfZpgypAOaFavqnp0UNXosiTTjLOy00itINdMHWD2sT1kMgzoWF/yKFR5Ul7qDbtmsJFYLWh+N7pb0TOsq4eRYw3q2wTDzcg0ZK4aVXxRt+bDUePq/nLMfa8XPnu9Mx4JDoBMJkP75jVNhqb+t/sj6nuvlG/yF29KG9VoXMdwOFunsnWepEZFiBnYpQHWTB1g9xAvqXRH0/0reePVx5trNcI8PTxM3gfHD2qr/vfwJ1sYzGqoq02TGmjduAZGPNNadGRfym3aWZEjX43qiqmvlYYN6q55ZkqdwMridZ9MZtXnyx4c/kn19PTEpEmTMGnSJL3X6tevj6tXr6p/Xrx4sSOL5lJU341urYLx9nOtcSs+Sz2ZVZclX5KWDasb/OKrPrxSM1VZw9AXQne71AZXYBVfyTGdrkqzB8/StSGq+MnRvH5V9Vwjc0jpITS3VP/XvSEURUoMMDB/wsvTQ28xz0a1q+C1J0K0Vj03RHdNkTqBlRGfmqc1dG7OmgmO0DA4AHcSbTepsDwrL/XGfzo3sF8GGwcMbAdW8UFqVqHoyd56thVaNaouOvlZZqAjztYjhBpnFA0pMxWaOrhfM8TcSUdETBJCGlTDS32b4NtfzhqcK2loroWuQX2booqfHFsO3jS6n+7EYLGOIy9PDxSbMaFZ6sdiwqB22Lj/GlLKEuD0a18XPdvoh/i9+FgTlJQo8eex2+ptfdvXRZeWtSD39kRCah4OlyVQsVYHjYWZqwf4YNiTLfDx8pMm3+fj7YmwV9ojyMIRBGONRSn6htbFjqO3LHpvPY0yB1a1zTNY7eqVMHloB7w1+6BNjmcLrlUbV1CqG5ixhe4a16mCdk2lp+60RtsmgXj3hTZ43oIHV3sz1bP8/bs9MXO0iZA2NWf1bdifh4cMHw/rhNYmQgMBoI7O4lpS1jwxl6/cC68+3hxyMyciPt6pvqRRjMc71df6edTTj+LDl0O1FoEc1Lep1evW2NKnr3dSJx/Q5KxRG7IfkxNwbXArkhKaOrBLA5P7SDqX5qk051U58Zaq+fvbYoKtTAY0q1cVbzzVQm8hYNWIh7Ff99PhnRBWNi/Uy9MDj0hINqM58djL00O0p3/F5H749u3uetvFSP1zBNfwQ/vmNbU6cdo2DVQnNAEe/s1bNayu9znq274uWjWqgWb1qqK3hMV/LWVoYvbY51vjic62+WwDwJQhHU3vZEQjC+df6rJFXSD38sA4O86vsRQbHy6gbs3KWPh+H60FCFUhJ+0krLxtSGAVnS+qxC4QmUyGzi1rmR0D+GT3hpjzbk/TOzqda819cSSxTDn2nPg34v9aGo13FmXBn0e3UVrJx0troUmg9IHE0hh3qVRD/LWqG54zolrN3cvTQ51pTHNkT2pvKrmPBRN6Y+mH2gscqsJtNEl92Bj7fGt1eJCYhrUD9EI2nur2iDproCHGzh9iICudvTSqHYAXHxNZqNQAW4Qj65LJZOjbvp7WCIRMpj/SKia4hp+kzh/t8z38d+nfT/xmGFy99B5haCTZXDXLnhU06wfNUQddfr7eeKan4YVRm9bTfvg2Z77FfzrXN/iaWCO+5SPV0PXRYLPumx1MzDWSEj1h7vORJaMpwdX9LM5iqbJsUj+X7NBi48NF+Ffy1nqAqhfkj6Uf9kWPNvpxtFJ7l3zlXlgzdQAebSgtTtJavnIvh4RqWethSJftGiEd7DBaYA9imXLseWPq066u1iTD8q6SjxfGD2qL9weHir6+akp/jNOIY6byTZU1zcfbU++BRmzuztz3emr8u5fe6ypdHw3G2OcfZlv6j87IX9/2dSHXyTgnZbVsb6/SOHzdsr3cv5m6F98YWzYABna1XU+2TUn8FfUmLGtUN7PG9oCnhwxN61VRz9PQfOiuXcMPrU0k3FgzdQCG6WTis3QCv6qn3lduzoiR4frzf/2aGpzfVLuGH9o1NdypOvQ/xucGjXmuldbPjWqbP8rQRuTaDu6v3THV28qscrrefbEtPn29E2ZJHLVSaVynCob8p7lLRqJYg40PF2aruQs1ymJfTa3nYC0pFY8r9OpOerU9Rv7fozbNff3eS22xYnI/mx2PpHnpsSZ465lWpncs41X2QOBrx+xmHZoHGYwR9/CQiU66d7VMdGQbNUTmHYx+xvA6HZopqs1JgztUJ2OS2KfJULIHMX10QmeCqlWCt5cn/Ms+15bMRWtm5siJud8Jc/fv0LwmGpqx7pY5CVDmj+tlNMS0VrVKWDmlPz4d3hlyb0+smToAT/dopO5YnPhyqEVrZTSuU8WiZBZSDO7XFIFVfCVlYvL08NCau6DpmzHd8YGBzhndERMx3VvVxqinH1Wv5SElra8uKR24dcvCkS3NPKWrko8XmtatilrV/fS+26ZGsJ7o3ADPWrk0gFjI+nsvOq8jjI2PCmDYwBYY82wrNK1rm2Fzg9l2THyhl0x8DNMtzXluwxH1GlV8bR6X6iGTldt1FsTYc9mExzuW9gBKaRw+07OR1ujgp8M74e3nDGcIad24Bgb3a4phNkhvaS9N6zk2vIXsY/Qzj7rtPeGVAc3x4Suh+Oz1zhjYpQE6hpSO7E4Y1A6vP9lCtFEFGO95rx/kL+nBePQzj8K/krfJnn9r+fl6G8wkKMaclLi6aUyB0mQo1jK7AWfBfXrs861F10Vp8Uh1fP9uT4s6RaUW49Ph+iFGc9/rhdnvaGfE7NW2Dr4d0x3TR3RBT5HoEE2jnnkUdQL9TK5nZUumrrtuooVWZeF5lY3UeR4ymdlreXXWCO30kMmwakp/rdc7tQjCC32cM6LiGnnZyK585J42Tam4YHxvPEjJxdfrz5j1PmemfFXlP7d0Ua2KwthwuKM807ORxWtZNK1X1ejDu4dMhv92Nxyr7AoG9ZUe507uy9aPQpZ2CCwN64vN/17H/2l8L7y9PNCmcem9oIlGOvbqAT7o16Ee4lPF10up7Gt9CGfPNnX0six1axWMJnWqYNO/DzOFNQjyx92kHKvPZy7B4A/GSVk7SPdv6OvjiXpBlVFUrERSer70k5WpV7MyrtxJN+s9XR81nV1Qly1W6J72pvjcBmN1tpRJ/N1b1Ub3VuLPP51b1kLklaTSH8zu4HR8doVnezbCwm0XJe//rs7IhqXZM+2BjQ8yWyUfL9FeaVfOHdW9VTC8PT0kxcQO6tsEOflFDiiV69FcuZicw5XWnCHLmZ1owQJz3u2JwqISq47h4+2J158SX/DV2f7TqT4SUnMx9IkQXL6Vpt7+xZtdEODnjb8j7qFZWWeDNStSa1KFJ+s99Nrouc2cRqKHTIavRnXDrfgsfPVTpNktTHMW5jOX5pHFGh8NNVe9l1AOS+ZuWEpVHBmAFg2q4eq9DL19VHMhm9Wrglcfb4Y5v56XfHx7ZX1r37wm1kwdgLFzDkJRLD3dsjGqz3mglQvrmouNDzek+8Fu4sSFAjVJzdk+a2wP8+P9rLyHqjJ4SfF0j0bWncxOHLG4nD0rq/KiamU5MnPF19whUtFM82wvrpDgQ7c39ekeDbHrxB2bHLuSjxfeelY/jLJ2oB98vD0xRGNSs63uXY3rVMGY51qps9I5kn8lb6RkFpg1P8cUVXrxLi1roX5QZWw/Ytn6E+by8/XG/HG9MHHxMbPfO6hvE2w7FGuHUumbMrR0Qb+9p+5qba9RxRdfjuyKOoF+Lhc+Oee9XpjwwxGbHKt32zoIqCTH490aIjXVcSOJbHy4sUo+nlgysa/pHSWYNbYHfBy0crKU4WfSNvHlUNRxoTUqXO1m7EjTR3RBogUhEERSvPFUC7vcI23Zr6B60A8WSSk9qG9TmzU+xHRpWcuiydjmEAvTkXr5DIWuymSlaWGNrUcxflA7nL+ebLPF5QCgTZNAfDmyK+oHVYZMJsPRS/FIziiw+rhS5qb5loVa6yYw0FQ/qDKydSINnu7RyOxOQEsHG4w1WlVLHliqef2quH4/06pjiPGv5I02TWogKjbN9M4myGQytG9e0+EhWWx8EAAbNQjsGXflyjFdDmBsAUpHe6ZnQ/Wk8Iqoqr+P6IRSSzQpm0Comkjaw4Zzs8g1mRog7tveNms3kOM91fURgxN4ZTIZpgw1nna8eoAP+tvh3qr5EO1fSa7X+LBk1Khd00CM/L9H0cjI+hU+3p5YPqkfvDwNH3/GKKmLArsfe3bSffhye6z/+yoOnIuz2znsqeJ2X5LNVfD2gdsY+p/m6jSC5vj8jc4Y81wrvPRYU5s9fFd0jzaqgYXv90H7ZqWxvG89Kz1tMLk72yZY1p2j0LpxdXRqEWR1760xUu/5thipUM0rsOTeZS+66eVrVPExmmLXFfXvWA//7faIRe/t3a6OyVS03l4eDgnntfcZVAte+sg98VhoXdF9qvnL8enwTiaPNbh/M62fVY2zOlZ8tnXX+rHVApT2wpEPogrmP50b4D9Ghv4NaVynitmp/sg0V1x9liz3/v/aobITGucymQxfv9UNP2y5iA7Ng+Dt5Yn3XmyLg+fi8PPfV9Wx/zY5lxn79u9QD/06iD+smSOkQTVMfa2jeoK5o0l5gLbXQ7YqTayxVKyWGq6zUGFFFWBgbSaVZ3s2wrMaWRiPR8UDAP7b/REEVa2En/++iip+cjStVxUXb6ZqvVd3Dk+P1rXhK/fEom2XAJQu7jj51fZ4RMJCoGKGDQzBAI0RM3ut9WJLHPlwS645xiB1wjkRUXkV2qwmerS1/mHbEnUCK2PW2B6oUvnhg1Tf9nXxw4TeBhd9s4fnNBZEG9ilgc0yuIU0qOZS6UIdpUEtf7wyoBnCXjPdq24a62kVzSvRs615Ia/jXmqLRxtWx//6NtXrlKtUtoitam0XKenTH21Uwyapqk1pbCRMzpE48uHWnHcTrlm1Eir7eiG3oFi9rWUj+y4KRdZxVo8hET2kCsvx8/EqvYXb+VlQJpOZ7NU1lyrVejsDc9Fe6NMEJ6MTRdemGD4wxG6x8C891gQPUsTXIFEZ+X+Pqh8O3YVMJsOTXR9B9QBfJBdUzDTw9mZuhrF2TWuiXVPxjGjN61fDmGdboUNIEEY+/agtimczk17tgCwXyNbIxgdZxNvLA9++3QMTfjiCyr5emD6iK1o2C0JycrZdzse+GuusmNzPpukbicgynVoE4eX+zdC/Qz2En7vv7OJYJMBPjjnv9lQv3moOsQnVtlr8VcripL2NZF4isiQ8UbU2TJBG9jdbLuxsSNN6VXDgXBzqmTFXpJKPl1MXfFZxfgnIbXmX9V61alTDpqkBjeHzs2UqcmpcH29PtHikmrOLQQSgtIf1KQsn+LoSV1hjxNGq+Hnj+T4PQ2gYaVy+fDS0g0WTvoNr+GH8oLZo+Uh1O5TKsJ5t6qBFg+oOe/6yJTY+yGI+ck98O6Y7alRh5iNyXUvDbLMWDpG9lGZNYs+Kq1swoY+zi0B21MKKxkOH5kE2LIl07tjwANj4cEuqmOH/6+783rNgBy98x54m+3ihd2O3SxFJ5O5kkOmla61IqvrL0a5ZTfy3q/nZ98iwj4d1RFyy+NwX1qHkCtj4cENenh5ukUqN3MdzvcUXxiIishdPDw98/U4vu80VrKia16+G5vWrGd1nwqB2qCWyQj2RI1TcQHByS5zzQUTlTXnsjX6xbG5ENRtNJifbquovd6kFG6li4cgHERGRE8gckGrXWbq1Cka3VsHOLoZd+cg90bRuFXRpWQvhZ+PQuWUtZxepwmrXtDTtc7/2ZqzsXR5b/W6CjQ8iIiIiM3nIZPj09c4AgIFdnT8HsyKrUcVXcji6vVaiJ+kYdkVERERUAfiUJRbh8zc5E0c+yC1wdJSIiMg6Y55rjSMXH6BhcICzi1KhNalbFQDweCf9RTcrAoePfCiVSixcuBB9+vRBaGgoRo4ciTt37hjcPz09HWFhYejatSu6dOmCzz//HLm54inkiIio/GG9QWQb1QN88Fyvxgw9crKqleVYM3UAWjeu4eyiOIXDGx9LlizBpk2bMHPmTGzevBmenp4YNWoUCgsLRfefMGEC7t69i7Vr12Lx4sU4fvw4pk2b5uBSExGRs5TXesPR6ySRvkeC/Z1dBKIKx6GND4VCgTVr1mDcuHHo27cvWrZsifnz5yMlJQV79uzR2//s2bOIiIjAt99+i9atW6Nbt26YOXMmdu3ahQcPHjiy6ERE5ATlud6YPKQDJgxqBy9PTr90lilDOuCLN7s4uxhEFYpD73gxMTHIy8tD9+7d1dv8/f3RqlUrREZG6u0fGRmJwMBANGvWTL2tU6dOkMlkovsTEVH5Up7rjaqV5WjfvKazi1Gh+fl6o2Ftzn+oSGpUKV17pgHnvTiNQyecJyYmAgCCg7Vzf9eqVQvx8fF6+yclJaF27dpa2+RyOapXr46EhAT7FZRcToCfNwAguDrDFIgqEtYbRGRLTetWxRdvdkEDhtw5jUMbH/n5+QBKKwJNcrkcCoVCdH/dfVX7G4r1NSQw0PIPWVAQW8dS2etaBQUFYLqfHKHNg8pViAI/W9LxWklXnq4V6w3bWzy5P3y8PREU6BorXLvytXI1vFbmMXS9eB31OfKaOLTx4evrC6A0hlezclAoFPDz0+/R9vX1Fa1cDO1vTGpqDpRK8/O1BgUFIDk52+z3VUT2vlaPBPohPa38ZKzhZ0s6XivpLL1WHh4yqx627YX1hu35ecoApdIlyujq18qV8FqZh9dLOkfXGw7tQq5Tpw6A0mFxTUlJSXpD6gBQu3ZtvX0VCgXS09P1htWJiKj8Yb1BRFS+OLTx0bJlS/j7+yMiIkK9LScnB9HR0ejatave/l26dEFycjJiY2PV21QTBjt37mz/AhMRkVOx3iAiKl8cGnYll8sxbNgwzJ8/HzVr1kT9+vUxd+5cBAcHY+DAgSgpKUFaWhoCAgLg6+uL0NBQdOzYEWFhYfjyyy9RUFCAadOm4fnnnxft8SIiovKF9QYRUfni8Jm7EyZMwODBgzFt2jQMGTIEgiBg1apVkMvliI+PR+/evbF7924AgEwmw+LFi9GgQQO88cYbGD9+PHr27Inp06c7uthEROQkrDeIiMoPmSAI5s+mc0PldeKgK+G1Mg+vl3S8VtKVtwnnzsR6w/54raTjtTIPr5d05XrCORERERERVVwOnfPhTB4eMqe8t6LhtTIPr5d0vFbSWXKteH31sd5wDF4r6XitzMPrJZ0j640KE3ZFRERERETOxbArIiIiIiJyCDY+iIiIiIjIIdj4ICIiIiIih2Djg4iIiIiIHIKNDyIiIiIicgg2PoiIiIiIyCHY+CAiIiIiIodg44OIiIiIiByCjQ8iIiIiInIINj5EKJVKLFy4EH369EFoaChGjhyJO3fuOLtYdrd8+XIMGTJEa1tMTAyGDx+O9u3bo1+/fli9erXW61KulS2O4QpycnLwzTffYMCAAejQoQNeeukl/Pvvv+rXea0eSkxMxIcffohu3bqhQ4cOGDNmDK5fv65+nddK3K1bt9ChQwds2bJFvY3Xyj1UxGvIOsM01hvSsd6wjFvWGwLpWbhwodC9e3fh4MGDQkxMjDB69Gjh8ccfFwoKCpxdNLv55ZdfhBYtWgivvvqqeltqaqrQtWtX4dNPPxVu3Lgh/P7770K7du2EzZs3q/cxda1scQxXMW7cOOGJJ54Qjh07Jty+fVtYunSp0LJlS+H48eO8VhqUSqXw7LPPCkOGDBEuXbok3LhxQxg/frzQs2dPIScnh9fKAIVCIbz00ktCSEiI8NtvvwmCwO+gO6lo15B1hjSsN6RhvWEZd6032PjQUVhYKLRv31745Zdf1Nuys7OF0NBQYfv27c4rmJ0kJCQIb7/9ttC+fXvhqaee0qpIli5dKvTq1UsoKipSb5s/f77w+OOPC4Ig7VrZ4hiuICkpSQgJCREOHDigtf31118XPvzwQ14rDUlJScIHH3wgxMbGqrfFxMQIISEhwtmzZ3mtDJg7d64wfPhwrUqE18o9VKRryDpDOtYb0rHesIy71hsMu9IRExODvLw8dO/eXb3N398frVq1QmRkpBNLZh+XL19G5cqV8eeffyI0NFTrtcjISHTu3BleXl7qbd26dcO9e/eQmJgo6VrZ4hiuoFKlSli5ciU6d+6stV0mkyEzM5PXSkNQUBDmz5+Pxo0bAwBSUlKwevVq1KpVCyEhIbxWIk6fPo3Nmzfju+++09rOa+UeKtI1ZJ0hHesN6VhvmM+d6w02PnQkJiYCAIKDg7W216pVC/Hx8c4okl0NGDAAc+fORYMGDfReS0xMRO3atbW21apVCwAQHx8v6VrZ4hiuwN/fH4899hj8/f3V286fP4+TJ0+iX79+vFYGTJ06Fb169cLevXvx7bffonLlyrxWOrKysjBlyhR89tlnqFOnjtZrvFbuoSJdQ9YZ0rHesAzrDdPcvd5g40NHfn4+AEAul2ttl8vlUCgUziiS0xQUFIheBwAoLCyUdK1scQxXdPPmTYwbNw6hoaF45ZVXeK0MGDVqFLZu3YpnnnkG7733HqKionitdEyfPh3t27fHs88+q/car5V74DUsxc+rcaw3pGG9YZq71xtsfOjw9fUFAL2Lp1Ao4Ofn54wiOY2vr6/odQAAPz8/SdfKFsdwNadPn8bQoUMRFBSE5cuXw9vbm9fKgObNm6Nt27b4+uuvUa9ePaxfv57XSsOOHTsQGRmJ6dOni77Oa+UeeA1L8fNqGOsN6VhvGFce6g02PnSohq+SkpK0ticlJekNL5V3tWvXFr0OqtekXCtbHMOV/PnnnxgxYgRat26N9evXo1q1agB4rTQlJSVh586dEARBvc3DwwPNmjVTD+XyWpXatm0bUlNT0a9fP3To0AEdOnQAAMyYMQNPP/00r5Wb4DUsxc+rONYbprHekK481BtsfOho2bIl/P39ERERod6Wk5OD6OhodO3a1Yklc7wuXbrgzJkzKC4uVm87efIkGjVqhKCgIEnXyhbHcBU7d+7ElClT8N///hfLly/XiuPltXooPj4ekyZNwpkzZ9TbioqKEB0djaZNm/JaaZgzZw52796NHTt2qP8DgHHjxmHFihW8Vm6C17AUP6/6WG9Iw3pDunJRb1iY3atcmzdvntC1a1fhn3/+UecuHjhwoFBYWOjsotnVRx99pJU2MSUlRejSpYswefJk4fr168L27duFdu3aCdu2bVPvY+pa2eIYriA+Pl4IDQ0VXn/9dSExMVFISkpS/5eens5rpaGkpEQYPny48N///lc4ffq0cPXqVWHixIlCp06dhLt37/JamaCZMpHXyn1UxGvIOsM41hvSsd6wjrvVG2x8iCguLha+//57oUePHkL79u2FUaNGCXfv3nV2sexOtyIRBEG4ePGi8Morrwht2rQR+vfvL/z0009ar0u5VrY4hrP99NNPQkhIiOh/qmvGa/VQRkaG8Nlnnwm9evUS2rVrJ4wcOVK4cuWK+nVeK8M0KxFB4LVyFxXxGrLOMI71hnlYb1jO3eoNmSBoBNgRERERERHZCed8EBERERGRQ7DxQUREREREDsHGBxEREREROQQbH0RERERE5BBsfBARERERkUOw8UFERERERA7h5ewCELmbqVOnYvv27Ub3qVevHuLi4rB27Vr07NnTQSUjIiJXwzqDSBvX+SAy0+3bt5GSkqL+efny5YiKisKiRYvU25RKJTw8PNCiRQsEBAQ4o5hEROQCWGcQaePIB5GZGjVqhEaNGql/3rp1K7y9vdG5c2fnFYqIiFwS6wwibZzzQWQHp06dQosWLXD8+HEAwKJFi/DEE08gPDwczzzzDNq2bYvnnnsOZ8+eRVRUFIYMGYJ27dph4MCB2L17t9axEhISEBYWhm7duiE0NBTDhg3D+fPnnfBbERGRPbDOoIqEjQ8iB0lOTsZXX32F0aNHY968ecjKysL777+PCRMm4L///S/mz5+PGjVqYMqUKXjw4AEAID09Ha+++irOnTuHKVOmYM6cOfD09MTrr7+OqKgoJ/9GRERkL6wzqLxi2BWRg+Tn52Pu3Ll4/PHHAQCxsbGYN28evvjiCwwdOhQAEBQUhMGDB+PSpUuoW7cu1q1bh5SUFPz111/qYft+/frhhRdewPz587F69Wpn/TpERGRHrDOovOLIB5EDderUSf3voKAgAEDHjh3V26pXrw4AyMrKAgCcPHkSISEhqF+/PoqLi1FcXAyZTIb+/fvj1KlTUCgUDiw9ERE5EusMKo848kHkQJUrV9bbVqlSJfW/ZTKZ1mvp6em4c+cOWrduLXq89PR0BAcH27aQRETkElhnUHnExgeRA+lWFKYEBASgU6dO+Pjjj0VfV/V6ERFR+cM6g8ojhl0RubCuXbvi1q1baNiwIdq2bav+b/fu3Vi3bh28vb2dXUQiInIRrDPIHbDxQeTCRowYAQ8PD7z++uv4448/cPToUUyfPh1r1qxB06ZNze4VIyKi8ot1BrkDhl0RubBatWrh119/xbx58/DNN9+goKAAjzzyiFa2EyIiIoB1BrkHmSAIgrMLQURERERE5R/DroiIiIiIyCHY+CAiIiIiIodg44OIiIiIiByCjQ8iIiIiInIINj6IiIiIiMgh2PggIiIiIiKHYOODiIiIiIgcgo0PIiIiIiJyCDY+iIiIiIjIIdj4ICIiIiIih2DjgyqsGzduICwsDL1790abNm3Qq1cvjB8/HufOnXN20WymuLgYK1aswMCBA9G+fXs8//zz+Ouvv5xdLCIil1cR6ghNMTExaNOmDe7cuaP32uHDhzFkyBB07twZvXv3xvjx43H37l0nlJLKAzY+qEK6fv06Xn75ZSQmJmLKlClYuXIlPvroI6SlpeG1117DgQMHnF1Em1i4cCHmz5+P//u//8OiRYsQGhqKsLAw7Nq1y9lFIyJyWRWljlC5du0a3nrrLRQVFem9dvjwYYwZMwbBwcH4/vvv8dFHHyE2NhaDBw9GQkKCE0pL7k4mCILg7EIQOdonn3yCo0ePYv/+/ZDL5ertCoUCL730EmQyGXbu3OnEEtpGz5490bNnT8yZM0e97eWXX4aXlxc2btzoxJIREbmuilJHKBQKbNy4EQsWLICPjw8yMjKwb98+NGzYUL3PkCFDUFJSgs2bN0MmkwEAEhIS0L9/f4wdOxbvv/++s4pPboojH1Qhpaamqm+imuRyOSZPnozBgwdrbT979iyGDx+O9u3bo0uXLggLC0NiYqL69VOnTqFFixaIiIjAmDFj0L59e3Tr1g3Tpk1Dfn6+er+YmBiMHDkSXbp0Qfv27TF06FAcO3ZM61xRUVEYPXo0unXrho4dO2LMmDG4evWq3rm2bNmC//znP+jQoQP27dsn+nsWFhYiICBAa1v16tWRkZEh+VoREVU0FaWOOHz4MBYuXIixY8di0qRJovu0b98ew4YN07oetWvXRkBAAJKSkoxcRSJxbHxQhTRgwAAkJCTglVdewYYNG3Dz5k31a3379sXrr7+u/vnMmTPqn7///nt88sknOHfuHIYNG4acnByt437wwQdo2bIlFi9ejKFDh2Lz5s1YtmwZACAnJwcjRoyAj48Pvv/+eyxYsADe3t54++23ce/ePQDAyZMn8eqrr6KwsBAzZszAjBkzEB8fj1dffRU3btzQOtfs2bMxYcIEfPHFF+jSpYvo7/n6669jx44dOHz4MHJycvDnn3/iyJEjeOGFF6y+hkRE5VVFqSPatm2L8PBwjB07Fp6enqL7fPTRR3juuee0tkVGRiIzMxMhISFSLieRNoGoglq0aJEQGhoqhISECCEhIUK3bt2EDz74QDhx4oTWfq+++qowcOBAobCwUL3t7t27QuvWrYVly5YJgiAIJ0+eFEJCQoTvvvtO671DhgwRnnnmGUEQBOH8+fNCSEiIcObMGfXrqampwjfffCNcu3ZNEARB+N///icMHDhQKCoqUu+TkZEhdO3aVXjvvfe0zjV79myTv2N2drYwcuRI9e8YEhIiTJ061ZzLRERUIVWEOkLTtm3bhJCQEOH27dtG90tNTRUGDhwoPPbYY0J2drZZ5yASBEHgyAdVWOPGjcPRo0excOFCDB06FIGBgdi9ezfeeOMNfPfddwCAgoICnD9/Hv3794eHhweKi4tRXFyMOnXqoHXr1jh69KjWMTt16qT1c506dZCXlwcAaN68OYKCgvDOO+/gyy+/xL///gu5XI6PP/4YzZs3R15eHi5duoSnnnoKXl5e6mNUrVoV/fv3R0REhNaxTfU4KRQKvPbaa7h8+TK++OILrF+/Hh9++CH27NmDL7/80uLrRkRUEZT3OsISCQkJeP3115GcnIzFixfD39/f5ueg8s/L9C5E5Ze/vz+efPJJPPnkkwCA2NhYfPbZZ1izZg1efPFFVK1aFUqlEmvXrsXatWv13t+oUSOtnytVqqT1s0wmg1CW08HPzw+bNm3C8uXL8ffff2Pjxo2Qy+UYOHAgpk+fjry8PAiCgKCgIL3z1KxZE9nZ2VrbxPbT9Pfff+PKlStYuXIlHnvsMQBA165dERAQgC+//BIvv/wyHn30UeMXiIioAivPdYS5Ll26hHfeeQdFRUVYs2YN2rZta9PjU8XBxgdVOAkJCXjxxRcxbtw4vPbaa1qvNWnSBJ988gkGDRqEGzduoG/fvpDJZBg+fLhezCsArSwoUjRo0AAzZ86EIAi4cuUKdu/ejdWrV6Nq1aqYNGkSZDIZkpOT9d6XlJSEatWqmXWuBw8eAAA6duyotb1z584ASlNJsvFBRKStotQR5jhw4AAmTpyImjVrYv369WjcuLHdzkXlH8OuqMIJCgqCr68vNm7ciNzcXL3XVZP2QkJCULlyZbRu3Ro3b95E27Zt1f+1aNECS5YswaFDhySfd+/evejevTuSkpIgk8nw6KOPIiwsDE2aNEFcXBz8/PzQpk0b7N27F8XFxer3ZWVl4eDBg3rD9aY0adIEAHD69Gmt7ZGRkQBKKzkiItJWUeoIqSIjIzF+/Hg0bdoUv/32GxseZDWOfFCF4+npienTp+O9997DSy+9hKFDh6J58+YoKirCqVOnsGHDBgwZMgTNmjUDAISFhWH06NGYMGGCumdr/fr1iIyMxJtvvin5vB07doQgCBg7dixGjx6NqlWr4siRI7h+/TpGjx6tPteoUaMwYsQIDB8+HEVFRVixYgUKCwsxbtw4s37PAQMGIDQ0FFOnTsW4cePQpEkTXLhwAStWrEC/fv3QoUMHs45HRFQRVJQ6Qori4mJMnToVXl5eeOeddxAbG4vY2Fj164GBgWyMkNnY+KAKqW/fvti6dStWrlyJdevWISUlBV5eXmjRogWmTZuGl156Sb1vz549sXbtWixevBiTJk2Cl5cXHn30UaxatQrdu3eXfM5atWphzZo1WLBgAWbMmIHc3Fw0btwY33zzjTr1bY8ePbB27VosWrQIkydPhre3Nzp37ozZs2ejRYsWZv2Onp6e6vOtWLECGRkZaNCgAcaOHYuRI0eadSwiooqkItQRUkRHR6vT/L733nt6rz/77LNai9gSScEVzomIiIiIyCE454OIiIiIiByCjQ8iIiIiInIINj6IiIiIiMgh2PggIiIiIiKHYOODiIiIiIgcosKk2k1Pz4VSaX5ir8BAf6Sm5tihROUPr5V5eL2k47WSztJr5eEhQ/Xqle1QIvfFesP+eK2k47UyD6+XdI6uNypM40OpFCyqRFTvJWl4rczD6yUdr5V0vFa2wXrDMXitpOO1Mg+vl3SOvFYMuyIiIiIiIodwauNj+fLlGDJkiNF90tPTERYWhq5du6JLly74/PPPkZub66ASEhGRK2G9QUTk3pzW+NiwYQPmz59vcr8JEybg7t27WLt2LRYvXozjx49j2rRpDighERG5EtYbRETuz+FzPhITE/HFF1/g1KlTaNy4sdF9z549i4iICOzatQvNmjUDAMycORMjRoxAWFgY6tat64giExGRE7HeICIqPxw+8nH58mVUrlwZf/75J0JDQ43uGxkZicDAQHUFAgCdOnWCTCZDZGSkvYtKREQugPUGEVH54fCRjwEDBmDAgAGS9k1KSkLt2rW1tsnlclSvXh0JCQn2KB5Z6N8z99GvyyPwdHZBiKjcYb1B7iw1swBnriVjYJcGzi4KkUtw6VS7+fn5kMvletvlcjkKCwvNOlZgoL/F5QgKCrD4vRVBXkERNvxzDfsi72HNZwOdXRy3ws+WdLxW0lXka8V6w/2U92v15brTuJOQjad6NUZg1UpWHau8Xytb4/WSzpHXyqUbH76+vlAoFHrbFQoF/Pz8zDpWamqORTmMg4ICkJycbfb7KpK8gmIAQG5+Ea+VGfjZko7XSjpLr5WHh8yqh21XwXrDvVSEa5WVW/p5TEnJgVJRbPFxKsK1siVeL+kcXW+49DoftWvXRlJSktY2hUKB9PR0vWF1IiIi1htERK7NpRsfXbp0QXJyMmJjY9XbVBMGO3fu7KxiERGRi2K9QURkXFauAvGpzlv7yKUaHyUlJUhOTkZBQQEAIDQ0FB07dkRYWBguXryIiIgITJs2Dc8//zyCg4OdXFp6yPywBCIiW2C9QURknkk/HsenK0857fwu1fiIj49H7969sXv3bgCATCbD4sWL0aBBA7zxxhsYP348evbsienTpzu3oCRK5uwCEFGFw3qDLPXBwiNYv++qs4tB5HDFJUqnnt+pE85nzZql9XP9+vVx9ar2jSAwMBALFy50ZLGIyMWkZOSjRKmEp4dL9ZeQE7DeIFvJyivCgbNxGD6whUPOJzBIgAiAi418EJHzxdxJx91E18kQkltQhBFf7cPG/dedXRQiIrPJGBZApIWNjwogK08BQafLRVFUglPRiU4qkW1cu5eBdXuu6P1uZJ3vN53D9LWnnV0MNVUq50s3U51cEiLXsPfUXew9ddfZxSAiG0jJyMedBNfp8HMENj7KuZSMfHyw8KheRfXbgRtY/udlXLmTbvU5rt/PBADkFliev9wSszacxeELDxx6TiIiZ/vtwA38duCGs4tBRDYwZdkJfLnOdTr8HIGNDwe6k5CNiBjHjjakZJZmgLmo02ucllW60m9+ofUNhnPXU6w+BhERUUV0/kaKTepiInfBxocDfbnuNJb9cdnZxSByS4yuo/Ik6laqRaunU/mSkpmPhVsvYsWfFefZoKi4BIt/v4SkjHxnF4WchI2PCs6Vqr67idkVLu7RFRQWlbj0dedcTSpvLsWmYt7mC9h14razi+I0uQVFKFE6N92nPWTlKbBuzxUUFZdI2l9RVHoNKtKD+OVb6Th7LRmb/rnm7KKQk7Dx4cLiU3PxzfozdhmOtW32Dds0YaavPV1u4h4FQcDl22luMRl+1c5ofLnuNHLyi5xdFKIKISO7NOw1OaPAySVxjuISJcYvOIJf9jnv4dNeD/tbD9zE4QsPcFIjoYsqzPny7TSzjpWaWYAChe3q/3/P3MfIWeHIzlNAqRRw9a71cz6JLMHGhwv7/VAsbsRl4vIt825YVDqXJSrWedmRjl1KwNxfz+N4VILDzpmQlof7STlmv+/Gg9KEAUXFxnsh8wqKEHWLGaeIyDqqe81JJ2ZctNeDt6rDSSYyZnvysnn1weSlxzF74znJ+8cl5+Crn04b7LA8UpagJS2rEHtO3cF3G8+Z3SAyh6KoBCNnhWPRtouir7t+1xzZCxsf5ZypL7cbdMxbZMWflzHvtwtIL+thdLSUzPyy/zuuZ/OTFScxbU2E3Y6/ZHsU5m2+4MQREtf4sB65+AATfjgCZXn98hARAGDUd+HYc/KOWe+x9V3hthkhsdsOxeJWfDauSGhYJaTmAQDSs8yrI09fSZJcr/5x9BYAkaQ0DoilPXYpHvdcaL0q0sbGh5uJiElEWpb5D7QVbZGj+LIbq0Ji3C2Z9iA1F4DpERKbc7HP7vq/ryInvwglJWx8ELmaT1acxMhZ5jcaxAgCsOXgTYve66517qxfzmDVX9Gir5UolVi6Iwrf/nJG77VF2y7i98OxWtucmcFr9a4YvDs73G7Hz8xVoLik/M1ZchQ2PtyIIAhY9sdlfCPyxXcmdgA7RnaeAkcu2mFdk7K/3/q/r6oX9HM3giBg5/HbyMhxzkgXkbPcS8rBmatJzi6GU5Uolepwp4S00o4nSxsNrkwQBPx59JZFHZBSXbufaTBcWFXXi418nLuegr+O37ZbuYxJSs9zaPKCouISTFx0FD/tveKwc1rq2KV4l5zPycaHG0ozc5jUOOtbDu7Q9riXlIOwJceQnacwuW9OfpE6BaZSEJwWuqVr2R+XsXb3FSSWVa6m/LDlAsbNPyz5+OdvOK/ysNbdxBxsPxyL5W6YyloQBKzZFYMrd9Lx++FYTLcwdK5EqeT8MBejKCrBku2X1GGYpuQXFkNRZN5o7RdrIrBke5QlxTMpMS0PMTZYiNYcglA6EVpqsg5FUQnemn0Q24/csnPJpDFW7Ct3M6w69t2EbOw4egs/7ij9excqSiwaic4tKMKxsgaG4IQa3JaDQunZhZi6/CQ2hztu0c2i4tJrdvZaMoCyzq9jt1zmWUElMS0Pq3fFYPkf9rk/WIONjwpKZuWYsKKoxGSO+oPn4zByVjhyC5zf6t5z8g7SswsRZeLhLCe/CBN+OIJth0p7zf48egthS45Jfniwp8zc0oaTqaHeCT8cAQBcuJmKPDOHvY3NY3B2FIGxT5uq3IVmPrjpWrTtIo5ejLdBicxz9FI8Zm86h7+O38ZdjaQB1+5lYOSscMSXhbwZs/PYbczdfB4XrifbrFxknYs3U3HmarLkB6P35h/GpB+P27lU0n284iS+3yR9wrMtnIpOxHcbz+HYJWmTs/MVpd/5w+fj7FksM5TeF37Zd83mdZ/qPqdKz/vOvEOYtvqU2cdRhSXbg1YWMRvEnhUWlaBQYfi+rurVv+LgRrKmu4k52H7kFpa72FotqoZpRq7pTldHY+PDCZSCgNV/ReOuHSZDLfsjCit32v8LMHbuISwz8UULP1NaGaQ6cNK1itTenDsJ2TihkYEkt+xGdqasR0PVk5yRY9mX1xmpds0dYnX1kSvdrDF3E7NxQkIWMUEQEJdi+qFd07nrKVizO8ZkiRzlVFk2ICm9z4nppZW+q/W+kWEFimKk6KR8dcUQCVsoLlEi9kGWyf1UD6/GUuFm5ipcfoHGwqISbNeZA2EPqu+9PRUoiiVfb3P+LlKqx3HzD+OdeYf0tq/eFW3WyL6mnPwijJwVbrMw5oeNQs4xlYqNDydIySzAsagELP79kk2Pm1dQhIiYJJy4LD19oTXPxpFXXD/O2NRj4pfrTmPlTvHJda4iPjXXrjG+jpy0k5ieZ7QXS4rpa09jpYEJkZr2nb6Hz1edws24TKvOR2QpQ98s1fbIq8mYsuyEwfcXlyjx+apTuHjT/VNcb/73Bmb+HCk6ipeTX4SIGN16S8DJywl6sfw5+UWYuOiopNGktKwCLNl+yeoRUXMIBv6t6U5CNk5GOy4NuxRJGfm4cV/8XvnuvMNak9BVVcbkH48hbMkxs89lzoBIiYHGzLFLCWaP7KuoIhlUHaS24trNYdfCxocT/HHEPr0hogs2aTxYFhWXqBcscsE1Bi2mmgOTX1iML9edRlyy+WtduKqi4hJ8uvKUS4ViWDOa8/Hyk1hoIOe7rd2KL+1lTXZgyFxCWp7RsLhr9zLKbc82GRb7IMuiRnBGTiHiUnKx/m/TE1szcgrx+apTWiPNO47EYuSscLuMEhQWleDviLuSU07fKRvpF/v8L/8jCsv+uKw1CnQiKhErdkbj74h7WvvmlYUynb+hHV4oVorfDtzAmavJOOdioYhfrjuNFX+6SKeXAIz5/gCmLjthNJnNyehEvSiG1KxCoyOtlqS6vRGXiUwHJw65FZ+FkbPCzR4pF7Pt0M3S75yJ78WZq8mIvJJk04bx9fsZkueEqkTdSnVKhAYbH05gzsiEOcTS2ml+pD5fFYF351k2TGkLaVkF6h4HpSAYzE5RVKzEtXsZko/7a/h1AED07XTcScjWS/dnDkd8BUfOCsfX6yMNvn43MRsjZ4Xj2r0M/BZuu4wtaVkFVq1NIXWeUH5hMZb9EYUsA5P7Y+6k415SDub+es7gZMn7STm4r9OIdHZWtd8Px+LwhYfD9LrlycxV4JMVJ7HhH/FVm5WCgFkbzmLur+ftWEqRgpHTpWcX4uv1Dx/sou2wsNvRi/GIS8nFQY25D7vL0s0a6j02pLhEafIB8PdDsdgcfsPoCHjsgyxJI+SXb5eGFX638Sz+OV3a2FA1UjJNhLw6ey6aq4hLyVU3zMytyIolpg2f/9sFk/toPsjeNBFmJxYe/c36M/hi7WlkOXCegiq89ZKZI4xit9q9p+4C0A8/O38jBTc0OiCWbL+EH3dE4UcbJov49pez+HjFSb3tccm5BhcInrf5Ak47IYqFjY8KQiaTGY2htZUiI+tqTPrxOKYsLQ0x+Gb9Gbw1+6Dofpv2X8OsDWdt0gthKVWFZu5jXIlSKSn7yM04wzfl6LKK+Nz1ZJtNdE9Iy8OkH4+L5r7X/B1tkZv+6MV4RMQk4a9jtw3us/7vq7h8Ox23E0qvw8nLCVo9aNPWRGDaassXTBw3/zAiYmx7Q/3r+G2s23PF4DVSVfwGM9qUXei7SdJ7A419/m7GZWp9R/gQ5noM9SiKfTZVI3WuYM2uGExcrB9OoxQEbD14E+nZhcgrLP28G+u5nflzJH7cESU5RDc1qxC5Dkj3XVSsxNrddkqT6qS2/+erTuGagbApY8wpru166Y3frbJyFfhg0VFJK8KrGslFDlx3yWA9aaQIC7dexDfr9UeWYu44JkOh7giiJttmUJWGjY+Kyk5PKpv+lZbVxdjEQ1XFnGenLFlpWQUYOSscNx9Iv1FLvVxvzT6It+cc1Np2O6F0SPeBjRpTltxiVb3xjk6bmZCWh/O6q9vqKFSUYMXOaMzedA55BUUGY4h1b/jGhorNiQUWBEHdCHIlD1JykVM2eiT2+ft6/Rl8vsr8TDfkmr766eFo6Mqdl/H+wiNWH9PSpQ8iDawb8tHS49h98g5W7zIdMqSZ6enHHVFaP0tpjBhKGmKLByXduuWPo7csHo1SCoLW+kiapT4RlYBz14yHfKk6q8wZsNQdFdaVkatQr3dijSMXH2CHSJi4UhC0ymBxR6GJ31lKBMS8stEYc8ONjPlp7xWMnCV9gUJrOu2sGahWCoLVcyidhY2PcspZk2yT0/VvABduaD98GhsdAbQfHPdH3sPPf181qwznrqfohRlo/nS5rJI5eM4xqRkjoksr2gs3jT+E20tRsfPWf/hkhek5HqpQsIycQly/nyk5W9Oo7w6o/23NDfzIxXjMWBdpspHkaJ+tOoXIq6Zj1a/fL03HywUWXY+ln8sTlxORnVdkVk/D0Uv6KaJNhVlm5hTiz2O3JMd8p5Y9+EffTkd+ofH7uO7Igiq9689/X8XaPdJHHTQf7BLT8jDbQOpfsV/hgkYYTWZOocE02n8cvYU5FoRDbtp/HdPXnMa4BYfVqdA1r2WBogSLTCSW2XqwtMPOFo0FlfV/X8UnOuE36dmFWmm8pVi7+wr+NDCC/ZvGhH8pnSCa4dBSH9ZtMQpmSfa/Q+ftsJivHfwWfgPvzDvkllm22Phwc3HJOeqbnea911TPiIru/VoQBPy4/ZJZvUCm0tpuP3JLqxLU7I2buPioVqpbXRv3X7eokaCuGM3skrDHxKtiA92PuWXp/owNLYuVRspvtOeUZniV9b/Trfgs9U1c8xLlFRTj13+vm73QlVj+e0EQcOWu4ZEZe01liEsu7bVLEmk4G2NuccxZzEs3/aqxz/H+yPsAgGv3Mi0qFznfvN/Om9ij9O9vLFlBkgUpV1fsjMaOI7dwK978icGmUsXnGJjzpfq+qVy/J300NkUsbbuRG6KqV1gGGX7YehFrdsdIaqQfPB9nsDe/qFipzj74T+Q9dV1r6STpbAcloNCcr2ZoXppJVvTwW7KArSULKOraf0Y/3GjGutJRRksXWDRUF0k5Xl5BkVmjKsaoVqK/fDtNdEmDtXvE08Y7IgTfFDY+bOTizRScjE5AXkGRaLYbe4R13IzLxOerI4zG8hn6Khi6h5QoBUReTZY0scwcfxhYfTYzRyGepcscZb+ksXaG1HumOjTKyskPqsnZN+Iy1Q+HufnFWg/dCWUpJ1UT1GxpywHpE9WlPNRrhoRo2n4kFvtO38PxqIc9ilJu55qLXKkauooipehnWcqfwhZzVYwRS45wNzFbPYpmDt11S8QYS796KjpRNJTD3teA7Ccq1vTn6NileEz44QjuJDx86LfkgQ4AbtzPRGJanrrH1NQISX5hsXoiuIqqISD2eVYKguT5Bx8uMJAERaRI1qzGrRqZUCqNHyUlIx8/771qsDd/9a5oTPrxuEMXni2vGfI0/w5KpSApIcqN+5lGM1oqlYL07G4SdssvLDa5sK/qO3A3McdkcodUG86vUH0uFm27hMlL9TNiGupUmGqkfnEUL2cXwF3cT87Bhn3XMPHlUMi9PfVeX7BFO7Rk4ft94F/JW/2zqqVtS6oUomING1fr/TQUQ+xUIhdpiQ0zTwDaMau7T95RZ59xJaYqNt2J35pVt+qmrFlnqBZuuidhiF8QbHvNbydk46Nl+jfh5Ix8VA/wQV5hMTxkMq3vprlUvXHf/nIWALBm6gDtHTRH+coWFB3QsT4a1QnQO1ZcSi5izZh7BMDlVtElw6x5WNalaqTHpTz8Xoll9ssrLEZ+YTEq+Riu3lUpVZvWrSL6uu4z4IZ/rql7WaUwN2uQaBlEtklppJk8rmB8zomph0dVeKYqeYr1BTK9y4QfjujfZ8xk6waMsWKXKJW4m2j4/i/WTzJ69gE0raf9eRTL4GksHTAAjFtw2OhnX7Q8Rjpu3pt/GB2a18T4Qe0k7W8uRyUndLW+KY58SLRp/3VcvZeB6/czJbWqf/33usnWsrns8Rl1Rn5nqQz1EAuCtB4Sc48rVU5+Ed6Zd8jggkzmMvc3ycpVYOSscK20fUaPb8YJxK6NsRA+1edH82asCqsQW0zMGunZhZIm1yVnaA8/Z+cW4aNlJ7Dqr2h8sPAoJvwgPpFX8zKZk+pZLIRMJa+gGCcuJ2LBFvGRxM9XnZKUdcecT6wLf6UrHiv/Fpa8/cDZOJHPuPiRNLdm5ykw65czuH4/Q+8BPM9I7L1SEPQWQZVa95k7WXafzujLzuO38XeEtJFjzXvUxv3XzTqvOcz5/uk+S8zacNbGpSlVolTi3zP3RV+zxwK22w7FGhwtN0Y3C2SGBel2CxQlWvM8omLT8O0vZ0SfGQQAl2JTTf7NzlkwH9ARWdvcmcMbH0qlEgsXLkSfPn0QGhqKkSNH4s4dw73BSUlJmDhxIrp164Zu3brh/fffR0KC81YGnbv5PEbPPmByv+NRCRjz/UGUKJUG09OlZBZIevj/cUeU2fGkh84/wAljPVUad+J9p++p43dVxSlRCpi2+pS0yVqC6D8lM5y1Tvxoa3dfwWjNycZl/9eeTGi/J7Dr9zJQqCjB7pN3cOh8nMVZNlShWYYqakMfDdUkSt0wCEO+2/iwQlNlirmXlIOrRuZXGJOaWYClO6KQmlkAVd0pdQ0Qa2361/yHBlXjwFDqXVXRj116+H2ZteGs5En64xeUPuip87s76enf3LUc3Im71hvW/kVU33GZzLyJs+Z+FmQovX9eu5+pHtGTatuhm5j043G7PMQak5xRgO2HY7HnpLTGhzVZss5cTcLsjcavS5EFnY2jZx/QqgDN6fQwR4mRNLSmEgeYSxAezkPTpRcuZca98szVJIuy+91LysH1+5miDd17STmY/9sFuySfmbjoqOh23ZpS7Dln76m7GDkr3KYd2FG30lyqs9nhjY8lS5Zg06ZNmDlzJjZv3gxPT0+MGjUKhYXiN4YJEyYgPj4ea9aswdq1a5GQkIB33nnHwaW23B9Hb+GduYcMvn7WRBo+lZPRiUg3cfO8qDHUfSchGyv/epgOMdvA5D+gdJRm+trTeovC3U/ORdiSY0jPLsTJywkGJxiaG+MvlaFFhsSyujxIycV5jaxaqhtqnJnZPVRkKB2aN5YSGAB+2nsVM4z08EhZvMnca6Pb+2eKZtynKqPKF2si8N3GczgZbf4D2Xcbz+H0lSRMXnpcvTiTTFb6mVOFXOm6fj/D7POIsfXCU/mFxepeXd0RnrRs8x6mjpQ1fm0xSdIatlwx11VUtHpDZX9Zb3VOfpF6/ZhVf4lPItX1vYGsUJpuld3fcguKjTaajYVQZueVNu4152vZ4oHWXs9JpkLhxF5dsj3K8Po9ZY5ciDf4fq3j6/5iYlm6bqQYHVEVPY4RZ220wnt2runQLQGGO9Q+Xx2BFX9exh6deY6GPnuaD+pLtkdZtfaXolhp8DwKjXu2oYaIsTT1tsxUBpSO6AEwmsXK1FxRsQgdW5fTGg5tfCgUCqxZswbjxo1D37590bJlS8yfPx8pKSnYs2eP3v5paWk4d+4cxowZg9atW6NVq1YYM2YMoqOjkZpqfUypNc5cTZbUw3nNxA1Lahzm5vAbohOKVMRiIzXdTzb9pTW00ubSP6KwYmc0pq89Lfq62a1piZ3kmnMBbsZlYuSscNHwFUEQDN7sFv1+CSNnhVu04NyPO6TNRTB17aUwNoFOxR69Fiv+1M7XH35WvMfKENWDtodMhi/XndYKIdIsrbm9qbZkKFUkUDpqIdaY1WVOqF5GjgIFCv3PxEVbxMGLfAZ0B51KbBzu6WzuWm8oikqQrdNYzrUw002BBbn8pazpo/o0LdhyAdsO6c8fUUmVMKrxT+Q9CGUhWGt2S2sgSeHIRAqmRrEvxaYaqb8EFBWXmFzDJPys8V72tKwC/LD1ot4988gF7Y6dAxoPyaZCwXXv87rnk0rzmcfQyHC+iXCjk9GJep/N+wYat7Z8WJ646Ch+3ntVP5OgBgGCwdT+hhrzUbGpRufh/R1xFzuPiSfcKTvpw3+aUcf/dsD4mmpiETr/nrmv18nsLA5tfMTExCAvLw/du3dXb/P390erVq0QGanfe+zn5wc/Pz/s2LEDOTk5yM3NxV9//YVGjRqhWrVqDinzg+QcLP/zsl6FvmT7JYz+7oDJ1qepjB9/Hb+Nb9afQVSsBZWixufUUENoroHc5WL3z2v3MvQWyAOgN7dBt2f3xOVE0XNIDT+RUrl8XbYyqKUPcGJlMTZMrnfTk5XeIP89cx9/SsgwI6W+1Py9lxupHFR0R0hOX0nChn3XcC8px2aTCRUW9tqLDbPrXnKpo3zG6CZX2B9p3iiQpgKF8d5elYiYRPxqZrjXgt8uYOHWi1qx94u2Gc/3b1TZZ2VzuOlFPI8ZGH1yV+5YbwCl4Y6/6vy9UjIcG5rkaGeuJounw7WBiybWSZL84GZkN1NrEhnPAimTNCodEaNdXxbq3HNPlo0m6y5Ku0/nXqeZ6eyAkbAhU51jZwzcly0No5tvYH6bGNWfwlHRQEcuPLBq9ER3NKpAUYLo28Yb+ZvDb2C7RrbPaWsiDO57XeI8UkvnU4afjcPyP1wjYYlDs10lJpZ+qYKDg7W216pVC/Hx+r2Pvr6++PbbbzF9+nR07twZMpkMNWvWxC+//AJPT/2MU/bww+ZziL6VBi9P8cfJ3w7cwFPdHrH4+KlZhUjNKsSyPy5j8cTHtF+U2OMTEZNkUc++paztgbdHalmpZIC6V9rca2bspmGthLRcRMQkIjEtT+tGZcq/Z+/j37P3UbuGn13KJbWX9o6JnP8AsNjEYltSZORo99ps3H8d/+ncwKLK6915BlJ8lolLzsWJqASt8EWpdDsdbFW5Snm4ibLBCIsrccd6AzCc5rI8S80qQICf5ZnkNOmOZutmlBSj+8CuIjVDnO79xVyWhFzqdmweMDT6rHMP0SxrpoFw1AcpufjMgnkSACxadBGwTSSAvQgAEo2sh6MbVqY7IrP+76sY+3wbrW17JSY8MFYmlaISJRZuvWjyGn660rK/KVC6vpgrcGjjIz+/9I8ul8u1tsvlcigU+l8eQRAQHR2N0NBQjBkzBiUlJViwYAHeffdd/PrrrwgI0E9daUhgoL9FZY4uG1o0FrsfFCS9HIbIPGQICgrA2Fn78X+9GuPpXk0gGBkSCAoKQEAVy7ItBQUFwKcsFV1AgK/Z79WMKdf93eXeXuptnp7iA2t/HNV+uFYKAgKqVDKrHJp8fLxQo0ZlSfsGBPiiUKR+MPU3rF5N/+HeRyOdn+77/Sr7SCqPSnGJgGU6PRJ+fnLIJVaG5gxPS/281qxp2XdGxcPDdOu5msh11RQY6I8iE0Nj1ar7oXq+eRWelEaVOXNrTF1Tmca1UAoCqlWvDG8v6QPPeyPuYfATLUVf8/HRf9izxT3JVbhjvWFIZX/z7re28vacQxg3uD2e7N7Qrufx9/dBVRPfaXPtj7yPca90NLlfbkGxpAftGkb+pvmFxahe3Xj5FUXiDQxfX2/4+Zm+73vrpOrXrScNrQMRl5KLCXMPir5W2U8uut3ShgfgmPkB0bfTcSUuC3VqSqu/TZFyXzc2in1NJ4OkboejEqXPaXkm5uOo3E8zby2YalUrac1dDQz0h3/Z3zYnT4ESpYCq/qY/Y8bu/15e+h0w/mXHdGS94dDGh69v6Y1XoVBoVSQKhQJ+fvpf+N27d2PDhg04ePCgusJYunQp+vfvj99++w2jRo2SfO7U1BzpC8+Ukbp/crL1PVyCUsCD+AzEJedi5Y4oRN9MwVkjsaPJydnIzrJskaPk5Gwoynr/s8wcWv1i+XGtNRJ0f/fz15PV26TGnucXlmDwJ7vMKoemC9eT8XjHepL2zcouQG6u/s3d1N8wPUP/RnxKY2Vy3ffniZzDXDsO3USbJjWsPo6uFdukDYsfOm1dj46U70+GyHXV9OOWc0YX0QSAM1Hxkho69mTq8yPoXIuXP9mFFZP7ST5+UlqewXMcOa8fcmHJPcnDQ2bzh21bcLd6AzBciU9ZLJ7m2REWbzmPm/fSMLhfM7udIyenEOnptn1oLVEKNqljVS5fNz7iHXXNsiiCggIFMiWkXynSmURsizlauS4Sx2+J2esj8cWbXZxdDABAsYlkHQpFMa7FpkhO6jFthXlrwWToLFyZkpqD/NzS5y1Vw0rKei/Gvi9JIt/Pn3ZF47k+TZCWZn44l6X1hkMbH3Xq1AFQmgbR3/9hYZOSktCsmf4N8cyZM2jYsKFWT1XVqlXRuHFjo2kW3VFeYTHWaEzW1Uz7acjaPabXB7A13bj9Y0Ym6xoaAre1/MIS/Coxb/vfEXdRzUDPgbFc9oKT5vDGSUgUYK6dEldF/seK+RRSJRkZAgdgsuEBuN6CmmJ0y2hJCkVbrxvkLlhv2M6ek3eNp2C30ubwG5j0anu7Hd8WjM/bsGbRU5leFicxuln1bBGS6WoLyJlLtYCms901kR3z4s1UhC05Zrfz5+Rpj6icu5aC3u3qaG2zNuxdbH5oiVLAsYsP8Gj9qlYd2xwOnXDesmVL+Pv7IyLi4VBWTk4OoqOj0bVrV739a9eujbt376qH3QEgLy8P9+/fR6NGjRxRZEkMZWow1xUJ2Uk0WZrSc+exW+r5DtauwLt6l+2ymljjpomUuCp3E3NEJ63fT8rBuAWG5wCYmkSnmyHDVg/u5uT2tzVrszNJmQRvy6w4zmTPBzoVU5Nhy6vyWm84i7XzGkxJMpJNyFKutD6BtWy9rkZ5sOXgTWcXwSXozk0Sqx9NpXy2lCUjvNZwaONDLpdj2LBhmD9/Pvbv348rV65g4sSJCA4OxsCBA1FSUoLk5GQUFJSGAr3wwgvw9PTExIkTceXKFVy5cgUffvghvL29MWjQIEcW3Sh7TkS2B3MmNFsiv7BY8qqzrsLU39DUBLCD5+K09pGyuqmjFuYr7+4n5zh9VW9Tk9LFPj8lSvM6D6JiXaN30NHKa71RXv28VzxVKYkTS8tNpKI74i2l0znZDh0AtubwRQYnTJiAwYMHY9q0aRgyZAgEQcCqVasgl8sRHx+P3r17Y/fu3QBKs5ls3LgRAPDmm2/izTffhKenJzZt2oSqVe0/PGTtqIC5DGWsEOPKPUEb/rkmKSVoefPefOPZk3RlmLmIHYn7ee9VHBSZ9+DqFm61PvtXReFO9QbZ3k4ja/W4itvx0kbfdUnpqDJFaigtuR/dFPsZOaajIT5aZt5cE2eQCa78FGtDlkwc/O3ADaemhTVmwfje+GDRUauP061VsHqValtp36ymVsYGEtepZS2cMbEgFUnTMDhAUrrfikLKpERdrjrh3JmsmXD+bNgfdigREVUkX47sii8cEF0TNrQjWj9Szez3WVpvOHzkw524asMDgM1mmNm64QHYZiXnioAND9thw4OIiMqbDfscE8bo6FEINj7clG5WBFcidWVzIqLyRhAEZEoIjSAiMkV3wVp7STewvoy9sPHhpqxZPIiIiOxj3+l7GPbFXmcXg4hIsrV/XTa9kw2x8UFERGQj569zvhsRkTFsfBAREdnI1XsZzi4CEZFLY+ODiIiIiIgcgo0PIiIiIiJyCDY+iIiIiIjIIdj4ICIiIiIih2Djg4iIiIiIHIKNDyIiIiIicggvc3a+cOECjh49isTERIwdOxY3btxAmzZtUKNGDXuVj4iI3BjrDSIi0iSp8VFUVIQpU6Zg7969kMlkEAQBr7zyClauXIk7d+5gw4YNaNCggb3LSkREboL1BhERiZEUdrVo0SIcOHAAc+bMQUREBARBAADMmDEDPj4+WLBggT3LSEREbob1BhERiZHU+Pjjjz8wfvx4PP3006hUqZJ6e+PGjfHee+/h1KlTdisgERG5H9YbREQkRlLjIy0tDc2bNxd9rWbNmsjKyrJpoYiIyL2x3iAiIjGSGh+NGjVCeHi46GsnTpxAo0aNbFkmIiJyc6w3iIhIjKQJ52+++SY+/fRTFBcX4/HHH4dMJkNsbCyOHTuGn3/+GZ9//rm9y0lERG6E9QYREYmR1PgYNGgQ0tPTsWTJEmzbtg2CIGDy5MmQy+UYM2YMXn75ZXuXk4iI3AjrDSIiEiN5nY/Ro0fj1Vdfxblz55CRkYEqVaogNDQU1apVs2PxiIjIXbHeICIiXWYtMujv748+ffrYqyxERFTOsN4gIiJNBhsfr732mlkH2rBhg9WFISIi98V6g4iITDGY7crDw0Prv4sXL+LChQuQyWQIDg6GXC5HdHQ0oqOjERwc7MgyExGRC2K9QUREphgc+Vi/fr363xs2bEBSUhJWr16N+vXrq7enpKRg1KhRaNiwoX1LSURELo/1BhERmSJpnY8VK1Zg/PjxWhUIULpQ1NixY7F582bJJ1QqlVi4cCH69OmD0NBQjBw5Enfu3DG4f1FREebOnYs+ffqgffv2GDZsGGJiYiSfj4iIHI/1BhERiZHU+MjOzoa3t7foa8XFxVAoFJJPuGTJEmzatAkzZ87E5s2b4enpiVGjRqGwsFB0/+nTp2PLli346quvsG3bNtSoUQOjR4/m6rhERC6M9QYREYmR1Pjo1KkTlixZgtTUVK3tcXFxWLRoEXr27CnpZAqFAmvWrMG4cePQt29ftGzZEvPnz0dKSgr27Nmjt/+9e/ewdetWzJw5E/369UPTpk3x9ddfw8fHBxcvXpR0TiIicjzWG0REJEZSqt2pU6diyJAhePzxx9GuXTvUqFEDKSkpuHDhAgIDA/Hxxx9LOllMTAzy8vLQvXt39TZ/f3+0atUKkZGReOGFF7T2P3r0KCpXroz+/furtwUEBCA8PFzS+YiIyDlYbxARkRhJjY+mTZti9+7d+Omnn3D69GnExMSgRo0aePvtt/HGG28gICBA0skSExMBQC/LSa1atRAfH6+3/+3bt1G/fn0cPHgQS5cuRXx8PFq1aoWpU6eiadOmks6pEhjob9b+RETuqkaNyvD0lDSwbTesN4iI3EdQkLR7si1IXmSwZs2aCAsLs+pk+fn5AAC5XK61XS6Xi8b/5uTkIC4uDgsWLMDkyZNRrVo1LFu2DEOHDsWuXbtQs2ZNyedOTc2BUilYVX4iIneQkJgFubenWe/x8JDZ/GGb9QYRkXtITs42+z2W1huSGh+nT582uU+XLl1M7uPr6wugNIZXsyJRKBTw8/PT29/b2xs5OTmYM2cOWrRoAQCYN28e+vbti23btuHtt9+WUnwiInIw1htERCRGUuNj+PDhkMlkAABBKO0FUv2sIiWNYZ06dQAASUlJ8Pd/2FJKSkpCs2bN9PavXbs2ZDIZmjdvrt7m6+uLBg0a4P79+1KKTkRETsB6g4iIxEhqfKxdu1ZvW05ODk6dOoW9e/di8eLFkk7WsmVL+Pv7IyIiAk2aNFEfJzo6GkOHDtXbv3PnzhAEAVFRUWjXrh0AoKCgAPfu3cOTTz4p6ZxEROR4rDeIiEiMpMZHjx49RLc/8cQTqFy5MlatWiWpIpHL5Rg2bBjmz5+PmjVron79+pg7dy6Cg4MxcOBAlJSUIC0tDQEBAfD19UXnzp3Rs2dPfPTRR5gxYwaqV6+OhQsXQiaT4aWX/r+9Ow9vqsr7AP5N0qZb0j1NN0ppoS2FbrS0hRZaVkUWAUUoAyirqAWVTVBEHFCcUagv6iiIzOj4oI46MC44rzM66usgIoOOAh0GXMCl0LJTWlpo7/tHmzTLTXKTZm2/n+fxeeTm5ub05Ob+7jn3nN+ZbN9fSkREbsO4QUREYjqdDqW4uBh79uyRvP/ixYsxZcoUrFmzBhUVFRAEAdu2bYNSqURNTQ1KS0uxe/du/f5PP/00iouLsWjRItx00024ePEiXnrpJURFRXW26ERE5AGMG0RE3ZdM0A3GddBTTz2FHTt24LPPPnNWmVzCkawlcx5jXngi8j3PLS3zimxXljBuEBF5l+0rh9v9Hpdmu1qxYoXZtpaWFtTU1ODLL79ERUWF3R9MRERdF+MGERGJkdT42L9/v9k2mUwGlUqFhQsXMnUhEREZYdwgIiIxkhofH37Ix8hERL7CJKOtRzBuEBGRGEkTzletWoUTJ06Ivnbs2DH2YBERkRHGDSIiEmPxycfnn3+O1tZWAMDOnTuRmZkpuqDTJ598gr1797quhERE5BMYN4iIyBaLjY9du3Zh586dkMlkkMlkePTRR2GYGEsmk+n/PXHiRJcXlIiIvBvjBhER2WKx8XH//fdj0qRJEAQBt956K1avXo20tDSjfeRyOUJDQ9GnTx+XF5SIiLwb4wYREdlisfGhVqtRWFgIANiwYQPKysoQGRnptoIREZFvYdwgIiJbLDY+PvvsM2RlZUGlUiE2NhZHjhyxeqBBgwY5vXBEROQ7GDeIiMgWi42P2bNnY8eOHRgwYABmz55tNFZXR7dNJpOhurra5YUlIiLvxbhBRES2WGx8vPTSS/qxui+99JLbCkRERL6JcYOIiGyx2PjQjds1/X8iIiIxjBtERGSLxcbHG2+8YdeBbr755k4XhoiIfBfjBhER2WKx8bF69WrJB5HJZAwiRETdHOMGERHZYrHx8cEHH7izHERE5OMYN4iIyBaLjY+EhAR3loOIiHwc4wYREdlisfFh6tChQ9iyZQu++OILXLx4EZGRkRg8eDDuuOMOJCcnu7CIRETkixg3iIjIlKTGx2effYb58+cjPDwcw4cPR1RUFOrq6vDJJ5/gb3/7G3bs2IGMjAxXl5WIiCQwWVrDIxg3iIhIjKTGx6ZNm5CXl4dt27YhICBAv72xsRFz5szB448/jhdeeMFlhSQiIt/CuEFERGLkUnY6evQoZs+ebRRAACAoKAhz587FgQMHXFI4IiLyTYwbREQkRlLjIy4uDidOnBB97cyZM9BoNE4tFBER+TbGDSIiEiOp8bFy5Uo8++yz2LVrF1paWvTbP/roI2zevBmrVq1Ca2ur/j8iIureGDeIiEiMTBBsT00sKyvDhQsX0NTUBIVCgYiICFy4cAFXr16FIAiQyWQdB5TJcPjwYZcW2hFnztSjtdW+WZhzHvvQRaUhInKd55aWQemvsOs9crkMUVEqp5WBcYOIyHdsXznc7vc4GjckTTifMmWK3Qe2pLW1FU8//TRef/11XLx4Efn5+XjooYfQs2dPm+99++23sWzZMrz//vuS9ici6o68INkV4wYREYmS1PiorKx02gc+88wzeOWVV/DYY49Bq9Vi48aNmDt3Lt59912ziYmGfv75Zzz88MNOKwcRUVcl4YG2yzFuEBGRGMmLDF65cgXfffcdLly4IPr6oEGDbB6jubkZ27dvx7Jly1BWVgYAqKqqQmlpKd577z1MnDhR9H2tra1Yvnw5+vXrh71790otMhFRt9Rw5RoClZIv7y7T3eJGC+euEBHZJHmRwSVLluD8+fNGPWoymUw/dre6utrmcaqrq9HQ0IDi4mL9NpVKhczMTOzfv99iEHnuuedw9epVVFZWsvFBRGSD4XwKT+mOccMLHjgREXk9SY2PDRs2IDw8HA899BAiIiIcDmynTp0CAGi1WqPtMTExqKmpEX3P119/je3bt+ONN97Qv5+IiCzzgrZHt4wb3lDvRETeTlLj4/jx43jiiScwatSoTn1YY2MjAECpVBptVyqVaG5uNtu/oaEBy5Ytw7Jly5CcnNypIOLMLC5ERN4sOlqFCHWgR8vQHeNGi52ZsYiIvIVGo3bbZ0lqfKSkpKC+vr7THxYY2BYMm5ubjQJJc3MzgoODzfZfv349kpOTMW3atE5/tiMpE4mIfNG5s5dx7cpVu97j7FS73TFueMNEfyIiR9TVXbL7PS5Ntbt06VKsXbsWGo0Gubm5ohd8udz2eoVxcXEAgNraWqhUHYWtra1F7969zfZ/8803oVQqkZeXBwD6hapuvPFGTJgwAb/+9a+lFJ+IqFtRBytt7+Ri3TFueMNcGyIibyep8ZGQkACFQoH58+eLvi51gaiMjAyoVCrs27cPKSkpAID6+nocPnwY06dPN9v//fffN/r3v//9byxfvhzPPvss0tLSpBSdiIg8gHGDiIjESGp8rFq1CmfPnsWUKVMQExPj8IcplUrMmDEDVVVViI6ORmJiIjZu3AitVovRo0ejpaUFZ8+ehVqtRmBgoNmCUCdPngQAxMfHIyoqyuFyEBGRazFuEBGRGEmNj+rqajzyyCMYN25cpz9w8eLFaGlpwZo1a9DY2Ij8/Hxs27YNSqUSP/30E0aMGIENGzZg8uTJnf4sIiLyDMYNIiISI6nxodVqzTKNOEqhUOgzkZhKTEzEkSNHLL63qKjI6utEROQdGDeIiEiM7dl+AG6//XZs3rwZR48edXV5iIioC2DcICIiMZKefLzzzjs4efIkJkyYgJCQEISEhJhl9fjoo49cUT4iIvJBjBtERCRGUuMjNjYWsbGxFl+/ePGi0wpERES+j3GDiIjESGp8bNiwQXT7oUOHsGPHDuzZs8ephSIiIt/GuEFERGIkNT4MNTU14d1338Urr7yCgwcPQhAEDBgwwBVlIyKiLoBxg4iIdCQ3Pr7//nu8+uqr2LVrFy5evIi4uDgsXLgQkyZNQlJSkivLSEREPohxg4iITFltfLS0tODvf/87XnnlFXz++efw9/dHWVkZ/v73v+OJJ55gzxURERlh3CAiImssNj42b96M119/HXV1dejXrx9Wr16N8ePHQ6FQID8/351lJCIiH8C4QUREtlhsfPzud79Deno6Nm/ejLy8PP32hoYGtxSMiIh8C+MGERHZYnGRwSlTpuDnn3/GzJkzceutt2Lnzp1obGx0Z9mIiMiHMG4QEZEtFhsf69atw6effop169ahpaUFq1atQklJCdasWQOZTGa2WBQREXVvjBtERGSLTBAEQcqOx48fxxtvvIFdu3ahrq4O8fHxGDt2LMaOHYuMjAxXl7PTzpypR2urpD9Vb85jH7qoNERErrN95XC73yOXyxAVpXJqORg3iIh8gzvjhuTGh05rays++eQTvP766/j444/R0tKClJQUvPvuu3Z/uDs5EkTu3vx/uNRw1UUlIiJyDW9pfOh0p7jBxgcR+SJ3xg27FxmUy+UoLy9HeXk5zp49i507d+LPf/6z3R/sCzhAgIio87pT3CAiIusszvmQIjIyEnPnzvX63itH2dffRUREtnT1uEFERNZ1qvHR1dk3II2IiIiIiKxh44OIiIiIiNyCjQ8rpM7FVwf7u7gkRERERES+j40PJ9BGBHu6CD4tJjzI00XwWfdNz7O9ExGRm/1qVBoKMmI8XQwi8kJsfFghNcPi4puzXVuQLm5ITpyni+BRA9I0bv284kytWz/PGUIC7U7MR0QepA72h7+COSOJyBwbH1ZJa32ognx/2FV2apTTjhXKYWhOV+TEBoMv5lHwhjLfPyPf00UgInKYHxuD5CXY+LCiO2W78lfIEaBUOOVYfRLD7X4Pe7atm1jaS3S7TNY9gsmEIameLgLk8u5R10Ri5o/L9HQRqJP69oz0dBGIALDxYVV3anz0S4l02qKK8dEhTjqSsXnj+rrkuABwU1mKy47tDNpIy/OKkmPVbixJ5227b5jd77llZB8XlMT9bhnW22xbUAAb3uT9rF2DyDcIXvEMmYiND5eadV26p4sgyYIJmSjLiYezOtFd1UM8uH8ctq8c7pJj56RGu+S4YoblJWDjXSWIUAcAAAL8O36GjgxZWzYtF5OGiD8ZcZQr56HIHTjR/P2c81TOEdFhgQCcE7ivL0pCn8Qw/b83VZagX3JEp49L3UuOE4fJulKslzdYqhaVeroIRN2S2xsfra2t2Lx5M4YMGYKcnBzMmTMHx48ft7j/iRMnsGjRIgwaNAiFhYWYN28ejh496paydvZmI6r9psXbqYL8rQ7fcVY2qrgo7wpEeX3c1+AwNDgrFhHqAAzKaptonxLfcTPqSAswONAfPZ389GNEfqKk/SaUJDv1czsrKtT5vzl1sNKpx1tlMHckXBWA+ePtH85ielM3dlDPTpfLm/lS3HCHQIlPyzKSwo3+vamyxOHPFCDgqXuGSN5fJpNh7KBkuz/nBQeejDoqLMS5v23qemIiOu5/1s0rcvnnleclICo0wOWf42lub3w888wzeOWVV7B+/Xq89tprUCgUmDt3Lpqamsz2ra+vx2233YYrV65g+/btePnllxESEoJZs2bhzJkzri+shLZHaPvFa+WvBqA02zhrk7es/yF9WI74ja+zbmytPRHxxKT9eYZjmN00nL88Nx694kIBAKOL2m4YO9OLqTvH0nqEo6fWuQ2Q3ywchMfvGGx1H2cOGXLGcL2l03LNtg0fkNDp43bGlGGpqBjRB+vmFoq+7u+nwKLJWXZ9f4aXJlWQP24q8/ycGFfyqbjhRfLTHUt1aykjXkig9Ou0IAgOPQU37Ajz93PsFmXEAGmdJ+R+1m7gC/san6+/vWOQxY6VaBd27hp2lD52+yAo28/DaBd0bhkqyYrFrOvSEaZi48OpmpubsX37dlRWVqKsrAwZGRmoqqrC6dOn8d5775nt//HHH+PUqVPYtGkT+vbti7S0NDz++ONobGzEBx984PLySkm1G9g+STutRzjm3NDXaFxscmwolovcDFmyelYBlP7O/0qmj0qzvkP732kpTNjqHbp/pnEWoOzUKOSLDNsxXA8lt3fHU4dIdSCWTcvDrOulDVNzZNiOqe0rh3tkrP3N5an68qcmhmP7yuGINnyyJAjo30v6pEBN+3sDlX54aPZAp5ZVEx5k9PTu+qIks31086JGD+zR6c9zRiYWhcjNTlmuZxsfMsgwamAPJGhUFvfJS9M4/P2ZLob64kPXOXQcb+VrccNZvemGw/OcxdfmMWb2FB+SaCsG/Gq0jZhnwNNzrjThvjFCwh3CTW66o8OCMDQn3kOlMeCmzslRBeZx9M6J/dE/xfFEAbr7M7HY6ElubXxUV1ejoaEBxcXF+m0qlQqZmZnYv3+/2f4DBgzA1q1boVYb9wgKgoDz58+7urhwRoLPvsmRkhdaSokPRaiTh3gAkPxnLJmaa/eh+yVHIKW9J1+nl8m/l07LxcpfDUB5bsdFpE+PjsBa3E+LqLBAlEu8SfztHYNQ4YEJyO768eaZNNyUDvT+9U4Qv3GxlbHGdJiGIfHJ0m2N72AnBHCZu67wjvKiGzdrNRXp4t45d/O5uOGk09gVQwg7pf38T40Ptb5fO6mZ+NbfPtjikFxLPzk/P+ddKx6d7/qhNNb8ZmHH02V7bzLtrgUr1zDDDkEpxDqjpLBWZrHGsbMvuyX9Y518ROnsXdLggZn5KMiIwVSR2AsAAyXcW/ZOCMML9w1zSWdGZ7i18XHq1CkAgFZr/Eg3JiYGNTU1ZvvHxcWhpMR4jOqLL76IpqYmlJWVua6g7ZzVS3TnxP4umygtZYKy2NyVJK0Kfgrjrz9FYlAxNLksFTIZcF2h9Z7vtB7hFl+zN11sZGigxZvrriBS3dH7kxAdgrkiDQZbPX8rZwzQ//+WZR2/lUFOvvAOyY5Hxcg+uMHKnAPJTzSccD8h9pO1d0if6aP/bpLN2Gv5Wtxw2t2Sk8+7rBTpNz7W/oQHZhVg+8rhCPB3ThKIHDuSW9w2JgOTh6Zg9awCm/tKnQdl7xAXsWFDzopH/grX3pKprNwvhATZ14FkGKfEiD3RWTI1x+p73JGNK9agobt95XAsuSXH5tzFG0vaErp0ttE7b1ym/ncoNjrE9F5IVxsJGpXoPaQ2Mkj0aYmt43oDtz5vbGxsBAAolca9+0qlEs3NzTbf/9577+HJJ5/EbbfdhvR0+zJJRUVZHvJgSc/YUHz3ywWjbX4KOa61tOr/rVDIodF09LBdV9wTL+2uBgCj7VJoNGooJFx81MFKXGpoq6/AQH9cbLhqdf+wMPNepWdWjMCaLXvw5X/rEBYWbLGs1xX3hNJKkImMDEFMTCgqpw7A/+77Uf93KA16wsPDgqDRqBF2plG/TRXSceGSWk+G+1240iLpPToxEUGoPdfx+aafGRlhe75BmEqJsxfNx5hHqANw7pL5djHR0WqEGNwMm5ZDLpcjLKxjGNZzq0aKH0gGQABiLJwz2piOhmR8XLjR500a1gefHz4lelh//7bvLTw8yKxsYt+TVhuK6WOsP01RBysxsSwVv3/nsMXjAI6P7zYUFWn+PaalRGPLyhHYtOMAjpw4Z/SaXGY+vPLBeYMwfulfAAAPzSvGq+8fAQCERziWMEGlCrD4N9t7jdAZWZiEl//6HwBtc6mkfFe+ytfihrOy/QUGWL5RDJD4pFGt7rgBvP2mbMkNcbHjh0cYx4nNS8tR/cNZ5PTR4PKVq6h8/B9G+/dKjJB8HmqjQlBzpgGA8bmbnBCGr7/tmKdz00jx72/TPUOx5MlP9P/WaNRYeHMuKq7vixkP/dVo3wEZMTjwn1qzz5Iqt28snr9/JE6dbcDq5/YAAEJMbuqTYtU4cfKS0bbSnHh8+u9fzI5nWAa1hYZQgiYEP9ddNtue2iMcx348L7nsWX00GFeaitVb9pi9FmjHfB4AUKmsP5kTi0vDCpPx46lLInu3CQ4y/o1rNGpck4nHBUd/ZyEhAVg6fQBaBQEajRrDNGoUN13DW//8Qb/PA7OL8Pt3DmFiWSo0GjVmje+PWeP7O/R5hnolRWLskBR8890Zo3skncjIEGg0avi333NFhFu+NwOA4OAAyP2uWf1M3fuVyo7Pu664J/53r3HCjqp7y9waN9za+AgMbDtZm5ubjQJJc3MzgoOtB/aXXnoJGzZswMSJE7FixQq7P/vMmXq0SpnEYeDum7NwtuEaHt62V79t0pBeeP2jb/X/bmlpRV1dx4+pLCtW3/gw3C5FXd0ltBg0bCzp3ysSnx062Vae0l7Y+vYhq09pzp9vEP2s5qttN/DnLzRYLOvU8lTs+Nt/LR/7XAPqAowbJ3V1l9Dc3PGDOH+hEXV1l3DhQkc5IlVKo/1t+c3CQUb7nTtvfiE2tGRqDja99m/9v1tajCvI9DOvXjG/iZlY2gu7Pv0eQFva5LioYPxmx5dm+21YUIz1L+3HTwbBoV9yBA79cM5s39On69HQvqCiRqM2K0draysuXOhoJFmsm/Y/p+70JSjk5hdnw/fV1V1CVGggrivsgbq6S4hRd9R9dFggTl+4ov/31att39v5841mny1WFinfXWurgMuXO+rX0nuuXbN97gPAsAEJ+MeBn0Vfu3zpitm2urpL8Edb3QLA7Bsy8OoHR9HY1IL46BCj7820fD2jg3H1Wvvv5Jz578hQxcg+eOXv5hmV6uubLP7N1uqvb88IVB83Poe2Li+HTAY0X23VNz5aWwVJ35UtcrnMoZttV/O1uCG2f2ZyBA4bXA+CAhRobLLegdLUZLlTKVjigrCX6zt+D8EKGc6c6TjXizO12GuhE6KpyfyG5ty5BtQZ3GT7A8hOjoBw9RqCRZ5uRqv8JZ+Hd0zoh9uf+AiA8bk7rigJb33ynf7flo4XbrBIrcxgv4sN5tf13nGh+saHlPJtvKsES5/5p1EZFADiDXr2bylPxb+Pntb/Ozc1yqzxIVanpmUYmKbBJ1+aX9vCQpSijY/Fk7Ow+H/+z2r5Dc+1+ktNiM8QbzRcuWK9E9PU1Wbr+4tdz+vqLuHsWcuxu6HR+Puqq7uEsxauu6YxXarLl5tQ3p4cSFf3Tc0dv8X7Z+Qj2E+Guyb2N9rHUSGBfrh85Zr+WBfb43uz2G/s7GWE+Mlwrf3e7Nz5BtTVWW4UNjQ0mY1gMaUr/9WrHX+j6XedFKNC78Rwt8YNtw67iotr+8Jra2uNttfW1po9UtdpbW3FunXr8Mgjj2DevHl49NFHIRe52XIFdbASBX216G0wVi7bxrhIex9vPbqg2OL2rcvLbb6/KFOLF+5zbEhXZ/rnynLj4aeQGaWhkyo+OgT9ku0b26qxM91vD5PJvba+ljBVAB4wmTgfaBDgy/MSzHoNw9sbUEp/BeaP72c0UTytRzhmj8kw+xxb5TBKu2uFvY+nH79zMEaKPJ4NVLqn/0HXSVXWPu/HNEkB0PnhTSt/NQChIUrcMqw3Fk3OsrifNiIY8VFtT0gqRopPTN14Vwk23tU2dEc3xM1WjWfaeU7bIpb9yk8hh0IuR1CAn35YSbiN4Q++ztfihpi7bzYebhIV2rn05Uo/OVYZDK3UKewbg7smZemz5pgyTU5gasktbeWM6OQ5ZTi2PSTQ9jXG9Knn/TPycf/MfJs3VtaOAaDTQ+C2rxwuqS7iomw/OZcypyIxRvpN3PaVw0WfZG24XfyeQkygxEasqYoRfVDSP872jj5G6Sc3ut9zVJVBSusNtw8S3UeA4/NmDN1Q7Jtp1t16Nc7IyIBKpcK+ffv02+rr63H48GEUFoqnoVy7di127NiBNWvWYOnSpZ4Zu2ZwAUuIDrE5f2PZtFwsk5DlqiQr1uIiTHIZLF547a0CSwGnM9fl7NQobF0+TFKmENPidjawOUJ3kb6xtBdWVOQZvaZLJRxto4GjjQzWNzgA4OE5hVj5q7YbgB4xKiyZmotxgy1fCJT+cov1pfuu54ztizg7Us56/STtduV5CRgxIFE/ab13QhhuLnduetge7YH7+qIks0n7ADB9ZBpS40ONUk8bjrG+a1KWfm5ShDpAf54umJCJkQWJRnOi1rZnptqwoNihNNH3TMnGQ7d1LjvZTWWpWDA+E0sdSBThS3w2bhgwvDGWfnNovcxiv32FXI78dA3mjs1EeV5HAg/DZB86PURudPv1isQdE/tj8tAUiWUUZ5jG3DRbkZQFTHsnhtk9j+Lpe4aabZMa47SRwRg/ONmuz7NXamIYtq8cbvWGPyxEaTFzYFluPJZMN29wmtJGBOOZe83rwtD2lcOxfeVw/G6JY3OgRg3s4fCwJ9P4b5isxNF4NrLAcmpl0xTnw/JE9nXw8rBkag4WiKzTZDiPyFp86OwaaiVZcfBTyHH/jHx9x4GvcOuwK6VSiRkzZqCqqgrR0dFITEzExo0bodVqMXr0aLS0tODs2bNQq9UIDAzE+++/j9deew0LFy7E6NGjUVdXpz9WcHAwQkI6vy5AZ4kFNak9oHPHmp+0noiR7vpI3dOLLDtSyTrLnBv64siP5zF8QILRd/bc0jLJF1E/hRybKktRc+YyBKHtyZilBegEQJ92WRsZjFNnGzAk23LKQF2RlH5yqIKcs6ijFK4831LjQ/HtLxcBtD0dMk1/OSQ7Dl8fO43//nTB7L23T+iHLW8dAmDec2op+5etBBE9Y9V4QDdRVeTvzk/XID/d/MYoOiwI002ekCRp1fpOCHWwP+obzYcgFGVqLc6tyU51zgKXxf06EgjMHpNhdX6Wr/K1uLFgQj/87xc/4utjbcNwTJNxaCOCEaEOwE919ShI12D/kTqxw9gm5bdr5QeeanJzHxUaCJlMZjmDjsQ7eVudc3dN6o+9h07h+fY5YDprbitAsB3zDp64czCW/a5j7oI+G6ED17QN7SMQ3t7zg/1vdlDPWDWOn5Q2zEUQgFuvz4BGo8amHQds9s5b6uTqTIdjTHgQas832t7RhqAAP6QmhOLbn3WxQY4eMeE48uN5JGnNG8RSyjx9ZBoSokPw4l+PmL1mmuI8WORJnL+fHJGhAbhpqH0dYv17tT3hEwRAoZDhub8ckvxe0dNU4rlbkhWL8SW99I0X0/NhwYRMbH3rsNhbAXhHym23P4devHgxpkyZgjVr1qCiogKCIGDbtm1QKpWoqalBaWkpdu/eDQB46623AADPPfccSktLjf7bunWru4su6u6bs116fLEnI/ZeW01PNNOeUmedh6tuHagfCiBWRm1kMJ5cVIpRTlgTItHKmgkAzG7CQoL8MSI/0ayxqPRXWHzCZGkV4bioECsL4nUcP61HOB6ZX4Rh7T2Q7m5XPjK/CL+9Q/yRr44rF2qaOsJ6OmR1sBIrDVb71g0BGz84GUUGi5z9z2LjVZXtGYphkRdcfJ1tSE68Ub11Jb4UN/r2jMAjd3QMu5g63Px3MH98JuaPyzTKvKOjy4IT4NCQGO89sQsyYjChJBkymQzF/czP0+TYULt6gn0tpbTp9f/eW3LwP4tLARg/HTKMbWJPQZ5fUa5/4u5Muqe+loaHPbLAekpiWxkvrdF1TFrrCDQ9N4bmxmN5RZ5+uHRnnm7KZTI8cWeJw9kgB/WPRWFfB669DhZ57thMq7+V4kzrf4fp/YutUR+u4PbVdRQKBZYtW4Zly5aZvZaYmIgjRzpark8//bQ7i+YQS8OmHKWNCEbd+Svw92sLPI8uKMbzbx/WTzAHYPcJaxqOotsnynXmZljs7x6cHW9zwlKokxbg8lPI8fyKcsz/7UdG27cuL8elhqsOLRylu3aFq5S4obgnSrPi8If3/tOpcsZFheCHmrY6Udvxtz8yvwjXTCbUGfU8SbjHkDIOed64TBz6/ix+t+sg4qKC8atRaXj1g6PonSCednlTZQkarlzDuUtNsPbA6LYxGXavU+CnkIv2muoC0qShKdhpMPnUKbx41FpWahT+uu+Ep4vhFbpa3FAF+WNQ/1j8+ZNvjbZrI4KwYEImPvjXz+jTIwwftU8+Nk2gAUg7dXVPmUvbn7rqrotjijs/1txeybFq/fh0mUyGZ+4diivN1ifdG5o3rq/Ztvum5+FL3UTv9goxWp1dpIs3t080/vSPY9ILbkBqZ42UG2F/Rccw3NvGZOC29jmCJVlt58X5+o7J14ZDp00TjBhOaBbTOyEc33x3xuLrOqVZcejfKwpfHTuNr451TJ4vz0tAaLC/aGITnapFpfj4K/EkIFLcMrw3AgMUGJgRgy+qa/HVsdNWF9vdtmIYZDLpDQ5nPbXxtF/PKURrJx9b3DMl2+xnMXes+W/L1Ty7tKePcHXu6blj++pvfBfe2A///elCp+ZFhKmUuFBvOQWllJ/r7BsyRLOxRKgDsG5uoV2Px111fyd2MfRTyB2uu9BgJW4uT0VBugYxDqZVFVPUT4tWQbCrV1qs4fDruYVYuPFj442drNygAD8UZMTgsduLoQpSIjjQD0un5VncP1wVgHBVgOiTn0cXFOP+rW2Z4Yzy1bvgBCjLjcfHX5mnrfQWCZoQqB2YC2Kob88IbF85HHMe+9BJpSJvtqmyBIFKBfz9FLi+KAk/1dYDaDsPdMM77BUdHmTUoA8K8MPvlgyF0l+BYyLDHQ3l9YnGV0dP66Ofs+NgUICfXZ1Eg0UmOKcnRSA9qW0VdLlMhs13D7E6p8LWkLD184qwetvnZtvlMhlaBQHzRcb3S6W7DCZqVDj28wWLazXJZDIkadU4X2+7wQB0PAkeU5QkOgz4zon98cGBn/DGR99anUcjk8lEY6dY4gJTYSIdazeW9sIL71ajV1wovq+5iF5x4mlcBbQ1xnVDWxebjibRnXYG1WXtCYnhcgirbm2bV1eQEYPdJqllXSEk0E/fMSuTtXUmO5M9CQks8VPIcdUkE5kjnbWdLofbP9GHOWuI1bThvY2yGpVkdVxUgwP9zR57Wmrca0UyTT14awG2mIw77J0Qhtze0Ua9GYbEGtLW5ifY0/DwNWKZI5T+DgzzMahTuUxm9B2L0UYE4ae6y1bnYEgZzz9zdBpiHHga54zGlsWngBLvWWx1Yhm+PPO6dEwfmaZPz2kvXZB21aJe6+YW4dUPzNPu2rJ6VgHWv2S+ajd1feEmazwkaEIwfWQfFFrotLA3A6COaYa7cJUS5+ubzX5/i27Kxnt7jxullvd2lib3hgb7Y2NliehrhiwNp5XLZWhtEYySVViTEB1icT7P3VOyceLkJUnD6nSxR2VhbiHQcXkdNbCH2TkEtA3fu6G4J0YP7CFpyGqAI/FOhK4sQQEKVFWWGA1jnlDSC1V/+reltxoRaXuI0l3Ls1OjcOC/dYhQB0gajWGv3y4chBXPfSb62lMGSQ+eXz5McsdbuEqJq9da9b/plPgwfPvLRaglLCLtCG8Ysui53IM+KMRJN92jC5Ocks7N9EY5NESJXnGhZtlE/P3kWHxztvmKo64ccuKEmcy2VvEG2iYtz5TQM+NoSsEnF5WiqrJU8v66EtvbR7hsWh7uvjlbP9zO5udYqJthAxLtTmPsKq6czC6XyTq1KOGcsX0x67p0faYzZzD9c3VjgLNSpH8fhhm1qPsQW2FZJpNhZEEPhFq48QwNUWLD7cXQRgbrEyU48mzC05nA3EImszpsSCqpI14CAxS4c1KWaEa7kEB/9LVxjZ40JAXayGBcX9gTs65Lx23X245xtr5FqXPlDOcLTBnmWEbCOycaL8gXpgpAgEHnWVZKlD6VuT38FHKL1+yiTC0mDemFiva5hmKpyp1B6vwIuVxmdA9jbURGdmoUnrpnqL6OpgxLxcNzCu1+cjLJSpa6gX3bEkloI4LRI0aF9fOsz+FxNT75cJAqyB+DHZyc1Fli6ejWzyvSt5JvLk/F9UVJuOepT432ufX6DPzpw2N2t3qdtWKvFGOKkuDvJ0doiBLpPcLx4Av7rO4/+4a2sYp//F/zLBc6z9w71OHHivbOUXE0joeGKJEjIQ+8zoO3FmD/kVpJDTQx/XtF4uD3Zx16ryRecj9jqRiqIH+jVKSukBIfanOYh5iZo9NEe7WdnZqYvIdCwjX2lmG9zeYqaCOCsWFBMT47eBL/sjNrVu+EMAwbkICC9Bg8/or54qmmvCFDjr2cVWR7LrNTh/fWdwD1jFUjKjQQZy6aL35qTc9YtT4Dl83rlIUv5sFbCxzqoDGM92OKHFtDoiAjBodcEF+srX0ml8swvqQXgLYnyAkGT7F031+oi54k2PLMvUP1v/E+7R3PIwsScfKs+AKKfgq5aCpsW8YPTraYMrosJx6l7al5ActP+dyFjQ8Hbb57iO2dnETKdc/wRJLLZaI3zZnJkVg7RzwvvjU3lvbC6QtXcOC/jqaElH7lntK+DoQzVIzog29/ueCR8Yyu1jNW3ale+8U3Z5uN+3QGa6sm2yL1LLF0E2TasbluXpGkBc68zbAB4jnrfXUxKepgaaiNlJvk64uS8Mvpy/j0mxqnlEUul2Hm6PQuMRHXFnf2hVxXaDyZv09iGM4cvuJg9jI7mMTZXnGeeYo6Mt/ymhuOsLUwphjTJ8i6Q4gttOsOhvcgYaoAfaeUpcaHK8hkMvgpvKRXEGx8SOOk7pMeMSr82D6J0F2s9XyMH5yMYz9dQKqFzEY6QQF+qBjRBwf+W+eRdUgcNWpgD4yCZy423s5PIXdOylonuGtSfzyz86DN/ayde0un5pqNZU9wU89OakIYas40uLSR68hChuRd1s8rEvke7bug5qdr8Ok3NUiO5fA8KSzdtw5I0xitwu5Ks2/IwJjinhbXhOpqLKWot0jq/ZUTbj586f6lq2Pjwx6dPHEfvLUALa2db8mUZMXi029qkJ4UbnW/qsoSq42PPonhDq9wasuEkmTs/0+t1X1Cg/1xscF8cTayzDCThzdy5Ox2xrC+fh5YuFJn5uh0jMxP7FSGOmseWzjIaBVg8k3iwxzs+8Xk9I7GE3cOtjx01geHRrmFySWmcnKW2z7a30/h0BAaqbz1K0+JD0WEOgATh4jPQ2BDoHtjRHOjtt5m+9+nMclqlZ4UIWkseZhI5gt3SdSoMH98Jp5/+zDiRBbSAoDH7yyBrUvnAzPzEeKDvb6OPCqWYt3cQnxXc9Elx3YmR+KKr0589feTI8lFkxsB88W1qHsTbXh05qdj5VrljKuYbvhPkgtvwN3FW2/0Ac9Ms5tY2gsf/1s85XlQgJ9Dk8q7I1+cT9VZbHz4gLGDeqKnVo3YqGCcOuuZ8blhKiWiQgP0ubilGNQvFoP6WZ6UL2UyXKqVvOTdkTYyGFonL2zpa1y97g6R+3hPg9tVbf+CjBg8fsdgRElcoM8VOvunec+35D5ShqVNKO2FCaVtk7yzUqKw6/++d9lwts58B7o1RnrEuK6TyBG+2uHmDGx8+ACFXK7PhOTsRWuk8lPI259UEEkjuTeHbQkip3DlT8lW6lJNeCDqzotndfJkw6Orc0Wv+RN3Dra4xoSlJ7G94hzL7ucO+emebwC7W1VlCRqbzReK9hZsfEjg6gXJvMnim7PxRbVj2YqIwlVtv5VgN2WZmjw0xa2poG2JCg3EWTvTalL3VdQ3Bu/s+QEF6TGdOk6nRl1J2GdMUZLNbE0PzCxwa/YeV3n6niGofPL/PF0M+znxMmhpTtFv7xiE4ADfGwYNdL8GcJgqAN48boSNDwnmjO2L/f+pRZLW98es2pLbO9pshXVfsGRqjlm2I3KOqNAAnLnYJGnfyUNTkaRVIyslChcuN0t6T2c67sZZyGnuKY8tLPZ0EciHJGhUXtNbLLZ+lD1CQ5R2r4vkao7MvQt20mLC7tKZxVbtFR3m/Plntr6h6LAg9IhRYVr74oHUNfBuTQJ3LEhGndO/l3vSJtrSu32OSkq8N/c52Gf9vGJclZhhy99PbnWejzWmw18TNCH4ue6y+Y5ePEzLGasoE5FzdXZs/b235OAfX/4MpRtv9KVaNi0X+6proe5EYpahOfFOLJE0Ur8Rfz85HnZgfTJfoFt3w50NSG/BxgeRE/VPicKTi0q9rgewMwKUCgTAxQtkiXjotoFoNUhN3Z0n5xFZE9ueUbA3E3S4RHpSBNKTIsy2q4P9ccnD6eLjokJwY/ukb0d4y5O37qgoU4uTZxscXknel7HxQeRkXanh4Q663h/TMeV+Cjk80OYh8jnJsaH47R2DEGVp/Q8rdItjZvQMN3sttH2+oyfTtnuz9fOKUN/Y1vhQBflD4UXzz8j7KeRyTB6a6ulieAQbH0TkUf1TojBpaApGDLA+tFE35CHAny0SIlOOjscPDVbi0QXFiBaZkFuSFQulv7zTE+I9RR2shJ9CjinlrrnBUwcr9Qlpnlxc6pLPIO8zqqAH9jExT6ew8UFEHiWXyTBewsTx8rwENF1tweiBPVxfKKJuJNbC2kEymQyFfbVuLo3z+PvJsXV5uVs+S85hoY7xwRX2Kkb2QcVIToDvDDY+iMgn+CnkGDso2dPFICI3um96Hlp97/6UbGFjrVtj44OIXMKvfV0cjYVFqYiIbBGb6E1Evo2NDyJyCVWQPyonZ6FPIjPwEJFvSdR0/XW9iDyFjQ8icpkBaRpPF4GIyC4b7ypBUAATWxC5ChsfRNTtmab5JaLuK0LN1MJErsTGBxF1a/dMyUF8tHi2HyIicj51kD8ykyMwtrj7LbBHbHwQUTeXnRrl6SIQEXUrcrkMy6bleboY5CFyd39ga2srNm/ejCFDhiAnJwdz5szB8ePHLe5/7tw5LF26FIWFhRg4cCAefPBBXL582Y0lJiIiT2LcICLqOtze+HjmmWfwyiuvYP369XjttdegUCgwd+5cNDU1ie6/ePFinDhxAr///e/x9NNPY8+ePVizZo2bS01ERJ7CuEFE1HW4tfHR3NyM7du3o7KyEmVlZcjIyEBVVRVOnz6N9957z2z/AwcOYN++fdiwYQP69euHoqIirF+/Hu+++y5++eUXdxadiIg8gHGDiKhrcWvjo7q6Gg0NDSguLtZvU6lUyMzMxP79+832379/P6KiotC7d2/9tvz8fMhkMtH9iYioa2HcICLqWtw64fzUqVMAAK1Wa7Q9JiYGNTU1ZvvX1tYiNjbWaJtSqURERAROnjxp12dHRTm+YJBGo3b4vd0N68o+rC/pvKWuUuLDvKYslnh7+ezhq3Eju3c0Tp653KW+C1dhHUnHurIP68u6MYOS9XXkzrpya+OjsbERQFsgMKRUKtHc3Cy6v+m+uv0tjfW15MyZerS2Cna9B2j7MurqLtn9vu6IdWUf1pd03lJXW5eXQy6TeUVZLHG0ruRyWadutl3FV+PGPTdnA4BXnyvewFt+276AdWUf1pd1W5eXQy5vi2fujhtuHXYVGBgIAGYBo7m5GcHB5nn2AwMDRYOLpf2JiFzJTyGHXC7zdDG6FcYNIiLn81PIIZd5Jp65tfERFxcHoO2xuKHa2lqzR+oAEBsba7Zvc3Mzzp07Z/ZYnYiIuh7GDSKirsWtjY+MjAyoVCrs27dPv62+vh6HDx9GYWGh2f4DBw5EXV0dvvvuO/023YTBgoIC1xeYiIg8inGDiKhrceucD6VSiRkzZqCqqgrR0dFITEzExo0bodVqMXr0aLS0tODs2bNQq9UIDAxETk4OBgwYgKVLl+Lhhx/GlStXsGbNGtx4442iPV5ERNS1MG4QEXUtbl9kcPHixZgyZQrWrFmDiooKCIKAbdu2QalUoqamBqWlpdi9ezcAQCaT4emnn0aPHj1w6623YtGiRRg8eDDWrl3r7mITEZGHMG4QEXUdMkEQ7E/l4YOY7cr1WFf2YX1Jx7qSrqtlu/Ikxg3XY11Jx7qyD+tLOnfHDbcOu/KkzmSoYXYb6VhX9mF9Sce6ks6RumL9mmPccA/WlXSsK/uwvqRzZ9zoNk8+iIiIiIjIs9w+54OIiIiIiLonNj6IiIiIiMgt2PggIiIiIiK3YOODiIiIiIjcgo0PIiIiIiJyCzY+iIiIiIjILdj4ICIiIiIit2Djg4iIiIiI3IKNDyIiIiIicgs2PkS0trZi8+bNGDJkCHJycjBnzhwcP37c08VyuS1btqCiosJoW3V1NWbOnInc3FyUl5fjhRdeMHpdSl054xjeoL6+Ho8++iiGDx+OvLw8TJ48GR988IH+ddZVh1OnTmHJkiUoKipCXl4eFixYgKNHj+pfZ12J+/7775GXl4fXX39dv4115Ru6Yx0yZtjGuCEd44ZjfDJuCGRm8+bNQnFxsfDRRx8J1dXVwrx584QRI0YIV65c8XTRXObll18W0tPThWnTpum3nTlzRigsLBQeeOAB4dixY8Kf//xnITs7W3jttdf0+9iqK2ccw1tUVlYKo0aNEv75z38KP/zwg/Dss88KGRkZwp49e1hXBlpbW4Xx48cLFRUVwjfffCMcO3ZMWLRokTB48GChvr6edWVBc3OzMHnyZCEtLU3405/+JAgCf4O+pLvVIWOGNIwb0jBuOMZX4wYbHyaampqE3Nxc4eWXX9Zvu3TpkpCTkyPs3LnTcwVzkZMnTwq33367kJubK1x//fVGgeTZZ58VSkpKhKtXr+q3VVVVCSNGjBAEQVpdOeMY3qC2tlZIS0sT/vGPfxhtnzVrlrBkyRLWlYHa2lrhnnvuEb777jv9turqaiEtLU04cOAA68qCjRs3CjNnzjQKIqwr39Cd6pAxQzrGDekYNxzjq3GDw65MVFdXo6GhAcXFxfptKpUKmZmZ2L9/vwdL5hqHDh1CSEgI3nrrLeTk5Bi9tn//fhQUFMDPz0+/raioCD/++CNOnTolqa6ccQxvEBQUhOeffx4FBQVG22UyGS5cuMC6MqDRaFBVVYVevXoBAE6fPo0XXngBMTExSEtLY12J+OKLL/Daa6/hN7/5jdF21pVv6E51yJghHeOGdIwb9vPluMHGh4lTp04BALRardH2mJgY1NTUeKJILjV8+HBs3LgRPXr0MHvt1KlTiI2NNdoWExMDAKipqZFUV844hjdQqVQYOnQoVCqVfttXX32FvXv3ory8nHVlwcqVK1FSUoK//vWv2LBhA0JCQlhXJi5evIgVK1Zg9erViIuLM3qNdeUbulMdMmZIx7jhGMYN23w9brDxYaKxsREAoFQqjbYrlUo0Nzd7okgec+XKFdF6AICmpiZJdeWMY3ijb7/9FpWVlcjJycHUqVNZVxbMnTsXb7zxBsaNG4e77roLBw8eZF2ZWLt2LXJzczF+/Hiz11hXvoF12Ibnq3WMG9Iwbtjm63GDjQ8TgYGBAGBWec3NzQgODvZEkTwmMDBQtB4AIDg4WFJdOeMY3uaLL77A9OnTodFosGXLFvj7+7OuLOjTpw+ysrLwyCOPICEhAX/84x9ZVwZ27dqF/fv3Y+3ataKvs658A+uwDc9Xyxg3pGPcsK4rxA02PkzoHl/V1tYaba+trTV7vNTVxcbGitaD7jUpdeWMY3iTt956C7Nnz0a/fv3wxz/+EeHh4QBYV4Zqa2vx9ttvQxAE/Ta5XI7evXvrH+Wyrtq8+eabOHPmDMrLy5GXl4e8vDwAwK9//WuMHTuWdeUjWIdteL6KY9ywjXFDuq4QN9j4MJGRkQGVSoV9+/bpt9XX1+Pw4cMoLCz0YMncb+DAgfjXv/6Fa9eu6bft3bsXycnJ0Gg0kurKGcfwFm+//TZWrFiBMWPGYMuWLUbjeFlXHWpqarBs2TL861//0m+7evUqDh8+jNTUVNaVgSeeeAK7d+/Grl279P8BQGVlJbZu3cq68hGswzY8X80xbkjDuCFdl4gbDmb36tI2bdokFBYWCn/729/0uYtHjx4tNDU1ebpoLnXfffcZpU08ffq0MHDgQGH58uXC0aNHhZ07dwrZ2dnCm2++qd/HVl054xjeoKamRsjJyRFmzZolnDp1SqitrdX/d+7cOdaVgZaWFmHmzJnCmDFjhC+++EI4cuSIcO+99wr5+fnCiRMnWFc2GKZMZF35ju5Yh4wZ1jFuSMe40Tm+FjfY+BBx7do14fHHHxcGDRok5ObmCnPnzhVOnDjh6WK5nGkgEQRB+Prrr4WpU6cK/fv3F4YNGya8+OKLRq9LqStnHMPTXnzxRSEtLU30P12dsa46nD9/Xli9erVQUlIiZGdnC3PmzBH+85//6F9nXVlmGEQEgXXlK7pjHTJmWMe4YR/GDcf5WtyQCYLBADsiIiIiIiIX4ZwPIiIiIiJyCzY+iIiIiIjILdj4ICIiIiIit2Djg4iIiIiI3IKNDyIiIiIicgs2PoiIiIiIyC38PF0AIl+zcuVK7Ny50+o+CQkJ+Pnnn/H73/8egwcPdlPJiIjI2zBmEBnjOh9Edvrhhx9w+vRp/b+3bNmCgwcP4qmnntJva21thVwuR3p6OtRqtSeKSUREXoAxg8gYn3wQ2Sk5ORnJycn6f7/xxhvw9/dHQUGB5wpFREReiTGDyBjnfBC5wOeff4709HTs2bMHAPDUU09h1KhR+PDDDzFu3DhkZWVhwoQJOHDgAA4ePIiKigpkZ2dj9OjR2L17t9GxTp48iaVLl6KoqAg5OTmYMWMGvvrqKw/8VURE5AqMGdSdsPFB5CZ1dXVYt24d5s2bh02bNuHixYu4++67sXjxYowZMwZVVVWIjIzEihUr8MsvvwAAzp07h2nTpuHLL7/EihUr8MQTT0ChUGDWrFk4ePCgh/8iIiJyFcYM6qo47IrITRobG7Fx40aMGDECAPDdd99h06ZNeOihhzB9+nQAgEajwZQpU/DNN98gPj4ef/jDH3D69Gm88847+sf25eXlmDhxIqqqqvDCCy946s8hIiIXYsygropPPojcKD8/X///Go0GADBgwAD9toiICADAxYsXAQB79+5FWloaEhMTce3aNVy7dg0ymQzDhg3D559/jubmZjeWnoiI3Ikxg7oiPvkgcqOQkBCzbUFBQfr/l8lkRq+dO3cOx48fR79+/USPd+7cOWi1WucWkoiIvAJjBnVFbHwQuZFpoLBFrVYjPz8fq1atEn1d1+tFRERdD2MGdUUcdkXkxQoLC/H999+jZ8+eyMrK0v+3e/du/OEPf4C/v7+ni0hERF6CMYN8ARsfRF5s9uzZkMvlmDVrFv7yl7/g008/xdq1a7F9+3akpqba3StGRERdF2MG+QIOuyLyYjExMXj11VexadMmPProo7hy5QqSkpKMsp0QEREBjBnkG2SCIAieLgQREREREXV9HHZFRERERERuwcYHERERERG5BRsfRERERETkFmx8EBERERGRW7DxQUREREREbsHGBxERERERuQUbH0RERERE5BZsfBARERERkVuw8UFERERERG7x/3j1NA27cFFHAAAAAElFTkSuQmCC\n", |
|
|
345 |
"text/plain": [ |
|
|
346 |
"<Figure size 1080x576 with 4 Axes>" |
|
|
347 |
] |
|
|
348 |
}, |
|
|
349 |
"metadata": {}, |
|
|
350 |
"output_type": "display_data" |
|
|
351 |
} |
|
|
352 |
], |
|
|
353 |
"source": [ |
|
|
354 |
"fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(15, 8))\n", |
|
|
355 |
"fig.subplots_adjust(hspace=.35)\n", |
|
|
356 |
"((ax1, ax2), (ax3, ax4)) = axs\n", |
|
|
357 |
"plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)\n", |
|
|
358 |
"ax1.plot(data[0, 0, :], label = 'Vibration signal')\n", |
|
|
359 |
"ax1.set_title('Sensor 1')\n", |
|
|
360 |
"ax1.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
361 |
"ax2.plot(data[0, 4, :], label = 'Vibration signal')\n", |
|
|
362 |
"ax2.set_title('Sensor 4')\n", |
|
|
363 |
"ax2.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
364 |
"ax3.plot(data[0, 8, :], label = 'Vibration signal')\n", |
|
|
365 |
"ax3.set_title('Sensor 8')\n", |
|
|
366 |
"ax3.set(ylabel='Amplitude', xlabel='Time')\n", |
|
|
367 |
"ax4.plot(data[0, 12, :], label = 'Vibration signal')\n", |
|
|
368 |
"ax4.set_title('Sensor 12')\n", |
|
|
369 |
"ax4.set(ylabel='Amplitude', xlabel='Time')" |
|
|
370 |
] |
|
|
371 |
}, |
|
|
372 |
{ |
|
|
373 |
"cell_type": "markdown", |
|
|
374 |
"id": "2725d4d2", |
|
|
375 |
"metadata": {}, |
|
|
376 |
"source": [ |
|
|
377 |
"Let us save the processed data that we will use to train the models later." |
|
|
378 |
] |
|
|
379 |
}, |
|
|
380 |
{ |
|
|
381 |
"cell_type": "code", |
|
|
382 |
"execution_count": 30, |
|
|
383 |
"id": "5ff37db6", |
|
|
384 |
"metadata": {}, |
|
|
385 |
"outputs": [], |
|
|
386 |
"source": [ |
|
|
387 |
"np.save('data_processed.npy', data)\n", |
|
|
388 |
"np.save('labels_processed.npy', labels)" |
|
|
389 |
] |
|
|
390 |
}, |
|
|
391 |
{ |
|
|
392 |
"cell_type": "markdown", |
|
|
393 |
"id": "0be91573", |
|
|
394 |
"metadata": {}, |
|
|
395 |
"source": [ |
|
|
396 |
"## 2. Feature Engineering" |
|
|
397 |
] |
|
|
398 |
}, |
|
|
399 |
{ |
|
|
400 |
"cell_type": "markdown", |
|
|
401 |
"id": "7653ec36", |
|
|
402 |
"metadata": {}, |
|
|
403 |
"source": [ |
|
|
404 |
"To train our machine learning models, we will use Feature Engineering. Before that, let us see what Feature Engineering is." |
|
|
405 |
] |
|
|
406 |
}, |
|
|
407 |
{ |
|
|
408 |
"cell_type": "markdown", |
|
|
409 |
"id": "8ef425e6", |
|
|
410 |
"metadata": {}, |
|
|
411 |
"source": [ |
|
|
412 |
"### What is Feature Engineering?" |
|
|
413 |
] |
|
|
414 |
}, |
|
|
415 |
{ |
|
|
416 |
"cell_type": "markdown", |
|
|
417 |
"id": "72bd09c4", |
|
|
418 |
"metadata": {}, |
|
|
419 |
"source": [ |
|
|
420 |
"Feature Engineering is an important step in solving Machine Learning problem. It is a process to extract useful information based on domain knowledge from raw data. The extracted useful information is a set of features that help machine learning algorithm to solve the problem with improved performance. " |
|
|
421 |
] |
|
|
422 |
}, |
|
|
423 |
{ |
|
|
424 |
"cell_type": "markdown", |
|
|
425 |
"id": "a05c364a", |
|
|
426 |
"metadata": {}, |
|
|
427 |
"source": [ |
|
|
428 |
"A feature is a numeric representation of raw data. There are many ways to extract features from raw data. The right features are relevant to the task at hand and should be easy for the model to ingest. Feature engineering is the process of formulating the most appropriate features given the data, the model, and the task. " |
|
|
429 |
] |
|
|
430 |
}, |
|
|
431 |
{ |
|
|
432 |
"cell_type": "markdown", |
|
|
433 |
"id": "0b7c9356", |
|
|
434 |
"metadata": {}, |
|
|
435 |
"source": [ |
|
|
436 |
"The number of features is also important. If there are not enough informative features, then the model will be unable to perform the ultimate task. If there are too many features, or if most of them are irrelevant, then the model will be more expensive and tricky to train. Something might go awry in the training process that impacts the model’s performance." |
|
|
437 |
] |
|
|
438 |
}, |
|
|
439 |
{ |
|
|
440 |
"cell_type": "markdown", |
|
|
441 |
"id": "549bff69", |
|
|
442 |
"metadata": {}, |
|
|
443 |
"source": [ |
|
|
444 |
"### Feature Extraction" |
|
|
445 |
] |
|
|
446 |
}, |
|
|
447 |
{ |
|
|
448 |
"cell_type": "markdown", |
|
|
449 |
"id": "7304958d", |
|
|
450 |
"metadata": {}, |
|
|
451 |
"source": [ |
|
|
452 |
"After normalizing the signal, we will start extracting features to help shallow Machine Learning Algorithms perform better on this dataset. We will be extracting simple yet powerful statistical features to classify these signals. There are few features that are specific to vibration signal analysis such as Crest factor, Shape factor. At the root, these features are also statistical in nature.\n", |
|
|
453 |
"\n", |
|
|
454 |
"1. mean\n", |
|
|
455 |
"2. median\n", |
|
|
456 |
"3. min\n", |
|
|
457 |
"4. max\n", |
|
|
458 |
"5. peak_to_peak\n", |
|
|
459 |
"6. variance\n", |
|
|
460 |
"7. rms\n", |
|
|
461 |
"8. absolute_mean\n", |
|
|
462 |
"9. shape_factor\n", |
|
|
463 |
"10. impulse_factor\n", |
|
|
464 |
"11. crest_factor\n", |
|
|
465 |
"12. clearance_factor\n", |
|
|
466 |
"13. std\n", |
|
|
467 |
"14. skewness\n", |
|
|
468 |
"15. kurtosis\n", |
|
|
469 |
"16. abslogmean\n", |
|
|
470 |
"17. meanabsdev\n", |
|
|
471 |
"18. medianabsdev\n", |
|
|
472 |
"19. midrange\n", |
|
|
473 |
"20. coeff_var\n", |
|
|
474 |
"\n", |
|
|
475 |
"In the appendix, all the features are explained." |
|
|
476 |
] |
|
|
477 |
}, |
|
|
478 |
{ |
|
|
479 |
"cell_type": "markdown", |
|
|
480 |
"id": "8533eeb3", |
|
|
481 |
"metadata": {}, |
|
|
482 |
"source": [ |
|
|
483 |
"The are a few reasons behind extracting these features. These features are easy-to-calculate. Besides, these features captures the signal characteristics good enough in most of the cases. The paper published by W. Caesarendra (attached in Reference section, number 10) discusses the benefits of using these features over using complicated features such as frequency domain features. In some cases, the frequency domain features reveal more information about the underlying nature of the signals. In most of the cases, these features are sufficient." |
|
|
484 |
] |
|
|
485 |
}, |
|
|
486 |
{ |
|
|
487 |
"cell_type": "markdown", |
|
|
488 |
"id": "6811a42b", |
|
|
489 |
"metadata": {}, |
|
|
490 |
"source": [ |
|
|
491 |
"Following class comprises of 20 features." |
|
|
492 |
] |
|
|
493 |
}, |
|
|
494 |
{ |
|
|
495 |
"cell_type": "code", |
|
|
496 |
"execution_count": 1, |
|
|
497 |
"id": "29401d92", |
|
|
498 |
"metadata": {}, |
|
|
499 |
"outputs": [], |
|
|
500 |
"source": [ |
|
|
501 |
"class Featurizer():\n", |
|
|
502 |
" \n", |
|
|
503 |
" def __init__(self, data, axis = 1):\n", |
|
|
504 |
" self.data = data\n", |
|
|
505 |
" self.axis = axis\n", |
|
|
506 |
" \n", |
|
|
507 |
" def mean(self):\n", |
|
|
508 |
" ans = np.mean(self.data, self.axis)\n", |
|
|
509 |
" return ans\n", |
|
|
510 |
"\n", |
|
|
511 |
" def median(self):\n", |
|
|
512 |
" ans = np.median(self.data, self.axis)\n", |
|
|
513 |
" return ans\n", |
|
|
514 |
"\n", |
|
|
515 |
" def min_value(self):\n", |
|
|
516 |
" ans = np.min(self.data, self.axis)\n", |
|
|
517 |
" return ans\n", |
|
|
518 |
"\n", |
|
|
519 |
" def max_value(self):\n", |
|
|
520 |
" ans = np.max(self.data, self.axis)\n", |
|
|
521 |
" return ans\n", |
|
|
522 |
"\n", |
|
|
523 |
" def peak_to_peak(self):\n", |
|
|
524 |
" ans = np.max(self.data, self.axis) - np.min(self.data, self.axis)\n", |
|
|
525 |
" return ans\n", |
|
|
526 |
"\n", |
|
|
527 |
" def variance(self):\n", |
|
|
528 |
" ans = np.var(self.data, self.axis)\n", |
|
|
529 |
" return ans\n", |
|
|
530 |
"\n", |
|
|
531 |
" def rms(self):\n", |
|
|
532 |
" ans = np.sqrt(np.mean(self.data ** 2, self.axis))\n", |
|
|
533 |
" return ans\n", |
|
|
534 |
"\n", |
|
|
535 |
" def abs_mean(self):\n", |
|
|
536 |
" ans = np.mean(np.absolute(self.data), self.axis)\n", |
|
|
537 |
" return ans\n", |
|
|
538 |
"\n", |
|
|
539 |
" def shapefactor(self):\n", |
|
|
540 |
" ans = self.rms() / self.abs_mean()\n", |
|
|
541 |
" return ans\n", |
|
|
542 |
"\n", |
|
|
543 |
" def impulsefactor(self):\n", |
|
|
544 |
" ans = np.max(np.absolute(self.data), self.axis) / self.abs_mean()\n", |
|
|
545 |
" return ans\n", |
|
|
546 |
"\n", |
|
|
547 |
" def crestfactor(self):\n", |
|
|
548 |
" ans = np.max(np.absolute(self.data), self.axis) / np.sqrt(np.mean(self.data ** 2, self.axis))\n", |
|
|
549 |
" return ans\n", |
|
|
550 |
"\n", |
|
|
551 |
" def clearancefactor(self):\n", |
|
|
552 |
" ans = np.max(np.absolute(self.data), self.axis)\n", |
|
|
553 |
" ans /= ((np.mean(np.sqrt(np.absolute(self.data)), self.axis)) ** 2)\n", |
|
|
554 |
" return ans\n", |
|
|
555 |
"\n", |
|
|
556 |
" def std(self):\n", |
|
|
557 |
" ans = np.std(self.data, self.axis)\n", |
|
|
558 |
" return ans\n", |
|
|
559 |
"\n", |
|
|
560 |
" def skew(self):\n", |
|
|
561 |
" ans = scipy.stats.skew(self.data, self.axis)\n", |
|
|
562 |
" return ans\n", |
|
|
563 |
"\n", |
|
|
564 |
" def kurtosis(self):\n", |
|
|
565 |
" ans = scipy.stats.kurtosis(self.data, self.axis)\n", |
|
|
566 |
" return ans\n", |
|
|
567 |
"\n", |
|
|
568 |
" def abslogmean(self):\n", |
|
|
569 |
" ans = np.mean(np.log(np.abs(self.data)+1e-12), self.axis)\n", |
|
|
570 |
" return ans\n", |
|
|
571 |
"\n", |
|
|
572 |
" def meanabsdev(self):\n", |
|
|
573 |
" if self.axis == 0:\n", |
|
|
574 |
" ans = np.mean(np.abs(self.data - np.mean(self.data, self.axis)), self.axis)\n", |
|
|
575 |
" else:\n", |
|
|
576 |
" ans = np.mean(\n", |
|
|
577 |
" np.abs(self.data - np.mean(self.data, self.axis).reshape(self.data.shape[0], 1)), self.axis)\n", |
|
|
578 |
" return ans\n", |
|
|
579 |
"\n", |
|
|
580 |
" def medianabsdev(self):\n", |
|
|
581 |
" if self.axis == 0:\n", |
|
|
582 |
" ans = np.median(np.abs(self.data - np.median(self.data, self.axis)), self.axis)\n", |
|
|
583 |
" else:\n", |
|
|
584 |
" ans = np.median(\n", |
|
|
585 |
" np.abs(self.data - np.median(self.data, self.axis).reshape(self.data.shape[0], 1)), self.axis)\n", |
|
|
586 |
" return ans\n", |
|
|
587 |
"\n", |
|
|
588 |
" def midrange(self):\n", |
|
|
589 |
" ans = (np.max(self.data, self.axis) + np.min(self.data, self.axis)) / 2\n", |
|
|
590 |
" return ans\n", |
|
|
591 |
"\n", |
|
|
592 |
" def coeff_var(self):\n", |
|
|
593 |
" ans = scipy.stats.variation(self.data, self.axis)\n", |
|
|
594 |
" return ans\n", |
|
|
595 |
" \n", |
|
|
596 |
" all_funcs = [mean, median, min_value, max_value, peak_to_peak, variance, \\\n", |
|
|
597 |
" rms, abs_mean, shapefactor, impulsefactor,crestfactor, clearancefactor, \\\n", |
|
|
598 |
" std, skew, kurtosis, abslogmean, meanabsdev, medianabsdev, midrange, coeff_var]\n", |
|
|
599 |
" \n", |
|
|
600 |
" features = ['mean', 'median', 'min_value', 'max_value', 'peak_to_peak', 'variance', \\\n", |
|
|
601 |
" 'rms', 'abs_mean', 'shapefactor', 'impulsefactor', 'crestfactor', 'clearancefactor', \\\n", |
|
|
602 |
" 'std', 'skew', 'kurtosis', 'abslogmean', 'meanabsdev', 'medianabsdev', 'midrange', 'coeff_var']\n", |
|
|
603 |
" " |
|
|
604 |
] |
|
|
605 |
}, |
|
|
606 |
{ |
|
|
607 |
"cell_type": "markdown", |
|
|
608 |
"id": "95bbc577", |
|
|
609 |
"metadata": {}, |
|
|
610 |
"source": [ |
|
|
611 |
"Let us now use the above class to extract the features for our dataset. The class needs to be instantiated with a dataset and axis along which we want to extract features. We will extract features for each sensor's output" |
|
|
612 |
] |
|
|
613 |
}, |
|
|
614 |
{ |
|
|
615 |
"cell_type": "markdown", |
|
|
616 |
"id": "b6487e79", |
|
|
617 |
"metadata": {}, |
|
|
618 |
"source": [ |
|
|
619 |
"Loading the data" |
|
|
620 |
] |
|
|
621 |
}, |
|
|
622 |
{ |
|
|
623 |
"cell_type": "code", |
|
|
624 |
"execution_count": 32, |
|
|
625 |
"id": "41e8fafa", |
|
|
626 |
"metadata": {}, |
|
|
627 |
"outputs": [], |
|
|
628 |
"source": [ |
|
|
629 |
"data = np.load('data.npy', allow_pickle = True)" |
|
|
630 |
] |
|
|
631 |
}, |
|
|
632 |
{ |
|
|
633 |
"cell_type": "code", |
|
|
634 |
"execution_count": 33, |
|
|
635 |
"id": "2993025e", |
|
|
636 |
"metadata": {}, |
|
|
637 |
"outputs": [], |
|
|
638 |
"source": [ |
|
|
639 |
"num_sensors = 16\n", |
|
|
640 |
"featurized_data = []\n", |
|
|
641 |
"for sensor in range(num_sensors):\n", |
|
|
642 |
" sensor_feature = []\n", |
|
|
643 |
" f = Featurizer(data[:, sensor, :], axis = 1)\n", |
|
|
644 |
" for func in f.all_funcs:\n", |
|
|
645 |
" sensor_feature.append(func(f))\n", |
|
|
646 |
" featurized_data.append(np.array(sensor_feature).T)\n", |
|
|
647 |
"featurized_data = np.array(featurized_data)" |
|
|
648 |
] |
|
|
649 |
}, |
|
|
650 |
{ |
|
|
651 |
"cell_type": "code", |
|
|
652 |
"execution_count": 34, |
|
|
653 |
"id": "1d305881", |
|
|
654 |
"metadata": {}, |
|
|
655 |
"outputs": [ |
|
|
656 |
{ |
|
|
657 |
"name": "stdout", |
|
|
658 |
"output_type": "stream", |
|
|
659 |
"text": [ |
|
|
660 |
"Shape of the featurized data: (16, 140, 20)\n" |
|
|
661 |
] |
|
|
662 |
} |
|
|
663 |
], |
|
|
664 |
"source": [ |
|
|
665 |
"print('Shape of the featurized data: ', featurized_data.shape)" |
|
|
666 |
] |
|
|
667 |
}, |
|
|
668 |
{ |
|
|
669 |
"cell_type": "markdown", |
|
|
670 |
"id": "7f76f47a", |
|
|
671 |
"metadata": {}, |
|
|
672 |
"source": [ |
|
|
673 |
"Now we will merge the features from all the signals of each datapoint to form a complete feature vector" |
|
|
674 |
] |
|
|
675 |
}, |
|
|
676 |
{ |
|
|
677 |
"cell_type": "code", |
|
|
678 |
"execution_count": 35, |
|
|
679 |
"id": "2b243641", |
|
|
680 |
"metadata": {}, |
|
|
681 |
"outputs": [], |
|
|
682 |
"source": [ |
|
|
683 |
"num_datapoints = featurized_data.shape[1]\n", |
|
|
684 |
"final_data = []\n", |
|
|
685 |
"for i in range(num_datapoints):\n", |
|
|
686 |
" final_data.append(featurized_data[:, i, :].ravel())\n", |
|
|
687 |
"final_data = np.array(final_data)" |
|
|
688 |
] |
|
|
689 |
}, |
|
|
690 |
{ |
|
|
691 |
"cell_type": "code", |
|
|
692 |
"execution_count": 36, |
|
|
693 |
"id": "c246ea8c", |
|
|
694 |
"metadata": {}, |
|
|
695 |
"outputs": [ |
|
|
696 |
{ |
|
|
697 |
"name": "stdout", |
|
|
698 |
"output_type": "stream", |
|
|
699 |
"text": [ |
|
|
700 |
"Final shape of the featurized data: (140, 320)\n" |
|
|
701 |
] |
|
|
702 |
} |
|
|
703 |
], |
|
|
704 |
"source": [ |
|
|
705 |
"print('Final shape of the featurized data: ', final_data.shape)" |
|
|
706 |
] |
|
|
707 |
}, |
|
|
708 |
{ |
|
|
709 |
"cell_type": "markdown", |
|
|
710 |
"id": "ab1280a6", |
|
|
711 |
"metadata": {}, |
|
|
712 |
"source": [ |
|
|
713 |
"We have 16 sensors. 20 features are extracted from each sensor's output. As a result we have 20*16 = 320 features per datapoint." |
|
|
714 |
] |
|
|
715 |
}, |
|
|
716 |
{ |
|
|
717 |
"cell_type": "markdown", |
|
|
718 |
"id": "6e553f83", |
|
|
719 |
"metadata": {}, |
|
|
720 |
"source": [ |
|
|
721 |
"Saving the featurized data" |
|
|
722 |
] |
|
|
723 |
}, |
|
|
724 |
{ |
|
|
725 |
"cell_type": "code", |
|
|
726 |
"execution_count": 37, |
|
|
727 |
"id": "aacae2e2", |
|
|
728 |
"metadata": {}, |
|
|
729 |
"outputs": [], |
|
|
730 |
"source": [ |
|
|
731 |
"np.save('featurized_data.npy', final_data)" |
|
|
732 |
] |
|
|
733 |
}, |
|
|
734 |
{ |
|
|
735 |
"cell_type": "markdown", |
|
|
736 |
"id": "0f2547bb", |
|
|
737 |
"metadata": {}, |
|
|
738 |
"source": [ |
|
|
739 |
" Now its time to train models and see how our feature extraction works.\n", |
|
|
740 |
" We will load the featurized data." |
|
|
741 |
] |
|
|
742 |
}, |
|
|
743 |
{ |
|
|
744 |
"cell_type": "code", |
|
|
745 |
"execution_count": 38, |
|
|
746 |
"id": "c5c736f5", |
|
|
747 |
"metadata": {}, |
|
|
748 |
"outputs": [], |
|
|
749 |
"source": [ |
|
|
750 |
"x_data = np.load('featurized_data.npy', allow_pickle = True)\n", |
|
|
751 |
"y_data = np.load('labels.npy', allow_pickle = True)" |
|
|
752 |
] |
|
|
753 |
}, |
|
|
754 |
{ |
|
|
755 |
"cell_type": "markdown", |
|
|
756 |
"id": "e31cc28d", |
|
|
757 |
"metadata": {}, |
|
|
758 |
"source": [ |
|
|
759 |
"## 3. Machine Learning methods and performace evaluation" |
|
|
760 |
] |
|
|
761 |
}, |
|
|
762 |
{ |
|
|
763 |
"cell_type": "markdown", |
|
|
764 |
"id": "44a7a69f", |
|
|
765 |
"metadata": {}, |
|
|
766 |
"source": [ |
|
|
767 |
"In the modeling part, we will train classical machine learning algorithms on featurized data. For the purpose of this project, we will train the following algorithms.\n", |
|
|
768 |
"\n", |
|
|
769 |
"1. Random Forest\n", |
|
|
770 |
"2. Support Vector Classifier\n", |
|
|
771 |
"3. Logistic Regression\n", |
|
|
772 |
"4. k Nearest Neighbors" |
|
|
773 |
] |
|
|
774 |
}, |
|
|
775 |
{ |
|
|
776 |
"cell_type": "markdown", |
|
|
777 |
"id": "048b9906", |
|
|
778 |
"metadata": {}, |
|
|
779 |
"source": [ |
|
|
780 |
"Let us train the models directly with default setting. Here we will report the 5 fold accuracy." |
|
|
781 |
] |
|
|
782 |
}, |
|
|
783 |
{ |
|
|
784 |
"cell_type": "markdown", |
|
|
785 |
"id": "56fa9350", |
|
|
786 |
"metadata": {}, |
|
|
787 |
"source": [ |
|
|
788 |
"Random Forest" |
|
|
789 |
] |
|
|
790 |
}, |
|
|
791 |
{ |
|
|
792 |
"cell_type": "code", |
|
|
793 |
"execution_count": 39, |
|
|
794 |
"id": "1798e464", |
|
|
795 |
"metadata": {}, |
|
|
796 |
"outputs": [], |
|
|
797 |
"source": [ |
|
|
798 |
"rf = RandomForestClassifier()\n", |
|
|
799 |
"rf_f_scores = cross_val_score(rf, x_data, y_data, cv=5)\n", |
|
|
800 |
"rf_f_acc = np.mean(rf_f_scores)" |
|
|
801 |
] |
|
|
802 |
}, |
|
|
803 |
{ |
|
|
804 |
"cell_type": "markdown", |
|
|
805 |
"id": "3c628635", |
|
|
806 |
"metadata": {}, |
|
|
807 |
"source": [ |
|
|
808 |
"Support Vector Classifier" |
|
|
809 |
] |
|
|
810 |
}, |
|
|
811 |
{ |
|
|
812 |
"cell_type": "code", |
|
|
813 |
"execution_count": 40, |
|
|
814 |
"id": "cc8b8a61", |
|
|
815 |
"metadata": {}, |
|
|
816 |
"outputs": [], |
|
|
817 |
"source": [ |
|
|
818 |
"svc = SVC()\n", |
|
|
819 |
"svc_f_scores = cross_val_score(svc, x_data, y_data, cv=5)\n", |
|
|
820 |
"svc_f_acc = np.mean(svc_f_scores)" |
|
|
821 |
] |
|
|
822 |
}, |
|
|
823 |
{ |
|
|
824 |
"cell_type": "markdown", |
|
|
825 |
"id": "d4d78db6", |
|
|
826 |
"metadata": {}, |
|
|
827 |
"source": [ |
|
|
828 |
"Logistic Regression" |
|
|
829 |
] |
|
|
830 |
}, |
|
|
831 |
{ |
|
|
832 |
"cell_type": "code", |
|
|
833 |
"execution_count": 41, |
|
|
834 |
"id": "710b080a", |
|
|
835 |
"metadata": {}, |
|
|
836 |
"outputs": [], |
|
|
837 |
"source": [ |
|
|
838 |
"lr = LogisticRegression(solver='liblinear')\n", |
|
|
839 |
"lr_f_scores = cross_val_score(lr, x_data, y_data, cv=5)\n", |
|
|
840 |
"lr_f_acc = np.mean(lr_f_scores)" |
|
|
841 |
] |
|
|
842 |
}, |
|
|
843 |
{ |
|
|
844 |
"cell_type": "markdown", |
|
|
845 |
"id": "6fbb0adc", |
|
|
846 |
"metadata": {}, |
|
|
847 |
"source": [ |
|
|
848 |
"k Nearest Neighbors" |
|
|
849 |
] |
|
|
850 |
}, |
|
|
851 |
{ |
|
|
852 |
"cell_type": "code", |
|
|
853 |
"execution_count": 42, |
|
|
854 |
"id": "48bcda5f", |
|
|
855 |
"metadata": {}, |
|
|
856 |
"outputs": [], |
|
|
857 |
"source": [ |
|
|
858 |
"knn = KNeighborsClassifier()\n", |
|
|
859 |
"knn_f_scores = cross_val_score(knn, x_data, y_data, cv=5)\n", |
|
|
860 |
"knn_f_acc = np.mean(knn_f_scores)" |
|
|
861 |
] |
|
|
862 |
}, |
|
|
863 |
{ |
|
|
864 |
"cell_type": "markdown", |
|
|
865 |
"id": "53cc6ed6", |
|
|
866 |
"metadata": {}, |
|
|
867 |
"source": [ |
|
|
868 |
"#### Result on complete dataset" |
|
|
869 |
] |
|
|
870 |
}, |
|
|
871 |
{ |
|
|
872 |
"cell_type": "code", |
|
|
873 |
"execution_count": 43, |
|
|
874 |
"id": "cf0345ea", |
|
|
875 |
"metadata": {}, |
|
|
876 |
"outputs": [ |
|
|
877 |
{ |
|
|
878 |
"data": { |
|
|
879 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAFfCAYAAAAYpCu4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1xElEQVR4nO3de3yMZ/7/8ffkKJI0JYJSQlUThCCsY7eEOiSi+FVp6lS1PaFd1lq1LEGrTk23tIoVW0o3tKHtJlqHqDq0tjSq7TbO1qntziaInEnm94ev2c5GmDDJ5J68no/H/HFfc9339RlzP8Y79+G6TRaLxSIAAAAYgpuzCwAAAID9CG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCAezi4AAMrTlClTtHHjxhLt3t7eCgwMVKdOnTRx4kTVqlXLCdVdExkZqfr162vNmjXWtoyMDPn4+Kh69epOqwtA5UR4A1AlvPTSS6pRo4Z1OTs7W1988YU++OADfffdd3r//ffl5eXlxAr/a+fOnZo0aZI2btxIeANQAuENQJXQs2dP3XvvvTZtTzzxhGbOnKn33ntP27ZtU1RUlJOqs3Xo0CFlZWU5uwwAlRTXvAGo0gYOHChJ+uabb5xcCQDYh/AGoErz8fGRJP3ySYE7duzQ0KFDFR4ervbt22v8+PE6efKkzXrnz5/X+PHj1bVrV7Vs2VJRUVFasWKFiouLrX0iIyM1fPjwEmOW1i5du0ZvyZIlkqQePXqU2g9A1cVpUwBV2q5duyRJzZs3lyQlJSVp6tSp6tSpk37/+9/r0qVLeu+99/TYY49p/fr1aty4sa5cuaIxY8YoPz9fo0aN0l133aWdO3dq4cKFKioq0rPPPnvb9QwZMkTZ2dnaunWrXnrpJTVt2tQhnxOA6yC8AagSsrKylJmZaV3Ozs7Wrl27tGTJEjVp0kTR0dHKzs7Wyy+/rKioKL322mvWvo899piio6O1cOFCvfnmm/rhhx90/Phx/fnPf1afPn0kSYMHD9aYMWNKHKErqzZt2igkJERbt2694XV6AEB4A1AlXL+27Zd8fHwUGRmp6dOny9PTU6mpqcrOzlbPnj1tgp67u7s6duyonTt36urVq6pdu7ZMJpOWLVsmX19fdejQQV5eXlq5cmVFfiQAVRThDUCVsGDBAtWqVUtXrlzRrl27tHbtWvXt21czZ86Ut7e3JOn06dOSpAkTJpS6nczMTNWtW1e///3v9dprr2nMmDGqXr26OnXqpKioKPXt21fu7u4V8pkAVE2ENwBVQtu2ba2nIB966CEFBwdrzpw5unjxot566y2ZTCbrzQazZ88u9XRlQECAJOmpp55Sv379tHXrVu3cuVN79uzR9u3btWnTJv3lL3+5aS1FRUUO/GQAqhruNgVQJQ0fPlw9evRQamqq3nnnHUlS/fr1JUk1a9ZU586dbV7u7u4ymUzy8vLSxYsX9eWXX6pGjRoaNmyYVqxYoS+++EK9e/fWrl27dPjwYUmSm5ubCgsLbca9evWqLly4ULEfFoBLIbwBqLJmzZqlgIAAvf766zpz5ow6d+4sb29v/eUvf9GVK1es/X7++Wc9//zzWrhwoUwmk/bs2aORI0cqNTXV2qd69ep64IEHJMl62rRWrVo6efKk8vPzrf1SU1NVUFBw07rc3K79NP9y+hIAuI7TpgCqrFq1amnSpEmaPn26ZsyYoYSEBE2cOFFz587VkCFD1L9/f129elXr1q1TQUGB/vCHP0iSunfvrsaNG+uPf/yjvv/+ezVs2FAnTpzQ2rVr1bFjR91///2SpH79+mn27NkaM2aM+vfvr3/9619av3699QhfaWrWrClJ+stf/qJf//rX6tGjR/n+QwAwFMIbgCpt8ODB2rRpk/bs2aNNmzZp1KhRqlOnjlatWqX4+HhVq1ZNLVq00IIFCxQRESHp2lG2hIQEvfHGG/r444/1n//8R0FBQYqNjdW4ceOs246NjdXFixf1/vvva/bs2QoNDdWSJUuUkJCg3NzcUmuKjo7Wli1blJSUpH/84x+ENwA2TBaOywMAABhGpbjmrbCwUP369dPevXtL7ZOenq4hQ4YoPDxcgwYN0qFDhyqwQgAAgMrB6eGtoKBAEydO1NGjR0vtk5ubqzFjxig8PFxJSUmKiIjQM888o+zs7AqsFAAAwPmcGt6OHTumxx57zDoxZmlSUlLk6empKVOmqEmTJpo6dar8/f21efPmCqoUAACgcnBqeNu/f7+6dOmixMTEm/b75ptv1LZtW+vt8yaTSW3btlVaWlpFlAkAAFBpOPVu06FDh9rVz2w2q3HjxjZtgYGBSk9PL4+yAAAAKi2nX/Nmj7y8PHl5edm0eXl5lZi5HAAAwNUZYp43b2/vEkGtsLBQ1apVK9N2LlzIUXGx682MEhjop4wMbt6A47BPoTywX8HRXHWfcnMzqUYN31LfN0R4q1Onjsxms03b9Ukxy6K42OKS4U2Sy34uOA/7FMoD+xUcrSruU4Y4bRoeHq60tDTrc/4sFovS0tLUunVr5xYGAABQwSpteDObzdaHOffp00e5ubmaPXu2jh07prlz5yo7O1tRUVFOrhIAAKBiVdrw1rVrV6WkpEiS/Pz8tGzZMqWlpWngwIH6+uuvtXz5cvn5+Tm5SgAAgIpVpZ5tmpGR7ZLnxoOC/GU2X3Z2GXAh7FMoD+xXcDRX3afc3EwKDCz9AFWlPfIGAACAkghvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAzEw9kFuJJAX3e5Va/ulLGDgvwrfMzi3Fxl5BRV+LgAAFRlhDcHcqteXTKZnF1GhXGzWKScy84uAwCAKoXTpgAAAAZCeAMAADAQwhsAAICBODW8FRYWavr06Wrfvr26dOmiFStWlNp3//79GjRokFq3bq1HHnlEu3fvrsBKAQAAKgenhrf58+crLS1Nq1atUlxcnJYuXark5OQS/TIyMvTss8+qT58++uijj9S3b1+NHTtW586dc0LVAAAAzuO08Jabm6v169dr6tSpCgsLU8+ePTVmzBi9++67Jfp+/fXXkqSnn35aDRs21LPPPqtq1arpm2++qeiyAQAAnMpp4S09PV2FhYWKiIiwtkVEROjbb7/V1atXbfrefffdunz5sjZv3iyLxaJt27YpJydHISEhFV02AACAUzltnjez2ayAgAB5e3tb22rVqqUrV64oMzNTtWvXtra3a9dOw4YN04QJE/S73/1ORUVFmjNnjpo0aeKM0gEAAJzGaeEtLy9PXl5eNm3XlwsLC23ac3NzdfbsWT333HN6+OGHtWfPHr3yyitq2rSpWrdubfeYgYF+d1w3bDnjyQ6oGHy3KA/sV3C0qrhPOS28eXt7lwhp15d9fHxs2leuXKnCwkK9+OKLkqTmzZvr2LFjWrp0qZYtW2b3mBkZ2Souttxh5aWrijuQ2cwTFlxRUJA/3y0cjv0Kjuaq+5Sbm+mmB5ycds1bnTp1lJWVZRPgzGazvLy8FBAQYNP322+/VdOmTW3aWrRooTNnzlRIrQAAAJWF08Jbs2bN5OnpqbS0NGvbgQMH1KJFC3l42B4QrF27tg4fPmzTdvz4cTVs2LBCagUAAKgsnBbefHx8NGDAAMXFxenQoUPavn27EhISNGLECEnXjsLl5+dLkoYMGaKvvvpKK1as0JkzZ7RhwwYlJSVp5MiRziofAADAKUwWi6X8LgK7hby8PM2cOVNbtmyRr6+vRo8erdGjR0uSQkJCNHfuXA0aNEiStHPnTv35z3/WyZMnde+992rcuHHq3bt3mcarkGveTKZy236lY7G45LUGcN3rSOBc7FdwNFfdp251zZtTw1tFI7w5GOHNZbnqDyKci/0Kjuaq+1SlvWEBAAAAZUd4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYCOENAADAQOwObxMmTND27dt15cqV8qwHAAAAN+Fhb8evvvpKn3zyifz9/dWrVy/169dPHTp0kMlkKs/6AAAA8At2h7ddu3Zp3759SklJ0datW/XBBx8oMDBQ0dHRio6OVqtWrcqzTgAAAEgyWSwWS1lXKioq0u7du7V582Z99tlnunTpku69917169dPMTExuu+++8qj1juWkZGt4uIyf1y7BQX5S1XpSKTFIrP5srOrQDkICvLnu4XDsV/B0Vx1n3JzMykw0K/U928rvP3SyZMntXjxYqWkpFzboMmk8PBwjRkzRj179ryTTTsc4c3BCG8uy1V/EOFc7FdwNFfdp24V3uw+bfpLx44d0yeffKLNmzfrxIkTcnd3V7du3RQTEyOTyaS//e1vGj9+vMaNG6exY8fedvEAAACwZfeRt+PHj2vz5s365JNPdPz4cUlS27Zt1a9fP/Xt21d33323Tf/HHntMJ0+e1FdffeXwom8XR94cjCNvLstV/5qFc7FfwdFcdZ9y2JG36OhoSdIDDzygCRMmKCYmRvfcc0+p/evWravCwsIylAoAAIBbsTu8Pf3004qJiVHTpk3t6h8fHy93d/fbLgwAAAAl2T1J78SJE+Xr66uFCxfq0qVL1vbly5fr1VdfVUZGhk1/ghsAAIDj2R3ejhw5ooEDB2rVqlX68ccfre1ZWVlat26dBgwYoDNnzpRLkQAAALjG7vC2aNEi+fr6Kjk5WaGhodb2SZMmKTk5WZ6enlq4cGG5FAkAAIBr7A5vBw8e1MiRI9WoUaMS7zVo0EDDhg2rVHeWAgAAuCK7w5vFYlFBQcFN38/Pz3dIUQAAALgxu8NbeHi4EhMTlZWVVeK9nJwcbdiwQeHh4Q4tDgAAALbsnipk3LhxGjZsmPX5pcHBwTKZTDp9+rSSk5NlNps1d+7c8qwVAACgyrM7vIWHh2vVqlWaN2+eEhIS9MsHM4SGhmru3Llq06ZNuRQJAACAa8r0bNN27dppw4YNyszM1Llz51RcXKx77rlHtWvXLq/6AAAA8Au39WD6mjVrqmbNmiXaMzMzb9gOAAAAxyhTeNu0aZO2bNmi3NxcFRcXW9uLioqUk5OjY8eO6bvvvnN4kQAAALjG7vC2YsUKvfbaa/L09JSfn58uXLigunXr6uLFi8rLy1O1atU0fPjw8qwVAACgyrN7qpCkpCSFhoZq7969SkxMlMVi0erVq7V//3796U9/UkFBAVOFAAAAlDO7w9u5c+f0yCOPyM/PTw0aNFBAQID2798vd3d3xcbGKioqSu+880551goAAFDl2R3ePDw85Ovra10ODg7W4cOHrcsdOnTQqVOnHFocAAAAbNkd3po0aaK0tDTrcuPGjW1uTsjKylJhYaFjqwMAAIANu8PboEGDlJSUpEmTJik3N1eRkZHav3+/lixZopSUFP31r39VaGhoedYKAABQ5dkd3h5//HE988wz+uyzz+Th4aFevXopOjpaS5Ys0cSJE5Wfn69JkyaVafDCwkJNnz5d7du3V5cuXbRixYpS+x4/flwjRoxQeHi4evfurU8//bRMYwEAALgCk+WXz7m6iQsXLqhGjRq6evWqPDz+O8PI/v37dfHiRbVp00aBgYFlGnzOnDn68ssv9eqrr+qnn37S5MmTNXv2bEVHR9v0y8nJUd++fdWxY0c9//zz+vzzzzV//nxt2rRJ999/v93jZWRkq7jYro97W4KC/CWTqdy2X+lYLDKbLzu7CpSDoCB/vls4HPsVHM1V9yk3N5MCA/1Kfd/ued4GDhyowYMHa+zYsTbt7dq1u63CcnNztX79er399tsKCwtTWFiYxowZo3fffbdEeNu0aZM8PDz08ssvy9PTU40aNdKePXuUlpZWpvAGAABgdHaHt8zMTAUFBTls4PT0dBUWFioiIsLaFhERobfeeqvE0b19+/YpMjJSnp6e1rZly5Y5rBYAAACjsPuat5iYGCUmJurs2bMOGdhsNisgIEDe3t7Wtlq1aunKlSvKzMy06Xv69GkFBgZq5syZ6tq1qwYOHKgdO3Y4pA4AAAAjsfvIm5ubm06cOKHevXurYcOGCgwMlJubbfYzmUx2T9Sbl5cnLy8vm7bry/875UhOTo5Wrlyp2NhYLV++XLt379bYsWO1fv16hYWF2fsRbnr+GLcnKMjf2SWgnPDdojywX8HRquI+ZXd427Nnj2rUqCFJKigo0Pnz5+9oYG9v7xIh7fqyj4+PTbu7u7seeOABTZw4UZLUvHlzHThwoMzhrUJuWKhiXPFCUbjuRcBwLvYrOJqr7lMOu2EhNTXVIQVdV6dOHevEvtePuJnNZnl5eSkgIMCmb+3atdWwYUObtsaNG+vYsWMOrQkAAKCys/uaN0dr1qyZPD09bZ7acODAAbVo0cLmZgVJatOmjf75z3/atB07dkz169evkFoBAAAqC7uPvI0YMcKufqtXr7arn4+PjwYMGKC4uDi9+uqrMpvNSkhI0OzZsyVdOwrn7++vatWqaciQIVq9erUWLFigIUOGKDU1VV988YU2bNhgb/kAAAAuwe7wdqO7TIuLi3XhwgUVFBSofv36atq0aZkGf+mllzRz5kyNHDlSvr6+Gjt2rKKioiRJXbt21dy5czVo0CDVq1dPq1at0pw5c7R69Wo1aNBAb7zxhpo3b16m8QAAAIzO7icslKaoqEjbt2/XtGnT9Oabb6p9+/aOqs3heMKCg/GEBZflqhcBw7nYr+BorrpP3eqGhTu+5s3d3V29evXS4MGDtXDhwjvdHAAAAG7CYTcsNGrUSOnp6Y7aHAAAAG7AIeGtsLBQH330UZkfTA8AAICyueO7TQsLC3Xy5EllZWVp/PjxDisMAAAAJd3R3abStWve7rvvPvXr10+xsbEOKwwAAAAlOe0JCwAAACi7Ml3zdv78eS1cuFCXLl2ytq1YsULz5s1TRkaGw4sDAACALbvD25EjRzRw4ECtWrVKP/74o7X90qVLWrt2rQYMGKAzZ86US5EAAAC4xu7wtmjRIvn6+io5OVmhoaHW9kmTJik5OVmenp7M8wYAAFDO7A5vBw8e1MiRI9WoUaMS7zVo0EDDhg3TV1995cjaAAAA8D/sDm8Wi0UFBQU3fT8/P98hRQEAAODG7A5v4eHhSkxMVFZWVon3cnJytGHDBoWHhzu0OAAAANiye6qQcePGadiwYerXr59iYmIUHBwsk8mk06dPKzk5WWazWXPnzi3PWgEAAKo8u8NbeHi4Vq1apXnz5ikhIUEWi8X6XmhoqObOnas2bdqUS5EAAAC4xu7wJknt2rXThg0blJmZqXPnzqm4uFj33HOPateuXV71AQAA4Bdua5Jed3d3tWzZUuHh4frwww+ZpBcAAKCCMEkvAACAgTBJLwAAgIEwSS8AAICBMEkvAACAgTBJLwAAgIEwSS8AAICBMEkvAACAgTBJLwAAgIGUKbxdV7NmTdWsWbNEe2Zm5g3bAQAA4BhlCm+bNm3Sli1blJubq+LiYmt7UVGRcnJydOzYMX333XcOLxIAAADX2B3eVqxYoddee02enp7y8/PThQsXVLduXV28eFF5eXmqVq2ahg8fXp61AgAAVHl2TxWSlJSk0NBQ7d27V4mJibJYLFq9erX279+vP/3pTyooKGCqEAAAgHJmd3g7d+6cHnnkEfn5+alBgwYKCAjQ/v375e7urtjYWEVFRemdd94pz1oBAACqPLvDm4eHh3x9fa3LwcHBOnz4sHW5Q4cOOnXqlEOLAwAAgC27w1uTJk2UlpZmXW7cuLHNzQlZWVkqLCx0bHUAAACwYXd4GzRokJKSkjRp0iTl5uYqMjJS+/fv15IlS5SSkqK//vWvCg0NLc9aAQAAqjy77zZ9/PHH9dNPP2nt2rXy8PBQr169FB0drSVLlkiS/Pz8NGnSpHIrFAAAAJLJ8svnXNnh6tWr8vD4b+bbv3+/Ll68qDZt2igwMNDhBTpSRka2iovL9HHLJCjIXzKZym37lY7FIrP5srOrQDkICvLnu4XDsV/B0Vx1n3JzMykw0K/U98v8hIVfBjfp2iOzAAAAUDHsvuYNAAAAzndbzzYFABhXoK+73KpXd8rYQUH+FT5mcW6uMnKKKnxcoLwQ3gCginGrXr1KXZ/rZrFIOa53XRSqLk6bAgAAGAjhDQAAwEBKPW06YsSIMm/MZDLxfFMAAIByVGp4O3v2bIm2jIwMFRQUKCAgQMHBwSouLta5c+d04cIF3X333WrSpEm5FgsAAFDVlRreUlNTbZb37dunZ599Vq+++qr69+8vN7f/nnH9+9//rmnTpumJJ54ov0oBAABg/zVvc+bM0aOPPqoBAwbYBDdJ6tevn2JjY/XnP/+5TIMXFhZq+vTpat++vbp06aIVK1bccp2LFy+qc+fOSkpKKtNYAAAArsDuqUJOnz6toUOHlvp+3bp19e9//7tMg8+fP19paWlatWqVfvrpJ02ePFn16tVTdHR0qeu88sorysjIKNM4AAAArsLuI2+NGzdWcnKyiopKTnRYUFCgDz74QCEhIXYPnJubq/Xr12vq1KkKCwtTz549NWbMGL377rulrrNz504dOnRINWvWtHscAAAAV2J3eHv66af19ddfKzY2VomJidq7d6927NihVatWKSYmRsePH9f48ePtHjg9PV2FhYWKiIiwtkVEROjbb7/V1atXS/TPzs7WzJkzNXv2bHl6eto9DgAAgCux+7RpVFSU8vPztWjRIs2YMUOm/5ud22KxqH79+lqyZIm6dOli98Bms1kBAQHy9va2ttWqVUtXrlxRZmamateubdN/wYIFevDBB9W+fXu7xwAAAHA1ZXo81qBBgzRgwAB99913On/+vEwmkxo0aKDmzZuXeeC8vDx5eXnZtF1fLiwstGn/xz/+oR07dig5ObnM4/xSYKDfHa2PkpzxnEJUDL5buBL2Z9dVFb/bMj/b1M3NTa1atVKrVq3uaGBvb+8SIe36so+Pj7UtPz9f06ZN0/Tp0+Xvf2dfUEZGtoqLLXe0jZupijuQ2czzAl1RUJA/360L47cKrsJVf6vc3Ew3PeDktCcs1KlTR1lZWSosLLQecTObzfLy8lJAQIC136FDh/Svf/1LkydPtrbl5eVpxowZOnjwoGbNmlXmOgEAAIyqTE9YcKRmzZrJ09NTaWlp6tChgyTpwIEDatGihTw8/ltWq1attGXLFpt1n3jiCY0cOVKDBg0q1xoBAAAqG7ufsOBoPj4+GjBggOLi4vTqq6/KbDYrISFBs2fPlnTtKJy/v7+qVaum4OBgm3Xd3NwUGBiowMDAcq0RAACgsrF7qpDrioqK9M033yglJUXbtm3T999/f9uDv/TSS2rZsqVGjhypGTNmaOzYsYqKipIkde3aVSkpKbe9bQAAAFdkslgsdl/Bv2PHDsXFxennn3/W9dVMJpNq166tGTNmKDIystwKdYQKuWHh/6ZQqRIsFpe8UBSuexEwruG3Cq7CVX+rbvuGhf+1f/9+jR8/XoGBgZowYYKaNGkii8WiEydOaN26dXrhhRe0evVqtW3b1iGFAwAAoCS7w9vixYtVv359vf/++yWm7IiNjdX/+3//T0uXLrXr4fIAAAC4PXZf83bo0CENHjz4hnOt+fn56dFHH9U333zj0OIAAABgq8w3LJTGZDLpypUrjtocAAAAbsDu8BYeHq73339fubm5Jd7Lzs7Whg0b1LJlS4cWBwAAAFt2X/M2btw4jRgxQv369dOwYcPUqFEjSbLesPDzzz8rLi6uvOoEAACAyhDe2rVrp8WLF2vWrFmaP3++TP93m7nFYlFQUJDi4+PVsWPHcisUAAAANwlv7733njp16mQ9wiZJPXr0ULdu3fT9999bH59Vv379Eo+0AgAAQPko9Zq3+fPna//+/dblHj16aPv27XJ3d1erVq0UFRWlqKgohYeHE9wAAAAqSKmpy8vLS9u2bVPr1q3l4+Ojc+fO6fz58zp//vxNN1ivXj2HFwkAAIBrSn081oIFC7Ry5UrrtW32+uGHHxxSWHng8VgOxiNnXJarPnIG1/BbBVfhqr9Vt/14rN///vdq3769Dh8+rMLCQr355pt6+OGHFRISUi6FAgAA4NZuerFat27d1K1bN0nSxo0bNWDAAPXo0aMi6gIAAMAN2H2nQWpqannWAQAAADs47PFYAAAAKH+ENwAAAAMhvAEAABgI4Q0AAMBAbuvRCBaLRceOHVNubq7uvfdeBQYGOrouAAAA3ECpR95efPFFHThwoET7Rx99pAcffFD9+/fX0KFD1bVrVz355JM6ceJEuRYKAACAm4S3Tz/9tMSjsFJSUjR58mT5+Pho7Nixmj59up544gkdOnRIsbGxOnnyZLkXDAAAUJWV6bRpfHy8mjVrpr/97W/y9va2tj/11FMaPHiw4uPj9cYbbzi8SAAAAFxj9w0LeXl5OnPmjEaMGGET3CTpnnvuUWxsrPbt2+fwAgEAAPBfdoc3Hx8fVa9eXf7+/jd838/PT/n5+Q4rDAAAACXdNLxt2bJFmzZt0qFDh5STk6OoqCh9/PHHJfrl5ORow4YNCg0NLbdCAQAAcJNr3sLCwrRnzx5t3bpVJpNJkuTr66ucnBytW7dOsbGxkqS33npLGzZs0E8//aQ333yzYqoGAACookoNb++//74k6ezZszp27JiOHj2qo0eP6tixY3J3d7f2S0lJUXFxsRYvXqzIyMjyrxgAAKAKM1ksFsudbODnn39WnTp1HFVPucrIyFZx8R193JsKCvKX/u8oZZVgschsvuzsKlAOgoL8+W5dGL9VcBWu+lvl5mZSYKBf6e/f6QBGCW4AAACugGebAgAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBODW8FRYWavr06Wrfvr26dOmiFStWlNo3JSVF/fr1U+vWrdW/f3+lpqZWYKUAAACVg1PD2/z585WWlqZVq1YpLi5OS5cuVXJycol++/fv1+TJkzVixAh9+OGHevTRRzV+/Hj985//dELVAAAAzuO08Jabm6v169dr6tSpCgsLU8+ePTVmzBi9++67Jfpu3LhRvXr10mOPPabg4GCNGDFCHTp0UEpKihMqBwAAcB4PZw2cnp6uwsJCRUREWNsiIiL01ltv6erVq/Lw+G9pw4cPt1mWJJPJpIKCggqrFwAAoDJw2pE3s9msgIAAeXt7W9tq1aqlK1euKDMz06ZvaGio7r//fuvy0aNH9cUXX6h9+/YVVi8AAEBl4LQjb3l5efLy8rJpu75cWFhY6noZGRkaN26cIiIi1LNnzzKNGRjoV/ZCcVNBQf7OLgHlhO8WroT92XVVxe/WaeHN29u7REi7vuzj43PDdX766SeNHj1abm5ueuONN+TmVrYDhxkZ2SouttxewXaoijuQ2XzZ2SWgHAQF+fPdujB+q+AqXPW3ys3NdNMDTk47bVqnTh1lZWXZBDiz2SwvLy8FBASU6H/mzBnFxsbKZDJpzZo1qlGjRkWWCwAAUCk4Lbw1a9ZMnp6eSktLs7YdOHBALVq0KHFzwsWLF/Xkk0/K399fa9asUa1atSq6XAAAgErBaeHNx8dHAwYMUFxcnA4dOqTt27crISFBI0aMkHTtKFx+fr4kKT4+XhcuXNCrr76qoqIimc1mmc1mXb7seodKAQAAbsZksVjK7yKwW8jLy9PMmTO1ZcsW+fr6avTo0Ro9erQkKSQkRHPnztWgQYPUoUMHXbx4scT6MTExWrhwod3jVcg1byZTuW2/0rFYXPJaA7judSS4ht8quApX/a261TVvTg1vFY3w5mD8ILosV/1BxDX8VsFVuOpvVaW9YQEAAABlR3gDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADMTD2QUAAABjC/R1l1v16k4ZOyjIv8LHLM7NVUZOUYWPex3hDQAA3BG36tUlk8nZZVQYN4tFyrnstPEJb0Al56y/aKviX7MAYASEN6CSq0p/0Tr7r1kAMAJuWAAAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBODW8FRYWavr06Wrfvr26dOmiFStWlNo3PT1dQ4YMUXh4uAYNGqRDhw5VYKUAAACVg1PD2/z585WWlqZVq1YpLi5OS5cuVXJycol+ubm5GjNmjMLDw5WUlKSIiAg988wzys7OdkLVAAAAzuO08Jabm6v169dr6tSpCgsLU8+ePTVmzBi9++67JfqmpKTI09NTU6ZMUZMmTTR16lT5+/tr8+bNTqgcAADAeZwW3tLT01VYWKiIiAhrW0REhL799ltdvXrVpu8333yjtm3bys3tWrkmk0lt27ZVWlpahdYMAADgbB7OGthsNisgIEDe3t7Wtlq1aunKlSvKzMxU7dq1bfo2btzYZv3AwEClp6eXaUw3N9OdFW2P4ODyH6MSqZB/U1Sp/Yp9qoJUoX1KYr+qEOxTFbZtp4W3vLw8eXl52bRdXy4sLLSr7//2u5UaNXxvo9IyOnWq/MeoRAID/ZxdQtVQhfYr9qkKUoX2KYn9qkKwT1UYp5029fb2LhG+ri/7+PjY1bdatWrlWyQAAEAl47TwVqdOHWVlZdmEMrPZLC8vLwUEBJToazabbdr+85//KCgoqEJqBQAAqCycFt6aNWsmT09Pm5sODhw4oBYtWsjDw/Zsbnh4uNLS0mSxWCRJFotFaWlpat26dUWWDAAA4HROC28+Pj4aMGCA4uLidOjQIW3fvl0JCQkaMWKEpGtH4fLz8yVJffr0UW5urmbPnq1jx45p7ty5ys7OVlRUlLPKBwAAcAqT5frhLCfIy8vTzJkztWXLFvn6+mr06NEaPXq0JCkkJERz587VoEGDJEmHDh3SjBkzdOzYMYWEhGjmzJkKCwtzVukAAABO4dTwBgAAgLLhwfQAAAAGQngDAAAwEMIbAACAgRDeAAAADITwZgCRkZEKCQmxvkJDQ/WrX/1Kzz33nH788UdJ0vDhw236XH+1adPGydWjMrh69areeustPfzwwwoLC9ODDz6o6dOnKyMjQxs2bFBYWJguX75cYr3i4mJ16dJFa9assbYdP35cv/vd79SlSxe1adNGgwcP1qefflqRHweVVEhIiPbu3XvD986ePVvi96lFixbq2rWrZs+eXebHHcL1XN9H/vWvf5V4LzIyUkOGDNH/3mO5b98+hYSE6OrVq5Ku/V8YGRlpnWrMnm0bEeHNIKZMmaLdu3dr9+7d2rlzp+Lj43X06FH94Q9/sPYZOXKktc/117Zt25xYNSqLRYsWKTk5WTNnztSnn36q+Ph4HTlyRL/5zW/Uq1cvmUwmpaamllhv3759unDhgnVOxbS0NA0ePFjVqlXTsmXLtGnTJkVHR2vixIlav359RX8sGFBiYqL192nLli363e9+p/Xr12v58uXOLg2V3MGDB7Vhw4Zb9jt37pyWLl1aARU5D+HNIPz8/BQUFKSgoCDVqVNHXbp00QsvvKB9+/ZZj5j4+PhY+1x/BQYGOrlyVAZJSUkaP368unTpovr166tdu3ZauHChvv/+e508eVIPPfTQDY+ebd68WZ07d1ZgYKAsFoumTJmiPn366OWXX1ZYWJiCg4M1atQoPffcc1q0aJHy8vKc8OlgJDVq1LD+PtWvX18DBw7UI488wh+auKX69etr0aJFyszMvGW/lStX6vjx4xVUWcUjvBmYl5eXJMnNja8Rt/bll1+qqKjIutygQQMlJycrNDRUMTEx2r17t3JycqzvX716VVu3blVMTIwk6euvv9apU6f01FNPldj28OHDtXz5cnl7e5f/B4HL8fLykru7u7PLQCWTmJioNm3a6ODBg5KkUaNGydfXVwsWLLjpejExMWrevLlmzZpVAVU6B//rG9SpU6f0xhtv6MEHH5Svr6+zy0ElN2LECL333nvq3r27pk2bpuTkZGVlZen+++9XtWrV1L17d3l5eWnnzp3Wdb788kvl5eXp4YcfliSlp6fL19dXTZo0KbH9gIAAhYeH84cEysRisWjXrl3atGmTevfu7exyUIls375dc+fO1Ztvvml9jrmPj4+mTp2qjRs36sCBAzddf+bMmfrqq6/08ccfV0C1Fc/j1l1QGcyaNUuvvPKKpGtHRDw9PdWjRw9NnTrV2mflypVavXq1zXrvvPOOWrVqVaG1ovIZO3asGjdurHXr1ikpKUkbNmyQt7e3XnjhBY0ZM0ZeXl56+OGH9emnn1qvb9u8ebN69Oih6tWrS5IuX74sPz8/Z34MuIBHHnlEJpNJklRYWKiaNWvqySefvOERXVRNaWlpiouL07x589S5c2eb93r27Klu3bopLi5OSUlJpW6jefPmevzxxzVv3jx17969vEuucIQ3gxg3bpz69Omj3NxcLVmyROfPn9eECRNUo0YNa5/Bgwdr1KhRNuvdc889FVwpKquoqChFRUUpKytLe/fuVWJiohYsWKBGjRqpZ8+eiomJ0dixY5Wfny93d3dt27ZN8+fPt65fo0aNG96RCpTF0qVLVa9ePf3444+aNWuWmjVrpmeeeYbTprCaPn26ioqKVK9evRu+P23aNEVHR2vNmjVq3rx5qdv57W9/q08//VSvv/56if8bjY5zHAZRs2ZNBQcHq1mzZoqPj1dRUZHGjh2rK1euWPvcddddCg4Otnldvy4OVVd6errmzJljXb7rrrvUp08fJSQkKCwszDq1Q8eOHeXr66vPP/9ce/fulZubm7p06WJdr2XLlsrNzdXRo0dLjJGRkaEnn3xSJ06cKP8PBEOrV6+egoOD1bFjR7399ttKTU3VvHnznF0WKpHx48crOjpacXFxKi4uLvH+vffeq2effVaLFy/Wzz//XOp2/P39NXnyZK1bt04//PBDeZZc4QhvBuTl5aU5c+YoPT1dq1atcnY5qOSKioq0Zs0a60W/15lMJvn7+6tmzZqSrt34EhUVpdTUVG3dulVRUVHy8PjvwfnmzZvrgQceUEJCQokx1q5dq0OHDnGkF2XSsGFDjR8/XmvXri2xf6Lq6t27tyZNmqTjx4+XOgXRU089pdq1a+v111+/6bb69++vdu3aae7cueVQqfMQ3gyqVatWevTRR7V06dKb/uUBtGjRQt27d9e4ceO0ceNGnTlzRt9++63i4+P1ww8/6NFHH7X2jYmJ0a5du/TZZ59Z7zL9pRkzZig5OVnTp0/XDz/8oOPHj2vx4sV6++23NW3aNPn4+FTkR0Ml9N133+nzzz+3eWVnZ5faf8SIEWrSpIlmzZp1w6MsqJrq1Kmj5557TvHx8TecGsTLy0szZszQuXPnbrmtGTNm6N///nd5lOk0hDcDmzBhgjw9PTnlgFt6/fXX9dhjj2nZsmWKjo7Wk08+qSNHjmjt2rWqW7eutV/Lli3l5+enatWqWe/w+qV27drp3Xffldls1ujRo/Xoo49q9+7dWrx4sQYOHFiBnwiV1aJFi/Sb3/zG5nXy5MlS+3t4eGjatGn6/vvvmegZNkaNGqWAgIBSpwbp1KmT+vXrd8vtNGnSRKNHj3Z0eU5lsvzvsyYAAABQaXHkDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGoNKZMmWKQkJC1KxZsxvO8XRd//79FRISoilTppRY9+zZsxVRqkMsXrz4tmq+3fUAGBvhDUClVVxcrB07dtzwvTNnzujw4cMVXBEAOB/hDUClde+992r79u03fG/btm3WR3sBQFVCeANQafXo0UN79+5Vfn5+ife2bt2qyMhIJ1QFAM5FeANQafXs2VN5eXnau3evTXtGRobS0tLUq1cvh42VlJSkkJAQpaen64UXXlCbNm3UsWNHzZs3T0VFRdq4caN69+6t1q1ba+jQoUpPT7dZ/8KFC5o5c6YefPBBhYWFqXfv3lq+fLmKiops+p0+fVrjx49X+/bt1aFDB8XHx+tGD7q5dOmSZs+ebd1e37599c4779yw7y+99957iomJUXh4uDp06KCxY8fq6NGjd/4PBKDS8HB2AQBQmoiICNWoUUPbt2+3Ocq2fft2+fj4qFOnTg4f8+mnn1ZERISmTJmiLVu2KCEhQUeOHNHhw4c1cuRIWSwWLV26VC+88IJSUlLk4eGhS5cuaejQoTp37pyGDh2qxo0ba8+ePVq0aJH++c9/6vXXX5ck/ec//9HQoUN15coVjRw5UtWqVdO6deuUlZVlU0Nubq6GDRumH3/8UbGxsapbt66+/PJLvfLKKzp16pRmzJhxw9o/+ugjzZw5UwMGDNDw4cOVmZmpd955R8OHD9fWrVvl7+/v8H8vABWP8Aag0nJ3d1f37t21Y8cOFRcXy83t2smCrVu3qlu3bvLy8nL4mK1bt1Z8fLwkKSoqSp06ddLevXv10UcfqWnTppKknJwcvf322zp79qwaNWqkFStW6NSpU3rzzTfVs2dPSdITTzyhuLg4rVu3TgMHDtRDDz2klStXKjMzUx988IFatGghSRo4cGCJh2uvXLlSJ0+e1AcffKCQkBBJUmxsrF577TUtW7ZMQ4YMUWhoaInaP/74YzVt2lTz5s2ztjVr1kzz58/XkSNHFBER4fB/LwAVj9OmACq1Hj16KCMjQwcPHpQkZWdn64svvrCGJEf75Xb9/f1Vs2ZNNWrUyBrcpGs3UkiS2WyWJKWmpqpJkyYlanr++eclyXrTxeeff66WLVtag5skBQYGKjo62ma9LVu26IEHHlBQUJAyMzOtr+vbL+0O3Lp16+rEiRNasmSJdfqQhx56SMnJyQQ3wIVw5A1Apda1a1f5+PgoNTVVbdu21c6dO+Xm5qaHHnqoXMarVauWzbKHh4cCAwNt2tzd3SVdm8pEks6ePasHH3ywxLaCgoJ011136dy5c5Kkc+fOqUePHiX63XfffTbLp0+fVn5+fqmnhX/88ccbto8dO1YHDx7U4sWLtXjxYt1///2KjIzU4MGD1bBhwxuuA8B4CG8AKrVq1aqpc+fO2r59uyZNmqStW7eqc+fO8vX1LZfxrgezXzKZTDdd52Y3ERQXF8vT09O6nYKCgluuX1RUpIiICI0bN+6G26xdu/YN2+vWrasPP/xQ+/bt0/bt27Vr1y4tX75cq1atUkJCgn71q1/d9HMAMAbCG4BKr2fPnnrppZd05MgRff755/rjH//o7JJs1K9fXydOnCjRbjablZ2drXvuuUfStdOtp06dKtHvzJkzJbaXk5Ojzp0727RfunRJX3zxhYKDg29Yx/VJizt16mQ9anfgwAGNHDlSa9asIbwBLoJr3gBUet27d5e7u7vmzZun/Pz8Sje/W/fu3XXixAlt27bNpn358uWSpG7dukmSevXqpaNHj+rzzz+39rl8+bI+/PBDm/UiIyOVnp6uzz77zKZ96dKlevHFF0ud+uPFF1/U5MmTbaYnad68uTw9Pa03ewAwPo68Aaj0atSooYiICO3evVsdOnRQjRo1brlOfHz8DU+t9u3b1+FTjDzzzDPasmWLfvvb3+rxxx9Xo0aN9OWXX2rLli3q1auX9fq8J598Uh999JHGjx+vkSNHqmbNmkpMTCxx2vT69saNG6ehQ4eqadOmOnDggD788EP9+te/1q9//esb1vHUU09p2rRpGjVqlPr06SOLxaIPP/xQBQUFio2NdehnBuA8hDcAhtCjRw/94x//sHti3r///e83bL/vvvscHt7uvvtuJSYm6vXXX1dKSoqysrLUoEEDTZ48WaNGjbL28/Pz07p167RgwQIlJiaqqKhIUVFRatq0qebMmVNie2+88YY++eQTJSYmql69enr++ef19NNPl3oUbfDgwfL09NTq1av12muvqbi4WGFhYVqxYoU6dOjg0M8MwHlMlltN1w0AAIBKg4sgAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCD/H1IBRBFNBOjAAAAAAElFTkSuQmCC\n", |
|
|
880 |
"text/plain": [ |
|
|
881 |
"<Figure size 720x360 with 1 Axes>" |
|
|
882 |
] |
|
|
883 |
}, |
|
|
884 |
"metadata": {}, |
|
|
885 |
"output_type": "display_data" |
|
|
886 |
} |
|
|
887 |
], |
|
|
888 |
"source": [ |
|
|
889 |
"data_r = {'RF':rf_f_acc, 'SVC':svc_f_acc, 'LR':lr_f_acc, 'kNN':knn_f_acc}\n", |
|
|
890 |
"algorithm = list(data_r.keys())\n", |
|
|
891 |
"accuracy = list(data_r.values())\n", |
|
|
892 |
"fig = plt.figure(figsize = (10, 5))\n", |
|
|
893 |
"plt.bar(algorithm, accuracy, color ='red', width = 0.4)\n", |
|
|
894 |
"plt.xlabel(\"ML models\", fontsize = 18)\n", |
|
|
895 |
"plt.ylabel(\"5 fold accuracy\", fontsize = 18)\n", |
|
|
896 |
"plt.title(\"Result\", fontsize = 18)\n", |
|
|
897 |
"plt.xticks(fontsize = 14)\n", |
|
|
898 |
"plt.yticks(fontsize = 14)\n", |
|
|
899 |
"plt.ylim([0, 1])\n", |
|
|
900 |
"plt.show()" |
|
|
901 |
] |
|
|
902 |
}, |
|
|
903 |
{ |
|
|
904 |
"cell_type": "markdown", |
|
|
905 |
"id": "073a25a0", |
|
|
906 |
"metadata": {}, |
|
|
907 |
"source": [ |
|
|
908 |
"The maximum accuracy is achieved by Random Forest. Following are the algorithm wise result." |
|
|
909 |
] |
|
|
910 |
}, |
|
|
911 |
{ |
|
|
912 |
"cell_type": "code", |
|
|
913 |
"execution_count": 44, |
|
|
914 |
"id": "f4fd13c6", |
|
|
915 |
"metadata": {}, |
|
|
916 |
"outputs": [ |
|
|
917 |
{ |
|
|
918 |
"name": "stdout", |
|
|
919 |
"output_type": "stream", |
|
|
920 |
"text": [ |
|
|
921 |
"Random Forest Accuracy: 83.57142857142857\n", |
|
|
922 |
"Support Vector Classifier Accuracy: 12.142857142857144\n", |
|
|
923 |
"Logistic Regression Accuracy: 44.28571428571429\n", |
|
|
924 |
"K Nearest Neighbours Accuracy: 12.857142857142856\n" |
|
|
925 |
] |
|
|
926 |
} |
|
|
927 |
], |
|
|
928 |
"source": [ |
|
|
929 |
"print('Random Forest Accuracy: ', rf_f_acc*100)\n", |
|
|
930 |
"print('Support Vector Classifier Accuracy: ', svc_f_acc*100)\n", |
|
|
931 |
"print('Logistic Regression Accuracy: ', lr_f_acc*100)\n", |
|
|
932 |
"print('K Nearest Neighbours Accuracy: ', knn_f_acc*100)" |
|
|
933 |
] |
|
|
934 |
}, |
|
|
935 |
{ |
|
|
936 |
"cell_type": "markdown", |
|
|
937 |
"id": "a162dc00", |
|
|
938 |
"metadata": {}, |
|
|
939 |
"source": [ |
|
|
940 |
"We will analyze the performance of Random Forest algorithm. We will train the algorithm again with a designated test set. We want to check class-wise prediction." |
|
|
941 |
] |
|
|
942 |
}, |
|
|
943 |
{ |
|
|
944 |
"cell_type": "markdown", |
|
|
945 |
"id": "dd42a75e", |
|
|
946 |
"metadata": {}, |
|
|
947 |
"source": [ |
|
|
948 |
"Following cell creates trainset and testset from our complete data" |
|
|
949 |
] |
|
|
950 |
}, |
|
|
951 |
{ |
|
|
952 |
"cell_type": "code", |
|
|
953 |
"execution_count": 45, |
|
|
954 |
"id": "8356faea", |
|
|
955 |
"metadata": {}, |
|
|
956 |
"outputs": [], |
|
|
957 |
"source": [ |
|
|
958 |
"X_train = []\n", |
|
|
959 |
"X_test = []\n", |
|
|
960 |
"y_train = []\n", |
|
|
961 |
"y_test = []\n", |
|
|
962 |
"for i in range(7):\n", |
|
|
963 |
" current_class_data = x_data[i*20: i*20 + 20]\n", |
|
|
964 |
" X_train.append(current_class_data[0: 16])\n", |
|
|
965 |
" X_test.append(current_class_data[16: ])\n", |
|
|
966 |
" current_class_labels = y_data[i*20: i*20 + 20]\n", |
|
|
967 |
" y_train.append(current_class_labels[0: 16])\n", |
|
|
968 |
" y_test.append(current_class_labels[16: ])\n", |
|
|
969 |
"X_train = np.array(X_train).reshape(-1, 320)\n", |
|
|
970 |
"X_test = np.array(X_test).reshape(-1, 320)\n", |
|
|
971 |
"y_train = np.array(y_train).reshape(-1)\n", |
|
|
972 |
"y_test = np.array(y_test).reshape(-1)" |
|
|
973 |
] |
|
|
974 |
}, |
|
|
975 |
{ |
|
|
976 |
"cell_type": "markdown", |
|
|
977 |
"id": "970f28eb", |
|
|
978 |
"metadata": {}, |
|
|
979 |
"source": [ |
|
|
980 |
"Lets train the model" |
|
|
981 |
] |
|
|
982 |
}, |
|
|
983 |
{ |
|
|
984 |
"cell_type": "code", |
|
|
985 |
"execution_count": 46, |
|
|
986 |
"id": "41feae7a", |
|
|
987 |
"metadata": {}, |
|
|
988 |
"outputs": [ |
|
|
989 |
{ |
|
|
990 |
"name": "stdout", |
|
|
991 |
"output_type": "stream", |
|
|
992 |
"text": [ |
|
|
993 |
"Accuracy: 0.8571428571428571\n" |
|
|
994 |
] |
|
|
995 |
} |
|
|
996 |
], |
|
|
997 |
"source": [ |
|
|
998 |
"rf = RandomForestClassifier()\n", |
|
|
999 |
"rf.fit(X_train, y_train)\n", |
|
|
1000 |
"predictions = rf.predict(X_test)\n", |
|
|
1001 |
"accuracy = accuracy_score(predictions, y_test)\n", |
|
|
1002 |
"print('Accuracy: ', accuracy)" |
|
|
1003 |
] |
|
|
1004 |
}, |
|
|
1005 |
{ |
|
|
1006 |
"cell_type": "code", |
|
|
1007 |
"execution_count": 47, |
|
|
1008 |
"id": "cc1970db", |
|
|
1009 |
"metadata": {}, |
|
|
1010 |
"outputs": [ |
|
|
1011 |
{ |
|
|
1012 |
"data": { |
|
|
1013 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG6CAYAAADpkFmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABUF0lEQVR4nO3deVxUZf8//tewDNuAGyqpKAguuYSoQCqmYh/N3M3KXXFLEWhBcUcr3FJDETVu97xRK70zUSx/2WLeuKGpuQQiCKnIYqwCDst8//Dn3E4DDMpwzjDn9exxHo/mmrO8352p3l7Xda4jU6lUKhARERFJmInYARARERGJjQURERERSR4LIiIiIpI8FkREREQkeSyIiIiISPJYEBEREZHksSAiIiKiOiE5ORnu7u745ptvKt0nOzsbQUFB8PT0hIeHB5YuXYpHjx7pPDcLIiIiIjJ4JSUlmDt3LgoLC6vcLzAwEKmpqdi1axciIiIQGxuLkJAQnednQUREREQGb9OmTbCxsalyn0uXLuH8+fNYtWoVOnbsCC8vL4SGhuLYsWO4f/9+lceyICIiIiKDduHCBXz11VdYs2ZNlfvFxcWhUaNGcHV1Vbd169YNMpkMcXFxVR5rppdIiYiIiKopLy8PeXl5Wu12dnaws7PT2jc4OBhLlizBSy+9VOV5MzIy4ODgoNEml8vRoEEDPHjwoMpjjaYgKslKEjsE0Vg16y12CEREJLBS5T1Br6fP/8/u2X8MERERWu3+/v4ICAjQaFu+fDm6dOmCoUOH6jxvUVER5HK5VrtcLsfjx4+rPNZoCiIiIiKqGyZPnoyRI0dqtf+zd+jw4cOIi4tDdHR0tc5raWkJpVKp1a5UKmFtbV3lsSyIiIiISLfyMr2dqqKhsYocOnQIDx8+RN++fTXaP/nkE+zevRvHjh3TaHdwcEBGRoZGm1KpRHZ2ttZQ2j+xICIiIiLdVOWCX3LdunUoLi7WaBswYAD8/f0xZMgQrf09PDywbt06JCUloXXr1gCgnkzdvXv3Kq/FgoiIiIgMUtOmTStsb9iwIZo3b46ysjL8/fffsLW1haWlJdzc3NC1a1cEBQXh448/RnFxMUJCQjB8+PBKz/UUH7snIiIi3crL9bfpSVpaGry9vRETEwMAkMlkiIiIgKOjIyZPnoyAgAD07NkTy5cv13kumUqlUuktMhHxKTMiIpISoZ8yU96/rrdzyZt11Nu59IU9RERERCR5nENEREREuulxqMsQsSAiIiIi3UR4ykxIHDIjIiIiyWMPEREREemmx4UZDRELIiIiItKNQ2ZERERExo09RERERKQbnzIjIiIiqVNxyIyIiIjIuLGHiIiIiHTjkBkRERFJHofMiIiIiIwbCyI9UCqVGDpuJhaHrhc7FMFNmzoON6+fRn5uIk6fOoJXvbqJHZJgpJw7wPyZv3Tzl2zu5WX62wwQCyI92LJzH5JT/hI7DMFNmDAaWzavxr79h/DOuzORk5OLmGNRcHJyFDu0Wifl3AHmz/ylm7+Uc4eqXH+bAZKpVCqV2EHoQ0lWkijXvZmQiEl+82BpIcdrPTyxYkmQ4DFYNest+DUBIDHhLL7/4Wf4BywEAJiZmeHGtVM4FvMjPvwoRJSYhCLl3AHmz/ylm78h5V6qvCfo9R7f/Flv57J4uZ/ezqUv7CGqgdLSMixdGQbfcaPRxN5e7HAE5erqDCcnRxw9ekLdVlpaipjjJzFwoOH90PVJyrkDzJ/5Szd/KecO4MlTZvraDJCgT5kplUp8//33iIuLQ1paGh4/fgxra2s4ODjA09MTAwYMgJlZ3XnwbUfU1ygpKcWMie/g5K+xYocjqLZtWgMAEm/f0WhPTk6FS+tWMDExQbmB/uhrSsq5A8yf+Us3fynnDsBgh7r0RbAeotTUVAwePBjLli3D7du3oVAo8NJLL8HKygq3bt3C4sWLMXToUNy9e1eokGokKeUvbNvzFT5e+AHMzc3FDkdwtnYKAEB+foFGe35+AUxNTWFjYy1GWIKQcu4A82f+0s1fyrlLgWDdMR9//DGcnZ3x7bffQqFQaH1fUFCADz/8EJ9++ikiIyOFCuuFlJeXI2TVBowaMgBdOr0sdjiikMlkAIB/TkF72m7Mf0qScu4A82f+0s1fyrkDMNihLn0RrIfo4sWLmDt3boXFEAAoFAoEBQXhwoULQoX0wqIOHkHag3TMmT4RpaVlKC198gihSqVS/72xy8vNBwDY2mreT4XCBmVlZXj0qFCMsAQh5dwB5s/8pZu/lHMHAJWqTG+bIRKsILKzs0N6enqV+9y7dw/W1obf5XjyVCzSMx+i16B30KXPEHTpMwTxiUk48v1JdOkzBPfSqs7TGNxKTAYAtHZuqdHu7NwS8Qm3xQhJMFLOHWD+zF+6+Us5dykQrCAaPXo0FixYgAMHDiApKQmFhYUoLS1FYWEh7ty5g6+//hqLFy/GqFGjhArphS2bF4gD2zdqbE6OzdGnlycObN+IJvYNxQ6x1t26lYTU1HsYNuwNdZuZmRneHNQfP/10WsTIap+UcweYP/OXbv5Szh2A0a9DJNgcooCAAMhkMnz22WcoKirS+t7Gxgbjx4/H+++/L1RIL8y5VQutNgsLC9S3s0Onl9uKEJE4Plu7GeEbQ5GTk4vY2Avwmz0F9vYNsTF8m9ih1Top5w4wf+Yv3fylnLuxzyESrCCSyWQICAjAe++9hz///BPp6ekoKiqCpaUlHBwc0L59e8jlcqHCIT34InIPrKwsEeA/De8HzsCVK9fx5uDxSE5OFTu0Wifl3AHmz/ylm7+UczfUnh194UrVRkCslaqJiEg8Qq9UXXzxsN7OZdlthN7OpS91ZxVEIiIiEo+BvpRVX1gQERERkW5GPmTGd5kRERGR5LGHiIiIiHTjU2ZEREQkeRwyIyIiIjJu7CEiIiIi3ThkRkRERJJn5AURh8yIiIhI8thDRERERDqpVMa9MCN7iIiIiEi38nL9bc8hPT0dH330Eby8vODu7o6ZM2fi1q1ble5/4MABtGvXTmtLSUmp8jrsISIiIiKDpFKpMGPGDCgUCuzYsQNWVlbYuHEjpkyZghMnTsDGxkbrmPj4ePTu3RurVq3SaG/YsGGV12JBRERERLqJsA5RVlYWXFxcEBgYCGdnZwCAn58fhg8fjoSEBLi7u2sd87S9cePGz3UtFkRERESkmx6fMsvLy0NeXp5Wu52dHezs7NSfGzdujLCwMPXnrKws7NixA02aNEHbtm0rPHdCQgLefvvt546JBREREREJas+ePYiIiNBq9/f3R0BAQIXHLFiwAN9++y3kcjm2bt1a4XBZWloa8vLyEBsbi23btiEvLw9ubm6YO3cunJycqoxJplKpVC+UjYEpyUoSOwTRWDXrLXYIREQksFLlPUGvV/TjF3o7V4nnuGr1ED3r1q1bKC4uxr59+xATE4OoqCh06tRJY59ff/0VM2fOxMiRIzFx4kQUFhZiy5YtuHnzJqKjo6scRmNBZARYEBERSY/gBdGJLXo7l9UAvxc+try8HEOGDEHnzp2xZs0are9zcnJQv3599efCwkL069cPvr6+mDVrVqXn5WP3REREZJAyMjIQHR2NZ/tuTExM4OrqivT09AqPebYYAgBra2u0aNEC9+/fr/JaLIiIiIhIN1W5/rZqSktLw9y5c3Hx4kV1W0lJCW7cuAEXFxet/Xfu3Alvb28olUp1W35+Pu7cuYM2bdpUeS0WRERERKSbCAszdu7cGV5eXggJCUFcXBwSEhIwf/585OTkYMqUKSgrK0NmZiaKi4sBAD4+PigsLMT8+fORmJiIq1evYs6cOahXrx7eeuutKq/FgoiIiIgMkomJCTZt2oRu3brhgw8+wNtvv43c3FxERUXB0dERaWlp8Pb2RkxMDADAyckJu3fvRnZ2NsaMGQNfX1/Ur18fX375Jaytrau8ltFMqjaTNxc7BNEU3f9N7BBExUnlRCRFgk+qPrZBb+eyGvyB3s6lL1yHiIiIiHQTYaVqIXHIjIiIiCSPPURERESkmx5f3WGIWBARERGRbhwyIyIiIjJu7CEiIiIi3ThkRkRERJLHITMiIiIi48YeIiIiItKNQ2ZEREQkeUZeEHHIjIiIiCSPPURERESkm3G8+rRSLIiIiIhINw6ZERERERk39hARERGRbkbeQ8SCiIiIiHTjwoxERERExo09RERERKQbh8yIiIhI8oz8sXsOmREREZHksSCqoWlTx+Hm9dPIz03E6VNH8KpXN7FDEpxSqcTQcTOxOHS92KEISur3nvkzf6nmL9ncy8v1txkgFkQ1MGHCaGzZvBr79h/CO+/ORE5OLmKORcHJyVHs0AS1Zec+JKf8JXYYgpL6vWf+zF+q+Us5d2MviGQqlXEMCprJmwt+zcSEs/j+h5/hH7DwSQxmZrhx7RSOxfyIDz8KESyOovu/CXatf7qZkIhJfvNgaSHHaz08sWJJkOAxWDXrLfg1DeXei4X5M3+p5m9IuZcq7wl6vaIdc/V2Lqtp6/R2Ln1hD9ELcnV1hpOTI44ePaFuKy0tRczxkxg4sJ+IkQmntLQMS1eGwXfcaDSxtxc7HMFI/d4zf+Yv1fylnDuAJ+sQ6WszQCyIXlDbNq0BAIm372i0JyenwqV1K5iYGP8/2h1RX6OkpBQzJr4jdiiCkvq9Z/7MH5Bm/lLOHQBU5Sq9bYbIuO9eLbK1UwAA8vMLNNrz8wtgamoKGxtrMcISTFLKX9i25yt8vPADmJubix2OoKR+75k/8wekmb+Uc5cCQdchGjduHGQyWbX2jYqKquVoauZpHv+cgvW0vdxAJ43pQ3l5OUJWbcCoIQPQpdPLYocjOCnfe4D5M3/p5i/l3AEY7GRofRG0h6hPnz64dOkScnJy0LJlyyo3Q5eXmw8AsLVVaLQrFDYoKyvDo0eFYoQliKiDR5D2IB1zpk9EaWkZSkvLADz5j8TTvzdmUr73APNn/tLNX8q5AzD6OUSC9hC99957UCgUWL9+PSIjI9GiRQshL69XtxKTAQCtnVvi9jPjyc7OLRGfcFukqIRx8lQs0jMfotcgzblD8YlJOPL9SfxwcDeav9RUpOhqn5TvPcD8mb9085dy7lIg+Byi8ePHw9PTExs2bBD60np161YSUlPvYdiwN9RtZmZmeHNQf/z002kRI6t9y+YF4sD2jRqbk2Nz9OnliQPbN6KJfUOxQ6xVUr73APNn/tLNX8q5AwDKVfrbDJAo7zL75JNPcP36dTEurVefrd2M8I2hyMnJRWzsBfjNngJ7+4bYGL5N7NBqlXMr7Z49CwsL1LezQ6eX24oQkfCkeu+fYv7MX6r5Szl3Y59DJEpB1KRJEzRp0kSMS+vVF5F7YGVliQD/aXg/cAauXLmONwePR3JyqtihUS2T+r1n/sxfqvlLOXdjL4i4UrUREHOlakMgxkrVRERiE3ql6sKNs/R2Luv3v9DbufRFlB4iIiIiqmOMo/+kUiyIiIiISDcjHzLjStVERERksNLT0/HRRx/By8sL7u7umDlzJm7dulXp/tnZ2QgKCoKnpyc8PDywdOlSPHr0SOd1WBARERGRbiI8dq9SqTBjxgw8ePAAO3bswMGDB2FpaYkpU6ZUWuQEBgYiNTUVu3btQkREBGJjYxESEqLzWiyIiIiISDcRVqrOysqCi4sLVqxYgU6dOsHFxQV+fn7IyspCQkKC1v6XLl3C+fPnsWrVKnTs2BFeXl4IDQ3FsWPHcP/+/SqvxYKIiIiIDFLjxo0RFhYGZ2dnAE8KpB07dqBJkyZo21Z73bu4uDg0atQIrq6u6rZu3bpBJpMhLi6uymtxUjURERHppscVpvPy8pCXl6fVbmdnBzs7uwqPWbBgAb799lvI5XJs3boVNjY2WvtkZGTAwcFBo00ul6NBgwZ48OBBlTGxICIiIiKdVHp8ymzPnj2IiIjQavf390dAQECFx0ybNg3jx4/Hvn37MGfOHERFRaFTp04a+xQVFUEul2sdK5fL8fjx4ypjYkFEREREgpo8eTJGjhyp1V5Z7xAAtGnTBgCwYsUKXLlyBXv37sWaNWs09rG0tIRSqdQ6VqlUwtrausqYWBARERGRbnocMqtqaOxZGRkZOHfuHIYMGQKZTAYAMDExgaurK9LT07X2d3BwQEZGhkabUqlEdna21lDaP3FSNREREekmwlNmaWlpmDt3Li5evKhuKykpwY0bN+Di4qK1v4eHBzIzM5GUlKRuezqZunv37lVeiwURERERGaTOnTvDy8sLISEhiIuLQ0JCAubPn4+cnBxMmTIFZWVlyMzMRHFxMQDAzc0NXbt2RVBQEK5evYrz588jJCQEw4cPR9OmTau8FgsiIiIi0k2EhRlNTEywadMmdOvWDR988AHefvtt5ObmIioqCo6OjkhLS4O3tzdiYmIAADKZDBEREXB0dMTkyZMREBCAnj17Yvny5TqvxbfdGwG+7Z5vuyci6RH6bfePlo/V27lslu/X27n0hT1EREREJHl8yoyIiIh00+NTZoaIBRERERHp9hxPh9VFHDIjIiIiyWMPEREREenGITMiIiKSOn2+y8wQsSAyAlJ/7JzLDkj7/hMR6QMLIiIiItKNQ2ZEREQkeUZeEPEpMyIiIpI89hARERGRbka+DhELIiIiItKNQ2ZERERExo09RERERKSTysh7iFgQERERkW5GXhBxyIyIiIgkjz1EREREpBtf3UFERESSxyEzIiIiIuPGHiIiIiLSzch7iFgQERERkU4qlXEXRBwyIyIiIsljDxERERHpxiEzIiIikjwjL4g4ZEZERESSxx4iIiIi0onvMiMiIiIy8oKIQ2Y1NG3qONy8fhr5uYk4feoIXvXqJnZIgpJ6/gCgVCoxdNxMLA5dL3YogpL6vWf+0s1fyrkbMxZENTBhwmhs2bwa+/YfwjvvzkROTi5ijkXByclR7NAEIfX8n9qycx+SU/4SOwxBSf3eM3/p5i/l3FGux80AyVRGstKSmby54NdMTDiL73/4Gf4BC5/EYGaGG9dO4VjMj/jwoxDB4xGaoeRfdP83wa71TzcTEjHJbx4sLeR4rYcnViwJEjwGq2a9Bb+modx7sTB/6eZvSLmXKu8Jer2c8T56O1f9qJ/0di59YQ/RC3J1dYaTkyOOHj2hbistLUXM8ZMYOLCfiJEJQ+r5A0BpaRmWrgyD77jRaGJvL3Y4gpH6vWf+0s1fyrlLgaAF0blz5zBv3jzMnDkT+/btQ1lZmcb3ubm5GD9+vJAhvbC2bVoDABJv39FoT05OhUvrVjAxMe5aU+r5A8COqK9RUlKKGRPfETsUQUn93jN/6eYv5dwBPJlUra/NAAl293766Sf4+voiMzMTJSUl+PTTTzFhwgTk5eWp9ykpKcGlS5eECqlGbO0UAID8/AKN9vz8ApiamsLGxlqMsAQj9fyTUv7Ctj1f4eOFH8Dc3FzscAQl9XvP/KWbv5RzB2D0c4gEK4i2bNmC999/H7t378auXbuwf/9+/PXXX/D19UVhYaFQYeiNTCYDoP2yu6ft5eUGesf1RMr5l5eXI2TVBowaMgBdOr0sdjiCk/K9B5i/lPOXcu5SIFhBdPv2bbz55pvqz126dMGePXtw9+5dBAYGag2fGbq83HwAgK2tQqNdobBBWVkZHj2qe0Xe85By/lEHjyDtQTrmTJ+I0tIylJY++e2qVCr13xszKd97gPlLOX8p5w48WZhRX5shEqwgatCgAe7d05wR7+LigoiICJw7dw6LFy/WqroN2a3EZABAa+eWGu3Ozi0Rn3BbjJAEJeX8T56KRXrmQ/Qa9A669BmCLn2GID4xCUe+P4kufYbgXlq62CHWKinfe4D5Szl/KecOgENm+vL6669j2bJlOHXqlMYQmYeHB1asWIHvvvsOwcHBQoVTY7duJSE19R6GDXtD3WZmZoY3B/XHTz+dFjEyYUg5/2XzAnFg+0aNzcmxOfr08sSB7RvRxL6h2CHWKinfe4D5Szl/KecupoKCAqxcuRI+Pj5wd3fHqFGjcPLkyUr3P3DgANq1a6e1paSkVHkdwV7d8f777yMtLQ3vvfcetm3bBm9vb/V3w4YNg0wmQ0hI3Vq/4rO1mxG+MRQ5ObmIjb0Av9lTYG/fEBvDt4kdmiCkmr9zqxZabRYWFqhvZ4dOL7cVISLhSfXeP8X8pZu/lHMXa6hr4cKFiI+PR2hoKJo3b47jx4/D398fO3fuRI8ePbT2j4+PR+/evbFq1SqN9oYNq/7DqmAFkY2NDTZt2oSsrCxYWVlpfT906FB4enrixIkTFRxtmL6I3AMrK0sE+E/D+4EzcOXKdbw5eDySk1PFDk0QUs9fyqR+75m/dPOXcu5iDHVlZmbixIkTiIyMRM+ePQEAs2bNwpkzZ3Dw4MEKC6KEhAS4u7ujcePGz3UtrlRNdZ6YK1UbAjFWqiYi8Qm9UvXDoX30di7zqGiNZXeesrOzg52dnfpzQUEBLl26hK5du0Kh+N9k9ilTpsDMzAzbt2/XOoeHhwcWL16MESNGPFdMfNs9ERERCWrPnj2IiIjQavf390dAQID6s0KhwGuvvaaxz+XLl3H27FksWbJE6/i0tDTk5eUhNjYW27ZtQ15eHtzc3DB37lw4OTlVGRMLIiIiItJNj0NmkydPxsiRI7Xan+0dqsjt27fh7+8PNzc3vPvuu1rfJyQkAABMTEzw2WefobCwEFu2bMGYMWMQHR1d5TAah8yozuOQGYfMiKRI6CGzrEH6GzKzP/7rcx9z4cIF+Pv7o1mzZti1axfq169f4X45OTka3xUWFqJfv37w9fXFrFmzKj2/kb94hYiIiOq6I0eOwNfXFx07dsTevXsrLYYAaH1nbW2NFi1a4P79+1VegwURERER6SbSwozR0dEIDg7GoEGDEBkZqTG5+p927twJb29vKJVKdVt+fj7u3LmDNm3aVHkdFkRERESkk6pcf1t1PXjwAEuXLoWXlxfmzZuHnJwcZGZmIjMzEzk5OSgrK0NmZiaKi4sBAD4+PigsLMT8+fORmJiIq1evYs6cOahXrx7eeuutKq/FgoiIiIgM0okTJ1BUVISzZ8+id+/e8Pb2Vm+zZ89GWloavL29ERMTAwBwcnLC7t27kZ2djTFjxsDX1xf169fHl19+CWtr6yqvxUnVVOdxUjUnVRNJkdCTqjP6629SdZOTzz+purbxsXsiIiLS6XmGuuoiDpkRERGR5LGHiIiIiHRTycSOoFaxICIiIiKdOGRGREREZOQq7SE6ePDgc51o9OjRNQ6GiIiIDJOqXKJDZhW9RbYyMpmMBREREZERM/Yhs0oLopMnTwoZBxEREZFoKi2ImjfnQodERET0hIpPmT2Rnp6OLVu24L///S8yMjKwf/9+HD16FB07dsSQIUNqM0YiIiISmbEPmVXrKbPk5GQMHz4cJ06cgJubG0pKSgAADx8+xLx583DixIlaDZKIiIioNlWrh2jNmjV46aWXsHfvXlhaWuLYsWMAgM8++wzFxcXYvn07BgwYUKuBEhERkXgk+5TZs86dO4cVK1ZAoVCgrKxM47vRo0fjgw8+qI3YiKpF6i83lfLLbaV+74mEZByvgq9ctYbMTExMIJNVXBkWFRXBxITrOxIREVHdVa1KxsPDA5GRkcjPz1e3yWQylJWVISoqCt27d6+1AImIiEh8qnKZ3jZDVK0hs3nz5mHMmDEYMGAAPD09IZPJsG3bNiQmJuLevXvYt29fbcdJREREIjLUQkZfqtVD5OLigkOHDqFXr164ePEiTE1NcfbsWbRu3RpfffUV2rdvX9txEhEREdWaaq9D1LJlS6xbt642YyEiIiIDZeyTqqtdEAHAqVOncObMGeTm5sLe3h5eXl7o1atXbcVGREREBsLYh8yqVRA9fPgQc+bMweXLl2FmZob69esjJycH27ZtQ48ePbB582ZYWVnVdqxEREREtaJac4jWrFmD5ORkRERE4I8//sDp06dx5coVrFu3DleuXMHatWtrO04iIiISkUol09tmiKpVEP38888ICgrC66+/rl6PyNTUFIMHD8YHH3yAmJiYWg2SiIiIxKUq199miKq9MGPDhg0r/K5Vq1bqd5sRERER1UXVKohGjhyJf/3rXygsLNRoLykpwd69ezFs2LBaCY6IiIgMQ7lKprfNEFU6qTo4OFj992VlZbhx4wb69++Pvn37wt7eHrm5uTh9+jSys7Ph6uoqSLBEREQkDkOd+6MvMpWq4pUFfHx8qn8SmQwnT57UW1AvwkzeXNTrE4mFL3clkqZS5T1BrxfffpDeztXuz+N6O5e+VNpD9NNPPwkZBxERERkwY1+HSC+vqc/NzdXHaYiIiMhAqVT62wxRtRZmfPz4MXbt2oXz589DqVTi6ShbeXk5ioqKcPv2bfzxxx+1GigRERFRbalWQbR27Vr8+9//Rps2bZCdnQ0LCws0bNgQCQkJKCkpQWBgYG3HSURERCLikBmAEydOYNKkSYiOjsbEiRPRuXNnfPPNN/jhhx/w0ksvobS0tLbjJCIiIhEZ+2P31SqI/v77b/Tp0wcA0L59e1y9ehUA4ODggBkzZnClaiIiIqrTqjVkZmtri+LiYgBPVqZOS0tDQUEBFAqF+jMREREZL2Nfh6haPUTdu3fH3r17UVBQgJYtW8LGxka97tDly5ehUChqNUhDNm3qONy8fhr5uYk4feoIXvXqJnZIgpJy/lLO/VlKpRJDx83E4tD1YociKKnffynnL9Xcjf0ps2oVRP7+/rh27RpmzJgBExMTjB8/HosXL8awYcOwadMmDBw4sLbjNEgTJozGls2rsW//Ibzz7kzk5OQi5lgUnJwcxQ5NEFLOX8q5/9OWnfuQnPKX2GEISur3X8r5Szl3Y1fpStX/lJmZifj4eHh7e0OlUiEyMhKXLl3CK6+8gpkzZ0Iul9d2rFUSY6XqxISz+P6Hn+EfsPBJDGZmuHHtFI7F/IgPPwoRPB6hSTl/Q8pdzJWqbyYkYpLfPFhayPFaD0+sWBIk6PXFWqnakO6/GKScvyHlLvRK1Zdb6e+9pV1SjlR734KCAoSHh+PHH39EdnY2nJ2dMWfOHPTv37/C/bOzsxEaGorffvsNKpUKb7zxBhYsWAAbG5sqr1OtOUQA0LhxYzRu3BjAk1d1zJo1q9rJGCNXV2c4OTni6NET6rbS0lLEHD+JgQP7iRiZMKScv5Rzf1ZpaRmWrgyD77jROPlrrNjhCEbq91/K+Us5d0C8OUQLFy5EfHw8QkND0bx5cxw/fhz+/v7YuXMnevToobV/YGAgiouLsWvXLhQUFGDRokUICQnB+vVVD+tXWhAdPHjwuQIePXq0zn2KioqQkJCAtm3bwsrKCjdu3MDevXuRnp4OFxcXTJkyBc2b1413krVt0xoAkHj7jkZ7cnIqXFq3gomJCcrLy0WITBhSzl/KuT9rR9TXKCkpxYyJ70iqIJL6/Zdy/lLOXSyZmZk4ceIEIiMj0bNnTwDArFmzcObMGRw8eFCrILp06RLOnz+PY8eOqV88HxoaCl9fXwQFBaFZs2aVXqvSgmjJkiXVDlgmk+ksiBITEzFlyhRkZWXBwcEBK1euhJ+fH5o3bw5XV1f88ssv+O6777Bv3z51EobM1u7JRPL8/AKN9vz8ApiamsLGxlrrO2Mi5fylnPtTSSl/Yduer7A9fBXMzc3FDkdQUr//Us5fyrkD4kyGtrKywrZt29C1a1eNdplMVuFrw+Li4tCoUSONOqJbt26QyWSIi4vDsGGVD/tVWhDp++31a9euRdeuXeHn54cdO3Zg9uzZGDx4MFasWAGZTIbS0lIEBwdj9erV2L59u16vXRtksiddh/+cgvW03dj/lCDl/KWcO/Akv5BVGzBqyAB06fSy2OEITur3X8r5Szl3AHpdUDEvLw95eXla7XZ2drCzs1N/VigUeO211zT2uXz5Ms6ePVthx01GRgYcHBw02uRyORo0aIAHDx5UGVOlBZG+h67Onz+PQ4cOoXXr1pg/fz6io6Mxfvx49Q/JzMwMs2bNwrvvvqvX69aWvNx8AICtrQIZGVnqdoXCBmVlZXj0qFCs0AQh5fylnDsARB08grQH6dj82XKUlpap21UqFUpLy2BmZipidLVP6vdfyvlLOXd927NnDyIiIrTa/f39ERAQUOlxt2/fhr+/P9zc3CqsF4qKiip8yEsul+Px48dVxlTtSdU1ZWFhoQ7G3t4eI0eOhKWlpcY++fn5dWZNo1uJyQCA1s4tcfuZ8WRn55aIT7gtUlTCkXL+Us4dAE6eikV65kP0GvSORnt8YhKOfH8SPxzcjeYvNRUputon9fsv5fylnDug30nVkydPxsiRI7Xan+0d+qcLFy7A398fzZo1Q2RkZIXD9ZaWllAqlVrtSqUS1tbWVcZUrXWI9KFnz55YsWIFUlJSAACrVq2Ci4uL+vtLly5h2bJl6NevbszUv3UrCamp9zBs2BvqNjMzM7w5qD9++um0iJEJQ8r5Szl3AFg2LxAHtm/U2Jwcm6NPL08c2L4RTewbih1irZL6/Zdy/lLOHdDvu8zs7OzQokULra2ygujIkSPw9fVFx44dsXfvXtSvX7/C/RwcHJCRkaHRplQqkZ2drTWU9k+C9RDNnz8fM2fORHh4uNajb0ePHsXcuXPx6quvYt68eUKFVGOfrd2M8I2hyMnJRWzsBfjNngJ7+4bYGL5N7NAEIeX8pZy7c6sWWm0WFhaob2eHTi+3FSEi4Un5/gPSzl/KuYslOjoawcHBGDp0KFauXFnlgxweHh5Yt24dkpKS0Lr1k6cC4+LiADx560ZVqr0wo75kZWXB3t5eoy0zMxNpaWno3Lmzek7R8xJjYUYA+PCD9xDgPw329g1x5cp1zAv+BGfPXRQlFjFIOX9DyV3MhRmfemvyHLRv01oyCzMChnP/xSLl/A0ld6EXZjzbbJTezvXq/f9Ua78HDx7gjTfegJubG9auXatRI5ibm8PW1hZ///03bG1tYWlpCZVKhXHjxqG4uBgff/wxiouLsWjRInTv3h2rV6+u8lrPVRAplUpcvXoV6enp8Pb2RlFRkc4uKKGIVRARic0QCiKxiFkQEYlN6IIo9qW39HaunmmHqrXfl19+iRUrVlT4XdeuXbF27Vr0798fq1atwqhRTwq2hw8f4uOPP8Zvv/0GuVyOgQMHYtGiRVrzlv+p2gXR/v37sWHDBuTm5kImk+HgwYP4/PPPAQARERGwsrKqVnK1hQURSRULIiJpErog+q+D7gWYq6vXg+db/FkI1ZpUffjwYXz88ccYOHAgIiMj1WswjBw5EpcuXarw0TkiIiKiuqJak6q3b9+OsWPHYtmyZSgr+9+6I0OGDMGDBw+wf//+OjUZmoiIiJ6PcS87Wc0eopSUlEofh+/YsSMyMzP1GhQREREZFhVketsMUbUKInt7e8THx1f43a1bt7SeGiMiIiKqS6o1ZDZ48GBs2bIFTZs2hY+PD4An7265fPkyIiMjMWLEiNqMkYiIiERWLsLLXYVUrYIoMDAQt27dQnBwsHoNgPHjx6O4uBgeHh4IDAys1SCJiIhIXOUGOtSlL9UqiORyOSIjIxEbG4szZ84gJycHtra28PLywmuvvfbCiykSERERGYLnenVHz5490bNnz9qKhYiIiAyUoU6G1pdqFUTVWWfI39+/xsEQERGRYTL2x+5rXBDZ2NjA3t6eBRERERHVWdUqiK5fv67VVlBQgHPnzmHFihWVvmeEiIiIjAOHzACYmppqtdWrVw8DBgxAVlYW1qxZg2+++UbvwREREZFhMPYhs2otzFgVJycnJCQk6CMWIiIiIlE811Nm//T48WMcOHAAjRs31lc8REREZICMvYeoWgVRnz59tNYaKisrQ05ODkpKSrB48eJaCY6IiIgMA+cQAZWuPaRQKODj44MePXroNSgiIiIiIVWrIOrfvz88PDxQr1692o6HiIiIDFC5cXcQVW9S9fz58/HLL7/UcihERERkqMoh09tmiKpVEDVs2LDCR++JiIiIjEG1hszee+89fPrpp0hISECbNm1gb2+vtQ/nERERERkvldgB1DKZSqXSmWP79u0rPlgmg0qlgkwmw82bN/Ue3PMwkzcX9fpEJLxJzaT9B7GI2bZihyAqu6UnxA5BVKXKe4Je7z8O4/R2rlEP9untXPpSrR6iL7/8srbjICIiIhJNpQVR//79ER4ejo4dO8LT01PImIiIiMjAlMsMczK0vlRaEN27dw+PHz8WMhYiIiIyUMY+h6jG7zIjIiIiquuqnEP0z9d1EBERkTRJ+l1m/v7+MDc313kSmUyGn3/+WW9BERERkWEx9pWqqyyIOnbsiEaNGgkVCxEREZEoqiyIZs2aha5duwoVCxERERkoQ33lhr5Uax0iIiIikjY+ZUZERERk5CrtIRo5cmSF7ywjIiIi6ZHspOpVq1YJGQcREREZMGN/7J5DZkRERCR5nFRNREREOhn7pGoWRERERKSTsc8h4pAZERER1QmRkZEYO3ZslfscOHAA7dq109pSUlKqPI49RERERKST2JOqo6KiEBYWBnd39yr3i4+PR+/evbUeDmvYsGGVx7EgIiIiIp3EKojS09OxbNkynDt3Ds7Ozjr3T0hIgLu7Oxo3bvxc1+GQGRERERms69evw8bGBkeOHIGbm5vO/RMSEuDq6vrc12EPEREREemk0uOk6ry8POTl5Wm129nZwc7OTqPNx8cHPj4+1TpvWloa8vLyEBsbi23btiEvLw9ubm6YO3cunJycqjyWPUQ1NG3qONy8fhr5uYk4feoIXvXqJnZIgpJy/lLOHWD+T3V5vTu2XNsrdhjCMjGFee9RsJy1FlYffgGLMcGQNW0ldlSCkepvv1yP2549e9C/f3+tbc+ePTWKMSEhAQBgYmKCzz77DJ9//jkePXqEMWPGIDMzs8pjWRDVwIQJo7Fl82rs238I77w7Ezk5uYg5FgUnJ0exQxOElPOXcu4A83/KpWs7zAgLhJG/BFyLef+xMOv2OkrPxuDxt5uAksewHBsMmV0jsUOrdfzt68fkyZNx8uRJrW3y5Mk1Om+fPn1w7tw5rF69Gh07doSHhwc2b94MlUqFQ4cOVXmsTKVSGcVaS2by5oJfMzHhLL7/4Wf4Byx8EoOZGW5cO4VjMT/iw49CBI9HaFLOX8q5A4aT/6RmPQS71rPM5GZ43XcwRn40Bo+LimFmbga/jhMFjyNitq3g14TcClaB4Sj59RuUXjjxpM3MHFaBm1By5hhKz0QLFord0hOCXespQ/ntA0Cp8p6g14twnKC3c/n/9e8XOm7BggVISUnB/v37n+u4t956Cx07dsQnn3xS6T6i9xANHToUaWlpYofx3FxdneHk5IijR//3L2RpaSlijp/EwIH9RIxMGFLOX8q5A8wfADr3dcdgv5H4ZtVenNxzXOxwhFXyGMVfforSq6f/11ZWBqgAmZlxT0uV+m9fpcettuzcuRPe3t5QKpXqtvz8fNy5cwdt2rSp8lhBfr0HDx6s9LuUlBQcPXoUDRo0AACMHj1aiJBqrG2b1gCAxNt3NNqTk1Ph0roVTExMUF4u9qoNtUfK+Us5d4D5A0DyldsI7u2HorxCDP/gHbHDEZaqHKqM1P//gwyyeo1g7j0CgAql18+IGFjt42/f8JSVleHvv/+Gra0tLC0t4ePjg4iICMyfPx9z5sxBYWEh1q1bh3r16uGtt96q8lyCFEQrVqxAcXExAKCiEbr169cDAGQyWZ0piGztFACA/PwCjfb8/AKYmprCxsZa6ztjIuX8pZw7wPwBICf9b7FDMAhmvYZB7j0CAKD87T9Q/f1A3IBqmdR/+4b46o60tDT0798fq1atwqhRo+Dk5ITdu3fj888/x5gxY6BSqdCrVy+sXLkS1tbWVZ5LkILoP//5D+bOnQtbW1usWbMGTZs2VX/n7u6OI0eOwNGxbk1Ik8me/DL+WeA9bTf2PyVIOX8p5w4wf/qfsoSLKE79E6Yt28O85zDITM1Q8tu3YodVa6T+2zeE7FavXq3xuUWLFoiPj9doe+WVV7B79+7nPrcgc4icnZ3x1Vdf4ZVXXsHw4cMRExMjxGVrVV5uPgDA1lah0a5Q2KCsrAyPHhWKEZZgpJy/lHMHmD/9jyrzLsr/ikfJf79D6cUfYeY5CDAxFTusWsPfvnETbFK1mZkZPvroI2zatAnr1q1DUFAQ8vPzhbq83t1KTAYAtHZuqdHu7NwS8Qm3xQhJUFLOX8q5A8xf8mzsYNrZG5BbajSXp6dCZmYOWNmIFFjtk/pvX5/rEBkiwZ8y8/DwwOHDhwEAQ4YMQUlJidAh6MWtW0lITb2HYcPeULeZmZnhzUH98dNPp6s40jhIOX8p5w4wf6mTWVjD4s1pMG3XXaPd1LkjVI9ygUd19w+6ukj9t18XnjKrCVGekbSzs8P69etx+PBh/Oc//4GFhYUYYdTYZ2s3I3xjKHJychEbewF+s6fA3r4hNoZvEzs0QUg5fynnDjB/KVP9/QCl8Rcg7/cuSkzMUJ6bAdO23WDWqRcex+yA4f7vTj/42zdeoi4aMWLECIwYMULMEGrki8g9sLKyRID/NLwfOANXrlzHm4PHIzk5VffBRkDK+Us5d4D5S53y6HaY9xoOsx6DIbOpB9XD+3h8eDPK4uPEDq3WSfm3b4hPmekTV6omojpLrJWqDYUoK1UbEDFWqjYkQq9UvbqV/laqXpDyYitV1ybjXlaUiIiI9MIoek+qIPqrO4iIiIjExh4iIiIi0qncyPuIWBARERGRToa6fpC+cMiMiIiIJI89RERERKSTcQ+YsSAiIiKiauCQGREREZGRYw8RERER6WTsK1WzICIiIiKdjP2xew6ZERERkeSxh4iIiIh0Mu7+IRZEREREVA18yoyIiIjIyLGHiIiIiHQy9knVLIiIiIhIJ+MuhzhkRkRERMQeIiIiItLN2CdVsyAiIiIinYx9DhGHzIiIiEjy2ENEREREOhl3/xALIiIiIqoGY59DxCEzIiIikjz2EBEREZFOKiMfNGNBRERERDpxyIyIiIjIyLGHiIiIiHQy9nWIWBARERGRTsZdDnHIjIiIiIg9RERERKSbsQ+ZsYeIiIiIdCrX4/aiIiMjMXbs2Cr3yc7ORlBQEDw9PeHh4YGlS5fi0aNHOs/NgoiIiIgMXlRUFMLCwnTuFxgYiNTUVOzatQsRERGIjY1FSEiIzuM4ZEZEREQ6ibUwY3p6OpYtW4Zz587B2dm5yn0vXbqE8+fP49ixY3B1dQUAhIaGwtfXF0FBQWjWrFmlx7KHiIiIiHTS55BZXl4e7t69q7Xl5eVpXff69euwsbHBkSNH4ObmVmWMcXFxaNSokboYAoBu3bpBJpMhLi6uymPZQ0RERESC2rNnDyIiIrTa/f39ERAQoNHm4+MDHx+fap03IyMDDg4OGm1yuRwNGjTAgwcPqjyWBRERERHppM8hs8mTJ2PkyJFa7XZ2djU6b1FREeRyuVa7XC7H48ePqzyWBRERERHppM93mdnZ2dW4+KmIpaUllEqlVrtSqYS1tXWVx3IOERERERkFBwcHZGRkaLQplUpkZ2drDaX9EwsiIiIi0qlcpdLbVls8PDyQmZmJpKQkddvTydTdu3ev8lgWRERERKSTSo+bvpSVlSEzMxPFxcUAADc3N3Tt2hVBQUG4evUqzp8/j5CQEAwfPhxNmzat8lwsiIiIiKhOSktLg7e3N2JiYgAAMpkMERERcHR0xOTJkxEQEICePXti+fLlOs/FgqiGpk0dh5vXTyM/NxGnTx3Bq17dxA5JUFLOX8q5A8z/qS6vd8eWa3vFDkNYJqYw7z0KlrPWwurDL2AxJhiypq3EjkowUv3tl0Olt+1FrV69Gvv371d/btGiBeLj4zFq1Ch1W6NGjRAeHo7ff/8d586dwyeffAJLS0ud52ZBVAMTJozGls2rsW//Ibzz7kzk5OQi5lgUnJwcxQ5NEFLOX8q5A8z/KZeu7TAjLBCQiR2JsMz7j4VZt9dRejYGj7/dBJQ8huXYYMjsGokdWq2T8m9fpce/DJFMparF2U0CMpM3F/yaiQln8f0PP8M/YOGTGMzMcOPaKRyL+REffqT7vSl1nZTzl3LugOHkP6lZD8Gu9SwzuRle9x2MkR+NweOiYpiZm8Gv40TB44iYbSv4NSG3glVgOEp+/QalF048aTMzh1XgJpScOYbSM9GChWK39IRg13rKUH77AFCqvCfo9ca2GqG3c+1POay3c+kL1yF6Qa6uznBycsTRo//7F7K0tBQxx09i4MB+IkYmDCnnL+XcAeYPAJ37umOw30h8s2ovbBooMHD6ULFDEk7JYxR/+SlUuVn/aysrA1SAzMy4/5ci9d++PtchMkSCDZkdPHhQa7GkM2fOYNq0aXjzzTcRGBiIP//8U6hwaqxtm9YAgMTbdzTak5NT4dK6FUxMjHs0Usr5Szl3gPkDQPKV2wju7Ycfd8fo95GZukBVDlVGKvC4EIAMsnr2kL85FYAKpdfPiB1drZL6b98Q5hDVJsHu3tKlS5Gfn6/+/N///hdTp04FAPTt2xfZ2dl4++23db58zVDY2ikAAPn5BRrt+fkFMDU1hY1N1Sti1nVSzl/KuQPMHwBy0v9GUV6h2GGIzqzXMFjNWguzTr1Qci4Gqr+rfldUXcffvnETrH/zn1OVtmzZgkmTJmHhwoXqttDQUHz++efYt2+fUGG9MJnsySzKf+b1tL283Lg7F6Wcv5RzB5g//U9ZwkUUp/4J05btYd5zGGSmZij57Vuxw6o1Uv/tG+pkaH0RrX/vzp07GD58uEbbuHHjcP36dZEiej55uU96u2xtFRrtCoUNysrK8OiRcf/pUcr5Szl3gPnT/6gy76L8r3iU/Pc7lF78EWaegwATU7HDqjVS/+2X63EzRIIVRDKZTF1FA0DLli3x6NEjjX1ycnJgayvCUxMv4FZiMgCgtXNLjXZn55aIT7gtRkiCknL+Us4dYP6SZ2MH087egFxzXZfy9FTIzMwBKxuRAqt9/O0bN8EKIpVKhYEDB2LMmDFYvHgxbGxssH79epSWlgIArl27hk8//RTe3t5ChVQjt24lITX1HoYNe0PdZmZmhjcH9cdPP50WMTJhSDl/KecOMH+pk1lYw+LNaTBtp/leKFPnjlA9ygUe5VdyZN0n9d++SqXS22aIBJtDdPz4ccTHxyMhIQHx8fFISUnB3bt3UVJSAjMzM0yaNAmOjo4ICgoSKqQa+2ztZoRvDEVOTi5iYy/Ab/YU2Ns3xMbwbWKHJggp5y/l3AHmL2Wqvx+gNP4C5P3eRYmJGcpzM2DathvMOvXC45gdMPbH7qT82zfUp8P0RbCCyNnZGc7Oznjjjf9V1kVFRbCysgIA7Ny5E506dYJZHVrH4ovIPbCyskSA/zS8HzgDV65cx5uDxyM5OVXs0AQh5fylnDvA/KVOeXQ7zHsNh1mPwZDZ1IPq4X08PrwZZfF14ynhmuBv33hxpWoiqrPEWqnaUIiyUrUBEWOlakMi9ErVQ1sO0du5olOP6u1c+lJ3umOIiIhINMb+2D0LIiIiItLJ2OcQGfc640RERETVwB4iIiIi0slIphxXigURERER6WSoK0zrC4fMiIiISPLYQ0REREQ68SkzIiIikjw+ZUZERERk5NhDRERERDrxKTMiIiKSPA6ZERERERk59hARERGRTnzKjIiIiCSv3MjnEHHIjIiIiCSPPURERESkk3H3D7EgIiIiomrgU2ZERERERo49RERERKSTsfcQsSAiIiIinYx9pWqZykgyNJM3FzsEIiISUNH938QOQVTm9q0Fvd6rzfrq7Vxn7/+it3PpC3uIiIiISCcOmREREZHkGftK1XzKjIiIiAxWeXk5wsPD0bt3b7i5uWHq1KlISUmpdP8DBw6gXbt2WltVxwDsISIiIqJqEGvK8ebNm7F//36sXr0aTZs2xfr16zFt2jQcO3YMFhYWWvvHx8ejd+/eWLVqlUZ7w4YNq7wOe4iIiIhIp3Ko9LZVl1KpxM6dO+Hv748+ffqgffv2CAsLQ1ZWFo4fP17hMQkJCWjfvj0aN26ssZmamlZ5LRZEREREZJBu3ryJwsJCvPrqq+o2hUKBDh06IC4ursJjEhIS4Orq+tzX4pAZERER6aTPIbO8vDzk5eVptdvZ2cHOzk79OT09HQDQtGlTjf2aNGmCtLQ0rePT0tKQl5eH2NhYbNu2DXl5eXBzc8PcuXPh5ORUZUwsiIiIiEgnfT52v2fPHkRERGi1+/v7IyAgQP25qKgIACCXyzX2k8vlUCqVWscnJCQAAExMTPDZZ5+hsLAQW7ZswZgxYxAdHY3GjRtXGhMLIiIiIhLU5MmTMXLkSK32Z3uHAMDS0hLAk7lEzxZFSqUS1tbWWsf36dMH586dQ/369dVtmzdvRr9+/XDo0CHMmjWr0phYEBEREZFO+lyH6J9DY5V56aWXAAAZGRlQKBTq9oyMjErnCT1bDAGAtbU1WrRogfv371d5LU6qJiIiIp3KVSq9bdXVvn17KBQKnD9/Xt1WUFCAGzduwNPTU2v/nTt3wtvbW2M4LT8/H3fu3EGbNm2qvBYLIiIiIjJIcrkcEyZMQFhYGH788Uf8+eef+PDDD9G0aVMMGDAAZWVlyMzMRHFxMQDAx8cHhYWFmD9/PhITE3H16lXMmTMH9erVw1tvvVXltVgQERERkU4qPf71PAIDA/H2228jJCQEY8eOhUqlwvbt2yGXy5GWlgZvb2/ExMQAAJycnLB7925kZ2djzJgx8PX1Rf369fHll19WOOfoWXzbPRER1Ul8272wb7t/uYn2ENWLuplxXvdOAmMPEREREUkenzIjIiIinYz9bfcsiIiIiEin53k6rC7ikBkRERFJHnuIiIiISCcOmREREZHkcciMiIiIyMixIKqhaVPH4eb108jPTcTpU0fwqlc3sUMSlJTzl3LuAPNn/tLOH3jygtGh42Ziceh6sUMRhFgLMwqFBVENTJgwGls2r8a+/YfwzrszkZOTi5hjUXBychQ7NEFIOX8p5w4wf+Yv7fyf2rJzH5JT/hI7DMGoVOV62wwRV6qugcSEs/j+h5/hH7DwSQxmZrhx7RSOxfyIDz8KETweoUk5fynnDjB/5m8Y+Yu5UvXNhERM8psHSws5XuvhiRVLggSPQeiVqp0buentXMkPr+jtXPoiaA/R77//jq1bt6o/nzlzBtOnT8cbb7yB9957D+fOnRMynBpxdXWGk5Mjjh49oW4rLS1FzPGTGDiwn4iRCUPK+Us5d4D5M39p5w8ApaVlWLoyDL7jRqOJvb3Y4QimHCq9bYZIsILo+++/x/jx43Hp0iUAwM8//4ypU6fCxMQE/fv3R3l5OXx9fXHy5EmhQqqRtm2eVOaJt+9otCcnp8KldSuYmBj3aKSU85dy7gDzZ/7Szh8AdkR9jZKSUsyY+I7YoQhKpVLpbTNEgj12HxERgcDAQMyaNQsAsHXrVsyePRuBgYHqfbZu3YpNmzahf//+QoX1wmztFACA/PwCjfb8/AKYmprCxsZa6ztjIuX8pZw7wPyZv7TzT0r5C9v2fIXt4atgbm4udjikR4KV8qmpqRg8eLD68927dzFgwACNfYYMGYKkpCShQqoRmUwGAFqV7tP28nLDnDSmL1LOX8q5A8yf+Us3//LycoSs2oBRQwagS6eXxQ5HcBwy0xNHR0f8+uuv6s+dO3fGzZs3Nfa5fPkyHBwchAqpRvJy8wEAtrYKjXaFwgZlZWV49KhQjLAEI+X8pZw7wPyZv3Tzjzp4BGkP0jFn+kSUlpahtLQMwJPi8OnfGzMOmenJjBkzsHjxYty7dw+DBw/GzJkzMX/+fBQWFqJt27b4448/sGXLFo0hNEN2KzEZANDauSVuPzOW7uzcEvEJt0WKSjhSzl/KuQPMn/lLN/+Tp2KRnvkQvQZpzh2KT0zCke9P4oeDu9H8paYiRUc1JVhBNGLECMhkMoSHh2PXrl2QyWRQqVT49NNPAQA2NjaYPn06Jk2aJFRINXLrVhJSU+9h2LA38P/9eArAk0dP3xzUHzHH68bE8JqQcv5Szh1g/sxfuvkvmxeIR4WaPWALPv4MrVo2x2zf8Whi31CkyIRh7K/uEPRdZsOHD8fw4cORlJSEO3fuoKCgAObm5nBwcECHDh1gYWEhZDg19tnazQjfGIqcnFzExl6A3+wpsLdviI3h28QOTRBSzl/KuQPMn/lLM3/nVi202iwsLFDfzg6dXm4rQkTCMtQVpvVFlJe7tm7dGq1bC7ugVG34InIPrKwsEeA/De8HzsCVK9fx5uDxSE5OFTs0QUg5fynnDjB/5i/t/Mk4caVqIiKqk8RcqdoQCL1SddN67fV2rvTcP/V2Ln0RpYeIiIiI6hZDfVxeX1gQERERkU5GMqBUKeNfY52IiIhIB/YQERERkU587J6IiIgkj0NmREREREaOPURERESkE58yIyIiIsnjkBkRERGRkWMPEREREenEp8yIiIhI8oz95a4cMiMiIiLJYw8RERER6cQhMyIiIpI8PmVGREREZOTYQ0REREQ6cVI1ERERSZ5KpdLb9jzKy8sRHh6O3r17w83NDVOnTkVKSkql+2dnZyMoKAienp7w8PDA0qVL8ejRI53XYUFEREREBmvz5s3Yv38/QkND8dVXX8HU1BTTpk3D48ePK9w/MDAQqamp2LVrFyIiIhAbG4uQkBCd12FBRERERDqJ0UOkVCqxc+dO+Pv7o0+fPmjfvj3CwsKQlZWF48ePa+1/6dIlnD9/HqtWrULHjh3h5eWF0NBQHDt2DPfv36/yWiyIiIiISCeVHre8vDzcvXtXa8vLy9O45s2bN1FYWIhXX31V3aZQKNChQwfExcVpxRgXF4dGjRrB1dVV3datWzfIZLIK93+W0UyqLlXeEzsEIiIio6XP/89u2rQJERERWu3+/v4ICAhQf05PTwcANG3aVGO/Jk2aIC0tTev4jIwMODg4aLTJ5XI0aNAADx48qDImoymIiIiIqG6YPHkyRo4cqdVuZ2en8bmoqAjAk6LmWXK5HEqlUuv4oqIirX2f7l/ZnKOnWBARERGRoOzs7LSKn4pYWloCeDKX6NlCR6lUwtrausL9KyqUKtv/WZxDRERERAbppZdeAvBkKOxZGRkZWsNoAODg4KC1r1KpRHZ2ttZQ2j+xICIiIiKD1L59eygUCpw/f17dVlBQgBs3bsDT01Nrfw8PD2RmZiIpKUnd9nQydffu3au8FofMiIiIyCDJ5XJMmDABYWFhsLe3R4sWLbB+/Xo0bdoUAwYMQFlZGf7++2/Y2trC0tISbm5u6Nq1K4KCgvDxxx+juLgYISEhGD58eIU9Ss+SqYz9bW1ERERUZ5WVlSEsLAz/+c9/UFRUhG7dumHZsmVwdHTE3bt30b9/f6xatQqjRo0CADx8+BAff/wxfvvtN8jlcgwcOBCLFi1Sz0eqDAsiIiIikjzOISIiIiLJY0FEREREkseCiIiIiCSPBVENlJeXIzw8HL1794abmxumTp2KlJQUscMSRWRkJMaOHSt2GIIpKCjAypUr4ePjA3d3d4waNQonT54UOyzBpKen46OPPoKXlxfc3d0xc+ZM3Lp1S+ywRJGcnAx3d3d88803YocimKSkJLRr105rk9I/g8OHD+PNN99E586dMXjw4ApfNEp1CwuiGti8eTP279+P0NBQfPXVVzA1NcW0adN0Lg9ubKKiohAWFiZ2GIJauHAhfvnlF4SGhuLw4cMYMGAA/P39cebMGbFDq3UqlQozZszAgwcPsGPHDhw8eBCWlpaYMmUKHj16JHZ4giopKcHcuXNRWFgodiiCio+Ph0KhwOnTpzW2oUOHih2aIL777jssWrQI7777Lo4ePYohQ4bgo48+wsWLF8UOjWqABdELUiqV2LlzJ/z9/dGnTx+0b98eYWFhyMrKksyfFNLT0zFr1iysW7cOzs7OYocjmMzMTJw4cQKLFi1Cz5490apVK8yaNQuenp44ePCg2OHVuqysLLi4uGDFihXo1KkTXFxc4Ofnh6ysLCQkJIgdnqA2bdoEGxsbscMQXEJCAlxcXNC4cWONTddjzcZApVJh48aNmDBhAiZPnoxWrVph9uzZ6NmzJ86ePSt2eFQDLIhe0M2bN1FYWIhXX31V3aZQKNChQwf1qpjG7vr167CxscGRI0fg5uYmdjiCsbKywrZt27RWPZXJZMjNzRUpKuE0btwYYWFh6iI4KysLO3bsQJMmTdC2bVuRoxPOhQsX8NVXX2HNmjVihyK4+Ph4uLi4iB2GKJKSknDv3j0MGTJEo33Hjh2YM2eOSFGRPnCl6heUnp4OAForXzZp0gRpaWlihCQ4Hx8f+Pj4iB2G4BQKBV577TWNtsuXL+Ps2bNYsmSJSFGJY8GCBfj2228hl8uxdetWyfSW5OXlITg4GEuWLFG/a0lKEhIS0KpVK4wZMwapqalwcnKCn58fvL29xQ6t1t25cwfAk1GCmTNn4o8//kCLFi0we/ZsSf730Jiwh+gFFRUVAYDG23effq7oTbtkvG7fvg1/f3+4ubnh3XffFTscQU2bNg0HDx7EkCFDMGfOHFy7dk3skASxfPlydOnSRTJzZp5VWFiIu3fvIj8/Hx9++CH+9a9/oVOnTpg+fTpiY2PFDq/WFRQUAACCg4MxcOBA7Ny5E97e3vDz88N///tfkaOjmmAP0Qt6OlauVCo1iiKlUglra2uxwiKBXbhwAf7+/mjWrBkiIyNhbm4udkiCatOmDQBgxYoVuHLlCvbu3Wv0Q0iHDx9GXFwcoqOjxQ5FFNbW1rh48SLMzc3V/+3r1KkTbt++je3bt6Nnz54iR1i7nv477uvri7feegsA8PLLL+PatWvYuXMnevXqJWZ4VAPsIXpBT7vJMzIyNNozMjJ0vkCOjMORI0fg6+uLjh07Yu/evahfv77YIQkiIyMD0dHRePatPyYmJnB1dVUPJRuzQ4cO4eHDh+jbty/c3d3h7u4OAPjkk08wePBgkaMTho2NjVbveNu2bXH//n2RIhKOg4MDAGjNl2vTpg3u3r0rRkikJyyIXlD79u2hUChw/vx5dVtBQQFu3LgBT09PESMjIURHRyM4OBiDBg1CZGQkFAqF2CEJJi0tDXPnztV4xLikpAQ3btyQxETbdevWISYmBocPH1ZvAODv749//etf4gYngN9//x3u7u64evWqRvu1a9fUPYbGrEOHDrCxscEff/yh0Z6QkICWLVuKFBXpA4fMXpBcLseECRMQFhYGe3t7tGjRAuvXr0fTpk0xYMAAscOjWvTgwQMsXboUXl5emDdvHnJyctTfmZubG31PUefOneHl5YWQkBB88sknsLOzwxdffIGcnBxMmTJF7PBqXWU9wA0bNkTz5s0FjkZ4nTp1QosWLbB06VKEhISgfv362L9/P37//Xd8/fXXYodX6ywtLTF9+nRs2bIFTZo0QZcuXXDs2DGcPn0au3btEjs8qgEWRDUQGBiIsrIyhISEoKioCN26dcP27du1upLJuJw4cQJFRUU4e/YsevfurfFd165dsX//fpEiE4aJiQk2bdqEdevW4YMPPkB+fj66d++OqKgoODo6ih0e1TJzc3Ns374d69evR2BgIPLy8tCxY0fs3LkTHTp0EDs8Qfj5+cHa2hrh4eF48OABWrdujU2bNqFHjx5ih0Y1IFM9OxGAiIiISII4h4iIiIgkjwURERERSR4LIiIiIpI8FkREREQkeSyIiIiISPJYEBFRtfCBVCIyZiyIiAQwceJEtGvXTmPr1KkTfHx8sHz5co3FHfXt7t27aNeuHb755hsAwLlz59CuXbvnehHnN998g5UrV+olnk2bNqFdu3YoLS2tdJ927dohLCzsuc47ceJEjB07tqbhvfD1iahu48KMRAJp27Ytli1bpv789HUXGzZswJ9//on9+/dDJpPVehwdOnRAVFQU2rVrV+1jtm7diq5du9ZiVERE4mJBRCQQhUKB7t27a7T16NEDxcXFCA8Px5UrV9ClS5daj8PW1lYrDiIiqeOQGZHIOnXqBADqN4VPnDgRwcHBCAoKgru7O959910AgFKpxLp169C3b1906tQJgwcPxrfffqt1voMHD2LQoEF45ZVX8PbbbyMxMVHj+4qGzP744w9Mnz4d3bp1g5eXFwICAvDXX38BeDJ8dO/ePURHR2v0KiUmJmLWrFno2rUr3N3d8d577yEpKUnjWvn5+Vi6dCleffVVdO3aFcuXL4dSqXzuf0Z3795FcHAwvL290bFjR/To0QPBwcH4+++/tfaNjIxEr1690KVLF8yaNQspKSka3z948ABBQUHw8vKCm5sbJkyYgMuXLz93TERkXNhDRCSy5ORkANB4U3ZMTAz69u2LTZs2qQuIgIAAnDt3DrNnz0b79u3x008/YcGCBSgsLMT48eMBAAcOHMCyZcvwzjvvYMGCBbh69So+/PDDKq//559/Yty4cWjXrh0+/fRTmJqaYuPGjfD19UV0dDSioqLwwQcfoF27dpg9ezYAICUlBWPGjEGzZs3w6aefAgC2bduGsWPH4vDhw3jppZegUqkwY8YMJCUl4f3330fTpk2xf/9+nDt37rn++RQXF2PSpEmws7PDokWLUK9ePfz+++/YsmULzM3NsWLFCvW+V69excOHD7Fw4UKUlZVhw4YNmDJlCr7//ntYWFggOzsbY8aMgYmJCYKDg2FnZ4d///vfmDRpEvbt26cuTolIelgQEQno2YnEubm5uHDhArZu3Qp3d3d07NhR/Z1KpcLq1auhUCgAALGxsfjll1+wZs0ajBgxAgDQp08flJeXY8OGDXjrrbdgYWGBiIgI+Pj4qIuUPn36qAucynzxxRdQKBTYs2cPbGxsAACtW7fGjBkzcPXqVXh5eUEul6NBgwbqobZNmzbB1NQUX375JerXrw8AeO211/B///d/2Lp1Kz755BOcPn0av//+OyIiIvB///d/AIB+/fph8ODB6iKwOpKTk9GkSROsXLkSrVu3BgD06tUL165dw/nz5zX2lclk2LlzJ1q0aAEAaNOmDUaOHImDBw9i/Pjx2L17N7KysnD06FE4OTkBAPr27YsRI0YgLCwMO3bsqHZcRGRcWBARCeTSpUsaRQ/w5M3xPXv2RGhoqMaE6mbNmqmLIQA4c+YMAMDHx0ejqHr99dfx9ddf4+rVq7C3t0dmZqa6+Hhq6NChVRZEcXFx6N27t7oYAp4UEr/88kulx5w9exZeXl5QKBTqeKysrNCzZ0+cPn0aAHD+/HmYmpqiX79+6uNMTU0xaNAgbNmypdJz/9PLL7+MAwcOQKVS4a+//kJKSgpu3bqFpKQkreG3Ll26qIsh4MkEckdHR5w5cwbjx4/H2bNn0bZtW7Ro0UIdt0wmQ79+/bB7924olUrI5fJqx0ZExoMFEZFA2rdvj9DQUABP/idsYWGBZs2aaRQiT9nb22t8zs7OBgB4eHhUeO709HSYmT3517lhw4Ya3zVp0qTKuLKzs9GoUaPqJfHMMT/88INWgQcA5ubmAICcnBzY2dmp46puPBXZs2cPIiMj8fDhQ9jb26NTp06wsrJCcXGxxn7//OcGAI0aNUJubq467pSUlArjfvp906ZNnzs+Iqr7WBARCcTa2hqdO3d+oWNtbW1haWmJf//73xV+36JFC/X/9DMzMzW+e1pMVXXuivb57bff4OLigmbNmlV4jJeXF6ZPn17peRs2bIjc3FyUlJSoi6TqxPNP0dHRWLlyJebNm4dRo0apC773339f61xP/xk8KzMzE6+88oo67m7dumHhwoUVXqtBgwbPFRsRGQ8+ZUZUB3h5eaG4uBglJSXo3LmzektJScGGDRtQVFQEJycnNG/eHDExMRrH/vjjj1Weu3v37vjtt980eltSUlIwffp09QRoExPN/1R4enoiMTER7du314hn7969OHr0KACgZ8+eKC8vx/HjxzWOPXny5HPlfvHiRVhbW2P69OnqYqigoAAXL15EeXm5xr6///67RpF0+fJl3Lt3D15eXuq4k5OT0apVK424Y2JisHv3bo3CjYikhQURUR3w2muvwdPTE/7+/tizZw9iY2Oxfft2LFmyBOXl5epenHnz5uHMmTMICgrCL7/8gm3btmHTpk1VntvPzw95eXmYOnUqTpw4gZiYGPj5+cHV1RUDBw4EANjZ2SE+Ph5nzpxBeXk5/P39cf/+fUydOhXff/89fv31VwQGBuK7775Dhw4dADwp4vr27Ytly5Zh165d+OWXXxAYGIjbt28/V+5ubm4oLCxEaGgoYmNjcfjwYYwbNw5ZWVkoKirS2n/GjBk4efIkDh06BH9/f7i6umLkyJEAAF9fX5iYmGDSpEn47rvvcPr0aSxfvhw7d+6Ei4uLIAtjEpFh4pAZUR1gYmKCf/3rXwgPD8euXbuQlZWFJk2aYOzYsfD391fvN2jQIJiYmGDz5s0ICAiAk5MT1q5dixkzZlR67g4dOuDf//43Pv/8cwQHB8PKygq9evXCvHnzYG1tDQB47733sGzZMvj5+SE6Ohpt27bFvn37sGHDBixatAgqlQouLi7YsGEDBg0apD53eHg4Pv/8c2zfvh2PHj1C3759MXv2bHz++efVzn3EiBH466+/cOjQIXz99ddo2rQp+vTpg4kTJ2LJkiX4888/0b59ewBPnhhzdnbGokWLUFJSgn79+mHhwoWwtLQE8GT+0oEDB/D5559j5cqVKC4uRsuWLbFs2TKMGzfuue4JERkXmYpvbCQiIiKJ45AZERERSR4LIiIiIpI8FkREREQkeSyIiIiISPJYEBEREZHksSAiIiIiyWNBRERERJLHgoiIiIgk7/8Bns4Nda4XlJQAAAAASUVORK5CYII=\n", |
|
|
1014 |
"text/plain": [ |
|
|
1015 |
"<Figure size 720x504 with 2 Axes>" |
|
|
1016 |
] |
|
|
1017 |
}, |
|
|
1018 |
"metadata": {}, |
|
|
1019 |
"output_type": "display_data" |
|
|
1020 |
} |
|
|
1021 |
], |
|
|
1022 |
"source": [ |
|
|
1023 |
"conf_matrix = confusion_matrix(y_test, predictions)\n", |
|
|
1024 |
"df_cm = pd.DataFrame(conf_matrix, index = [i for i in \"0123456\"], columns = [i for i in \"0123456\"])\n", |
|
|
1025 |
"plt.figure(figsize = (10,7))\n", |
|
|
1026 |
"sn.set(font_scale=1.4)\n", |
|
|
1027 |
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16})\n", |
|
|
1028 |
"plt.ylabel('True label')\n", |
|
|
1029 |
"plt.xlabel('Predicted label')\n", |
|
|
1030 |
"plt.show()" |
|
|
1031 |
] |
|
|
1032 |
}, |
|
|
1033 |
{ |
|
|
1034 |
"cell_type": "markdown", |
|
|
1035 |
"id": "8d59746a", |
|
|
1036 |
"metadata": {}, |
|
|
1037 |
"source": [ |
|
|
1038 |
"We initially discussed the conditions under which we collected the data. Here, the indexing starts with zero (Normal condition).\n", |
|
|
1039 |
"\n", |
|
|
1040 |
"As we can see that the model is mainly getting confused between class 4 and class 5. After looking at the data, we realized that the class 5 fault is same as class 4 with just one bolt loosened. \n", |
|
|
1041 |
"\n", |
|
|
1042 |
"class 4: 1 brace on 3rd story is broken\n", |
|
|
1043 |
"\n", |
|
|
1044 |
"class 5: 1 brace on 3rd story is broken + unscrew the element 18\n", |
|
|
1045 |
"\n", |
|
|
1046 |
"The signals generated for class 5 and class 4 are very similar. As a result, the features are not distinguishable for these two classes. Hence, our model's performance is affected." |
|
|
1047 |
] |
|
|
1048 |
}, |
|
|
1049 |
{ |
|
|
1050 |
"cell_type": "markdown", |
|
|
1051 |
"id": "c858ebc4", |
|
|
1052 |
"metadata": {}, |
|
|
1053 |
"source": [ |
|
|
1054 |
"Let us drop the class 4 datapoints and just train on 6 classes to see of our contention is correct." |
|
|
1055 |
] |
|
|
1056 |
}, |
|
|
1057 |
{ |
|
|
1058 |
"cell_type": "code", |
|
|
1059 |
"execution_count": 31, |
|
|
1060 |
"id": "ce0cff8e", |
|
|
1061 |
"metadata": {}, |
|
|
1062 |
"outputs": [], |
|
|
1063 |
"source": [ |
|
|
1064 |
"idx = (y_data != 4)\n", |
|
|
1065 |
"x_data = x_data[idx]\n", |
|
|
1066 |
"y_data = np.array([i for i in range(6) for j in range(20)])" |
|
|
1067 |
] |
|
|
1068 |
}, |
|
|
1069 |
{ |
|
|
1070 |
"cell_type": "markdown", |
|
|
1071 |
"id": "ca695c49", |
|
|
1072 |
"metadata": {}, |
|
|
1073 |
"source": [ |
|
|
1074 |
"Random Forest" |
|
|
1075 |
] |
|
|
1076 |
}, |
|
|
1077 |
{ |
|
|
1078 |
"cell_type": "code", |
|
|
1079 |
"execution_count": 32, |
|
|
1080 |
"id": "24d0cb07", |
|
|
1081 |
"metadata": {}, |
|
|
1082 |
"outputs": [], |
|
|
1083 |
"source": [ |
|
|
1084 |
"rf = RandomForestClassifier()\n", |
|
|
1085 |
"rf_f_scores = cross_val_score(rf, x_data, y_data, cv=5)\n", |
|
|
1086 |
"rf_f_acc = np.mean(rf_f_scores)" |
|
|
1087 |
] |
|
|
1088 |
}, |
|
|
1089 |
{ |
|
|
1090 |
"cell_type": "markdown", |
|
|
1091 |
"id": "55f082bf", |
|
|
1092 |
"metadata": {}, |
|
|
1093 |
"source": [ |
|
|
1094 |
"Support Vector Classifier" |
|
|
1095 |
] |
|
|
1096 |
}, |
|
|
1097 |
{ |
|
|
1098 |
"cell_type": "code", |
|
|
1099 |
"execution_count": 33, |
|
|
1100 |
"id": "a9a5c82c", |
|
|
1101 |
"metadata": {}, |
|
|
1102 |
"outputs": [], |
|
|
1103 |
"source": [ |
|
|
1104 |
"svc = SVC()\n", |
|
|
1105 |
"svc_f_scores = cross_val_score(svc, x_data, y_data, cv=5)\n", |
|
|
1106 |
"svc_f_acc = np.mean(svc_f_scores)" |
|
|
1107 |
] |
|
|
1108 |
}, |
|
|
1109 |
{ |
|
|
1110 |
"cell_type": "markdown", |
|
|
1111 |
"id": "5a08c633", |
|
|
1112 |
"metadata": {}, |
|
|
1113 |
"source": [ |
|
|
1114 |
"Logistic Regression" |
|
|
1115 |
] |
|
|
1116 |
}, |
|
|
1117 |
{ |
|
|
1118 |
"cell_type": "code", |
|
|
1119 |
"execution_count": 34, |
|
|
1120 |
"id": "283c3c3d", |
|
|
1121 |
"metadata": {}, |
|
|
1122 |
"outputs": [], |
|
|
1123 |
"source": [ |
|
|
1124 |
"lr = LogisticRegression(solver='liblinear')\n", |
|
|
1125 |
"lr_f_scores = cross_val_score(lr, x_data, y_data, cv=5)\n", |
|
|
1126 |
"lr_f_acc = np.mean(lr_f_scores)" |
|
|
1127 |
] |
|
|
1128 |
}, |
|
|
1129 |
{ |
|
|
1130 |
"cell_type": "markdown", |
|
|
1131 |
"id": "07fb1d33", |
|
|
1132 |
"metadata": {}, |
|
|
1133 |
"source": [ |
|
|
1134 |
"k Nearest Neighbors" |
|
|
1135 |
] |
|
|
1136 |
}, |
|
|
1137 |
{ |
|
|
1138 |
"cell_type": "code", |
|
|
1139 |
"execution_count": 35, |
|
|
1140 |
"id": "33a5b7ac", |
|
|
1141 |
"metadata": {}, |
|
|
1142 |
"outputs": [], |
|
|
1143 |
"source": [ |
|
|
1144 |
"knn = KNeighborsClassifier()\n", |
|
|
1145 |
"knn_f_scores = cross_val_score(knn, x_data, y_data, cv=5)\n", |
|
|
1146 |
"knn_f_acc = np.mean(knn_f_scores)" |
|
|
1147 |
] |
|
|
1148 |
}, |
|
|
1149 |
{ |
|
|
1150 |
"cell_type": "markdown", |
|
|
1151 |
"id": "a65cbe5e", |
|
|
1152 |
"metadata": {}, |
|
|
1153 |
"source": [ |
|
|
1154 |
"#### Result on complete dataset" |
|
|
1155 |
] |
|
|
1156 |
}, |
|
|
1157 |
{ |
|
|
1158 |
"cell_type": "code", |
|
|
1159 |
"execution_count": 36, |
|
|
1160 |
"id": "c7ebffb3", |
|
|
1161 |
"metadata": {}, |
|
|
1162 |
"outputs": [ |
|
|
1163 |
{ |
|
|
1164 |
"data": { |
|
|
1165 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm8AAAFfCAYAAAAYpCu4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1w0lEQVR4nO3deXyNZ/7/8ffJKpI0JYJSQlUThCCMtVNCLYkoflWa2qqmG9phjFHDELRqazqlVYyYUjqhDW0n0VqiamlNaVTbaezG1nbOJIjsJOf3h68zPRPhhJOc3Cev5+ORP+7rvu77+hznfpy+ey/XbbJYLBYBAADAENycXQAAAADsR3gDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAPxcHYBAFCepkyZoo0bN5Zo9/b2VmBgoDp16qSJEyeqVq1aTqjumsjISNWvX19r1qyxtmVkZMjHx0fVq1d3Wl0AKifCG4Aq4aWXXlKNGjWsy9nZ2friiy/0wQcf6LvvvtP7778vLy8vJ1b4Xzt37tSkSZO0ceNGwhuAEghvAKqEnj176t5777Vpe+KJJzRz5ky999572rZtm6KiopxUna1Dhw4pKyvL2WUAqKS45w1AlTZw4EBJ0jfffOPkSgDAPoQ3AFWaj4+PJOmXbwrcsWOHhg4dqvDwcLVv317jx4/XyZMnbbY7f/68xo8fr65du6ply5aKiorSihUrVFxcbO0TGRmp4cOHlxiztHbp2j16S5YskST16NGj1H4Aqi4umwKo0nbt2iVJat68uSQpKSlJU6dOVadOnfT73/9ely5d0nvvvafHHntM69evV+PGjXXlyhWNGTNG+fn5GjVqlO666y7t3LlTCxcuVFFRkZ599tnbrmfIkCHKzs7W1q1b9dJLL6lp06YO+ZwAXAfhDUCVkJWVpczMTOtydna2du3apSVLlqhJkyaKjo5Wdna2Xn75ZUVFRem1116z9n3ssccUHR2thQsX6s0339QPP/yg48eP689//rP69OkjSRo8eLDGjBlT4gxdWbVp00YhISHaunXrDe/TAwDCG4Aq4fq9bb/k4+OjyMhITZ8+XZ6enkpNTVV2drZ69uxpE/Tc3d3VsWNH7dy5U1evXlXt2rVlMpm0bNky+fr6qkOHDvLy8tLKlSsr8iMBqKIIbwCqhAULFqhWrVq6cuWKdu3apbVr16pv376aOXOmvL29JUmnT5+WJE2YMKHU/WRmZqpu3br6/e9/r9dee01jxoxR9erV1alTJ0VFRalv375yd3evkM8EoGoivAGoEtq2bWu9BPnQQw8pODhYc+bM0cWLF/XWW2/JZDJZHzaYPXt2qZcrAwICJElPPfWU+vXrp61bt2rnzp3as2ePtm/frk2bNukvf/nLTWspKipy4CcDUNXwtCmAKmn48OHq0aOHUlNT9c4770iS6tevL0mqWbOmOnfubPPn7u4uk8kkLy8vXbx4UV9++aVq1KihYcOGacWKFfriiy/Uu3dv7dq1S4cPH5Ykubm5qbCw0Gbcq1ev6sKFCxX7YQG4FMIbgCpr1qxZCggI0Ouvv64zZ86oc+fO8vb21l/+8hdduXLF2u/nn3/W888/r4ULF8pkMmnPnj0aOXKkUlNTrX2qV6+uBx54QJKsl01r1aqlkydPKj8/39ovNTVVBQUFN63Lze3aT/Mvpy8BgOu4bAqgyqpVq5YmTZqk6dOna8aMGUpISNDEiRM1d+5cDRkyRP3799fVq1e1bt06FRQU6A9/+IMkqXv37mrcuLH++Mc/6vvvv1fDhg114sQJrV27Vh07dtT9998vSerXr59mz56tMWPGqH///vrXv/6l9evXW8/wlaZmzZqSpL/85S/69a9/rR49epTvPwQAQyG8AajSBg8erE2bNmnPnj3atGmTRo0apTp16mjVqlWKj49XtWrV1KJFCy1YsEARERGSrp1lS0hI0BtvvKGPP/5Y//nPfxQUFKTY2FiNGzfOuu/Y2FhdvHhR77//vmbPnq3Q0FAtWbJECQkJys3NLbWm6OhobdmyRUlJSfrHP/5BeANgw2ThvDwAAIBhVIp73goLC9WvXz/t3bu31D7p6ekaMmSIwsPDNWjQIB06dKgCKwQAAKgcnB7eCgoKNHHiRB09erTUPrm5uRozZozCw8OVlJSkiIgIPfPMM8rOzq7ASgEAAJzPqeHt2LFjeuyxx6wTY5YmJSVFnp6emjJlipo0aaKpU6fK399fmzdvrqBKAQAAKgenhrf9+/erS5cuSkxMvGm/b775Rm3btrU+Pm8ymdS2bVulpaVVRJkAAACVhlOfNh06dKhd/cxmsxo3bmzTFhgYqPT09PIoCwAAoNJy+j1v9sjLy5OXl5dNm5eXV4mZywEAAFydIeZ58/b2LhHUCgsLVa1atTLt58KFHBUXu97MKIGBfsrI4OENOA7HFMoDxxUczVWPKTc3k2rU8C11vSHCW506dWQ2m23ark+KWRbFxRaXDG+SXPZzwXk4plAeOK7gaFXxmDLEZdPw8HClpaVZ3/NnsViUlpam1q1bO7cwAACAClZpw5vZbLa+zLlPnz7Kzc3V7NmzdezYMc2dO1fZ2dmKiopycpUAAAAVq9KGt65duyolJUWS5Ofnp2XLliktLU0DBw7U119/reXLl8vPz8/JVQIAAFSsKvVu04yMbJe8Nh4U5C+z+bKzy4AL4ZhCeeC4gqO56jHl5mZSYGDpJ6gq7Zk3AAAAlER4AwAAMBDCGwAAgIEQ3gAAAAzEEJP0GkWgr7vcqld3ythBQf4VPmZxbq4ycooqfFwAAKoywpsDuVWvLplMzi6jwrhZLFKO6z3lAwBAZcZlUwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAG4tTwVlhYqOnTp6t9+/bq0qWLVqxYUWrf/fv3a9CgQWrdurUeeeQR7d69uwIrBQAAqBycGt7mz5+vtLQ0rVq1SnFxcVq6dKmSk5NL9MvIyNCzzz6rPn366KOPPlLfvn01duxYnTt3zglVAwAAOI/Twltubq7Wr1+vqVOnKiwsTD179tSYMWP07rvvluj79ddfS5KefvppNWzYUM8++6yqVaumb775pqLLBgAAcCqnhbf09HQVFhYqIiLC2hYREaFvv/1WV69etel799136/Lly9q8ebMsFou2bdumnJwchYSEVHTZAAAATuXhrIHNZrMCAgLk7e1tbatVq5auXLmizMxM1a5d29rerl07DRs2TBMmTNDvfvc7FRUVac6cOWrSpIkzSgcAAHAap4W3vLw8eXl52bRdXy4sLLRpz83N1dmzZ/Xcc8/p4Ycf1p49e/TKK6+oadOmat26td1jBgb63XHdsBUU5O/sElBO+G5RHjiu4GhV8ZhyWnjz9vYuEdKuL/v4+Ni0r1y5UoWFhXrxxRclSc2bN9exY8e0dOlSLVu2zO4xMzKyVVxsucPKS1cVDyCz+bKzS0A5CAry57uFw3FcwdFc9ZhyczPd9IST0+55q1OnjrKysmwCnNlslpeXlwICAmz6fvvtt2ratKlNW4sWLXTmzJkKqRUAAKCycFp4a9asmTw9PZWWlmZtO3DggFq0aCEPD9sTgrVr19bhw4dt2o4fP66GDRtWSK0AAACVhdPCm4+PjwYMGKC4uDgdOnRI27dvV0JCgkaMGCHp2lm4/Px8SdKQIUP01VdfacWKFTpz5ow2bNigpKQkjRw50lnlAwAAOIXJYrGU301gt5CXl6eZM2dqy5Yt8vX11ejRozV69GhJUkhIiObOnatBgwZJknbu3Kk///nPOnnypO69916NGzdOvXv3LtN4FXLPm8lUbvuvdCwWl7zXAK57Hwmci+MKjuaqx9St7nlzaniraIQ3ByO8uSxX/UGEc3FcwdFc9ZiqtA8sAAAAoOwIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGIjd4W3ChAnavn27rly5Up71AAAA4CY87O341Vdf6ZNPPpG/v7969eqlfv36qUOHDjKZTOVZHwAAAH7B7vC2a9cu7du3TykpKdq6das++OADBQYGKjo6WtHR0WrVqlV51gkAAABJJovFYinrRkVFRdq9e7c2b96szz77TJcuXdK9996rfv36KSYmRvfdd1951HrHMjKyVVxc5o9rt6Agf6kqnYm0WGQ2X3Z2FSgHQUH+fLdwOI4rOJqrHlNubiYFBvqVuv62wtsvnTx5UosXL1ZKSsq1HZpMCg8P15gxY9SzZ8872bXDEd4cjPDmslz1BxHOxXEFR3PVY+pW4c3uy6a/dOzYMX3yySfavHmzTpw4IXd3d3Xr1k0xMTEymUz629/+pvHjx2vcuHEaO3bsbRcPAAAAW3afeTt+/Lg2b96sTz75RMePH5cktW3bVv369VPfvn1199132/R/7LHHdPLkSX311VcOL/p2cebNwTjz5rJc9f9m4VwcV3A0Vz2mHHbmLTo6WpL0wAMPaMKECYqJidE999xTav+6deuqsLCwDKUCAADgVuwOb08//bRiYmLUtGlTu/rHx8fL3d39tgsDAABASXZP0jtx4kT5+vpq4cKFunTpkrV9+fLlevXVV5WRkWHTn+AGAADgeHaHtyNHjmjgwIFatWqVfvzxR2t7VlaW1q1bpwEDBujMmTPlUiQAAACusTu8LVq0SL6+vkpOTlZoaKi1fdKkSUpOTpanp6cWLlxYLkUCAADgGrvD28GDBzVy5Eg1atSoxLoGDRpo2LBhlerJUgAAAFdkd3izWCwqKCi46fr8/HyHFAUAAIAbszu8hYeHKzExUVlZWSXW5eTkaMOGDQoPD3docQAAALBl91Qh48aN07Bhw6zvLw0ODpbJZNLp06eVnJwss9msuXPnlmetAAAAVZ7d4S08PFyrVq3SvHnzlJCQoF++mCE0NFRz585VmzZtyqVIAAAAXFOmd5u2a9dOGzZsUGZmps6dO6fi4mLdc889ql27dnnVBwAAgF+4rRfT16xZUzVr1izRnpmZecN2AAAAOEaZwtumTZu0ZcsW5ebmqri42NpeVFSknJwcHTt2TN99953DiwQAAMA1doe3FStW6LXXXpOnp6f8/Px04cIF1a1bVxcvXlReXp6qVaum4cOHl2etAAAAVZ7dU4UkJSUpNDRUe/fuVWJioiwWi1avXq39+/frT3/6kwoKCpgqBAAAoJzZHd7OnTunRx55RH5+fmrQoIECAgK0f/9+ubu7KzY2VlFRUXrnnXfKs1YAAIAqz+7w5uHhIV9fX+tycHCwDh8+bF3u0KGDTp065dDiAAAAYMvu8NakSROlpaVZlxs3bmzzcEJWVpYKCwsdWx0AAABs2B3eBg0apKSkJE2aNEm5ubmKjIzU/v37tWTJEqWkpOivf/2rQkNDy7NWAACAKs/u8Pb444/rmWee0WeffSYPDw/16tVL0dHRWrJkiSZOnKj8/HxNmjSpTIMXFhZq+vTpat++vbp06aIVK1aU2vf48eMaMWKEwsPD1bt3b3366adlGgsAAMAVmCy/fM/VTVy4cEE1atTQ1atX5eHx3xlG9u/fr4sXL6pNmzYKDAws0+Bz5szRl19+qVdffVU//fSTJk+erNmzZys6OtqmX05Ojvr27auOHTvq+eef1+eff6758+dr06ZNuv/+++0eLyMjW8XFdn3c2xIU5C+ZTOW2/0rHYpHZfNnZVaAcBAX5893C4Tiu4Giueky5uZkUGOhX6nq753kbOHCgBg8erLFjx9q0t2vX7rYKy83N1fr16/X2228rLCxMYWFhGjNmjN59990S4W3Tpk3y8PDQyy+/LE9PTzVq1Eh79uxRWlpamcIbAACA0dkd3jIzMxUUFOSwgdPT01VYWKiIiAhrW0REhN56660SZ/f27dunyMhIeXp6WtuWLVvmsFoAAACMwu573mJiYpSYmKizZ886ZGCz2ayAgAB5e3tb22rVqqUrV64oMzPTpu/p06cVGBiomTNnqmvXrho4cKB27NjhkDoAAACMxO4zb25ubjpx4oR69+6thg0bKjAwUG5uttnPZDLZPVFvXl6evLy8bNquL//vlCM5OTlauXKlYmNjtXz5cu3evVtjx47V+vXrFRYWZu9HuOn1Y9yeoCB/Z5eAcsJ3i/LAcQVHq4rHlN3hbc+ePapRo4YkqaCgQOfPn7+jgb29vUuEtOvLPj4+Nu3u7u564IEHNHHiRElS8+bNdeDAgTKHtwp5YKGKccUbReG6NwHDuTiu4Giuekw57IGF1NRUhxR0XZ06dawT+14/42Y2m+Xl5aWAgACbvrVr11bDhg1t2ho3bqxjx445tCYAAIDKzu573hytWbNm8vT0tHlrw4EDB9SiRQubhxUkqU2bNvrnP/9p03bs2DHVr1+/QmoFAACoLOw+8zZixAi7+q1evdqufj4+PhowYIDi4uL06quvymw2KyEhQbNnz5Z07Sycv7+/qlWrpiFDhmj16tVasGCBhgwZotTUVH3xxRfasGGDveUDAAC4BLvD242eMi0uLtaFCxdUUFCg+vXrq2nTpmUa/KWXXtLMmTM1cuRI+fr6auzYsYqKipIkde3aVXPnztWgQYNUr149rVq1SnPmzNHq1avVoEEDvfHGG2revHmZxgMAADA6u9+wUJqioiJt375d06ZN05tvvqn27ds7qjaH4w0LDsYbFlyWq94EDOfiuIKjueoxdasHFu74njd3d3f16tVLgwcP1sKFC+90dwAAALgJhz2w0KhRI6WnpztqdwAAALgBh4S3wsJCffTRR2V+MT0AAADK5o6fNi0sLNTJkyeVlZWl8ePHO6wwAAAAlHRHT5tK1+55u++++9SvXz/FxsY6rDAAAACU5LQ3LAAAAKDsynTP2/nz57Vw4UJdunTJ2rZixQrNmzdPGRkZDi8OAAAAtuwOb0eOHNHAgQO1atUq/fjjj9b2S5cuae3atRowYIDOnDlTLkUCAADgGrvD26JFi+Tr66vk5GSFhoZa2ydNmqTk5GR5enoyzxsAAEA5szu8HTx4UCNHjlSjRo1KrGvQoIGGDRumr776ypG1AQAA4H/YHd4sFosKCgpuuj4/P98hRQEAAODG7A5v4eHhSkxMVFZWVol1OTk52rBhg8LDwx1aHAAAAGzZPVXIuHHjNGzYMPXr108xMTEKDg6WyWTS6dOnlZycLLPZrLlz55ZnrQAAAFWe3eEtPDxcq1at0rx585SQkCCLxWJdFxoaqrlz56pNmzblUiQAAACusTu8SVK7du20YcMGZWZm6ty5cyouLtY999yj2rVrl1d9AAAA+IXbmqTX3d1dLVu2VHh4uD788EMm6QUAAKggTNILAABgIEzSCwAAYCBM0gsAAGAgTNILAABgIEzSCwAAYCBM0gsAAGAgTNILAABgIEzSCwAAYCBlCm/X1axZUzVr1izRnpmZecN2AAAAOEaZwtumTZu0ZcsW5ebmqri42NpeVFSknJwcHTt2TN99953DiwQAAMA1doe3FStW6LXXXpOnp6f8/Px04cIF1a1bVxcvXlReXp6qVaum4cOHl2etAAAAVZ7dU4UkJSUpNDRUe/fuVWJioiwWi1avXq39+/frT3/6kwoKCpgqBAAAoJzZHd7OnTunRx55RH5+fmrQoIECAgK0f/9+ubu7KzY2VlFRUXrnnXfKs1YAAIAqz+7Lph4eHvL19bUuBwcH6/Dhw9blDh06KD4+3rHVAQAcLtDXXW7Vqztl7KAg/wofszg3Vxk5RRU+LlBe7D7z1qRJE6WlpVmXGzdubPNwQlZWlgoLCx1bHQDA4dyqV5dMpirz56ygCpQXu8PboEGDlJSUpEmTJik3N1eRkZHav3+/lixZopSUFP31r39VaGhoedYKAABQ5dl92fTxxx/XTz/9pLVr18rDw0O9evVSdHS0lixZIkny8/PTpEmTyq1QAAAASCbLL99zZYerV6/Kw+O/mW///v26ePGi2rRpo8DAQIcX6EgZGdkqLi7Txy2ToCD/a6fpqwqLRWbzZWdXgXIQFOTPd+vC+K2Cq3DV3yo3N5MCA/1KXV/mNyz8MrhJ116ZBQAAgIph9z1vAAAAcD7CGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADKfVp0xEjRpR5ZyaTifebAgAAlKNSw9vZs2dLtGVkZKigoEABAQEKDg5WcXGxzp07pwsXLujuu+9WkyZNyrVYAACAqq7U8JaammqzvG/fPj377LN69dVX1b9/f7m5/feK69///ndNmzZNTzzxRPlVCgAAAPvveZszZ44effRRDRgwwCa4SVK/fv0UGxurP//5z2UavLCwUNOnT1f79u3VpUsXrVix4pbbXLx4UZ07d1ZSUlKZxgIAAHAFdr9h4fTp0xo6dGip6+vWrat///vfZRp8/vz5SktL06pVq/TTTz9p8uTJqlevnqKjo0vd5pVXXlFGRkaZxgEAAHAVdp95a9y4sZKTk1VUVFRiXUFBgT744AOFhITYPXBubq7Wr1+vqVOnKiwsTD179tSYMWP07rvvlrrNzp07dejQIdWsWdPucQAAAFyJ3eHt6aef1tdff63Y2FglJiZq79692rFjh1atWqWYmBgdP35c48ePt3vg9PR0FRYWKiIiwtoWERGhb7/9VlevXi3RPzs7WzNnztTs2bPl6elp9zgAAACuxO7LplFRUcrPz9eiRYs0Y8YMmUwmSZLFYlH9+vW1ZMkSdenSxe6BzWazAgIC5O3tbW2rVauWrly5oszMTNWuXdum/4IFC/Tggw+qffv2do8BAADgauwOb5I0aNAgDRgwQN99953Onz8vk8mkBg0aqHnz5mUeOC8vT15eXjZt15cLCwtt2v/xj39ox44dSk5OLvM4vxQY6HdH26OkoCB/Z5eAcsJ3C1fC8ey6quJ3W6bwJklubm5q1aqVWrVqdUcDe3t7lwhp15d9fHysbfn5+Zo2bZqmT58uf/87+4IyMrJVXGy5o33cTFU8gMzmy84uAeUgKMif79aF8VsFV+Gqv1VubqabnnBy2hsW6tSpo6ysLBUWFlrPuJnNZnl5eSkgIMDa79ChQ/rXv/6lyZMnW9vy8vI0Y8YMHTx4ULNmzSpznQAAAEZVpjcsOFKzZs3k6emptLQ0dejQQZJ04MABtWjRQh4e/y2rVatW2rJli822TzzxhEaOHKlBgwaVa40AAACVjd1vWHA0Hx8fDRgwQHFxcXr11VdlNpuVkJCg2bNnS7p2Fs7f31/VqlVTcHCwzbZubm4KDAxUYGBgudYIAABQ2dg9Vch1RUVF+uabb5SSkqJt27bp+++/v+3BX3rpJbVs2VIjR47UjBkzNHbsWEVFRUmSunbtqpSUlNveNwAAgCsyWSwWu+/g37Fjh+Li4vTzzz/r+mYmk0m1a9fWjBkzFBkZWW6FOkKFPLDwf1OoVAkWi0veKArXvQkY1/BbBVfhqr9Vt/3Awv/av3+/xo8fr8DAQE2YMEFNmjSRxWLRiRMntG7dOr3wwgtavXq12rZt65DCAQAAUJLd4W3x4sWqX7++3n///RJTdsTGxur//b//p6VLl9r1cnkAAADcHrvveTt06JAGDx58w7nW/Pz89Oijj+qbb75xaHEAAACwVeYHFkpjMpl05coVR+0OAAAAN2B3eAsPD9f777+v3NzcEuuys7O1YcMGtWzZ0qHFAQAAwJbd97yNGzdOI0aMUL9+/TRs2DA1atRIkqwPLPz888+Ki4srrzoBAACgMoS3du3aafHixZo1a5bmz58v0/89Zm6xWBQUFKT4+Hh17Nix3AoFAADATcLbe++9p06dOlnPsElSjx491K1bN33//ffW12fVr1+/xCutAAAAUD5Kvedt/vz52r9/v3W5R48e2r59u9zd3dWqVStFRUUpKipK4eHhBDcAAIAKUmrq8vLy0rZt29S6dWv5+Pjo3LlzOn/+vM6fP3/THdarV8/hRQIAAOCaUl+PtWDBAq1cudJ6b5u9fvjhB4cUVh54PZaD8coZl+Wqr5zBNfxWwVW46m/Vbb8e6/e//73at2+vw4cPq7CwUG+++aYefvhhhYSElEuhAAAAuLWb3qzWrVs3devWTZK0ceNGDRgwQD169KiIugAAAHADdj9pkJqaWp51AAAAwA4Oez0WAAAAyh/hDQAAwEAIbwAAAAZCeAMAADCQ23o1gsVi0bFjx5Sbm6t7771XgYGBjq4LAAAAN1DqmbcXX3xRBw4cKNH+0Ucf6cEHH1T//v01dOhQde3aVU8++aROnDhRroUCAADgJuHt008/LfEqrJSUFE2ePFk+Pj4aO3aspk+frieeeEKHDh1SbGysTp48We4FAwAAVGVlumwaHx+vZs2a6W9/+5u8vb2t7U899ZQGDx6s+Ph4vfHGGw4vEgAAANfY/cBCXl6ezpw5oxEjRtgEN0m65557FBsbq3379jm8QAAAAPyX3eHNx8dH1atXl7+//w3X+/n5KT8/32GFAQAAoKSbhrctW7Zo06ZNOnTokHJychQVFaWPP/64RL+cnBxt2LBBoaGh5VYoAAAAbnLPW1hYmPbs2aOtW7fKZDJJknx9fZWTk6N169YpNjZWkvTWW29pw4YN+umnn/Tmm29WTNUAAABVVKnh7f3335cknT17VseOHdPRo0d19OhRHTt2TO7u7tZ+KSkpKi4u1uLFixUZGVn+FQMAAFRhJovFYrmTHfz888+qU6eOo+opVxkZ2SouvqOPe1NBQf7S/52lrBIsFpnNl51dBcpBUJA/360L47cKrsJVf6vc3EwKDPQrff2dDmCU4AYAAOAKeLcpAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABgI4Q0AAMBACG8AAAAGQngDAAAwEMIbAACAgRDeAAAADITwBgAAYCCENwAAAAMhvAEAABiIU8NbYWGhpk+frvbt26tLly5asWJFqX1TUlLUr18/tW7dWv3791dqamoFVgoAAFA5ODW8zZ8/X2lpaVq1apXi4uK0dOlSJScnl+i3f/9+TZ48WSNGjNCHH36oRx99VOPHj9c///lPJ1QNAADgPE4Lb7m5uVq/fr2mTp2qsLAw9ezZU2PGjNG7775bou/GjRvVq1cvPfbYYwoODtaIESPUoUMHpaSkOKFyAAAA5/Fw1sDp6ekqLCxURESEtS0iIkJvvfWWrl69Kg+P/5Y2fPhwm2VJMplMKigoqLB6AQAAKgOnnXkzm80KCAiQt7e3ta1WrVq6cuWKMjMzbfqGhobq/vvvty4fPXpUX3zxhdq3b19h9QIAAFQGTjvzlpeXJy8vL5u268uFhYWlbpeRkaFx48YpIiJCPXv2LNOYgYF+ZS8UNxUU5O/sElBO+G7hSjieXVdV/G6dFt68vb1LhLTryz4+Pjfc5qefftLo0aPl5uamN954Q25uZTtxmJGRreJiy+0VbIeqeACZzZedXQLKQVCQP9+tC+O3Cq7CVX+r3NxMNz3h5LTLpnXq1FFWVpZNgDObzfLy8lJAQECJ/mfOnFFsbKxMJpPWrFmjGjVqVGS5AAAAlYLTwluzZs3k6emptLQ0a9uBAwfUokWLEg8nXLx4UU8++aT8/f21Zs0a1apVq6LLBQAAqBScFt58fHw0YMAAxcXF6dChQ9q+fbsSEhI0YsQISdfOwuXn50uS4uPjdeHCBb366qsqKiqS2WyW2WzW5cuud6oUAADgZkwWi6X8bgK7hby8PM2cOVNbtmyRr6+vRo8erdGjR0uSQkJCNHfuXA0aNEgdOnTQxYsXS2wfExOjhQsX2j1ehdzzZjKV2/4rHYvFJe81gOveR4Jr+K2Cq3DV36pb3fPm1PBW0QhvDsYPosty1R9EXMNvFVyFq/5WVdoHFgAAAFB2hDcAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIE47cX0AADANQT6usutenWnjB0U5F/hYxbn5iojp6jCx72O8AYAAO6IW/XqVWriZzeLRcpx3uTAXDYFAAAwEMIbAACAgRDeAAAADITwBgAAYCA8sABUcs56iqsqPsEFAEZAeAMquar0FJezn+ACACPgsikAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIIQ3AAAAAyG8AQAAGAjhDQAAwEAIbwAAAAZCeAMAADAQwhsAAICBEN4AAAAMhPAGAABgIE4Nb4WFhZo+fbrat2+vLl26aMWKFaX2TU9P15AhQxQeHq5Bgwbp0KFDFVgpAABA5eDU8DZ//nylpaVp1apViouL09KlS5WcnFyiX25ursaMGaPw8HAlJSUpIiJCzzzzjLKzs51QNQAAgPM4Lbzl5uZq/fr1mjp1qsLCwtSzZ0+NGTNG7777bom+KSkp8vT01JQpU9SkSRNNnTpV/v7+2rx5sxMqBwAAcB6nhbf09HQVFhYqIiLC2hYREaFvv/1WV69eten7zTffqG3btnJzu1auyWRS27ZtlZaWVqE1AwAAOJuHswY2m80KCAiQt7e3ta1WrVq6cuWKMjMzVbt2bZu+jRs3ttk+MDBQ6enpZRrTzc10Z0XbIzi4/MeoRCrk3xRV6rjimKogVeiYkjiuKgTHVIXt22nhLS8vT15eXjZt15cLCwvt6vu//W6lRg3f26i0jE6dKv8xKpHAQD9nl1A1VKHjimOqglShY0riuKoQHFMVxmmXTb29vUuEr+vLPj4+dvWtVq1a+RYJAABQyTgtvNWpU0dZWVk2ocxsNsvLy0sBAQEl+prNZpu2//znPwoKCqqQWgEAACoLp4W3Zs2aydPT0+ahgwMHDqhFixby8LC9mhseHq60tDRZLBZJksViUVpamlq3bl2RJQMAADid08Kbj4+PBgwYoLi4OB06dEjbt29XQkKCRowYIenaWbj8/HxJUp8+fZSbm6vZs2fr2LFjmjt3rrKzsxUVFeWs8gEAAJzCZLl+OssJ8vLyNHPmTG3ZskW+vr4aPXq0Ro8eLUkKCQnR3LlzNWjQIEnSoUOHNGPGDB07dkwhISGaOXOmwsLCnFU6AACAUzg1vAEAAKBseDE9AACAgRDeAAAADITwBgAAYCCENwAAAAMhvBlAZGSkQkJCrH+hoaH61a9+peeee04//vijJGn48OE2fa7/tWnTxsnVozK4evWq3nrrLT388MMKCwvTgw8+qOnTpysjI0MbNmxQWFiYLl++XGK74uJidenSRWvWrLG2HT9+XL/73e/UpUsXtWnTRoMHD9ann35akR8HlVRISIj27t17w3Vnz54t8fvUokULde3aVbNnzy7z6w7heq4fI//6179KrIuMjNSQIUP0v89Y7tu3TyEhIbp69aqka/8tjIyMtE41Zs++jYjwZhBTpkzR7t27tXv3bu3cuVPx8fE6evSo/vCHP1j7jBw50trn+t+2bducWDUqi0WLFik5OVkzZ87Up59+qvj4eB05ckS/+c1v1KtXL5lMJqWmppbYbt++fbpw4YJ1TsW0tDQNHjxY1apV07Jly7Rp0yZFR0dr4sSJWr9+fUV/LBhQYmKi9fdpy5Yt+t3vfqf169dr+fLlzi4NldzBgwe1YcOGW/Y7d+6cli5dWgEVOQ/hzSD8/PwUFBSkoKAg1alTR126dNELL7ygffv2Wc+Y+Pj4WPtc/wsMDHRy5agMkpKSNH78eHXp0kX169dXu3bttHDhQn3//fc6efKkHnrooRuePdu8ebM6d+6swMBAWSwWTZkyRX369NHLL7+ssLAwBQcHa9SoUXruuee0aNEi5eXlOeHTwUhq1Khh/X2qX7++Bg4cqEceeYT/0cQt1a9fX4sWLVJmZuYt+61cuVLHjx+voMoqHuHNwLy8vCRJbm58jbi1L7/8UkVFRdblBg0aKDk5WaGhoYqJidHu3buVk5NjXX/16lVt3bpVMTExkqSvv/5ap06d0lNPPVVi38OHD9fy5cvl7e1d/h8ELsfLy0vu7u7OLgOVTGJiotq0aaODBw9KkkaNGiVfX18tWLDgptvFxMSoefPmmjVrVgVU6Rz8V9+gTp06pTfeeEMPPvigfH19nV0OKrkRI0bovffeU/fu3TVt2jQlJycrKytL999/v6pVq6bu3bvLy8tLO3futG7z5ZdfKi8vTw8//LAkKT09Xb6+vmrSpEmJ/QcEBCg8PJz/kUCZWCwW7dq1S5s2bVLv3r2dXQ4qke3bt2vu3Ll68803re8x9/Hx0dSpU7Vx40YdOHDgptvPnDlTX331lT7++OMKqLbiedy6CyqDWbNm6ZVXXpF07YyIp6enevTooalTp1r7rFy5UqtXr7bZ7p133lGrVq0qtFZUPmPHjlXjxo21bt06JSUlacOGDfL29tYLL7ygMWPGyMvLSw8//LA+/fRT6/1tmzdvVo8ePVS9enVJ0uXLl+Xn5+fMjwEX8Mgjj8hkMkmSCgsLVbNmTT355JM3PKOLqiktLU1xcXGaN2+eOnfubLOuZ8+e6tatm+Li4pSUlFTqPpo3b67HH39c8+bNU/fu3cu75ApHeDOIcePGqU+fPsrNzdWSJUt0/vx5TZgwQTVq1LD2GTx4sEaNGmWz3T333FPBlaKyioqKUlRUlLKysrR3714lJiZqwYIFatSokXr27KmYmBiNHTtW+fn5cnd317Zt2zR//nzr9jVq1LjhE6lAWSxdulT16tXTjz/+qFmzZqlZs2Z65plnuGwKq+nTp6uoqEj16tW74fpp06YpOjpaa9asUfPmzUvdz29/+1t9+umnev3110v8t9HouMZhEDVr1lRwcLCaNWum+Ph4FRUVaezYsbpy5Yq1z1133aXg4GCbv+v3xaHqSk9P15w5c6zLd911l/r06aOEhASFhYVZp3bo2LGjfH199fnnn2vv3r1yc3NTly5drNu1bNlSubm5Onr0aIkxMjIy9OSTT+rEiRPl/4FgaPXq1VNwcLA6duyot99+W6mpqZo3b56zy0IlMn78eEVHRysuLk7FxcUl1t9777169tlntXjxYv3888+l7sff31+TJ0/WunXr9MMPP5RnyRWO8GZAXl5emjNnjtLT07Vq1Spnl4NKrqioSGvWrLHe9HudyWSSv7+/atasKenagy9RUVFKTU3V1q1bFRUVJQ+P/56cb968uR544AElJCSUGGPt2rU6dOgQZ3pRJg0bNtT48eO1du3aEscnqq7evXtr0qRJOn78eKlTED311FOqXbu2Xn/99Zvuq3///mrXrp3mzp1bDpU6D+HNoFq1aqVHH31US5cuven/eQAtWrRQ9+7dNW7cOG3cuFFnzpzRt99+q/j4eP3www969NFHrX1jYmK0a9cuffbZZ9anTH9pxowZSk5O1vTp0/XDDz/o+PHjWrx4sd5++21NmzZNPj4+FfnRUAl99913+vzzz23+srOzS+0/YsQINWnSRLNmzbrhWRZUTXXq1NFzzz2n+Pj4G04N4uXlpRkzZujcuXO33NeMGTP073//uzzKdBrCm4FNmDBBnp6eXHLALb3++ut67LHHtGzZMkVHR+vJJ5/UkSNHtHbtWtWtW9far2XLlvLz81O1atWsT3j9Urt27fTuu+/KbDZr9OjRevTRR7V7924tXrxYAwcOrMBPhMpq0aJF+s1vfmPzd/LkyVL7e3h4aNq0afr++++Z6Bk2Ro0apYCAgFKnBunUqZP69et3y/00adJEo0ePdnR5TmWy/O+7JgAAAFBpceYNAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8Aag0pkyZYpCQkLUrFmzG87xdF3//v0VEhKiKVOmlNj27NmzFVGqQyxevPi2ar7d7QAYG+ENQKVVXFysHTt23HDdmTNndPjw4QquCACcj/AGoNK69957tX379huu27Ztm/XVXgBQlRDeAFRaPXr00N69e5Wfn19i3datWxUZGemEqgDAuQhvACqtnj17Ki8vT3v37rVpz8jIUFpamnr16uWwsZKSkhQSEqL09HS98MILatOmjTp27Kh58+apqKhIGzduVO/evdW6dWsNHTpU6enpNttfuHBBM2fO1IMPPqiwsDD17t1by5cvV1FRkU2/06dPa/z48Wrfvr06dOig+Ph43ehFN5cuXdLs2bOt++vbt6/eeeedG/b9pffee08xMTEKDw9Xhw4dNHbsWB09evTO/4EAVBoezi4AAEoTERGhGjVqaPv27TZn2bZv3y4fHx916tTJ4WM+/fTTioiI0JQpU7RlyxYlJCToyJEjOnz4sEaOHCmLxaKlS5fqhRdeUEpKijw8PHTp0iUNHTpU586d09ChQ9W4cWPt2bNHixYt0j//+U+9/vrrkqT//Oc/Gjp0qK5cuaKRI0eqWrVqWrdunbKysmxqyM3N1bBhw/Tjjz8qNjZWdevW1ZdffqlXXnlFp06d0owZM25Y+0cffaSZM2dqwIABGj58uDIzM/XOO+9o+PDh2rp1q/z9/R3+7wWg4hHeAFRa7u7u6t69u3bs2KHi4mK5uV27WLB161Z169ZNXl5eDh+zdevWio+PlyRFRUWpU6dO2rt3rz766CM1bdpUkpSTk6O3335bZ8+eVaNGjbRixQqdOnVKb775pnr27ClJeuKJJxQXF6d169Zp4MCBeuihh7Ry5UplZmbqgw8+UIsWLSRJAwcOLPFy7ZUrV+rkyZP64IMPFBISIkmKjY3Va6+9pmXLlmnIkCEKDQ0tUfvHH3+spk2bat68eda2Zs2aaf78+Tpy5IgiIiIc/u8FoOJx2RRApdajRw9lZGTo4MGDkqTs7Gx98cUX1pDkaL/cr7+/v2rWrKlGjRpZg5t07UEKSTKbzZKk1NRUNWnSpERNzz//vCRZH7r4/PPP1bJlS2twk6TAwEBFR0fbbLdlyxY98MADCgoKUmZmpvXv+v5LewK3bt26OnHihJYsWWKdPuShhx5ScnIywQ1wIZx5A1Cpde3aVT4+PkpNTVXbtm21c+dOubm56aGHHiqX8WrVqmWz7OHhocDAQJs2d3d3SdemMpGks2fP6sEHHyyxr6CgIN111106d+6cJOncuXPq0aNHiX733XefzfLp06eVn59f6mXhH3/88YbtY8eO1cGDB7V48WItXrxY999/vyIjIzV48GA1bNjwhtsAMB7CG4BKrVq1aurcubO2b9+uSZMmaevWrercubN8fX3LZbzrweyXTCbTTbe52UMExcXF8vT0tO6noKDgltsXFRUpIiJC48aNu+E+a9eufcP2unXr6sMPP9S+ffu0fft27dq1S8uXL9eqVauUkJCgX/3qVzf9HACMgfAGoNLr2bOnXnrpJR05ckSff/65/vjHPzq7JBv169fXiRMnSrSbzWZlZ2frnnvukXTtcuupU6dK9Dtz5kyJ/eXk5Khz58427ZcuXdIXX3yh4ODgG9ZxfdLiTp06Wc/aHThwQCNHjtSaNWsIb4CL4J43AJVe9+7d5e7urnnz5ik/P7/Sze/WvXt3nThxQtu2bbNpX758uSSpW7dukqRevXrp6NGj+vzzz619Ll++rA8//NBmu8jISKWnp+uzzz6zaV+6dKlefPHFUqf+ePHFFzV58mSb6UmaN28uT09P68MeAIyPM28AKr0aNWooIiJCu3fvVocOHVSjRo1bbhMfH3/DS6t9+/Z1+BQjzzzzjLZs2aLf/va3evzxx9WoUSN9+eWX2rJli3r16mW9P+/JJ5/URx99pPHjx2vkyJGqWbOmEhMTS1w2vb6/cePGaejQoWratKkOHDigDz/8UL/+9a/161//+oZ1PPXUU5o2bZpGjRqlPn36yGKx6MMPP1RBQYFiY2Md+pkBOA/hDYAh9OjRQ//4xz/snpj373//+w3b77vvPoeHt7vvvluJiYl6/fXXlZKSoqysLDVo0ECTJ0/WqFGjrP38/Py0bt06LViwQImJiSoqKlJUVJSaNm2qOXPmlNjfG2+8oU8++USJiYmqV6+enn/+eT399NOlnkUbPHiwPD09tXr1ar322msqLi5WWFiYVqxYoQ4dOjj0MwNwHpPlVtN1AwAAoNLgJggAAAADIbwBAAAYCOENAADAQAhvAAAABkJ4AwAAMBDCGwAAgIEQ3gAAAAyE8AYAAGAghDcAAAADIbwBAAAYyP8H7HNBvpw1S3kAAAAASUVORK5CYII=\n", |
|
|
1166 |
"text/plain": [ |
|
|
1167 |
"<Figure size 720x360 with 1 Axes>" |
|
|
1168 |
] |
|
|
1169 |
}, |
|
|
1170 |
"metadata": {}, |
|
|
1171 |
"output_type": "display_data" |
|
|
1172 |
} |
|
|
1173 |
], |
|
|
1174 |
"source": [ |
|
|
1175 |
"data_r = {'RF':rf_f_acc, 'SVC':svc_f_acc, 'LR':lr_f_acc, 'kNN':knn_f_acc}\n", |
|
|
1176 |
"algorithm = list(data_r.keys())\n", |
|
|
1177 |
"accuracy = list(data_r.values())\n", |
|
|
1178 |
"fig = plt.figure(figsize = (10, 5))\n", |
|
|
1179 |
"plt.bar(algorithm, accuracy, color ='red', width = 0.4)\n", |
|
|
1180 |
"plt.xlabel(\"ML models\", fontsize = 18)\n", |
|
|
1181 |
"plt.ylabel(\"5 fold accuracy\", fontsize = 18)\n", |
|
|
1182 |
"plt.title(\"Result\", fontsize = 18)\n", |
|
|
1183 |
"plt.xticks(fontsize = 14)\n", |
|
|
1184 |
"plt.yticks(fontsize = 14)\n", |
|
|
1185 |
"plt.ylim([0, 1])\n", |
|
|
1186 |
"plt.show()" |
|
|
1187 |
] |
|
|
1188 |
}, |
|
|
1189 |
{ |
|
|
1190 |
"cell_type": "code", |
|
|
1191 |
"execution_count": 37, |
|
|
1192 |
"id": "f6637f9f", |
|
|
1193 |
"metadata": {}, |
|
|
1194 |
"outputs": [ |
|
|
1195 |
{ |
|
|
1196 |
"name": "stdout", |
|
|
1197 |
"output_type": "stream", |
|
|
1198 |
"text": [ |
|
|
1199 |
"Random Forest Accuracy: 95.83333333333334\n", |
|
|
1200 |
"Support Vector Classifier Accuracy: 12.5\n", |
|
|
1201 |
"Logistic Regression Accuracy: 46.666666666666664\n", |
|
|
1202 |
"K Nearest Neighbours Accuracy: 15.0\n" |
|
|
1203 |
] |
|
|
1204 |
} |
|
|
1205 |
], |
|
|
1206 |
"source": [ |
|
|
1207 |
"print('Random Forest Accuracy: ', rf_f_acc*100)\n", |
|
|
1208 |
"print('Support Vector Classifier Accuracy: ', svc_f_acc*100)\n", |
|
|
1209 |
"print('Logistic Regression Accuracy: ', lr_f_acc*100)\n", |
|
|
1210 |
"print('K Nearest Neighbours Accuracy: ', knn_f_acc*100)" |
|
|
1211 |
] |
|
|
1212 |
}, |
|
|
1213 |
{ |
|
|
1214 |
"cell_type": "markdown", |
|
|
1215 |
"id": "eeef2fd0", |
|
|
1216 |
"metadata": {}, |
|
|
1217 |
"source": [ |
|
|
1218 |
"As evident from the above figures, the model is able to predict the faults with greater accuracy. The contention proposed previously is verified.\n", |
|
|
1219 |
"\n", |
|
|
1220 |
"Let us now repeat the previous process to see the class-wise performance" |
|
|
1221 |
] |
|
|
1222 |
}, |
|
|
1223 |
{ |
|
|
1224 |
"cell_type": "markdown", |
|
|
1225 |
"id": "7472b217", |
|
|
1226 |
"metadata": {}, |
|
|
1227 |
"source": [ |
|
|
1228 |
"Following cell creates trainset and testset from our data (without class 4)" |
|
|
1229 |
] |
|
|
1230 |
}, |
|
|
1231 |
{ |
|
|
1232 |
"cell_type": "code", |
|
|
1233 |
"execution_count": 102, |
|
|
1234 |
"id": "5ad0cbd4", |
|
|
1235 |
"metadata": {}, |
|
|
1236 |
"outputs": [], |
|
|
1237 |
"source": [ |
|
|
1238 |
"X_train = []\n", |
|
|
1239 |
"X_test = []\n", |
|
|
1240 |
"y_train = []\n", |
|
|
1241 |
"y_test = []\n", |
|
|
1242 |
"for i in range(6):\n", |
|
|
1243 |
" current_class_data = x_data[i*20: i*20 + 20]\n", |
|
|
1244 |
" X_train.append(current_class_data[0: 16])\n", |
|
|
1245 |
" X_test.append(current_class_data[16: ])\n", |
|
|
1246 |
" current_class_labels = y_data[i*20: i*20 + 20]\n", |
|
|
1247 |
" y_train.append(current_class_labels[0: 16])\n", |
|
|
1248 |
" y_test.append(current_class_labels[16: ])\n", |
|
|
1249 |
"X_train = np.array(X_train).reshape(-1, 320)\n", |
|
|
1250 |
"X_test = np.array(X_test).reshape(-1, 320)\n", |
|
|
1251 |
"y_train = np.array(y_train).reshape(-1)\n", |
|
|
1252 |
"y_test = np.array(y_test).reshape(-1)" |
|
|
1253 |
] |
|
|
1254 |
}, |
|
|
1255 |
{ |
|
|
1256 |
"cell_type": "markdown", |
|
|
1257 |
"id": "049b1c58", |
|
|
1258 |
"metadata": {}, |
|
|
1259 |
"source": [ |
|
|
1260 |
"Training the best model" |
|
|
1261 |
] |
|
|
1262 |
}, |
|
|
1263 |
{ |
|
|
1264 |
"cell_type": "code", |
|
|
1265 |
"execution_count": 103, |
|
|
1266 |
"id": "15198556", |
|
|
1267 |
"metadata": {}, |
|
|
1268 |
"outputs": [ |
|
|
1269 |
{ |
|
|
1270 |
"name": "stdout", |
|
|
1271 |
"output_type": "stream", |
|
|
1272 |
"text": [ |
|
|
1273 |
"Accuracy: 0.9166666666666666\n" |
|
|
1274 |
] |
|
|
1275 |
} |
|
|
1276 |
], |
|
|
1277 |
"source": [ |
|
|
1278 |
"rf = RandomForestClassifier()\n", |
|
|
1279 |
"rf.fit(X_train, y_train)\n", |
|
|
1280 |
"predictions = rf.predict(X_test)\n", |
|
|
1281 |
"accuracy = accuracy_score(predictions, y_test)\n", |
|
|
1282 |
"print('Accuracy: ', accuracy)" |
|
|
1283 |
] |
|
|
1284 |
}, |
|
|
1285 |
{ |
|
|
1286 |
"cell_type": "code", |
|
|
1287 |
"execution_count": 104, |
|
|
1288 |
"id": "9860d1fa", |
|
|
1289 |
"metadata": {}, |
|
|
1290 |
"outputs": [ |
|
|
1291 |
{ |
|
|
1292 |
"data": { |
|
|
1293 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG6CAYAAADpkFmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABPzUlEQVR4nO3deVxU9f4/8NewjCwDbii4g6iQS7iTWyp2NZc0bHFfcMtloMUls8RMzDQNRdS4KmrmUtmtRLH85q3Ui7upuQQiCKmsyirgADO/P/w513GAOXQPc44zr2eP83g0nznL27dHffP5fM7nKHQ6nQ5EREREVsxG6gCIiIiIpMaCiIiIiKweCyIiIiKyeiyIiIiIyOqxICIiIiKrx4KIiIiIrB4LIiIiInoqJCcno1OnTvjmm28q3ScnJwdz585F9+7d0a1bNyxevBj37983eW4WRERERCR7paWlmDdvHoqKiqrcLyQkBKmpqdi2bRsiIyMRFxeH0NBQk+dnQURERESyt379ejg7O1e5z/nz53H69GmsWLEC7dq1g7+/P8LCwnDw4EHcuXOnymNZEBEREZGsnTlzBl999RVWrlxZ5X5nz55F/fr10apVK31bly5doFAocPbs2SqPtRMlUiIiIiKB8vPzkZ+fb9Tu6uoKV1dXo30XLFiADz74AI0aNaryvJmZmfDw8DBoUyqVqFu3LtLT06s81mIKotLsJKlDeCo4Nu4jdQhERCSCMs1ts15PzH9nd+w5iMjISKN2tVqN4OBgg7YPP/wQHTt2xEsvvWTyvMXFxVAqlUbtSqUSDx48qPJYiymIiIiI6OkwadIkBAYGGrU/2Tv0/fff4+zZs4iJiRF0XgcHB2g0GqN2jUYDJyenKo9lQURERESmactFO1VFQ2MV+fbbb3H37l3069fPoP2jjz7C9u3bcfDgQYN2Dw8PZGZmGrRpNBrk5OQYDaU9iQURERERmabTmv2Sq1evRklJiUHbwIEDoVarMWzYMKP9u3XrhtWrVyMpKQktW7YEAP1k6q5du1Z5LRZEREREJEvu7u4VtterVw9NmjRBeXk57t27BxcXFzg4OMDPzw+dO3fG3LlzsXTpUpSUlCA0NBQjRoyo9FyP8LF7IiIiMk2rFW8TSVpaGnr37o3Y2FgAgEKhQGRkJJo1a4ZJkyYhODgYPXv2xIcffmjyXAqdTqcTLTIJ8SkzYfiUGRGRZTD3U2aaO1dEO5eycTvRziUW9hARERGR1eMcIiIiIjJNxKEuOWJBRERERKZJ8JSZOXHIjIiIiKwee4iIiIjINBEXZpQjFkRERERkGofMiIiIiCwbe4iIiIjIND5lRkRERNZOxyEzIiIiIsvGHiIiIiIyjUNmREREZPU4ZEZERERk2dhDRERERKZxYUYiIiKyehwyIyIiIrJs7CEiIiIi0/iUGREREVk9DpnR36XRaPDS2Bl4P2yN1KHI0tQpY3HtynEU5CXi+NH9eM6/i9QhyRZzJQzzJBxzJQzzZD1YENWgjdG7kZzyl9RhyNL48a9i44ZPsHvPt3h91Azk5uYh9uAueHo2kzo02WGuhGGehGOuhGGenqDVirfJkEKn0+mkDkIMpdlJUodg4FpCIibOng+HWko836M7ln8wV+qQAACOjftIHQIAIDHhJH786Reog98DANjZ2eHq5aM4GPsz3n4nVOLo5IW5EoZ5Eo65EkbueSrT3Dbr9Uouxop2Lge/IaKdSyxmnUOk0Wjw448/4uzZs0hLS8ODBw/g5OQEDw8PdO/eHQMHDoSd3dM/ramsrByLPw5H0NhXceS3OKnDkZ1Wrbzg6dkMBw4c1reVlZUh9tARDBrUX8LI5Ie5EoZ5Eo65EoZ5sj5mGzJLTU3F0KFDsWTJEty4cQMqlQqNGjWCo6Mjrl+/jvfffx8vvfQSbt26Za6QaszWXV+jtLQM0ye8LnUostSmdUsAQOKNmwbtycmp8G7ZAjY2HMl9hLkShnkSjrkShnmqgE4r3iZDZuuOWbp0Kby8vPDdd99BpVIZfV9YWIi3334by5YtQ1RUlLnCEl1Syl/YvOMrbIlYAXt7e6nDkSUX14e//wUFhQbtBQWFsLW1hbOzk9F31oq5EoZ5Eo65EoZ5qoBM5/6IxWwF0blz5/D1119XWAwBgEqlwty5czF27FhzhSQ6rVaL0BVrMXLYQHRs/4zU4ciWQqEAADw5fe1Ru9bC/9BVB3MlDPMkHHMlDPNUAZn27IjFbH1+rq6uyMjIqHKf27dvw8nJyUwRiW/Xvv1IS8/AnGkTUFZWjrKyh+990el0+v8nID+vAADg4mJYHKtUzigvL8f9+0VShCVLzJUwzJNwzJUwzJP1MVtB9Oqrr2LhwoXYu3cvkpKSUFRUhLKyMhQVFeHmzZv4+uuv8f7772PkyJHmCkl0R47GISPrLnoNfh0d+w5Dx77DEJ+YhP0/HkHHvsNwO63qgtBaXE9MBgC09Gpu0O7l1RzxCTekCEm2mCthmCfhmCthmKcKaMvF22TIbENmwcHBUCgUWLVqFYqLi42+d3Z2xrhx4/Dmm2+aKyTRLZkfgvtFhj81LFy6Ci2aN8GsoHFo6FZPosjk5fr1JKSm3sbw4S/i/34+CuDh46xDBg9A7KEjEkcnL8yVMMyTcMyVMMxTBSx8yMxsBZFCoUBwcDDeeOMN/Pnnn8jIyEBxcTEcHBzg4eEBX19fKJVKc4VTI7xaNDVqq1WrFuq4uqL9M20kiEi+Vn26ARHrwpCbm4e4uDOYPWsy3NzqYV3EZqlDkx3mShjmSTjmShjmybqYfdEfpVKJZ5991tyXJZn5PGoHHB0dEKyeijdDpuPixSsYMnQckpNTpQ5NdpgrYZgn4ZgrYZinJ1j4RHKuVG1l5LJSNRER/W/MvlL1iT2incuhxxjRziUWK1xZioiIiMjQ0/+eDCIiIqp5Fj5kxoKIiIiITLPwgohDZkRERGT12ENEREREJul08lxQUSzsISIiIiLTtFrxtmrIyMjAO++8A39/f3Tq1AkzZszA9evXK91/79698PHxMdpSUlKqvA57iIiIiEiWdDodpk+fDpVKha1bt8LR0RHr1q3D5MmTcfjwYTg7OxsdEx8fjz59+mDFihUG7fXqVf22CBZEREREZJoEr+7Izs6Gt7c3QkJC4OXlBQCYPXs2RowYgYSEBHTq1MnomEftDRo0qNa1WBARERGRaSI+ZZafn4/8/HyjdldXV7i6uuo/N2jQAOHh4frP2dnZ2Lp1Kxo2bIg2bSp+JVZCQgJee+21asfEgoiIiIjMaseOHYiMjDRqV6vVCA4OrvCYhQsX4rvvvoNSqcSmTZsqHC5LS0tDfn4+4uLisHnzZuTn58PPzw/z5s2Dp6dnlTHx1R1Whq/uICKyDOZ+dUfxz5+Ldq7S7mMF9RA97vr16ygpKcHu3bsRGxuLXbt2oX379gb7/Pbbb5gxYwYCAwMxYcIEFBUVYePGjbh27RpiYmKqHEZjQWRlWBAREVkGsxdEhzeKdi7HgbP/9rFarRbDhg1Dhw4dsHLlSqPvc3NzUadOHf3noqIi9O/fH0FBQZg5c2al5+Vj90RERCRLmZmZiImJweN9NzY2NmjVqhUyMjIqPObxYggAnJyc0LRpU9y5c6fKa7EgIiIiItN0WvE2gdLS0jBv3jycO3dO31ZaWoqrV6/C29vbaP/o6Gj07t0bGo1G31ZQUICbN2+idevWVV6LBRERERGZJsHCjB06dIC/vz9CQ0Nx9uxZJCQk4N1330Vubi4mT56M8vJyZGVloaSkBAAQEBCAoqIivPvuu0hMTMSlS5cwZ84c1K5dG6+88kqV12JBRERERLJkY2OD9evXo0uXLnjrrbfw2muvIS8vD7t27UKzZs2QlpaG3r17IzY2FgDg6emJ7du3IycnB6NHj0ZQUBDq1KmDL774Ak5OTlVei5OqrQwnVRMRWQazT6o+uFa0czkOfUu0c4mF6xARERGRaRKsVG1OHDIjIiIiq8ceIiIiIjJNxFd3yBELIiIiIjKNQ2ZERERElo09RERERGQah8yIiIjI6nHIjIiIiMiyWUwP0RtdF0gdwlMhf9lAqUN4KrguPix1CERE8sIhMyIiIrJ6Fl4QcciMiIiIrB57iIiIiMg0y3j1aaVYEBEREZFpHDIjIiIismzsISIiIiLTLLyHiAURERERmcaFGYmIiIgsG3uIiIiIyDQOmREREZHVs/DH7jlkRkRERFaPPURERERkGofMiIiIyOpZeEHEITMiIiKyeuwhIiIiItMsfB0iFkRERERkkk7Lp8yIiIiILBp7iIiIiMg0C59UzYKIiIiITLPwOUQcMiMiIiKrxx4iIiIiMs3CJ1WzICIiIiLTOIeIiIiIrJ6FF0ScQ0RERERWjwVRDer4QldsvLxT6jDky8YW9n1GwmHmp3B8+3PUGr0ACvcWUkclS1OnjMW1K8dRkJeI40f34zn/LlKHJEvMk3DMlTDM02N0OvE2GWJBVEO8O/tgengIoJA6EvmyHzAGdl1eQNnJWDz4bj1Q+gAOYxZA4Vpf6tBkZfz4V7FxwyfYvedbvD5qBnJz8xB7cBc8PZtJHZqsME/CMVfCME9P0GrF22RIodPJtFSrpimer0odAgDATmmHF4KGIvCd0XhQXAI7ezvMbjdB6rD0Ime5SB3CQ0pHOIZEoPS3b1B25vDDNjt7OIasR+mJgyg7ESNpeK6LD0t6/cclJpzEjz/9AnXwewAAOzs7XL18FAdjf8bb74RKHJ18ME/CMVfCyD1PZZrbZr1e0WfTRTuX0zubBe+bkZGBlStX4j//+Q80Gg26deuG+fPno3Xr1hXun5OTg7CwMBw7dgw6nQ4vvvgiFi5cCGdn5yqvwx4ikXXo1wlDZwfimxU7cWTHIanDka/SByj5YhnKLh3/b1t5OaADFHac6/9Iq1Ze8PRshgMH/luglZWVIfbQEQwa1F/CyOSFeRKOuRKGeaqAVifeJpBOp8P06dORnp6OrVu3Yt++fXBwcMDkyZNx//79Co8JCQlBamoqtm3bhsjISMTFxSE01HQBy4JIZMkXb2BBn9n4eXssYBF9bzVEp4UuMxV4UARAAUVtNyiHTAGgQ9mVE1JHJxttWrcEACTeuGnQnpycCu+WLWBjwz/CAPNUHcyVMMxTBXRa8TaBsrOz4e3tjeXLl6N9+/bw9vbG7NmzkZ2djYSEBKP9z58/j9OnT2PFihVo164d/P39ERYWhoMHD+LOnTtVXssKf0drVm7GPRTnF0kdxlPFrtdwOM78FHbte6H0VCx099KlDkk2XFxVAICCgkKD9oKCQtja2sLZ2UmKsGSHeRKOuRKGeZKHBg0aIDw8HF5eXgAeFkhbt25Fw4YN0aZNG6P9z549i/r166NVq1b6ti5dukChUODs2bNVXotjEyS58oRzKEn9E7bNfWHfczgUtnYoPfad1GHJgkLxcFb+k1P9HrVrZTo50dyYJ+GYK2GYpwqIuFJ1fn4+8vPzjdpdXV3h6upa4TELFy7Ed999B6VSiU2bNlU4JygzMxMeHh4GbUqlEnXr1kV6etU/bJu1IBo7dqz+ZjJl165dNRwNyYUu6xZ0ALR/xQNKB9h1H4zS/+wHtOVShya5/LwCAICLiwqZmdn6dpXKGeXl5bh/n72RAPNUHcyVMMyTMZ2IReCOHTsQGRlp1K5WqxEcHFzhMVOnTsW4ceOwe/duzJkzB7t27UL79u0N9ikuLoZSqTQ6VqlU4sGDB1XGZNaCqG/fvli7di1atmyJZ5991pyXJrlxdoVty2dRHn8W0JTom7UZqVDY2QOOzsB9458erM31xGQAQEuv5rjx2FwGL6/miE+4IVFU8sM8CcdcCcM81axJkyYhMDDQqL2y3iEA+qfKli9fjosXL2Lnzp1YuXKlwT4ODg7QaDRGx2o0Gjg5VT3MadaC6I033oBKpcKaNWsQFRWFpk2bmvPyJCOKWk6oNWQqHgAo/+O/T5rZerWD7n4ecL9AuuBk5Pr1JKSm3sbw4S/i/34+CuDho79DBg9A7KEjEkcnH8yTcMyVMMxTBUQcMqtqaOxxmZmZOHXqFIYNG6YfYbKxsUGrVq2QkZFhtL+HhwcyMzMN2jQaDXJycoyG0p5k9jlE48aNw7Fjx7B27VqsXr3a3JcnmdDdS0dZ/Bko+49CqY0dtHmZsG3TBXbte+FB7FbwEb3/WvXpBkSsC0Nubh7i4s5g9qzJcHOrh3URwtfxsAbMk3DMlTDM0xOq8XSYWNLS0jBv3jw0atQIXbt2BQCUlpbi6tWr6Nu3r9H+3bp1w+rVq5GUlISWLR8+KfhoMvWj4ysjyaTqjz76CFeuXJHi0iQjmgNbYN9rBOx6DIXCuTZ0d+/gwfcbHg6jkd7nUTvg6OiAYPVUvBkyHRcvXsGQoeOQnJwqdWiywjwJx1wJwzxJr0OHDvD390doaCg++ugjuLq64vPPP0dubi4mT56M8vJy3Lt3Dy4uLnBwcICfnx86d+6MuXPnYunSpSgpKUFoaChGjBgBd3f3Kq/FlaqtjGxWqpY5Oa1UTURUEXOvVH3/o3Gincs5VPiDU3l5eVi9ejV++eUXFBQUoGvXrliwYAF8fHxw69YtDBgwACtWrMDIkSMBAHfv3sXSpUtx7NgxKJVKDBo0CIsWLYKDg0OV1+Fj90RERGSaREsN1K5dG8uWLavwu6ZNmyI+Pt6grX79+oiIiKj2dbgwIxEREVk99hARERGRaSI+ZSZHLIiIiIjINAmeMjMnDpkRERGR1WMPEREREZnGITMiIiKydmK+y0yOOGRGREREVo89RERERGQah8yIiIjI6ll4QcQhMyIiIrJ67CEiIiIi0yx8HSIWRERERGQah8yIiIiILBt7iIiIiMgknYX3ELEgIiIiItMsvCDikBkRERFZPfYQERERkWkW/uoOFkRERERkGofMiIiIiCwbe4iIiIjINAvvIWJBRERERCbpdJZdEHHIjIiIiKwee4iIiIjINA6ZERERkdVjQfR0+OLOCalDeCp8sVjqCJ4OxXeOSR3CU8GxcR+pQyAiEoXFFERERERUc/guMyIiIiILL4j4lBkRERFZPfYQERERkWmW/SozFkRERERkmqXPIeKQGREREVk99hARERGRaRbeQ8SCiIiIiEyz8DlEHDIjIiIiq8ceIiIiIjLJ0idVsyAiIiIi0zhkRkRERCSNwsJCfPzxxwgICECnTp0wcuRIHDlypNL99+7dCx8fH6MtJSWlyuuwh4iIiIhMkmrI7L333kN8fDzCwsLQpEkTHDp0CGq1GtHR0ejRo4fR/vHx8ejTpw9WrFhh0F6vXr0qr8OCiIiIiEyTYMgsKysLhw8fRlRUFHr27AkAmDlzJk6cOIF9+/ZVWBAlJCSgU6dOaNCgQbWuxYKIiIiITNKJWBDl5+cjPz/fqN3V1RWurq76z46Ojti8eTM6d+5ssJ9CoUBeXl6F505ISMBrr71W7ZhYEBEREZFZ7dixA5GRkUbtarUawcHB+s8qlQrPP/+8wT4XLlzAyZMn8cEHHxgdn5aWhvz8fMTFxWHz5s3Iz8+Hn58f5s2bB09PzypjYkFEREREponYQzRp0iQEBgYatT/eO1SRGzduQK1Ww8/PD6NGjTL6PiEhAQBgY2ODVatWoaioCBs3bsTo0aMRExNT5TCaQqfTWcTCAnbKJlKHQBak+M4xqUN4Kjg27iN1CERWq0xz26zXyx7cV7RzuR36rdrHnDlzBmq1Go0bN8a2bdtQp06dCvfLzc01+K6oqAj9+/dHUFAQZs6cWen5+dg9ERERydr+/fsRFBSEdu3aYefOnZUWQwCMvnNyckLTpk1x586dKq/BgoiIiIhM04q4VUNMTAwWLFiAwYMHIyoqCiqVqtJ9o6Oj0bt3b2g0Gn1bQUEBbt68idatW1d5HRZEREREZJJOK94mVHp6OhYvXgx/f3/Mnz8fubm5yMrKQlZWFnJzc1FeXo6srCyUlJQAAAICAlBUVIR3330XiYmJuHTpEubMmYPatWvjlVdeqfJaLIiIiIhIlg4fPozi4mKcPHkSffr0Qe/evfXbrFmzkJaWht69eyM2NhYA4Onpie3btyMnJwejR49GUFAQ6tSpgy+++AJOTk5VXouTqokqwEnVwnBSNZF0zD2pOnOAeJOqGx6p/qTqmsbH7omIiMgkMRdmlCMOmREREZHVY0FUA6ZOGYtrV46jIC8Rx4/ux3P+XaQOSZaYp+rTaDR4aewMvB+2RupQZIn3lHDMlTDM02N0CvE2GWJBJLLx41/Fxg2fYPeeb/H6qBnIzc1D7MFd8PRsJnVossI8/T0bo3cjOeUvqcOQJd5TwjFXwjBPhqR4ysycOKlaZIkJJ/HjT79AHfweAMDOzg5XLx/Fwdif8fY7oRJHJx9yz5McJ1VfS0jExNnz4VBLied7dMfyD+ZKHZKsJlXL/Z6SE+ZKGLnnydyTqtOf7yfauTyO/iraucRS6aTqffv2VetEr776qsl9Tp06hX379iEvLw/9+vXDqFGjYGtrq/8+Ly8Ps2fPxq5du6p1bblo1coLnp7NcODAYX1bWVkZYg8dwaBB/SWMTF6Yp+orKyvH4o/DETT2VRz5LU7qcGSH95RwzJUwzJMxnVaeQ11iqbQgqugtspVRKBQmC6J///vfUKvV6N69OxQKBZYtW4aYmBhERUXpX+ZWWlqK8+fPC76u3LRp3RIAkHjjpkF7cnIqvFu2gI2NDbRamfYVmhHzVH1bd32N0tIyTJ/wOguiCvCeEo65EoZ5MibXoS6xVFoQHTlyRNQLbdy4EW+++SbeeOMNAMCFCxegVqsRFBSEnTt3mlww6Wng4vpwOfGCgkKD9oKCQtja2sLZ2cnoO2vEPFVPUspf2LzjK2yJWAF7e3upw5El3lPCMVfCME/Wp9KCqEkTcefk3LhxA+Hh4frPHTt2xI4dOzB27FiEhIQgKipK1OtJQaF42J345LSsR+3W9tNEZZgn4bRaLUJXrMXIYQPRsf0zUocjW7ynhGOuhGGejOlk+nSYWAQ/ZZaRkYElS5bghRdewLPPPosrV65g5cqVOHDggKDj69ati9u3DSeAeXt7IzIyEqdOncL7779vdOM9bfLzCgAALi6GL55TqZxRXl6O+/eLpAhLdpgn4Xbt24+09AzMmTYBZWXlKCsrB/DwL+lH/0+8p6qDuRKGeTJm6U+ZCSqIkpOTMWLECBw+fBh+fn4oLS0FANy9exfz58/H4cOHTZwBeOGFF7BkyRIcPXoURUX/vZG6deuG5cuX44cffsCCBQv+5i9DHq4nJgMAWno1N2j38mqO+IQbUoQkS8yTcEeOxiEj6y56DX4dHfsOQ8e+wxCfmIT9Px5Bx77DcDstQ+oQZYH3lHDMlTDMk/URVBCtXLkSjRo1wv/93/9h5cqV+p6cVatW4R//+Ae2bNli8hxvvvkm2rRpgzfeeMNo4vTw4cOxatUqXLhwofq/Ahm5fj0Jqam3MXz4i/o2Ozs7DBk8AP/+93EJI5MX5km4JfNDsHfLOoPNs1kT9O3VHXu3rENDt3pShygLvKeEY66EYZ6M6bQK0TY5EvQus1OnTmH58uVQqVQoLzfspn/11Vfx1ltvmTyHs7Mz1q9fj+zsbDg6Ohp9/9JLL6F79+6CepvkbNWnGxCxLgy5uXmIizuD2bMmw82tHtZFbJY6NFlhnoTxatHUqK1WrVqo4+qK9s+0kSAi+eI9JRxzJQzzZOgpn9VikqCCyMbGRj+R7EnFxcWwsRG+4LWbm1ul37m7u2PChAmCzyVHn0ftgKOjA4LVU/FmyHRcvHgFQ4aOQ3JyqtShyQrzRGLjPSUccyUM82RdBK1UPXPmTKSnp+sfj2/Xrh3+9a9/wcfHB0FBQXBycsLnn39ujngrJZeVqskyyHGlajmS00rVRNbG3CtVp3R+QbRztTj/s2jnEougHqL58+dj9OjRGDhwoH5hxc2bNyMxMRG3b9/G7t27azpOIiIikpBc5/6IRdBYl7e3N7799lv06tUL586dg62tLU6ePImWLVviq6++gq+vb03HSURERFRjBPUQAUDz5s2xevXqmoyFiIiIZIqTqh9z9OhRnDhxAnl5eXBzc4O/vz969epVU7ERERGRTFj6kJmgguju3buYM2cOLly4ADs7O9SpUwe5ubnYvHkzevTogQ0bNlT4KD0RERHR00DwwozJycmIjIzEH3/8gePHj+PixYtYvXo1Ll68iE8//bSm4yQiIiIJ6XQK0TY5ElQQ/fLLL5g7dy5eeOEF/XpEtra2GDp0KN566y3ExsbWaJBEREQkLb7LDA8XZqxXr+JXBLRo0UL/bjMiIiKip5GggigwMBD//Oc/DV7KCgClpaXYuXMnhg8fXiPBERERkTxodQrRNjmqdFL142+eLy8vx9WrVzFgwAD069cPbm5uyMvLw/Hjx5GTk4NWrVqZJVgiIiKShlzn/oil0ld3BAQECD+JQoEjR46IFtTfwVd3kJj46g5h+OoOIumY+9Ud8b6DRTuXz5+HRDuXWCrtIfr3v/9tzjiIiIhIxix9HSLhr6mvQl5enhinISIiIpnS6cTb5EjQwowPHjzAtm3bcPr0aWg0GjwaZdNqtSguLsaNGzfwxx9/1GigRERERDVFUEH06aef4ssvv0Tr1q2Rk5ODWrVqoV69ekhISEBpaSlCQkJqOk4iIiKSEIfMABw+fBgTJ05ETEwMJkyYgA4dOuCbb77BTz/9hEaNGqGsrKym4yQiIiIJWfpj94IKonv37qFv374AAF9fX1y6dAkA4OHhgenTp3OlaiIiInqqCRoyc3FxQUlJCYCHK1OnpaWhsLAQKpVK/5mIiIgsl6WvQySoh6hr167YuXMnCgsL0bx5czg7O+vXHbpw4QJUKlWNBklERETSsvSnzAQVRGq1GpcvX8b06dNhY2ODcePG4f3338fw4cOxfv16DBo0qKbjJCIiIqoxgobMfHx8cOjQIcTHxwMA3nrrLTg6OuL8+fMYOHAgZsyYUaNBEhERkbSkmgxdWFiIiIgI/Pzzz8jJyYGXlxfmzJmDAQMGVLh/Tk4OwsLCcOzYMeh0Orz44otYuHAhnJ2dq7xOpa/ueNrw1R0kJr66Qxi+uoNIOuZ+dcfvzUeIdq5OqT8I3jc4OBjx8fH48MMP0aRJExw6dAjr1q1DdHQ0evToYbT/hAkTUFJSgg8//BCFhYVYtGgROnbsiDVr1lR5nUp7iPbt2yc4WAB49dVXq7U/ERERUVWysrJw+PBhREVFoWfPngCAmTNn4sSJE9i3b59RQXT+/HmcPn0aBw8e1L94PiwsDEFBQZg7dy4aN25c6bUqLYg++OADwQErFAoWRERERBZMivEkR0dHbN68GZ07dzZoVygUFb427OzZs6hfv76+GAKALl26QKFQ4OzZsxg+fHil16q0IJL67fVEREQkH2LOIcrPz0d+fr5Ru6urK1xdXfWfVSoVnn/+eYN9Lly4gJMnT1bYcZOZmQkPDw+DNqVSibp16yI9Pb3KmCotiJo04Zwcsl6cGyMM51oJx3uK6L927NiByMhIo3a1Wo3g4OBKj7tx4wbUajX8/PwwatQoo++Li4uhVCqN2pVKJR48eFBlTIKeMiMiIiLrJubCjJMmTUJgYKBR++O9Q086c+YM1Go1GjdujKioKNjb2xvt4+DgAI1GY9Su0Wjg5ORUZUwsiIiIiMgkMYfMnhwaM2X//v1YtGgRunfvjoiIiEoXhPbw8EBmZqZBm0ajQU5OjtFQ2pMELcxIREREJIWYmBgsWLAAgwcPRlRUVJVvx+jWrRuysrKQlJSkbzt79iyAh2/dqAp7iIiIiMgkKRYtTE9Px+LFi+Hv74/58+cjNzdX/529vT1cXFxw7949uLi4wMHBAX5+fujcuTPmzp2LpUuXoqSkBKGhoRgxYgTc3d2rvFa1CiKNRoNLly4hIyMDvXv3RnFxsckuKCIiInr6SbFS9eHDh1FcXIyTJ0+iTx/DBxM6d+6MTz/9FAMGDMCKFSswcuRIKBQKREZGYunSpZg0aRKUSiUGDRqERYsWmbyW4JWq9+zZg7Vr1yIvLw8KhQL79u3DZ599BgCIjIyEo6Pj3/iliocrVROZH58yE45PmZHYzL1S9X88xFtvsFd69RZ/NgdBc4i+//57LF26FIMGDUJUVBQe1VCBgYE4f/58hY/OERERET0tBA2ZbdmyBWPGjMGSJUtQXl6ubx82bBjS09OxZ88ezJ8/v8aCJCIiImlppQ6ghgnqIUpJSUH//v0r/K5du3bIysoSNSgiIiKSFx0Uom1yJKggcnNzQ3x8fIXfXb9+HW5ubqIGRURERGROgobMhg4dio0bN8Ld3R0BAQEAHr5Y7cKFC4iKisLLL79ckzESERGRxLRSPHdvRoIKopCQEFy/fh0LFiyAQvGwq2vcuHEoKSlBt27dEBISUqNBEhERkbS0Mh3qEouggkipVCIqKgpxcXE4ceIEcnNz4eLiAn9/fzz//PP6IomIiIjoaVSthRl79uyJnj171lQsREREJFNynQwtFkEFkZB1htRq9f8cDBEREcmTpT92/z8XRM7OznBzc2NBRERERE8tQQXRlStXjNoKCwtx6tQpLF++HMuXLxc9MCIiIpIPDpkBsLW1NWqrXbs2Bg4ciOzsbKxcuRLffPON6MERERGRPFj6kJmghRmr4unpiYSEBDFiISIiIpJEtZ4ye9KDBw+wd+9eNGjQQKx4iIiISIYsvYdIUEHUt29fo7WGysvLkZubi9LSUrz//vs1EhwRERHJA+cQAZWuPaRSqRAQEIAePXqIGhQRERGROQkqiAYMGIBu3bqhdu3aNR0PERERyZDWsjuIhE2qfvfdd/Hrr7/WcChEREQkV1ooRNvkSFBBVK9evQofvaeKTZ0yFteuHEdBXiKOH92P5/y7SB2SLDFPwjFX1aPRaPDS2Bl4P2yN1KHIFu8pYZgn6yGoIHrjjTewbNkyfPbZZ4iJicGJEyeMNnpo/PhXsXHDJ9i951u8PmoGcnPzEHtwFzw9m0kdmqwwT8IxV9W3MXo3klP+kjoM2eI9JQzzZEgn4iZHCp1OZzI2X1/fig9WKKDT6aBQKHDt2jXRg6sOO2UTSa//SGLCSfz40y9QB78HALCzs8PVy0dxMPZnvP1OqMTRyQfzJJycc1V855ik16/ItYRETJw9Hw61lHi+R3cs/2Cu1CEBABwb95E6BD0531NyIvc8lWlum/V6//IYK9q5RqbvFu1cYhE0qfqLL76o6TgsQqtWXvD0bIYDBw7r28rKyhB76AgGDeovYWTywjwJx1xVT1lZORZ/HI6gsa/iyG9xUocjS7ynhGGerE+lBdGAAQMQERGBdu3aoXv37qJcrLi4GAkJCWjTpg0cHR1x9epV7Ny5ExkZGfD29sbkyZPRpIk8enr+jjatWwIAEm/cNGhPTk6Fd8sWsLGxgVZr6UtbmcY8CcdcVc/WXV+jtLQM0ye8zoKoErynhGGejGkV8pwMLZZK5xDdvn0bDx48EO1CiYmJ+Mc//oFRo0Zh8ODBiIuLw9ixY3Hp0iW4uLjg119/RWBgIBITE0W7prm5uKoAAAUFhQbtBQWFsLW1hbOzkxRhyQ7zJBxzJVxSyl/YvOMrLH3vLdjb20sdjmzxnhKGeTJm6XOI/ud3mQn16aefonPnzvj+++/RrVs3zJo1C0OGDMGBAwewbt06HDp0CL1798Ynn3xirpBE92g17yenZT1qt7afJirDPAnHXAmj1WoRumItRg4biI7tn5E6HFnjPSUM82R9qiyInnxdx//i9OnTeOutt+Dr64t3330XDx48wLhx4/TXsLOzw8yZM3Hu3DnRrmlu+XkFAAAXF5VBu0rljPLycty/XyRFWLLDPAnHXAmza99+pKVnYM60CSgrK0dZWTmAh/+YPfp/eoj3lDDMkzGtiJscVTmpWq1WC+p6VigU+OWXX6rcp1atWvohODc3NwQGBsLBwcFgn4KCAqhUqooOfypcT0wGALT0ao4bj407e3k1R3zCDYmikh/mSTjmSpgjR+OQkXUXvQa/btAen5iE/T8ewU/7tqNJI3eJopMX3lPCME/GLH2l6ioLonbt2qF+/fqiXKhnz55Yvnw5li9fjhYtWmDFihUG358/fx5LlixB//5P7+z969eTkJp6G8OHv4j/+/kogIc9X0MGD0DsoSMSRycfzJNwzJUwS+aH4H6R4U/sC5euQovmTTAraBwautWTKDL54T0lDPNkfaosiGbOnInOnTuLcqF3330XM2bMQEREBNasMVw99sCBA5g3bx6ee+45zJ8/X5TrSWXVpxsQsS4Mubl5iIs7g9mzJsPNrR7WRWyWOjRZYZ6EY65M82rR1KitVq1aqOPqivbPtJEgInnjPSUM82RIrq/cEIugdYjE4O7ujh9++AHZ2dlG3/n7++Prr79Ghw4dRJ23JIXPo3bA0dEBweqpeDNkOi5evIIhQ8chOTlV6tBkhXkSjrkisfGeEoZ5MiTXp8PEUulK1b6+vti9e7doPUQ1TS4rVRNZEzmuVC1XclqpmiyDuVeq/rLxeNHONf7Ol6KdSyyV9hAFBgbCzc3NnLEQERGRTFntpOonJz0TERGR9ZLr4/JiMdvCjERERERyZbZJ1URERPT0svRJ1SyIiIiIyCRLn0PEITMiIiJ6KkRFRWHMmDFV7rN37174+PgYbSkpKVUexx4iIiIiMknqSdW7du1CeHg4OnXqVOV+8fHx6NOnj9HDYfXqVb1iPQsiIiIiMkmqgigjIwNLlizBqVOn4OXlZXL/hIQEdOrUCQ0aNKjWdThkRkRERLJ15coVODs7Y//+/fDz8zO5f0JCAlq1alXt67CHiIiIiEzSiTipOj8/H/n5+Ubtrq6ucHV1NWgLCAhAQECAoPOmpaUhPz8fcXFx2Lx5M/Lz8+Hn54d58+bB09OzymNZEBEREZFJYg6Z7dixA5GRkUbtarUawcHBf/u8CQkJAAAbGxusWrUKRUVF2LhxI0aPHo2YmJgqh9FYEBEREZFZTZo0CYGBgUbtT/YOVVffvn1x6tQp1KlTR9+2YcMG9O/fH99++y1mzpxZ6bEsiIiIiMgkMXuIKhoaE8vjxRAAODk5oWnTprhz506Vx3FSNREREZmkE3GrKdHR0ejduzc0Go2+raCgADdv3kTr1q2rPJYFERERET2VysvLkZWVhZKSEgAPJ2AXFRXh3XffRWJiIi5duoQ5c+agdu3aeOWVV6o8FwsiIiIiMkmrEG8TS1paGnr37o3Y2FgAgKenJ7Zv346cnByMHj0aQUFBqFOnDr744gs4OTlVeS6FTqeziPe12SmbSB0CkdUpvnNM6hCeGo6N+0gdAlmYMs1ts14vvPl40c71duqXop1LLOwhIiIiIqvHp8yIiIjIJKnfZVbTWBARERGRSRYxv6YKHDIjIiIiq8ceIiIiIjJJzKfD5IgFEREREZnEOURERERk9TiHiIiIiMjCsYeIiP42LjYoHBexFIb3lHxpLbyPiAURERERmWTpc4g4ZEZERERWjz1EREREZJJlD5ixICIiIiIBOGRGREREZOHYQ0REREQmcaVqIiIisnqW/tg9h8yIiIjI6rGHiIiIiEyy7P4hFkREREQkAJ8yIyIiIrJw7CEiIiIikyx9UjULIiIiIjLJssshDpkRERERsYeIiIiITLP0SdUsiIiIiMgkS59DxCEzIiIisnrsISIiIiKTLLt/iAURERERCWDpc4g4ZEZERERWjz1EREREZJLOwgfNWBARERGRSRwyIyIiIrJw7CEiIiIikyx9HSIWRERERGSSZZdDHDKrEVOnjMW1K8dRkJeI40f34zn/LlKHJEvMk3DMlTDMU/VoNBq8NHYG3g9bI3UossV7ynqwIBLZ+PGvYuOGT7B7z7d4fdQM5ObmIfbgLnh6NpM6NFlhnoRjroRhnqpvY/RuJKf8JXUYssV7ypAWOtE2OVLodDp5RlZNdsomUocAAEhMOIkff/oF6uD3AAB2dna4evkoDsb+jLffCZU4OvlgnoRjroSRe56K7xyTOgQD1xISMXH2fDjUUuL5Ht2x/IO5UocEAHBs3EfqEPTkfk+VaW6b9XrTPV8T7Vybb37zt46LiorCr7/+ij179lS6T05ODsLCwnDs2DHodDq8+OKLWLhwIZydnas8t9l6iPbt2weNRmPQduLECUydOhVDhgxBSEgI/vzzT3OFUyNatfKCp2czHDhwWN9WVlaG2ENHMGhQfwkjkxfmSTjmShjmqXrKysqx+ONwBI19FQ3d3KQOR5Z4T8nPrl27EB4ebnK/kJAQpKamYtu2bYiMjERcXBxCQ00XsGYriBYvXoyCggL95//85z+YMmUKAKBfv37IycnBa6+9hrNnz5orJNG1ad0SAJB446ZBe3JyKrxbtoCNDUcoAeapOpgrYZin6tm662uUlpZh+oTXpQ5FtnhPGdOJ+F91ZGRkYObMmVi9ejW8vLyq3Pf8+fM4ffo0VqxYgXbt2sHf3x9hYWE4ePAg7ty5U+WxZvsdfXJkbuPGjZg4cSK2bt2KBQsWYOfOnRg1ahQ+++wzc4UkOhdXFQCgoKDQoL2goBC2trZwdnaSIizZYZ6EY66EYZ6ES0r5C5t3fIWl770Fe3t7qcORLd5TxrQibvn5+bh165bRlp+fb3TdK1euwNnZGfv374efn1+VMZ49exb169dHq1at9G1dunSBQqEw2eEi2WP3N2/exPvvv2/QNnbsWAQGBkoU0f9OoVAAMC7+HrVrtZa+zqcwzJNwzJUwzJMwWq0WoSvWYuSwgejY/hmpw5E13lM1a8eOHYiMjDRqV6vVCA4ONmgLCAhAQECAoPNmZmbCw8PDoE2pVKJu3bpIT0+v8lizFUQKhUJ/IwFA8+bNcf/+fYN9cnNz4eLiYq6QRJef93BI0MVFhczMbH27SuWM8vJy3L9fJFVossI8CcdcCcM8CbNr336kpWdgw6oPUVZWrm/X6XQoKyuHnZ2thNHJC+8pY2K+y2zSpEkVdoC4urr+T+ctLi6GUqk0alcqlXjw4EGVx5qtINLpdBg0aBC8vb3h7e0NZ2dnrFmzBl9++SXs7Oxw+fJlLFu2DL179zZXSKK7npgMAGjp1Rw3Hht39vJqjviEGxJFJT/Mk3DMlTDMkzBHjsYhI+sueg02nDsUn5iE/T8ewU/7tqNJI3eJopMX3lPGxOwTc3V1/Z+Ln4o4ODgYPcAFPFxzy8mp6mFOsxVEhw4dQnx8PBISEhAfH4+UlBTcunULpaWlsLOzw8SJE9GsWTPMnSuPRz//juvXk5CaehvDh7+I//v5KICHj2kOGTwAsYeOSBydfDBPwjFXwjBPwiyZH4L7RYY9GwuXrkKL5k0wK2gcGrrVkygy+eE99XTy8PBAZmamQZtGo0FOTo7RUNqTzFYQeXl5wcvLCy+++KK+rbi4GI6OjgCA6OhotG/fHnZ2T/fbRFZ9ugER68KQm5uHuLgzmD1rMtzc6mFdxGapQ5MV5kk45koY5sk0rxZNjdpq1aqFOq6uaP9MGwkikjfeU4a0T8Gyhd26dcPq1auRlJSEli0fPin4aDJ1165dqzxW0urjUTEEAB07dpQuEBF9HrUDjo4OCFZPxZsh03Hx4hUMGToOycmpUocmK8yTcMyVMMwTiY33lCE5lkPl5eW4d+8eXFxc4ODgAD8/P3Tu3Blz587F0qVLUVJSgtDQUIwYMQLu7lUPB3OlaiIiM5DbStVyJaeVquXO3CtVj28xUrRzfZnyr7913MKFC5GSkqJfqfrWrVsYMGAAVqxYgZEjH8Z39+5dLF26FMeOHYNSqcSgQYOwaNEiODg4VHluFkRERGbAgkgYFkTCmbsgGttCvGVxdqd8J9q5xPJ0T9ghIiIisxDzsXs5sr61x4mIiIiewB4iIiIiMsnS1+ZmQUREREQmaTlkRkRERGTZ2ENEREREJln6pGoWRERERGSSpc8h4pAZERERWT32EBEREZFJFrKOc6VYEBEREZFJfMqMiIiIyMKxh4iIiIhMsvRJ1SyIiIiIyCQ+dk9ERERWj3OIiIiIiCwce4iIiIjIJD52T0RERFbP0idVc8iMiIiIrB57iIiIiMgkPmVGREREVo9PmRERERFZOPYQERERkUl8yoyIiIisnqUPmbEgIqrAxMY9pA7hqfDFnRNSh/DUcGzcR+oQngr5ywZKHQJZKRZEREREZBKfMiMiIiKrp7XwOUR8yoyIiIisHnuIiIiIyCTL7h9iQUREREQCWPpTZhwyIyIiIqvHHiIiIiIyydJ7iFgQERERkUmWvlI1h8yIiIjI6rGHiIiIiEzikBkRERFZPUtfqZpDZkRERCRbWq0WERER6NOnD/z8/DBlyhSkpKRUuv/evXvh4+NjtFV1DMAeIiIiIhJAqknVGzZswJ49e/DJJ5/A3d0da9aswdSpU3Hw4EHUqlXLaP/4+Hj06dMHK1asMGivV69elddhDxERERGZpIVOtE0ojUaD6OhoqNVq9O3bF76+vggPD0d2djYOHTpU4TEJCQnw9fVFgwYNDDZbW9sqr8WCiIiIiGTp2rVrKCoqwnPPPadvU6lUaNu2Lc6ePVvhMQkJCWjVqlW1r8UhMyIiIjJJzCGz/Px85OfnG7W7urrC1dVV/zkjIwMA4O7ubrBfw4YNkZaWZnR8Wloa8vPzERcXh82bNyM/Px9+fn6YN28ePD09q4yJBRERERGZJOZj9zt27EBkZKRRu1qtRnBwsP5zcXExAECpVBrsp1QqodFojI5PSEgAANjY2GDVqlUoKirCxo0bMXr0aMTExKBBgwaVxsSCiIiIiMxq0qRJCAwMNGp/vHcIABwcHAA8nEv0eFGk0Wjg5ORkdHzfvn1x6tQp1KlTR9+2YcMG9O/fH99++y1mzpxZaUwsiIiIiMgkMdchenJorDKNGjUCAGRmZkKlUunbMzMzK50n9HgxBABOTk5o2rQp7ty5U+W1OKmaiIiITNLqdKJtQvn6+kKlUuH06dP6tsLCQly9ehXdu3c32j86Ohq9e/c2GE4rKCjAzZs30bp16yqvxYKIiIiIZEmpVGL8+PEIDw/Hzz//jD///BNvv/023N3dMXDgQJSXlyMrKwslJSUAgICAABQVFeHdd99FYmIiLl26hDlz5qB27dp45ZVXqrwWCyIiIiIySSfif9UREhKC1157DaGhoRgzZgx0Oh22bNkCpVKJtLQ09O7dG7GxsQAAT09PbN++HTk5ORg9ejSCgoJQp04dfPHFFxXOOXqcQifV0pMis1M2kToEsiATG/eQOoSnwhd3TkgdAlmY/GUDpQ7hqeH07jazXu+ZhsZDVH/XtczTpncyM/YQERERkdXjU2ZERERkEt92T9U2dcpYXLtyHAV5iTh+dD+e8+8idUiyxDxVX8cXumLj5Z1ShyFbvKeEY64EsLGFfZ+RcJj5KRzf/hy1Ri+Awr2F1FFJRoqnzMyJBZHIxo9/FRs3fILde77F66NmIDc3D7EHd8HTs5nUockK81R93p19MD08BFBIHYk88Z4SjrkSxn7AGNh1eQFlJ2Px4Lv1QOkDOIxZAIVrfalDoxrASdUiS0w4iR9/+gXq4PcAAHZ2drh6+SgOxv6Mt98JlTg6+ZB7nuQ0qdpOaYcXgoYi8J3ReFBcAjt7O8xuN0HqsADIa1K13O8pOZFzrmQzqVrpCMeQCJT+9g3Kzhx+2GZnD8eQ9Sg9cRBlJ2KkjQ/mn1TduoF4vYjXs86Jdi6xcA6RiFq18oKnZzMcOHBY31ZWVobYQ0cwaFB/CSOTF+apejr064ShswPxzYqdcK6rwqBpL0kdkuzwnhKOuRKo9AFKvlgGXV72f9vKywEdoLCzzn865TrUJRazDpn9/vvv2LRpk/7ziRMnMG3aNLz44ot44403cOrUKXOGI7o2rVsCABJv3DRoT05OhXfLFrCx4QglwDxVV/LFG1jQZzZ+3h4LC5/T+LfxnhKOuRJIp4UuMxV4UARAAUVtNyiHTAGgQ9kV+fSMknjMduf/+OOPGDduHM6fPw8A+OWXXzBlyhTY2NhgwIAB0Gq1CAoKwpEjR8wVkuhcXB++Z6WgoNCgvaCgELa2tnB2rnpRKGvBPFVPbsY9FOcXSR2GrPGeEo65qj67XsPhOPNT2LXvhdJTsdDdS5c6JElItTCjuZit3y8yMhIhISH6N81u2rQJs2bNQkhIiH6fTZs2Yf369RgwYIC5whKVQvFwtuuT07IetWu1WrPHJEfME4mN95RwzFX1lSecQ0nqn7Bt7gv7nsOhsLVD6bHvpA7L7HQ6y743zNZDlJqaiqFDh+o/37p1CwMHGk6eGzZsGJKSkswVkujy8woAAC4uKoN2lcoZ5eXluH+fP+UDzBOJj/eUcMxV9emybkH7VzxK//MDys79DLvugwEbW6nDIpGZrSBq1qwZfvvtN/3nDh064Nq1awb7XLhwAR4eHuYKSXTXE5MBAC29mhu0e3k1R3zCDSlCkiXmicTGe0o45kogZ1fYdugNKB0MmrUZqVDY2QOOzhIFJh0tdKJtcmS2gmj69OlYsWIFVq5cicuXL2PGjBnYsGEDdu3ahTNnziA6OhpLly7F+PHjzRWS6K5fT0Jq6m0MH/6ivs3Ozg5DBg/Av/99XMLI5IV5IrHxnhKOuRJGUcsJtYZMha1PV4N2W6920N3PA+4XSBSZdHQ6nWibHJltDtHLL78MhUKBiIgIbNu2DQqFAjqdDsuWLQMAODs7Y9q0aZg4caK5QqoRqz7dgIh1YcjNzUNc3BnMnjUZbm71sC5is9ShyQrzRGLjPSUcc2Wa7l46yuLPQNl/FEpt7KDNy4Rtmy6wa98LD2K3go98Wh6zLqYwYsQIjBgxAklJSbh58yYKCwthb28PDw8PtG3bFrVq1TJnODXi86gdcHR0QLB6Kt4MmY6LF69gyNBxSE5OlTo0WWGeSGy8p4RjroTRHNgC+14jYNdjKBTOtaG7ewcPvt+A8vizUocmCbkOdYmFK1UTVUBOK1XLmZxWqibLIJuVqp8C5l6puknddqKd63bOFdHOJRauwEVERERWzzrXHyciIqJqsfRXd7AgIiIiIpPkusK0WDhkRkRERFaPPURERERkkoU8g1UpFkRERERkkqU/ds+CiIiIiEyy9B4iziEiIiIiq8ceIiIiIjKJj90TERGR1eOQGREREZGFYw8RERERmcSnzIiIiMjqcciMiIiIyMKxh4iIiIhM4lNmREREZPX4clciIiIiC8ceIiIiIjKJQ2ZERERk9fiUGREREZGFYw8RERERmcRJ1URERGT1dDqdaFt1aLVaREREoE+fPvDz88OUKVOQkpJS6f45OTmYO3cuunfvjm7dumHx4sW4f/++yeuwICIiIiLZ2rBhA/bs2YOwsDB89dVXsLW1xdSpU/HgwYMK9w8JCUFqaiq2bduGyMhIxMXFITQ01OR1WBARERGRSVL0EGk0GkRHR0OtVqNv377w9fVFeHg4srOzcejQIaP9z58/j9OnT2PFihVo164d/P39ERYWhoMHD+LOnTtVXosFEREREZmkE3HLz8/HrVu3jLb8/HyDa167dg1FRUV47rnn9G0qlQpt27bF2bNnjWI8e/Ys6tevj1atWunbunTpAoVCUeH+j7OYSdVlmttSh0BkdaKlDoCIzEbMf2fXr1+PyMhIo3a1Wo3g4GD954yMDACAu7u7wX4NGzZEWlqa0fGZmZnw8PAwaFMqlahbty7S09OrjMliCiIiIiJ6OkyaNAmBgYFG7a6urgafi4uLATwsah6nVCqh0WiMji8uLjba99H+lc05eoQFEREREZmVq6urUfFTEQcHBwAP5xI9XuhoNBo4OTlVuH9FhVJl+z+Oc4iIiIhIlho1agTg4VDY4zIzM42G0QDAw8PDaF+NRoOcnByjobQnsSAiIiIiWfL19YVKpcLp06f1bYWFhbh69Sq6d+9utH+3bt2QlZWFpKQkfdujydRdu3at8locMiMiIiJZUiqVGD9+PMLDw+Hm5oamTZtizZo1cHd3x8CBA1FeXo579+7BxcUFDg4O8PPzQ+fOnTF37lwsXboUJSUlCA0NxYgRIyrsUXqcQmfpb2sjIiKip1Z5eTnCw8Pxr3/9C8XFxejSpQuWLFmCZs2a4datWxgwYABWrFiBkSNHAgDu3r2LpUuX4tixY1AqlRg0aBAWLVqkn49UGRZEREREZPU4h4iIiIisHgsiIiIisnosiIiIiMjqsSASmVarRUREBPr06QM/Pz9MmTIFKSkpUocle1FRURgzZozUYchSYWEhPv74YwQEBKBTp04YOXIkjhw5InVYspORkYF33nkH/v7+6NSpE2bMmIHr169LHZYsJSUlwcfHx2j75ptvpA5Ndr7//nsMGTIEHTp0wNChQyt8oShZBhZEItuwYQP27NmDsLAwfPXVV7C1tcXUqVNNLhluzXbt2oXw8HCpw5Ct9957D7/++ivCwsLw/fffY+DAgVCr1Thx4oTUocmGTqfD9OnTkZ6ejq1bt2Lfvn1wcHDA5MmTcf/+fanDk534+HioVCocP37cYHvppZekDk1WfvjhByxatAijRo3CgQMHMGzYMLzzzjs4d+6c1KFRDWBBJCKNRoPo6Gio1Wr07dsXvr6+CA8PR3Z2Nn+qqEBGRgZmzpyJ1atXw8vLS+pwZCkrKwuHDx/GokWL0LNnT7Ro0QIzZ85E9+7dsW/fPqnDk43s7Gx4e3tj+fLlaN++Pby9vTF79mxkZ2cjISFB6vBkJyEhAd7e3mjQoIHBZuqxZGui0+mwbt06jB8/HpMmTUKLFi0wa9Ys9OzZEydPnpQ6PKoBLIhEdO3aNRQVFeG5557Tt6lUKrRt21a/Uib915UrV+Ds7Iz9+/fDz89P6nBkydHREZs3bzZaYVWhUCAvL0+iqOSnQYMGCA8P1xfW2dnZ2Lp1Kxo2bIg2bdpIHJ38xMfHw9vbW+owZC0pKQm3b9/GsGHDDNq3bt2KOXPmSBQV1SSuVC2ijIwMADBaDbNhw4ZIS0uTIiRZCwgIQEBAgNRhyJpKpcLzzz9v0HbhwgWcPHkSH3zwgURRydvChQvx3XffQalUYtOmTXB2dpY6JNlJSEhAixYtMHr0aKSmpsLT0xOzZ89G7969pQ5NNm7evAngYc//jBkz8Mcff6Bp06aYNWsW/96yUOwhElFxcTEAGLyR99Hnit6+S1RdN27cgFqthp+fH0aNGiV1OLI0depU7Nu3D8OGDcOcOXNw+fJlqUOSlaKiIty6dQsFBQV4++238c9//hPt27fHtGnTEBcXJ3V4slFYWAgAWLBgAQYNGoTo6Gj07t0bs2fPxn/+8x+Jo6OawB4iET0af9doNAZFkUajgZOTk1RhkYU4c+YM1Go1GjdujKioKNjb20sdkiy1bt0aALB8+XJcvHgRO3fuxMqVKyWOSj6cnJxw7tw52Nvb6/+eat++PW7cuIEtW7agZ8+eEkcoD4/+fAUFBeGVV14BADzzzDO4fPkyoqOj0atXLynDoxrAHiIRNWrUCACQmZlp0J6ZmWnypXJEVdm/fz+CgoLQrl077Ny5E3Xq1JE6JFnJzMxETEwMHn8TkY2NDVq1aqUfyqb/cnZ2NurJbtOmDe7cuSNRRPLj4eEBAEZz0Fq3bo1bt25JERLVMBZEIvL19YVKpcLp06f1bYWFhbh69Sq6d+8uYWT0NIuJicGCBQswePBgREVFQaVSSR2S7KSlpWHevHkGj0OXlpbi6tWrnDz8hN9//x2dOnXCpUuXDNovX76s710joG3btnB2dsYff/xh0J6QkIDmzZtLFBXVJA6ZiUipVGL8+PEIDw+Hm5sbmjZtijVr1sDd3R0DBw6UOjx6CqWnp2Px4sXw9/fH/PnzkZubq//O3t6ePUX/X4cOHeDv74/Q0FB89NFHcHV1xeeff47c3FxMnjxZ6vBkpX379mjatCkWL16M0NBQ1KlTB3v27MHvv/+Or7/+WurwZMPBwQHTpk3Dxo0b0bBhQ3Ts2BEHDx7E8ePHsW3bNqnDoxrAgkhkISEhKC8vR2hoKIqLi9GlSxds2bLFqHuaSIjDhw+juLgYJ0+eRJ8+fQy+69y5M/bs2SNRZPJiY2OD9evXY/Xq1XjrrbdQUFCArl27YteuXWjWrJnU4cmKvb09tmzZgjVr1iAkJAT5+flo164doqOj0bZtW6nDk5XZs2fDyckJERERSE9PR8uWLbF+/Xr06NFD6tCoBih0jw+6ExEREVkhziEiIiIiq8eCiIiIiKweCyIiIiKyeiyIiIiIyOqxICIiIiKrx4KIiAThA6lEZMlYEBGZwYQJE+Dj42OwtW/fHgEBAfjwww8NFlwU261bt+Dj44NvvvkGAHDq1Cn4+PhU60We33zzDT7++GNR4lm/fj18fHxQVlZW6T4+Pj4IDw+v1nknTJiAMWPG/K/h/e3rE9HTjQszEplJmzZtsGTJEv3nR6+WWLt2Lf7880/s2bMHCoWixuNo27Ytdu3aBR8fH8HHbNq0CZ07d67BqIiIpMWCiMhMVCoVunbtatDWo0cPlJSUICIiAhcvXkTHjh1rPA4XFxejOIiIrB2HzIgk1r59ewDQv2l8woQJWLBgAebOnYtOnTph1KhRAACNRoPVq1ejX79+aN++PYYOHYrvvvvO6Hz79u3D4MGD8eyzz+K1115DYmKiwfcVDZn98ccfmDZtGrp06QJ/f38EBwfjr7/+AvBw+Oj27duIiYkx6FVKTEzEzJkz0blzZ3Tq1AlvvPEGkpKSDK5VUFCAxYsX47nnnkPnzp3x4YcfQqPRVDtHt27dwoIFC9C7d2+0a9cOPXr0wIIFC3Dv3j2jfaOiotCrVy907NgRM2fOREpKisH36enpmDt3Lvz9/eHn54fx48fjwoUL1Y6JiCwLe4iIJJacnAwABm/Qjo2NRb9+/bB+/Xp9AREcHIxTp05h1qxZ8PX1xb///W8sXLgQRUVFGDduHABg7969WLJkCV5//XUsXLgQly5dwttvv13l9f/880+MHTsWPj4+WLZsGWxtbbFu3ToEBQUhJiYGu3btwltvvQUfHx/MmjULAJCSkoLRo0ejcePGWLZsGQBg8+bNGDNmDL7//ns0atQIOp0O06dPR1JSEt588024u7tjz549OHXqVLXyU1JSgokTJ8LV1RWLFi1C7dq18fvvv2Pjxo2wt7fH8uXL9fteunQJd+/exXvvvYfy8nKsXbsWkydPxo8//ohatWohJycHo0ePho2NDRYsWABXV1d8+eWXmDhxInbv3q0vTonI+rAgIjKjxycS5+Xl4cyZM9i0aRM6deqEdu3a6b/T6XT45JNPoFKpAABxcXH49ddfsXLlSrz88ssAgL59+0Kr1WLt2rV45ZVXUKtWLURGRiIgIEBfpPTt21df4FTm888/h0qlwo4dO+Ds7AwAaNmyJaZPn45Lly7B398fSqUSdevW1Q+1rV+/Hra2tvjiiy9Qp04dAMDzzz+Pf/zjH9i0aRM++ugjHD9+HL///jsiIyPxj3/8AwDQv39/DB06VF8ECpGcnIyGDRvi448/RsuWLQEAvXr1wuXLl3H69GmDfRUKBaKjo9G0aVMAQOvWrREYGIh9+/Zh3Lhx2L59O7Kzs3HgwAF4enoCAPr164eXX34Z4eHh2Lp1q+C4iMiysCAiMpPz588bFD3Aw7e09+zZE2FhYQYTqhs3bqwvhgDgxIkTAICAgACDouqFF17A119/jUuXLsHNzQ1ZWVn64uORl156qcqC6OzZs+jTp4++GAIeFhK//vprpcecPHkS/v7+UKlU+ngcHR3Rs2dPHD9+HABw+vRp2Nraon///vrjbG1tMXjwYGzcuLHScz/pmWeewd69e6HT6fDXX38hJSUF169fR1JSktHwW8eOHfXFEPBwAnmzZs1w4sQJjBs3DidPnkSbNm3QtGlTfdwKhQL9+/fH9u3bodFooFQqBcdGRJaDBRGRmfj6+iIsLAzAw3+Ea9WqhcaNGxsUIo+4ubkZfM7JyQEAdOvWrcJzZ2RkwM7u4R/nevXqGXzXsGHDKuPKyclB/fr1hf0iHjvmp59+MirwAMDe3h4AkJubC1dXV31cQuOpyI4dOxAVFYW7d+/Czc0N7du3h6OjI0pKSgz2ezJvAFC/fn3k5eXp405JSakw7kffu7u7Vzs+Inr6sSAiMhMnJyd06NDhbx3r4uICBwcHfPnllxV+37RpU/0/+llZWQbfPSqmqjp3RfscO3YM3t7eaNy4cYXH+Pv7Y9q0aZWet169esjLy0Npaam+SBISz5NiYmLw8ccfY/78+Rg5cqS+4HvzzTeNzvUoB4/LysrCs88+q4+7S5cueO+99yq8Vt26dasVGxFZDj5lRvQU8Pf3R0lJCUpLS9GhQwf9lpKSgrVr16K4uBienp5o0qQJYmNjDY79+eefqzx3165dcezYMYPelpSUFEybNk0/AdrGxvCviu7duyMxMRG+vr4G8ezcuRMHDhwAAPTs2RNarRaHDh0yOPbIkSPV+rWfO3cOTk5OmDZtmr4YKiwsxLlz56DVag32/f333w2KpAsXLuD27dvw9/fXx52cnIwWLVoYxB0bG4vt27cbFG5EZF1YEBE9BZ5//nl0794darUaO3bsQFxcHLZs2YIPPvgAWq1W34szf/58nDhxAnPnzsWvv/6KzZs3Y/369VWee/bs2cjPz8eUKVNw+PBhxMbGYvbs2WjVqhUGDRoEAHB1dUV8fDxOnDgBrVYLtVqNO3fuYMqUKfjxxx/x22+/ISQkBD/88APatm0L4GER169fPyxZsgTbtm3Dr7/+ipCQENy4caNav3Y/Pz8UFRUhLCwMcXFx+P777zF27FhkZ2ejuLjYaP/p06fjyJEj+Pbbb6FWq9GqVSsEBgYCAIKCgmBjY4OJEyfihx9+wPHjx/Hhhx8iOjoa3t7eZlkYk4jkiUNmRE8BGxsb/POf/0RERAS2bduG7OxsNGzYEGPGjIFardbvN3jwYNjY2GDDhg0IDg6Gp6cnPv30U0yfPr3Sc7dt2xZffvklPvvsMyxYsACOjo7o1asX5s+fDycnJwDAG2+8gSVLlmD27NmIiYlBmzZtsHv3bqxduxaLFi2CTqeDt7c31q5di8GDB+vPHRERgc8++wxbtmzB/fv30a9fP8yaNQufffaZ4F/7yy+/jL/++gvffvstvv76a7i7u6Nv376YMGECPvjgA/z555/w9fUF8PCJMS8vLyxatAilpaXo378/3nvvPTg4OAB4OH9p7969+Oyzz/Dxxx+jpKQEzZs3x5IlSzB27Nhq/Z4QkWVR6PjGRiIiIrJyHDIjIiIiq8eCiIiIiKweCyIiIiKyeiyIiIiIyOqxICIiIiKrx4KIiIiIrB4LIiIiIrJ6LIiIiIjI6v0/P5+CZhWTO4kAAAAASUVORK5CYII=\n", |
|
|
1294 |
"text/plain": [ |
|
|
1295 |
"<Figure size 720x504 with 2 Axes>" |
|
|
1296 |
] |
|
|
1297 |
}, |
|
|
1298 |
"metadata": {}, |
|
|
1299 |
"output_type": "display_data" |
|
|
1300 |
} |
|
|
1301 |
], |
|
|
1302 |
"source": [ |
|
|
1303 |
"conf_matrix = confusion_matrix(y_test, predictions)\n", |
|
|
1304 |
"df_cm = pd.DataFrame(conf_matrix, index = [i for i in \"012356\"], columns = [i for i in \"012356\"])\n", |
|
|
1305 |
"plt.figure(figsize = (10,7))\n", |
|
|
1306 |
"sn.set(font_scale=1.4)\n", |
|
|
1307 |
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16})\n", |
|
|
1308 |
"plt.ylabel('True label')\n", |
|
|
1309 |
"plt.xlabel('Predicted label')\n", |
|
|
1310 |
"plt.show()" |
|
|
1311 |
] |
|
|
1312 |
}, |
|
|
1313 |
{ |
|
|
1314 |
"cell_type": "markdown", |
|
|
1315 |
"id": "6dbde214", |
|
|
1316 |
"metadata": {}, |
|
|
1317 |
"source": [ |
|
|
1318 |
"### Machine Learning Method Summary" |
|
|
1319 |
] |
|
|
1320 |
}, |
|
|
1321 |
{ |
|
|
1322 |
"cell_type": "markdown", |
|
|
1323 |
"id": "03ab7ba0", |
|
|
1324 |
"metadata": {}, |
|
|
1325 |
"source": [ |
|
|
1326 |
"We trained Machine Learning models with featurized data.\n", |
|
|
1327 |
"\n", |
|
|
1328 |
"5-fold accuracy for the best model, Random Forest, is 83.57 %.\n", |
|
|
1329 |
"\n", |
|
|
1330 |
"After analyzing the results, we observed misclassification between class 4 and 5.\n", |
|
|
1331 |
"\n", |
|
|
1332 |
"5-fold result achieved after dropping class 4 datapoints is 96.66% again on Random Forest model." |
|
|
1333 |
] |
|
|
1334 |
}, |
|
|
1335 |
{ |
|
|
1336 |
"cell_type": "markdown", |
|
|
1337 |
"id": "e46809e6", |
|
|
1338 |
"metadata": {}, |
|
|
1339 |
"source": [ |
|
|
1340 |
"## 4. Deep Learning method and performace evaluation" |
|
|
1341 |
] |
|
|
1342 |
}, |
|
|
1343 |
{ |
|
|
1344 |
"cell_type": "markdown", |
|
|
1345 |
"id": "5174f26c", |
|
|
1346 |
"metadata": {}, |
|
|
1347 |
"source": [ |
|
|
1348 |
"To improve the classification accuracy, we will explore deep learning methods. As our data is 1 dimensional time series data, naturally, we will use 1D Convolutional Neural Network. Previously, we manualy extracted the features from the signal. In deep learning model, the feature extraction is performed by the model itself. We will pass in the processed signal data. As we have 16 different sensors, we will treat each sensor's output as one channel. We will stack these channels and pass them.\n", |
|
|
1349 |
"\n", |
|
|
1350 |
"The following figures show the overall structure of our 1D CNN model." |
|
|
1351 |
] |
|
|
1352 |
}, |
|
|
1353 |
{ |
|
|
1354 |
"cell_type": "markdown", |
|
|
1355 |
"id": "01c2b1ab", |
|
|
1356 |
"metadata": {}, |
|
|
1357 |
"source": [ |
|
|
1358 |
"" |
|
|
1359 |
] |
|
|
1360 |
}, |
|
|
1361 |
{ |
|
|
1362 |
"cell_type": "markdown", |
|
|
1363 |
"id": "0717497d", |
|
|
1364 |
"metadata": {}, |
|
|
1365 |
"source": [ |
|
|
1366 |
"" |
|
|
1367 |
] |
|
|
1368 |
}, |
|
|
1369 |
{ |
|
|
1370 |
"cell_type": "markdown", |
|
|
1371 |
"id": "38c0adc7", |
|
|
1372 |
"metadata": {}, |
|
|
1373 |
"source": [ |
|
|
1374 |
"" |
|
|
1375 |
] |
|
|
1376 |
}, |
|
|
1377 |
{ |
|
|
1378 |
"cell_type": "markdown", |
|
|
1379 |
"id": "db519703", |
|
|
1380 |
"metadata": {}, |
|
|
1381 |
"source": [ |
|
|
1382 |
"Importing deep learning related libraries.\n", |
|
|
1383 |
"\n", |
|
|
1384 |
"For the purpose of convenience and notebooks length, separate .py files are created for models, training and evaluation. Only the necessary functions are imported." |
|
|
1385 |
] |
|
|
1386 |
}, |
|
|
1387 |
{ |
|
|
1388 |
"cell_type": "code", |
|
|
1389 |
"execution_count": 1, |
|
|
1390 |
"id": "bfc59068", |
|
|
1391 |
"metadata": {}, |
|
|
1392 |
"outputs": [], |
|
|
1393 |
"source": [ |
|
|
1394 |
"# Deep learning libraries\n", |
|
|
1395 |
"import torch\n", |
|
|
1396 |
"import torch.nn as nn\n", |
|
|
1397 |
"import torch.utils.data as data\n", |
|
|
1398 |
"import torch.optim as optim\n", |
|
|
1399 |
"import torch.optim.lr_scheduler as lr_scheduler\n", |
|
|
1400 |
"\n", |
|
|
1401 |
"# Python files\n", |
|
|
1402 |
"from model import CNN1D, CNN1D_F\n", |
|
|
1403 |
"from dataset import Dataset\n", |
|
|
1404 |
"from train import train, evaluate" |
|
|
1405 |
] |
|
|
1406 |
}, |
|
|
1407 |
{ |
|
|
1408 |
"cell_type": "markdown", |
|
|
1409 |
"id": "cdbeb091", |
|
|
1410 |
"metadata": {}, |
|
|
1411 |
"source": [ |
|
|
1412 |
"Checking if gpu is available" |
|
|
1413 |
] |
|
|
1414 |
}, |
|
|
1415 |
{ |
|
|
1416 |
"cell_type": "code", |
|
|
1417 |
"execution_count": 3, |
|
|
1418 |
"id": "6170ebdc", |
|
|
1419 |
"metadata": {}, |
|
|
1420 |
"outputs": [], |
|
|
1421 |
"source": [ |
|
|
1422 |
"device = 'cuda' if torch.cuda.is_available() else 'cpu'" |
|
|
1423 |
] |
|
|
1424 |
}, |
|
|
1425 |
{ |
|
|
1426 |
"cell_type": "markdown", |
|
|
1427 |
"id": "0c82b342", |
|
|
1428 |
"metadata": {}, |
|
|
1429 |
"source": [ |
|
|
1430 |
"Loading the data" |
|
|
1431 |
] |
|
|
1432 |
}, |
|
|
1433 |
{ |
|
|
1434 |
"cell_type": "code", |
|
|
1435 |
"execution_count": 4, |
|
|
1436 |
"id": "b894eecc", |
|
|
1437 |
"metadata": {}, |
|
|
1438 |
"outputs": [], |
|
|
1439 |
"source": [ |
|
|
1440 |
"raw_data = np.load('data.npy', allow_pickle = True)\n", |
|
|
1441 |
"labels = np.load('labels.npy', allow_pickle = True)" |
|
|
1442 |
] |
|
|
1443 |
}, |
|
|
1444 |
{ |
|
|
1445 |
"cell_type": "code", |
|
|
1446 |
"execution_count": 6, |
|
|
1447 |
"id": "0bf1c216", |
|
|
1448 |
"metadata": {}, |
|
|
1449 |
"outputs": [ |
|
|
1450 |
{ |
|
|
1451 |
"name": "stdout", |
|
|
1452 |
"output_type": "stream", |
|
|
1453 |
"text": [ |
|
|
1454 |
"Data shape: (140, 16, 40000)\n", |
|
|
1455 |
"Number of data points: 140\n", |
|
|
1456 |
"Number of channels: 16\n", |
|
|
1457 |
"Signal length: 40000\n" |
|
|
1458 |
] |
|
|
1459 |
} |
|
|
1460 |
], |
|
|
1461 |
"source": [ |
|
|
1462 |
"print('Data shape: ', raw_data.shape)\n", |
|
|
1463 |
"print('Number of data points: ', raw_data.shape[0])\n", |
|
|
1464 |
"print('Number of channels: ', raw_data.shape[1])\n", |
|
|
1465 |
"print('Signal length: ', raw_data.shape[2])" |
|
|
1466 |
] |
|
|
1467 |
}, |
|
|
1468 |
{ |
|
|
1469 |
"cell_type": "markdown", |
|
|
1470 |
"id": "0347421b", |
|
|
1471 |
"metadata": {}, |
|
|
1472 |
"source": [ |
|
|
1473 |
"splitting the data in trainset and valset with 4:1 ratio" |
|
|
1474 |
] |
|
|
1475 |
}, |
|
|
1476 |
{ |
|
|
1477 |
"cell_type": "code", |
|
|
1478 |
"execution_count": 17, |
|
|
1479 |
"id": "285f75a4", |
|
|
1480 |
"metadata": {}, |
|
|
1481 |
"outputs": [], |
|
|
1482 |
"source": [ |
|
|
1483 |
"train_x = []\n", |
|
|
1484 |
"train_y = []\n", |
|
|
1485 |
"val_x = []\n", |
|
|
1486 |
"val_y = []\n", |
|
|
1487 |
"for i in range(7):\n", |
|
|
1488 |
" current_class_data = raw_data[i*20: i*20 + 20]\n", |
|
|
1489 |
" current_class_labels = labels[i*20: i*160 + 160]\n", |
|
|
1490 |
" idx = np.random.permutation(20)\n", |
|
|
1491 |
" current_class_data = current_class_data[idx]\n", |
|
|
1492 |
" current_class_labels = current_class_labels[idx]\n", |
|
|
1493 |
" train_x.append(current_class_data[0: 16])\n", |
|
|
1494 |
" val_x.append(current_class_data[16: ])\n", |
|
|
1495 |
" train_y.append(current_class_labels[0: 16])\n", |
|
|
1496 |
" val_y.append(current_class_labels[16: ])\n", |
|
|
1497 |
"train_x = np.array(train_x).reshape(-1, 16, 40000)\n", |
|
|
1498 |
"val_x = np.array(val_x).reshape(-1, 16, 40000)\n", |
|
|
1499 |
"train_y = np.array(train_y).reshape(-1)\n", |
|
|
1500 |
"val_y = np.array(val_y).reshape(-1)" |
|
|
1501 |
] |
|
|
1502 |
}, |
|
|
1503 |
{ |
|
|
1504 |
"cell_type": "markdown", |
|
|
1505 |
"id": "6f4c3b9a", |
|
|
1506 |
"metadata": {}, |
|
|
1507 |
"source": [ |
|
|
1508 |
"Creating dataloader with a batch size of 32" |
|
|
1509 |
] |
|
|
1510 |
}, |
|
|
1511 |
{ |
|
|
1512 |
"cell_type": "code", |
|
|
1513 |
"execution_count": 18, |
|
|
1514 |
"id": "f1577157", |
|
|
1515 |
"metadata": {}, |
|
|
1516 |
"outputs": [], |
|
|
1517 |
"source": [ |
|
|
1518 |
"trainset = Dataset(train_x, train_y)\n", |
|
|
1519 |
"valset = Dataset(val_x, val_y)\n", |
|
|
1520 |
"batch_size = 32\n", |
|
|
1521 |
"train_loader = data.DataLoader(dataset = trainset, batch_size = batch_size, shuffle = True)\n", |
|
|
1522 |
"val_loader = data.DataLoader(dataset = valset, batch_size = batch_size, shuffle = False)" |
|
|
1523 |
] |
|
|
1524 |
}, |
|
|
1525 |
{ |
|
|
1526 |
"cell_type": "markdown", |
|
|
1527 |
"id": "4b7eff43", |
|
|
1528 |
"metadata": {}, |
|
|
1529 |
"source": [ |
|
|
1530 |
"Instantiating a model with 7 class classification.\n", |
|
|
1531 |
"\n", |
|
|
1532 |
"As our problem is of classification nature, we will use Cross Entropy loss.\n", |
|
|
1533 |
"\n", |
|
|
1534 |
"For optimizing model's parameters, Adam optimizer will be used.\n", |
|
|
1535 |
"\n", |
|
|
1536 |
"To improve the convergence rate, we will use a scheduler with gamma equal to 0.5\n", |
|
|
1537 |
"\n", |
|
|
1538 |
"We will train the model for 25 epochs" |
|
|
1539 |
] |
|
|
1540 |
}, |
|
|
1541 |
{ |
|
|
1542 |
"cell_type": "code", |
|
|
1543 |
"execution_count": 19, |
|
|
1544 |
"id": "e0ce2e0f", |
|
|
1545 |
"metadata": {}, |
|
|
1546 |
"outputs": [], |
|
|
1547 |
"source": [ |
|
|
1548 |
"model = CNN1D_F(7).to(device).double()\n", |
|
|
1549 |
"criterion = nn.CrossEntropyLoss()\n", |
|
|
1550 |
"learning_rate = 0.0001\n", |
|
|
1551 |
"optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n", |
|
|
1552 |
"scheduler = lr_scheduler.MultiStepLR(optimizer, milestones = [5, 10, 15], gamma = 0.5)" |
|
|
1553 |
] |
|
|
1554 |
}, |
|
|
1555 |
{ |
|
|
1556 |
"cell_type": "code", |
|
|
1557 |
"execution_count": 20, |
|
|
1558 |
"id": "8b1095bc", |
|
|
1559 |
"metadata": { |
|
|
1560 |
"scrolled": true |
|
|
1561 |
}, |
|
|
1562 |
"outputs": [ |
|
|
1563 |
{ |
|
|
1564 |
"name": "stdout", |
|
|
1565 |
"output_type": "stream", |
|
|
1566 |
"text": [ |
|
|
1567 |
"Saving model parameters...\n", |
|
|
1568 |
"Validation accuracy: 14.285714285714285\n", |
|
|
1569 |
"EPOCH: 0\n", |
|
|
1570 |
"TRAIN_LOSS: 1.9638838130189864\n", |
|
|
1571 |
"TRAIN_ACC: 14.285714285714285\n", |
|
|
1572 |
"VAL_LOSS: 1.9461858923557258\n", |
|
|
1573 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1574 |
"+++++++++++++++++++++++++\n", |
|
|
1575 |
"EPOCH: 1\n", |
|
|
1576 |
"TRAIN_LOSS: 1.9012948424643663\n", |
|
|
1577 |
"TRAIN_ACC: 17.857142857142858\n", |
|
|
1578 |
"VAL_LOSS: 1.946213146105389\n", |
|
|
1579 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1580 |
"+++++++++++++++++++++++++\n", |
|
|
1581 |
"EPOCH: 2\n", |
|
|
1582 |
"TRAIN_LOSS: 1.8480591340221642\n", |
|
|
1583 |
"TRAIN_ACC: 38.392857142857146\n", |
|
|
1584 |
"VAL_LOSS: 1.946277153916899\n", |
|
|
1585 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1586 |
"+++++++++++++++++++++++++\n", |
|
|
1587 |
"EPOCH: 3\n", |
|
|
1588 |
"TRAIN_LOSS: 1.816218939608643\n", |
|
|
1589 |
"TRAIN_ACC: 51.78571428571429\n", |
|
|
1590 |
"VAL_LOSS: 1.9464363653173191\n", |
|
|
1591 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1592 |
"+++++++++++++++++++++++++\n", |
|
|
1593 |
"EPOCH: 4\n", |
|
|
1594 |
"TRAIN_LOSS: 1.7834386894925625\n", |
|
|
1595 |
"TRAIN_ACC: 54.46428571428571\n", |
|
|
1596 |
"VAL_LOSS: 1.9463968166306027\n", |
|
|
1597 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1598 |
"+++++++++++++++++++++++++\n", |
|
|
1599 |
"EPOCH: 5\n", |
|
|
1600 |
"TRAIN_LOSS: 1.7413742755506512\n", |
|
|
1601 |
"TRAIN_ACC: 53.57142857142857\n", |
|
|
1602 |
"VAL_LOSS: 1.9474193770316361\n", |
|
|
1603 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1604 |
"+++++++++++++++++++++++++\n", |
|
|
1605 |
"EPOCH: 6\n", |
|
|
1606 |
"TRAIN_LOSS: 1.714461880681578\n", |
|
|
1607 |
"TRAIN_ACC: 64.28571428571429\n", |
|
|
1608 |
"VAL_LOSS: 1.9489881307114718\n", |
|
|
1609 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1610 |
"+++++++++++++++++++++++++\n", |
|
|
1611 |
"EPOCH: 7\n", |
|
|
1612 |
"TRAIN_LOSS: 1.6654014298016042\n", |
|
|
1613 |
"TRAIN_ACC: 68.75\n", |
|
|
1614 |
"VAL_LOSS: 1.9488665310024686\n", |
|
|
1615 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1616 |
"+++++++++++++++++++++++++\n", |
|
|
1617 |
"EPOCH: 8\n", |
|
|
1618 |
"TRAIN_LOSS: 1.6342273625387724\n", |
|
|
1619 |
"TRAIN_ACC: 73.21428571428571\n", |
|
|
1620 |
"VAL_LOSS: 1.9537031916043504\n", |
|
|
1621 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1622 |
"+++++++++++++++++++++++++\n", |
|
|
1623 |
"EPOCH: 9\n", |
|
|
1624 |
"TRAIN_LOSS: 1.6034646741946854\n", |
|
|
1625 |
"TRAIN_ACC: 75.0\n", |
|
|
1626 |
"VAL_LOSS: 1.9563684934123333\n", |
|
|
1627 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1628 |
"+++++++++++++++++++++++++\n", |
|
|
1629 |
"EPOCH: 10\n", |
|
|
1630 |
"TRAIN_LOSS: 1.5741702901633445\n", |
|
|
1631 |
"TRAIN_ACC: 75.89285714285714\n", |
|
|
1632 |
"VAL_LOSS: 1.9467231489491987\n", |
|
|
1633 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1634 |
"+++++++++++++++++++++++++\n", |
|
|
1635 |
"Saving model parameters...\n", |
|
|
1636 |
"Validation accuracy: 21.428571428571427\n", |
|
|
1637 |
"EPOCH: 11\n", |
|
|
1638 |
"TRAIN_LOSS: 1.5573194831615687\n", |
|
|
1639 |
"TRAIN_ACC: 80.35714285714286\n", |
|
|
1640 |
"VAL_LOSS: 1.9368822669408918\n", |
|
|
1641 |
"VAL_ACC: 21.428571428571427\n", |
|
|
1642 |
"+++++++++++++++++++++++++\n", |
|
|
1643 |
"Saving model parameters...\n", |
|
|
1644 |
"Validation accuracy: 32.142857142857146\n", |
|
|
1645 |
"EPOCH: 12\n", |
|
|
1646 |
"TRAIN_LOSS: 1.5446853806084462\n", |
|
|
1647 |
"TRAIN_ACC: 76.78571428571429\n", |
|
|
1648 |
"VAL_LOSS: 1.9251274830495702\n", |
|
|
1649 |
"VAL_ACC: 32.142857142857146\n", |
|
|
1650 |
"+++++++++++++++++++++++++\n", |
|
|
1651 |
"EPOCH: 13\n", |
|
|
1652 |
"TRAIN_LOSS: 1.520464907970032\n", |
|
|
1653 |
"TRAIN_ACC: 82.14285714285714\n", |
|
|
1654 |
"VAL_LOSS: 1.920526528618117\n", |
|
|
1655 |
"VAL_ACC: 25.0\n", |
|
|
1656 |
"+++++++++++++++++++++++++\n", |
|
|
1657 |
"EPOCH: 14\n", |
|
|
1658 |
"TRAIN_LOSS: 1.4879367191288133\n", |
|
|
1659 |
"TRAIN_ACC: 83.92857142857143\n", |
|
|
1660 |
"VAL_LOSS: 1.9171170756918172\n", |
|
|
1661 |
"VAL_ACC: 21.428571428571427\n", |
|
|
1662 |
"+++++++++++++++++++++++++\n", |
|
|
1663 |
"EPOCH: 15\n", |
|
|
1664 |
"TRAIN_LOSS: 1.4732932088960538\n", |
|
|
1665 |
"TRAIN_ACC: 86.60714285714286\n", |
|
|
1666 |
"VAL_LOSS: 1.9115040689914469\n", |
|
|
1667 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1668 |
"+++++++++++++++++++++++++\n", |
|
|
1669 |
"EPOCH: 16\n", |
|
|
1670 |
"TRAIN_LOSS: 1.4289889289194222\n", |
|
|
1671 |
"TRAIN_ACC: 91.96428571428571\n", |
|
|
1672 |
"VAL_LOSS: 1.9087389405730222\n", |
|
|
1673 |
"VAL_ACC: 17.857142857142858\n", |
|
|
1674 |
"+++++++++++++++++++++++++\n", |
|
|
1675 |
"EPOCH: 17\n", |
|
|
1676 |
"TRAIN_LOSS: 1.4547147904367927\n", |
|
|
1677 |
"TRAIN_ACC: 88.39285714285714\n", |
|
|
1678 |
"VAL_LOSS: 1.9055481172784563\n", |
|
|
1679 |
"VAL_ACC: 21.428571428571427\n", |
|
|
1680 |
"+++++++++++++++++++++++++\n", |
|
|
1681 |
"EPOCH: 18\n", |
|
|
1682 |
"TRAIN_LOSS: 1.4493036016182408\n", |
|
|
1683 |
"TRAIN_ACC: 89.28571428571429\n", |
|
|
1684 |
"VAL_LOSS: 1.9046215218720077\n", |
|
|
1685 |
"VAL_ACC: 21.428571428571427\n", |
|
|
1686 |
"+++++++++++++++++++++++++\n", |
|
|
1687 |
"EPOCH: 19\n", |
|
|
1688 |
"TRAIN_LOSS: 1.4180313331230723\n", |
|
|
1689 |
"TRAIN_ACC: 93.75\n", |
|
|
1690 |
"VAL_LOSS: 1.902340319356514\n", |
|
|
1691 |
"VAL_ACC: 17.857142857142858\n", |
|
|
1692 |
"+++++++++++++++++++++++++\n", |
|
|
1693 |
"EPOCH: 20\n", |
|
|
1694 |
"TRAIN_LOSS: 1.4244290741718286\n", |
|
|
1695 |
"TRAIN_ACC: 91.07142857142857\n", |
|
|
1696 |
"VAL_LOSS: 1.901688475369132\n", |
|
|
1697 |
"VAL_ACC: 17.857142857142858\n", |
|
|
1698 |
"+++++++++++++++++++++++++\n", |
|
|
1699 |
"EPOCH: 21\n", |
|
|
1700 |
"TRAIN_LOSS: 1.4034899391688886\n", |
|
|
1701 |
"TRAIN_ACC: 91.96428571428571\n", |
|
|
1702 |
"VAL_LOSS: 1.9001553041290786\n", |
|
|
1703 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1704 |
"+++++++++++++++++++++++++\n", |
|
|
1705 |
"EPOCH: 22\n", |
|
|
1706 |
"TRAIN_LOSS: 1.3696750826089892\n", |
|
|
1707 |
"TRAIN_ACC: 91.07142857142857\n", |
|
|
1708 |
"VAL_LOSS: 1.8998651141300857\n", |
|
|
1709 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1710 |
"+++++++++++++++++++++++++\n", |
|
|
1711 |
"EPOCH: 23\n", |
|
|
1712 |
"TRAIN_LOSS: 1.3989220436297192\n", |
|
|
1713 |
"TRAIN_ACC: 87.5\n", |
|
|
1714 |
"VAL_LOSS: 1.9013862454583896\n", |
|
|
1715 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1716 |
"+++++++++++++++++++++++++\n", |
|
|
1717 |
"EPOCH: 24\n", |
|
|
1718 |
"TRAIN_LOSS: 1.3392931718288543\n", |
|
|
1719 |
"TRAIN_ACC: 93.75\n", |
|
|
1720 |
"VAL_LOSS: 1.9015163990538544\n", |
|
|
1721 |
"VAL_ACC: 14.285714285714285\n", |
|
|
1722 |
"+++++++++++++++++++++++++\n" |
|
|
1723 |
] |
|
|
1724 |
} |
|
|
1725 |
], |
|
|
1726 |
"source": [ |
|
|
1727 |
"num_epochs = 25\n", |
|
|
1728 |
"loss_train, loss_val, acc_train, acc_val = train(model, num_epochs, criterion, \\\n", |
|
|
1729 |
" train_loader, val_loader, optimizer, scheduler, True)" |
|
|
1730 |
] |
|
|
1731 |
}, |
|
|
1732 |
{ |
|
|
1733 |
"cell_type": "markdown", |
|
|
1734 |
"id": "55466ed7", |
|
|
1735 |
"metadata": {}, |
|
|
1736 |
"source": [ |
|
|
1737 |
"Let us check the performance on validation set with the best model and save their outputs for generating the confusion matrix" |
|
|
1738 |
] |
|
|
1739 |
}, |
|
|
1740 |
{ |
|
|
1741 |
"cell_type": "code", |
|
|
1742 |
"execution_count": 21, |
|
|
1743 |
"id": "ecffe0a7", |
|
|
1744 |
"metadata": {}, |
|
|
1745 |
"outputs": [ |
|
|
1746 |
{ |
|
|
1747 |
"name": "stdout", |
|
|
1748 |
"output_type": "stream", |
|
|
1749 |
"text": [ |
|
|
1750 |
"Accuracy: 0.32142857142857145\n" |
|
|
1751 |
] |
|
|
1752 |
} |
|
|
1753 |
], |
|
|
1754 |
"source": [ |
|
|
1755 |
"val_loader = data.DataLoader(dataset = valset, batch_size = 1, shuffle = False)\n", |
|
|
1756 |
"\n", |
|
|
1757 |
"dir_name = \"results/\"\n", |
|
|
1758 |
"test = os.listdir(dir_name)\n", |
|
|
1759 |
"for item in test:\n", |
|
|
1760 |
" if item.endswith(\".pth\"):\n", |
|
|
1761 |
" PATH = os.path.join(dir_name, item)\n", |
|
|
1762 |
"\n", |
|
|
1763 |
"weights = torch.load(PATH)\n", |
|
|
1764 |
"model.load_state_dict(weights)\n", |
|
|
1765 |
"\n", |
|
|
1766 |
"observations = evaluate(model, val_loader)\n", |
|
|
1767 |
"predictions, y_test = observations[:, 0], observations[:, 1]\n", |
|
|
1768 |
"accuracy = accuracy_score(predictions, y_test)\n", |
|
|
1769 |
"print('Accuracy: ', accuracy)" |
|
|
1770 |
] |
|
|
1771 |
}, |
|
|
1772 |
{ |
|
|
1773 |
"cell_type": "markdown", |
|
|
1774 |
"id": "fb3ad26a", |
|
|
1775 |
"metadata": {}, |
|
|
1776 |
"source": [ |
|
|
1777 |
"Training stats and graphs" |
|
|
1778 |
] |
|
|
1779 |
}, |
|
|
1780 |
{ |
|
|
1781 |
"cell_type": "code", |
|
|
1782 |
"execution_count": 48, |
|
|
1783 |
"id": "4fb81510", |
|
|
1784 |
"metadata": {}, |
|
|
1785 |
"outputs": [ |
|
|
1786 |
{ |
|
|
1787 |
"data": { |
|
|
1788 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAH9CAYAAAAUOXW1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACC/ElEQVR4nO3dd3gU5drH8e9udjcdUkgINYHQSYAAIdKRKk0EBFFEQTmAiBVED8fCEfQ9FkQREREQDxakg3QBaSotdEgILQUS0nvb7O68f0SiObQNbHY3yf25Lq/LnZmdufNkyG/KM8+oFEVREEIIIUSVobZ1AUIIIYSwLgl/IYQQooqR8BdCCCGqGAl/IYQQooqR8BdCCCGqGAl/IYQQooqR8BfCCsaMGUPTpk0ZOnTobZf5z3/+Q9OmTRkzZoxFttm0aVPmzp1bpu+MGTOGxx9/3CLbF0LYLwl/IaxErVZz7tw5oqOjb5qnKApbtmyxflFCiCpJwl8IK2nevDkuLi5s3br1pnlHjhwhLS2NRo0a2aAyIURVI+EvhJU4OjrSs2fPW4b/pk2b6Nq1K9WqVSs13Wg08sMPPzB48GBat25N9+7d+eCDDygoKCi13O7duxk2bBitWrVi0KBBHDly5KZt6PV6Pv74Y3r06EFQUBADBw5k3bp1Zf45IiMjmTJlCg888AAtW7aka9euzJo1i/z8/JJlFEVh+fLlDBw4kFatWtGrVy+++OILjEZjyTKnT59m/PjxtGvXjrCwMF544QXi4uIAuHr1Kk2bNmXVqlWltj137lyaNm1a8vmNN97g6aefZvbs2bRr145evXpRWFhIWloa//73v3nwwQcJCgqiQ4cOPP/88yXrv+HAgQOMHj2akJAQOnfuzD//+U/S0tIwGAx06dKFl1566aaff8SIEUyZMqXM7SaEPdHYugAhqpIBAwYwefJkLl++TMOGDQEwGAxs376dd955h+XLl5da/u2332bdunWMGzeODh06EBERwYIFC4iIiOCbb75BpVKxd+9eJk+eTO/evXnhhReIiYm5ZTi98MILHDp0iOeee45mzZqxe/du3njjDfLy8hg9erRZ9SclJTF69GhatmzJ7NmzcXR0ZO/evSxfvhxvb28mT54MFIf0okWLePLJJ5k+fTrnz59n3rx55OfnM23aNCIjI3niiSdo2rQps2bNwsHBgc8++4xx48bx888/l6lNw8PDKSoq4tNPPyU7OxudTseTTz5JamoqL730EjVr1iQyMpJ58+bx1ltvsWzZMgD27dvHxIkT6dy5Mx9++CG5ubnMmTOHy5cv89NPPzF06FCWLVtGVlZWyUHZpUuXOHXqFF9++WWZahTC3kj4C2FFN87ut27dyvPPPw8Un33q9XoefPDBUuF/8eJFVq9ezQsvvFAS5t27d6dmzZq88cYb7N69m169erFgwQKaNm3K559/jkqlAsDT05Pp06eXrOv3339nz549fPDBBzzyyCMl6zKZTHz66acMHz4cJyenu9Z//vx5GjduzPz580sCsWvXrhw6dIjDhw8zefJksrOzWbp0KaNGjeLNN98s2VZubi4HDx7EZDKxcOFC3Nzc+Pbbb3F1dQWgYcOG/OMf/+DUqVPUqVPH7DYtKipi1qxZBAYGApCYmIhOp+O9996jY8eOAHTs2JGrV6/y448/lnzv888/JzAwkEWLFqFWq0va7d133+XKlSs8+uijfP3112zZsoVRo0YBsGbNGnx8fOjWrZvZ9Qlhj+SyvxBWpNPp6N27N9u2bSuZtmnTJnr16oWzs3OpZQ8fPgzA4MGDS00fPHgwDg4OHD58mIKCAk6ePEnv3r1Lgh+KrzDcCDSAP/74A4CePXtiMBhK/uvduzdZWVmcOnXKrPq7du3KihUrcHV15cqVK+zZs4eFCxeSlpaGXq8H4MSJExQVFdGvX79S333llVf46aefUKvVHD16lK5du5YEP0Djxo3Zs2cPYWFhZtVyg1arpUGDBiWfa9asyffff0/Hjh25fv06Bw8e5Pvvv+f48eMYjUaMRiMFBQWcPn2aPn36lGqn7t27s2vXLho0aIC/vz+hoaGsX78eKL4Fs3HjRh5++GE0GjlvEhWb7MFCWNmAAQNYu3Ytly5dok6dOuzatYtPP/30puUyMzMBqFGjRqnpGo0GT09PsrKyyMzMRFEUvLy8Si2j1WpLTUtPTwcgNDT0ljUlJiaaVbvJZOKzzz7ju+++Iycnh1q1atGqVSscHR258YLQG9v637r/Lj09HW9vb7O2eTdeXl6lAhyKD6g++eQTrl27hoeHBy1atCi5sqEoSkm73alGgEcffZTp06cTExPD5cuXSU5OZvjw4RapWwhbkvAXwso6duyIp6cnW7duJTAwEJ1OR6dOnW5arnr16gCkpKSUOkMuKioiPT0dT09PPD09UavVJCcnl/quyWQqOXgAcHd3x8nJie++++6WNdWtW9es2hctWsTixYuZPXs2vXv3xt3dHSgOyRtu3A5IS0sr9d2kpCQuXbpESEgI7u7uJQcJf7d//34CAwNLrmL8vYMgQG5u7l1rPHr0KK+99hpjxozh2WefpWbNmgB8+OGHhIeHA+Dm5oZKpbqpRqPRyP79+wkODsbb25t+/foxe/ZstmzZwuXLlwkJCSm5vSBERSaX/YWwMo1GQ9++fdm+fTtbt27loYceQqvV3rRchw4dAG7qALd582aMRiPt2rVDp9PRvn17tm3bVioo9+7dS1FRUcnnsLAwCgoKKCoqIjg4uOS/mJgYPv3001I99e8kPDychg0bMnTo0JLgv379OlFRUSVn/q1atUKr1fLLL7+U+u7333/Pc889h6IotG/fnv3795d6aiEmJobx48dz6NAh3NzcAEhISCiZryhKya2QOzl+/Dgmk4nnnnuuJPgNBgO//fYbUHxg5OrqSvPmzdm5c2dJ3QCHDh1i4sSJXLp0CQAnJycGDRrE1q1b2bdvH8OGDTOrnYSwd3LmL4QNDBw4kJ9++okrV67wzTff3HKZRo0aMXToUBYsWEBBQQEdOnQgMjKSBQsWEBoaSo8ePYDie+lPPfUUEyZM4IknniAxMZH58+eXOqDo1q0bHTp0YMqUKUycOJHGjRtz7tw55s+fT0hICLVr1zar7tatW7N//34WLFhASEgIMTExLFq0CL1eT15eHlB8Gf6pp57im2++QavV0qlTJyIiIliyZAkTJ07E2dmZyZMn89hjj/HMM88wduxYDAYDX3zxBY0aNaJfv364uLjQrl07vv/+e+rVq4ePjw+rV6++6QrHrbRq1QqAWbNmMXz4cDIzM/nhhx84f/48APn5+eh0Ol588UWee+45nn/+eR599FEyMjL47LPPeOCBB2jfvn3J+kaMGMEPP/yAs7MzAwYMMKudhLB3KuXvh71CiHIxZswYDAZDSW9zk8lE9+7dUavV7Nmzp+Qy9+OPP45Goynp9W80Glm0aBFr1qzh+vXr+Pr6MmDAAKZMmVKqd/6hQ4eYO3cu586do2bNmrz66qvMnj2bRx99lFdeeQUoDr158+axdetWUlJS8PX1pV+/fkyZMqXktsL/1vm/9Ho9//nPf9ixYwfZ2dnUqlWLAQMGoNFoWLBgAfv378fT0xNFUVi2bBk//vgj8fHx1KlTh8cff5ynn3665Gc9efIkn3zyCSdPnsTZ2ZnOnTvz2muvlZytx8XFMWvWLA4fPlxyBt6kSRPeeuutkiB/4403+P3339m3b1+pOr///nu++eYbEhMTqVGjBh06dKBPnz48//zzLFiwgF69egHFV0i++OILIiIi8PDwoHfv3rzyyis3jbfQrVs3OnbsyAcffHCPe4AQ9kXCXwgh7iAyMpIhQ4bwww8/0K5dO1uXI4RFyGV/IYS4hRtjF2zcuJGQkBAJflGpSIc/IYS4haysLJYuXYq7uzsfffSRrcsRwqLksr8QQghRxciZvxBCCFHFSPgLIYQQVUyl7fCXnp6LyWSZOxre3m6kpuZYZF2imLSpZUl7Wp60qWVJe1rejTZVq1V4erre/Qt/U2nD32RSLBb+N9YnLEva1LKkPS1P2tSypD0t717bVC77CyGEEFWMhL8QQghRxUj4CyGEEFWMhL8QQghRxUj4CyGEEFVMpe3tfyf5+bnk5GRgNBrMWj4pSY3JZCrnqqoWaVPLulV7OjhocHPzwNm5bI8ACSEqvyoX/vn5uWRnp+Ph4YNWqyt5veidaDRqDAYJKkuSNrWs/21PRVEoKtKTkZEMIAcAQohSqtxl/5ycDDw8fNDpHM0KfiEqIpVKhU7niIeHDzk5GbYuRwhhZ6pc+BuNBrRana3LEMIqtFqd2be3hBBVR5ULf0DO+EWVIfu6EOJWqmT4CyGEEFWZhL8QQghRxVS53v6VxXvvzWTr1k13XGbVqo3UqlX7ntZ99WocX365xKzlp0yZgK9vTd5+e1aZt1UW+fn5DBnyEGq1inXrtuLs7Fyu2xNCiMpKwr+CeumlaUyaNKXk85AhDzFlysv06fNQyTQPD897XrfJZDR7+fff/wi12uGetlUWv/66E1dXV3Jzc9m5czuDBz9S7tsUQojKSMK/gnJzc8PNza3UNFdXN7y9a1hk3WVRrVr1+96mOTZt2kBoaBgFBQWsW7dawl8IIe6R3POvxI4dO0qXLu354YflDBzYi6eeegyDwcDJk8d58cVJ9O3bnQcf7Mjo0Y+WuoXw3nszee65Z0ut448/fmPMmJH06tWZceOeYP/+PSXLT5kygXfffQuALVt+5tFHB7N16yYee+wRevfuwqRJz3Dq1ImS5QsKCvjgg/cZOLAXfft25z//mcW///0m770387Y/S1xcLKdOnaB9+zB69uxNVFQk586duWm5NWtWMnr0o/Ts2ZnHHx/Gzz+vL5mXn5/PvHlzeOSR/iV1nTx5otTPefVqXMnyV6/G0aVLe44dO1rSLjNmvMarr75A377dWbLkK0wmE8uXL+Pxx4fx4IMd6du3O6++OoW4uFiztjtu3BPMmvV2qZ/h5MkTdO0aSkJC/G3bQwgh7oec+f/pt9MJHDiVcMt5KhUoSvltu0urWnQOrlVu69+7dzdffrmUgoJ80tPTePXVKQwdOoLp0/9FUVERP/zwXz74YDahoQ9Qo8atrxwsWPAZL7/8Gh4enixc+DmzZr3D+vVbcHG5eeS4lJRk1q9fw1tvzUKj0fDxx//H7NnvsGLFOtRqNbNnv8P58xHMnPke3t41+OabxezZs4uHHhp4259h06YN6HSOdOnSFQcHDS4urqxfv4YWLYJKlvnhh+UsWbKQF1+cSvv2HQgPP8LHH/8f1at70K1bD955559cuXKF119/k3r16vPTTz8wbdoLfP/9arPbct++X/nHP57jlVdeQ6vVsmrVj3z//be8+ea/adSoMdeuXeXDD9/j888/4cMPPwW443YHDRrCwoXzycvLw8XFBYCtW3+mbdv299RfQwhLu56Wx6lLqfRsWweNg5wvWsLBs9cJqFUNPy8Xm9Ugv8kq4PHHn6R+fX+aNGmGXq/nmWcmMHnyi9StW48GDRry1FPPYDAYiI2Nvu06xo+fRLt2oQQGNuLZZyeRl5fL5cuXbrmswWDg1VdfJygomGbNmvPkk08TH3+NtLQ04uOvsWfPLqZNe53Q0Ado2LARb7757zverjAajWzbtpmOHTvh4uKKo6MjXbt2Z9euHWRlZQHFw9n+9NP3DB8+kiFDhlGnTl0efngoU6a8glqtIjY2mt9/P8Crr75Gx46dqVu3Hi+/PI0hQ4aTnZ1tdlu6urry1FPPUK9effz8alGnTj3efHMmXbp0w8+vFu3ahdKzZx8uXboIcNft9unTH6PRxN69uwEoLCzg1193MnDgw2bXJER5ySsw8OnKk6zYdYEPfjhGenahrUuq8C5ey2TRz+eIiE6zaR1y5v+nzsG3P/uu6OPQ161bv+T/69Spy4ABg1m9egWXL1/i6tU4Ll68ABSH7O3Uq+df8v83+gQUFRXddvn69f9a3tW1eHmDoYioqEgAgoJalcx3dHSkefMWt13XH3/8RmpqCr169SuZ1rt3X7Zv38K2bZsYOfIJMjMzSU1NoWXL4FLfHTFiFFDcWRAoNd/BwYEpU14GKLm0fzd16tQtNXBOly7dOHPmNIsWLeDq1ThiY2O4cuUSXl7eACUHAbfbLkC3bj3YunUT/fsPYu/eX1GpVHTv/qBZ9QhRXhRFYemWCFKzChjSpQHbDsXy72VHmPxIEE3qedi6vApJURRW/nqRaq46Ogb52bQWOfOvApycnEr+/8qVyzz++HB++20/devWY/Top/n00y/uug6d7uYhkZU73AvRarW3XN7B4cZTAebfR9m8eSMA//73v+jePYzu3cN4442pAKxfv+bP7d35OPZW9fzdrUbCMxhuHhbX0dGp1Of//ncpL744iaysTNq1C2X69Bk8/vgYs7cLMGjQEI4fDycx8Trbtm2hV6++N21HCGv75Ugcx6KSebRHIEO6NODNp9rhrHPgox+P88vRuDv++xe3duJCChevZjKkSwOcdLY995bwr2I2bFiDh4cHn332JU8+OZaOHTuTkpLy59zy/8ccGNgYlUrF2bN/ddYzGAycPx95y+XT09P4448D9Os3gG+++b7UfyNHPk5sbAzHjh3F1dWNGjV8iIg4V+r7s2a9zf/937v4+zcAKDXfZDIxatRQNm1aXxLSubm5JfP/3vnvdr777luefvoZpk37J0OGDKNFiyDi4mJK/jDebbsA7dqF4udXm61bN3Hs2BEGDJBL/sK2Ll7NZNWeS4Q0rkHf0HoA1PFx462nQwlu6M2POy/w9c/nKCwy/5Hgqs5oMrF67yVqernQtVX59fEyl4R/FePrW5OUlGR+//0A168nsHfvbubM+Q8Aev3tL+NbSu3adejZszeffPIhR48eJjr6Ch98MJukpMRbnn1v3boZg8HA6NFP07Bho1L/jRkzDp3OkXXrijvsjRkzljVrfmLr1k1cu3aVDRvWsnPndrp1e5B69erTo0dP5s79iKNHDxMXF8snn3xIZmYmHTp0pGHDQFxcXFm+fClXr8Zx/Hg4ixcvvOvP4+tbkyNHDnH58iViY6NZtGgBe/f+SlGRHuCu24Xiqw4DBw5m+fJvqFu3Pi1bBt1pk0KUq+w8PV9uOINXNUeeHdi81L9LFycNU4YHM7RbQw6dS+S9/4aTlJ5nw2orjgOnEkhIzePR7g3touOk7SsQVvXoo6Po1asvs2e/w5gxj/Htt0uYMGEytWrVvuWjc+Vh+vR/0apVCG++OZ2JE8fi6OhIy5bBaDQ3XwbbsmUjbdu2p2HDwJvmeXp60a/fAPbv30NqagrDho1k3Lh/sHTp14wZM5LVq1fwr3/9m86duwLwz3++Tdu27Zg5cwbPPDOa6OjLzJ07H1/fmri4uPL227OIjo5mzJiRfPrpx7zwwit3/VneeutdioqK+Mc/nuL55ydw+fJFpk37J5mZmVy7dvWu272hf/9BFBYWSkc/YVMmReHrn8+RnVfE5EeCcXG6+baVWqVicKcAXh7ZmvTsAt5ddpRTl1JusTZxQ6HeyPoDVwisU422TXxsXQ4AKqWS3rhJTc3BZLr5R7t+PQY/P/9bfOP2KnqHP3tSWFjIwYO/ERYWhpPTX48JPv74MPr1G8DYseNtWJ3tnDlzmhdemMDatVvw9Cz7yIx32kfvZZ8X4OPjTnKy+U+CVAYbf7vC+v1XeKpfU3qE1Lnr8kkZ+Xyx9jRXk3IY0rUBgzoFoL7NmySrYnve8PPv0azbd5l/PtmWxnU9LLbeG22qVqvw9i7b4GzS219YlU6n49NPPyYkpC1PPfUsDg4ObNq0gcTE6zz4YG9bl2d1sbHRXLx4ke+//5Y+fR66p+AXwhLORaexYf8VHmhZk+5tzBtjwtfDmRlj2vHfbZGs33+F6IRsxg9qfssrBlVVVp6erQdjCGlcw6LBf7/ksr+wKpVKxYcfziUjI4NJk8bxzDOjOXPmFJ98Mh9//wBbl2d1cXFxvP/+TJydnXn++ZdsXY6wkJz8In7ceYGkjHxbl2KW9OxCFm08i5+3C0/1a3rL/je346h1YPygFozu04TTl1N599ujXE3OsVht+YUGTl5MYcWuCyzffp4jkUlk5+kttv7y9vNv0RQWGRne/eZbl7Ykl/3NIJf9LU/a1LLksr/l3c9l6sWbzvH7mevUqO7EG6Pb4lXNfh/dNJpMfPTDcaITs3nr6VDq1Lh51E5zRcVl8OX6M+TrDTwzoDkdmv/Vr8Xc9jQYTVy6lklETDrnYtK5Ep+F0aSgcVCjcVBRoC9+wqC+rxvNAzxpEeBFk7oeOOrK/+ViZZWUnse/vj5El1a1ePqhZhZfv1z2F0IIO3E2Oo3fz1ynQ3NfTl9O5eMVJ3hjdFuqud48VoY9WLvvMlFXM/nH4Bb3FfwATep58M64UBasP8PCDWe5HJ/FiAcDcVDf/iKzSVGIS8z5M+zTiIrLQF9kQqWCAD93HgqrT3N/TxrVqY6Dg4rohGzORacREZPOrvCrbD8ch4NaRWDtarQI8KJ5gCcNalWzix71a/ddxsFBxZAuDWxdyk0k/IUQwkIKi4z8d1skNT2deXZgc64kZPPJTyf4eMUJpj8Rgpuzfd0LP3Exha0HY+nRpjYdW1pmxDkPN0emPx7CT7susuNIHLGJ2UwaEoTPn53cFUUhKSOfiOh0zkWnERmbQU5+8WPGtbxd6Bpcm+YBnjSr73HLvgOBdaoTWKc6gzs3oLDIyMWrmZyLSeNcdDobDlxh/YErOOocaFrPg+b+xVcG6vi43rYjYnm5kpDF4YgkBnUKwMPN0arbNoeEvxBCWMjG366QnFHAa4+HoNU40KSeBy8Mb8Vnq08yd+VJpo1qg7OjffzZTcnIZ8mmc9Sv6cbjvRtbdN0aBzWj+zahQW13vt12nn8vO8JjfZpy5kIyETFppGYVvyPA092R1oHeNA/wpLm/F57uZQtJR60DLRt40bKBF1Dc1+J8bPHtgnPR6Zy6lAqAu4uW5v6eNPf3JKSJD9VcyvcqjKIorPr1Im7OWvqH1b/7F2zAPvZCIYSo4GITs9l+KI4uwbVo7v/XUxstG3jx3CNBfLH2DPNWn+Llka1x1Nr2/nSRwcSC9WcwKTD5kSC0mvKpp1NQLerUcOOLdadZuPYUrk4amtX3pP8DxUHs5+VSps6Fd+PmrKVdU1/aNfUFIC2roPh2QnQ6ETFpHI5IYuNv0bwxui0+Hs4W2+7/On05lcjYDJ7o3dhuDvb+l9Wrys3N5ZNPPmHnzp3k5OQQFhbGG2+8Qf36xUdHERERvP/++5w+fRoPDw/GjBnDs88+a+0yhRDCbCaTwrfbInF11jCyZ6Ob5oc09mH84OZ8vfEcX6w7zQvDWqHV2O6e9E+7LxB9PZvnhwbj61m+r5X193Pn3Wc7YFI74KQGtdp6l9+9qjmVvLRNURQuXcvis9Un+XjFcd4Y3a7MVxrMYTIprNpzCV8PZ7PGSrAVq+99L7/8Mtu3b+ftt99m5cqVeHl58fjjj5Oenk5aWhpjx47F39+fNWvW8NJLLzFv3jxWrlxp7TKFEMJsu8KvciUhm8d7N77tff0HWvjxdP9mnLmcxqKNZzGabPO0y+GIRHYfu0bf0Hq0a2qd0eacdBr8a1WzavD/L5VKRaO61XllZBuy8or4eMVxssrhkcHfz1znWnIuw+xkGN/bsWplkZGR7Nu3j3fffZdevXoRGBjIv//9b9zc3Pjhhx9YuXIlWq2WmTNnEhgYyNChQxk3bhyLFi2yZplCCGG2lMx81u67THBDb8L+9mjbrXRrXZvHezUmPCqZpZsjMVn5SeuE1Fy+2RpJozrVebSHfT13bi0Na1fj5UdbkZJZwCcrTpBXYLl3muiLjKzbf5kGtdwJbeZrsfWWB6uGf3R0NAChoaEl0xwcHGjWrBmHDx/m6NGjtG/fvtQY72FhYcTFxZGYmGjNUu3eCy9M5OmnH7/t/C+//JxBg3pTVHTnHXvLlp/p0qV9yetrH310MIsWLbjt8osWLeDRRwebXaeiKGzduon09DQAjh07Spcu7YmLizV7Hfdq69ZNdOnSng8+mF3u2xJVk6IofLcjCgWFMX2bmHX/uk9oPYZ2a8gfZ68Xf9dKBwCFRUYWrD+D1kHNpCEt7fqstLw1re/JlGHBXEvJZe7KkxTob359973YFX6V9OxCRvRoZNG+DOXBqr99nz+f9YiPjy81/erVq6SlpZGYmIifX+nHTXx9i4+eEhISrFNkBTF48CNcunSBS5cu3jTPZDKxY8dW+vUbaNb75P/u66//y5NPjrVQlRAefoT33ptJQUEBAMHBrdmwYRu1a5f/vbDNmzfi7x/AL79sIyfHciOOCXHDkcgkTl1KZVjXhtQoQweyQR39GfCAP3uOX2PlrxfL/QBAURS+236e+ORcJjzcwq4HHbKW4IbeTBoSxJWEbOatPoX+Pl9PnJNfxKY/YmgV6E0zf/sfptuqHf5atWpFo0aNmDlzJnPmzKFGjRp89913REZGUrduXUwmEzpd6UcwbnwuLCws07ZuN9pRUpIazT10tLmX75SnXr168+mnH/HLL1tp2rT0sLCHDh0iOTmJRx4Zete6b9yD02iK28XHx9vs5c1xY3kHB/Wf23DE2bn8L4ddvRrHyZPH+eCDOfzrX6+zY8cWRo4cVe7btaXb/U7UajU+Pu5WrqZyuFO75eTpWbH7Io3qVmfUQ81xKOOZ9KRHW6N2ULPptyt4e7jweD/LjwB3w45DMfx25jqj+jTlwQ4B5badu7G3/fAhH3ccnbXM/fEYi7dEMmNsh3vuiLlx4xkK9QYmDG1l1Z/zXrdl1fDXarXMnz+fN954gwcffBCNRkOPHj149NFHOXPmDHq9Hr2+dAeMG59dXMrWI/V2w/uaTKYyDytrj0PROjho6d27Hzt2bGPChOdR/20ErU2bfiY4uDX16gVw7Vo8CxbMIzz8CNnZWXh6etGnz0NMmjQFBweHkjYq/vlMPProYPr27c+ECZMB2LBhLT/88F+Sk5MJC3sAHx/fvy0Ply9fZOHC+Zw6dZKCgnx8fHx55JHhjB79NMeOHeXFF58DYNiwQYwb9w9CQtrx4ouTWLVqPbVq1aWwsIDly5exY8dWUlKSqV27Do89NprBgx8B+HMdk/joo89YsOAz4uOvUb++P888M4GuXXvctn02bFiPk5MzoaEdCQ19gLVrVzNs2MhSy2RkZLBgwWf8/vt+9PoiWrYM4oUXXi15fXBUVCRffvk5Z86cxtHRkU6duvDCC6/i7u7Oe+/N5OrVOL78cknJ+hYtWsCOHVtZvfpnALp0ac/YsePZtm0zhYWFfPrpAtzc3O74+7jTdq9fT2DcuCf47LMvadfur1tn//nPLBISrvHZZwtv2RYmk6nKvk3tftxtONplWyPIytHz0vBWpKXl3tM2HukSQHpWPj/sOI+hyMhD5fBMeGxiNgvXnqJFgCe9Q2rbbF+w17f6BdX3YEzfpvx3+3ne/+YQEx9ucccRCW8lJSOfTQcu0ymoFi4aldV+zgo1vG+DBg346aefyMzMRKVSUa1aNV566SUCAgLIysoiKSmp1PI3Pv/v7QBLK4r6jaLz+245T6VSletlOW3TbmibdC7z9wYPfoS1a1dx4sQx2rZtD0BeXi779v3K1KlvAPD666/i6enJ3LnzcXFx5bff9jNv3hxatGh517fo7dy5nU8++YAXX3yV0NAH2Lt3N4sWLaBmzeLfRUFBAa+88jzt2nVg4cKlJW/o+/LLz2nXLpTg4Na8++5/ePvtN/j662/x929AZOS5UtuYOfNfRESc49VXX6dBg4b8/vt+5sz5DwUFBYwY8deZ+oIFn/Hyy6/h4eHJwoWfM2vWO6xfvwUXl5uHIzUajWzbtpkuXbqh1Wrp3bsv7777FidOHKNNm7YAGAwGXnllMiqVivfe+whPT08WLVrAK688z8qV60lNTeX55yfQuXNXFi5cSn5+Pv/5zyzef38m//d/c8z+Ha1Zs5KPP56Hoig0bBjIuHGj7/j7iI+/dsftNm3anK1bN5WEf2FhAb/+upNp0143uyZx/87HprPvZAIPhdXH3+/ez/LUKhXj+jdHX2Ri5a8XcdQ58KCFHg9TFIWE1DwWrD+Dq5OGCYNb2rS3vT3rEVKHAr2x+HegVTNuQPMyjQi4bv9lVCoVj3S1v2F8b8eq17JzcnJ48sknOX36NNWrV6datWrk5OTw+++/07VrV0JDQwkPDy/pfAZw8OBBAgICSvoLiL80btyUpk2bs337lpJpu3f/gkajoWfPPhQWFtCv3wBef/1NGjduSp06dRk58nFq1PDh8uVLd13/qlUr6NGjF8OHP0b9+v6MGTOOjh3/OkjJz89nxIjHmTr1dQICGlCvXn3Gj58EwKVLF9Fqtbi7F/9h9PDwvOnqTXT0Ffbv38srr7xGt249qFevPo89NpohQ4axfPk3pQ64xo+fRLt2oQQGNuLZZyeRl5d725/h8OE/SE5OolevvgB06dIdR0dH1q1bXbJMePgRLlyI4q23ZtG6dQj16wcwffqb9O7dl4yMDDZuXIebmxv/+tdMAgMbERQUzBtvvEXDho0wleERrb59H6JlyyCCgoLR6wvv+vu423YHDRrC3r27yc8vflvc3r2/AvDgg73MrkncnyKDkWXbzlOjupNFxmxXq1X8Y3ALWgV689328/xx5vo9rystq4DfTifw9c/nmPrFb7y5+BCpmQVMGhJkt+8WsBcPhdVnSJcG/Hb6Oj/8Yn5HzJjr2Rw8m0if9vUqVF8Kq575u7m5oVKpeP/995k5cyaKojB79mxq167NoEGDyMzMZPHixcyYMYMJEyZw5swZli1bxjvvvFPutWmbdL7t2bc9Xva/YdCgIXz11XxeffV1HB0d2bp1M336PISTU/FOOGzYCPbs2cWPPy7n2rWrXLp0kZSUZIzGu3duuXz54k2hEhTUqiSoPD09GTr0UXbu3MGFC+e5ejWOixcvAJgVkJcuFS/bunXbUtPbtGnLmjUrSUtLLZlWr95fb6Vzcyu+vHW7Jxk2bdqAm5s7YWEdgeJbRp06dWXfvl9JT0/D09OLS5cu4uzsQoMGDUu+V61aNV544dWSn71Jk6alOkwGBQUTFBR815/r7+rW/esyrqOj011/H3fbbp8+DzF//lz27NlF//6D2LLlZ3r27IuTk7Pd7qOVzabfY0hMy+PVxyw3Up/GQc3kR4L4bPUplmyOQKdVl4xSdye5BUVE/vn2u4jodK6n5QHFI9019/ekeYAnQQ28qFG9/Eazq0we7hxAgd7A9sNxOOoceLR74F177a/ecxEXJw0DHrDPYXxvx+qX/efMmcPs2bN58sknUavVPPjgg0yfPh2NRoO3tzdLlizhvffeY+jQofj4+DB16lSGDRtm7TIrjD59HuKLLz7lt9/206xZc06dOlESYPn5+Tz//HgKCgro2bMP/fsPpmXLICZPHm/m2lX878Hv3x/DTE1NYcKEsXh6etGlSzc6dOhI8+YtGDp0wH39TDf6IWi1f52p/G9HUOCWR+bp6en89tt+DAYDvXt3KbWsyWRi06YNjBkzDq1We8d/1BqNFqPx9o//3Oq7f79idcONgzAw7/dxt+26ubnRo0dPtm/fQmhoGMeOHWXBguduu7ywrGvJOWw5GEPHljUJanDnzrFlpdM68MLwYOb8dIKFG87y4qMOBDcsvQ19kZELf77IJiI6nZjr2SiATqumaT1PurWuTYsAT+r6uln9RTaVgUqlYuSDjSgsMrH1YCxOOg2DOwXcdvmzV9I4G53OqJ6NbvkSIntm9fD39fVl3rx5t50fHBzMihUrrFhRxVYcBr3YvXsHcXExNG7chGbNmgPFl7+jos6zbt2Wko56WVmZpKWlmnVJq3HjJpw5cxJ4smRaRMRf9+x/+WUbmZkZrFixruRM9cajhzfWf6eADQwsfpnIyZPH6N69Z8n0EyeOUaOGD9WqVTOnCUrZvn0zBoOB9977kHr1Sh+Jv/76VDZuXMfo0U8TEBBAXl4usbHR1K8fABT3lxgx4mHeeec9/P0D2L59CwaDoeSA5/Dhg8ye/Q7ff78ajUZDXl7pTl7XrsXdsTZzfh932667uzsDBw7hlVeeZ9OmDdSv71/mqxHi3pgUhWXbInF21PBYL8u+COcGJ52GV0a05sMfjzN/7WleerQVjlqHP8/s07h4LRODUcFBraJh7WoM7hxAiwAvGta2j1fYVgYqlYon+zahUG9k3b7LOGod6Bta76blTIrCqj0XqVHdiQfb1rVBpffHPt84IMpk0KAhTJv2ItHR0QwbNqJk+o2A2bFjK7169SUxMZGvvpqPwWC46+A/AE8+OZY33niVH374L1279uCPP35j//491KhR3P/C19ePwsJCdu3aQZs2bYmNjWHevE8AKCoq/ZRGVNR53N1Lh3lAQAO6du3O3LkfoVKpSzr8/fzzOiZPLv34ork2b95Is2YtSh1M3DBy5ON89tnHHDr0Ow880JnmzVswa9Y7vPTSNNzc3Fi0aAEuLq4EBbWiYcNGrF79Ex9++B6PPz6G7Ows5s2bQ6tWbXB3dyc4uDU//7yeLVt+JiSkHQcO7OPw4UNUr179trWZ8/sYPvyxO24XICSkHX5+tVi+/BuefXbiPbWTKLu9x69x6VoWzw5sXq5vhXNx0vLqY2344PtjfLziRMn0er5u9GxblxYBnjSp54GTTv58lxe1SsUzA5uhLzKyYtcFnHQOdGtdu9Qyh84lEpuYwz8Gt7Dpexrulew9lUCbNm3x8fElIeEaffv2L5neokUQL7zwCj/99ANLlizCx8eHXr364utbk3Pnztx1vZ06deGdd2azdOkiFi9eSFBQKx57bDS7du0AijuZnT//FAsWzCM3N4datWozaNAQDhzYx7lzZxg+/DEaN25Kly7dmDlzBkOGDKNbtwdLbWPmzPdYtOhL5sz5D1lZmdSv789rr81g4MCHy9wOZ8+e4cqVy/zrXzNvOX/QoCEsXbqIdevW0LFjF/7v/+bw+eefMG3aCyiKQuvWbfnkk/m4uLjg4uLC3LnzWbhwPs8+OwY3Nze6d+/Jc89NAYpvt1y4cJ4vvvgUvV5Pp05deOaZCaxZ89Nt6zPn91GjRo07bheKz0z69x/EN998Tb9+93eLRZgnPbuQVXsu0SLAk05B5fvkEUA1Fx2vPR7CvhPx+Hm70Ky+p3TYszIHtZoJD7fk87Wn+HZrJDqtmgdaFP/uiwwm1u27TP2aboS1uPOQzvZKpVhrbEkru91z/tevx+Dn53+Lb9yePXf4q6ikTe/PRx+9T1paGv/3fx8Dd27Pe9nnRenn0uevPc3py6nMerZDub8Fr7Ky1+f876awyMjclSe5eDWT54cGEdLEhx2HY1mx+yJTR7WhZYCXzWq7n+f8K961CiGqsCNHDrF69Qq2bt3MY489YetyqoTw88kci0pmSJcGEvxVkKPWgZcebYW/nztfbjjDkcgkfv49mpYNvGwa/PdLwl+ICmTz5o189dUCxowZWzJgkSg/eQUGvv/lPPV83W7Z6UtUDc6OGl4Z2Ro/L1e+XH+GvAIDIyr4WxHlnr8QFcjMme/ZuoQqZc2+S2Tm6nlheCvpTV/FuTlrmTqqDXN/OkGjutWpX9O+3lNQVhL+QghxCxFX0thz7Bq929ejQa2yP3YqKp/qrjreGRd69wUrgCp5KFtJ+zgKcRPZ1++NwWji81Un8KrmyNBuFWe8dlH+VCrVXUf9qwiqXPg7OGhKnkEXorIrKtLj4CAX+Mpqy8EY4hKzebJvU3meXlRKVS783dw8yMhIRq8vlLMiUWkpioJeX0hGRjJubh62LqdCOXjuOpt+j6Zrmzq0blTD1uUIUS6q3CGts3PxK2AzM1PuOIb636nV6jK9yU3cnbSpZd2qPR0cNLi7e5bs8+LODEYTq369xC9H42hStzqThrWiMK/Q1mUJUS6qXPhD8QFAWf4gVtTBKeyZtKllSXven8xcPV+uP0NUXAa929dl5IONqOaqI1nCX1RSVTL8hRDihkvXMvli3WnyCgz8Y3ALOrYs/+F7hbA1CX8hRJWkKAp7TsTzwy9ReFVzZMaYdhX+2W0hzCXhL4SocvRFRr7bEcWB0wkEN/RmwsMtcK1g72MX4n5I+AshqpSUzHy+WHuGmMRsHu4cwMNdGqCuBM9tC1EWEv5CiCrjbHQaX204i9Fk4sXhrWjTWB7lE1WThL8QotJTFIWth2JZs/cStb1dmTIsmJpe8oY+UXVJ+AshKrX8QgNLt0QQfj6ZDs19Gdu/mYzaJ6o8+RcghKi0ElJzmb/2NIlp+TzWsxF9Q+tVinHZhbhfEv5CiEop/HwySzafQ6tRM3VUG5r7e9q6JCHshoS/EKJSMZkU1u67zJaDMTSoVY3nhwbhVc3J1mUJYVck/IUQlcbV5Bx+3HmBiJh0urWuzeg+TdBqqtz7y4S4Kwl/IUSFl5SRz4b9lzl4NhEnRwfG9m9Gt9a1bV2WEHZLwl8IUWFl5BTy82/R7DsZj1qt4qGw+vR/wB83ZxmtT4g7kfAXQlQ4OflFbD0Yw67wqxhNCt1a12ZQpwA83R1tXZoQFYKEvxCiwijQG/jlSBzbDsdSUGjkgZY1GdKlAb6eMmCPEGUh4S+EsHtFBhN7jl9j0x/RZOcVEdK4BkO7NqSur5utSxOiQpLwF0LYLaPJxO+nr7PxtyukZhXS3N+TYd0bEli7uq1LE6JCk/AXQtgdk6IQfj6Zdfsucz0tjwa13Bk7oDktA7xsXZoQlYKEvxDCbiiKwpkraazde5mYxGxq1yh+CU9I4xoyLK8QFiThL4SwC0aTic/XnObUpVRqVHdi/KDmPNDCD7VaQl8IS5PwF0LYhV1Hr3LqUirDujXkobD6aBxkZD4hyouEvxDC5lIy8lm7/zKtAr0Z2NFfLvELUc7k0FoIYVOKorB8RxQqVIzp21SCXwgrkPAXQtjU4YgkTl8uvtzvXV3evieENUj4CyFsJie/iB93RtGglju92tW1dTlCVBkS/kIIm1n560Vy8g08/VAz6dUvhBVZPfz1ej1z5syhR48ehISE8MQTT3Ds2LGS+REREYwZM4Y2bdrQo0cPlixZYu0ShRBWEBGTzoFTCfQLq0f9mu62LkeIKsXq4f/FF1+wZs0aZs2axbp162jYsCHjx48nMTGRtLQ0xo4di7+/P2vWrOGll15i3rx5rFy50tplCiHKkb7IyH+3ReLj4cTDnRvYuhwhqhyrP+q3a9cuHn74Ybp27QrAG2+8wapVqwgPDyc2NhatVsvMmTPRaDQEBgYSExPDokWLGDlypLVLFaJKMCkKSzZFoCgKzwxsbpXn6zf9EU1iej5TR7XBUetQ7tsTQpRm9TN/Ly8vfv31V65evYrRaGTVqlXodDpatGjB0aNHad++PRrNX8ckYWFhxMXFkZiYaO1ShagSth6M4Y+z1zl4LpFFP5/DaDKV6/auJuWw9WAsnYL8ZKx+IWzE6mf+b731Fi+//DK9evXCwcEBtVrNp59+SkBAAImJiTRq1KjU8r6+vgAkJCRQs2ZNa5crRKUWGZPO2n2X6dDclwC/aqz89SKOWjXjBjRHXQ7P25tMCsu2ReLsqOGxno3u/gUhRLmwevhfuHABNzc3vvjiC2rWrMmqVauYPn06y5cvp6CgAJ1OV2r5G58LCwvLtB1vb8u+59vHRzokWZq0qWWVtT3TswpYtOkctWu4MfXJ9rg4adFoHfhhx3k8qjkzcWiwxQfc2XzgMpfjs3j1ibY09Pe26LrLg+yjliXtaXn32qZWDf/4+HimT5/O4sWLeeCBBwAIDg7m4sWLzJs3DycnJ/R6fanv3Pjs4uJSpm2lpuZgMikWqdvHx53k5GyLrEsUkza1rLK2p9FkYs6KE+TlF/HqyNbkZheQm11Ar5DapGXks/m3K5iMRh7tHmixA4C0rAKWbT5HywBPWtarbve/f9lHLUva0/JutKlarSrzCa9V7/mfOnWKoqIigoODS01v3bo10dHR+Pn5kZSUVGrejc9+fn5Wq1OIym79/itExmYwpl9T6vr89UdDpVIx4sFAeoTUYevBWDb9EWOR7SmKwnc7ojCZFMY81EyG8BXCxqwa/jcC/Pz586WmR0VF0aBBA0JDQwkPD8dgMJTMO3jwIAEBAfj4+FizVCEqrVOXUtj8RwxdW9Wic3Ctm+arVCqe7NuEji39WLfvMjuOxN33NsPPJ3PiYgpDujbA18P5vtcnhLg/Vg3/Vq1a0a5dO2bMmMHBgweJjo7m008/5ffff2fChAkMHz6c/Px8ZsyYwcWLF1m/fj3Lli1j4sSJ1ixTiEorNbOAr38+Rz1fN0b3aXLb5dQqFc8MbEa7Jj6s2HWBfSfj73mbeQVFfL8zivq+bvQNrXfP6xFCWI5Vw1+tVvPll1/SsWNH/vnPfzJ06FAOHjzIN998Q9u2bfH29mbJkiXExsYydOhQ5s2bx9SpUxk2bJg1yxSiUjIYTXy54QxGk8LkR4LQ3eX5ege1molDWhLU0Itvt0Zy8Nz1e9ru6r2XycrV83T/ZjioZURxIeyBSlEUy/SKszPS4c++SZtaljnt+cMvUewMv8rkR4Jo38zX7HUXFhn5dOVJLlzN5PmhQYQ0Mf8WXFRcBv/5/hh9Q+sxqldjs79nD2QftSxpT8urMB3+hBC2cTQyiZ3hV+ndvm6Zgh/AUevAi4+2wt/PnS83nOHslTSzvldkMPHttki8qznxSFcZwlcIeyLhL0Qll5iWx9ItEQTWrsbIB+9tYB1nRw2vjGyNn5crn685RVRcxl2/s+VgDAmpeYzp1xQnndWHFBFC3IGEvxCVmL7IyBfrzuCgVjFpSNB9jdvv5qxl6qg2eFZz4rPVJ7mSkHXbZeNTctn8RzRhLWrSKtD+B/MRoqqR8BeiEvv+lyiuJufwj8Et8a7udN/rq+6q47VRbXB10vLJTye4mpxz0zImReG/2yJx1DpUuPv8QlQVEv5CVFK/nU5g/6kEBnb0t+jZt1c1J6aNaoNWo2bOihMkpuWVmr/vZDxRVzMZ+WAjqrvqbrMWIYQtSfgLUQldTcph+fbzNKvvUS6d7Xw9XZg2KgSjSeGjFcdJycwHICOnkFW/XqJZfQ+6tLp5ACEhhH2Q8BeikskvNLBg/RmcHTVMfLhluT1bX7uGK1Mfa0N+oZGPV5wgI6eQH36Joshg4mkZwlcIuybhL0QloigK326LJDE9j4kPt6S6m2O5bs/fz51XRrYmM0fPrG+PcvR8Mg93DqCmV9lexCWEsC4JfyEqkd3HrnE4Iolh3RrSzN/TKttsVKc6Lw4PJjuviDo+rjwUVt8q2xVC3Dt5+FaISuJKQhYrdl2gVaA3/R/wt+q2mwd48e9nQnF11t7X44RCCOuQ8BeiEsjJ0/Pl+jN4uOkYP6gFahvcb6/l7Wr1bQoh7o0cogtRwZkUhbk/Hic9u5BJjwTh5qy1dUlCCDsnZ/5CVFDZeXoiYzM4GpnEkcgkHu/dmMDa1W1dlhCiApDwF6KCKNQbibqawbnoNCKi04lNKh5dz0nnwJBugfRuV9fGFQohKgoJfyHslMFo4kpCFuei04mITuNSfBZGk4LGQUWjOtUZ2q0hLfw9Cajljl/N6vK6VCGE2ST8hbATJkXhalIOETHpRMSkcz4ug0K9ERVQ38+dvh3q0cLfi0Z1q+OodbB1uUKICkzCXwgbys7TcywquSTws/OKAKjp5UKnID9a+HvStL6ndOITQliUhL8QNpBfaGD74Vi2H4mjUG+kupuOoAZetAjworm/J17V7v8NfEIIcTsS/kJYkb7IyO5j19hyMIac/CLaNfVhcKcA6vm6yVj4QgirkfAXwgoMRhMHTifw82/RpGcXEtTAi6HdGtKgVjVblyaEqIIk/IUoRyZF4XBEIuv3XyEpPZ/AOtWYMLgFTetbZ9x9IYS4FQl/IcqBoiicvJTK2r2XuZqcQ10fN158tBWtA73l8r4QwuYk/IWwsPOx6azZe5mL1zLx9XRmwsMt6NC8pk3G2xdCiFuR8BfCQqKvZ7Fm72XOXknD092Rpx5qSpfgWvKWOyGE3ZHwF+I+xafksm7/ZcLPJ+PmrGXkg43o2bYOOhmIRwhhpyT8hbhHWbl6Vu25yO9nrqPTOvBw5wD6daiPs6P8sxJC2Df5KyXEPTAYTXy+9hQx17Pp074eAzv64+6is3VZQghhFgl/Ie7B6j2XuHQti+ceCSK0ma+tyxFCiDKRnkhClFH4+WR2HImjV7u6EvxCiApJwl+IMkhKz2PplnM0qFWNx3o2snU5QghxTyT8hTBTkcHIgvVnUKtUPPdIS3mETwhRYclfLyHM9MPOC8Qm5jB+UAtqVHe2dTlCCHHPJPyFMMMfZ66z90Q8Ax7wp3WjGrYuRwgh7ouEvxB3cS05h2+3R9K0ngdDuzWwdTlCCHHfJPyFuIMCvYEF68/gpNMwcUhLHNTyT0YIUfHJXzIhbkNRFP677TzX0/KY+HBLPNwcbV2SEEJYhIS/ELex50Q8B88l8kjXhjT397R1OUIIYTES/kLcQvT1LH7cGUVQQy8GdvS3dTlCCGFRVh3e99ChQzz11FO3nFe3bl127dpFREQE77//PqdPn8bDw4MxY8bw7LPPWrNMUcXlFhSxYN0Z3F10/GNQC9Qqla1LEkIIi7Jq+IeEhHDgwIFS06KiopgwYQITJ04kLS2NsWPH0qdPH2bOnMmpU6eYOXMm7u7ujBw50pqliipKURSWbo4gPbuQ10e3lZf1CCEqJauGv06nw8fHp+RzUVER77//Pn369GHkyJEsXLgQrVbLzJkz0Wg0BAYGEhMTw6JFiyT8hVVsPxzH8QspjOrVmEZ1qtu6HCGEKBc2vee/fPlyEhIS+Oc//wnA0aNHad++PRrNX8ckYWFhxMXFkZiYaKsyRRURFZfB6j2XaNfUhz7t69q6HCGEKDc2e6Vvfn4+X331FU899RQ1a9YEIDExkUaNSr8sxde3+K1pCQkJJcuZw9vbzXLFAj4+7hZdn7CvNs3MKWTRz+eo6e3Ca2NCcXXW2rqkMrOn9qwspE0tS9rT8u61TW0W/hs2bKCwsLBUB8CCggJ0utL3WG98LiwsLNP6U1NzMJmU+y+U4sZNTs62yLpEMXtqU5NJYe7KE2Tl6nlzeDvycgrIyymwdVllYk/tWVlIm1qWtKfl3WhTtVpV5hNem13237BhA3369MHLy6tkmpOTE3q9vtRyNz67uLhYtT5Rdfz8ezRno9MZ3acx9WvKmYkQovKzSfinpaVx4sQJBg0aVGq6n58fSUlJpabd+Ozn52e1+kTVcfZKGhsPXKFjSz+6ta5t63KEEMIqbBL+x44dQ6VSERoaWmp6aGgo4eHhGAyGkmkHDx4kICCg1FMCQlhCenYhi34+S+0arjzVrykqeZ5fCFFF2CT8z507R7169W66lD98+HDy8/OZMWMGFy9eZP369SxbtoyJEyfaokxRiRmMJr7ccAZ9kYnnHgnCUedg65KEEMJqbBL+ycnJVK9+8zPU3t7eLFmyhNjYWIYOHcq8efOYOnUqw4YNs0GVojJbu/cyF69m8nT/ptSu4WrrcoQQwqps0tt/1qxZt50XHBzMihUrrFiNqGqORyWz7XAsD4bU4YEW0pdECFH1yIt9RJWSlJHP4s0R+Pu5M6pXY1uXI4QQNiHhL6qMIoORL9edAWDyI0FoNbL7CyGqJvnrJ6qMH3ddJCYxm/EDm+Pj4WzrcoQQwmYk/EWVcPDsdfYcv8ZDHeoT0kQeGxVCVG0S/qLSi0/J5dtt52lctzrDuje0dTlCCGFzEv6iUivUG1mw/gw6rZpJQ4LQOMguL4QQ8pdQVFqKovDf7edJSMllwsMt8XR3tHVJQghhFyT8RaW172Q8f5y9zsNdGtAywOvuXxBCiCpCwl9USjHXs/n+lwu0DPBkcKcAW5cjhBB2RcJfVDp5BQa+XH8Gdxct/3i4JWq1vLBHCCH+TsJfVCqKorB0SwQpmQVMGtKSai46W5ckhBB2R8JfVCq/HInjWFQyj/YIpHFdD1uXI4QQdknCX1QaF69msmrPJUIa16Bfh3q2LkcIIeyWhL+oFLLz9Hy54Qxe1Rx5dmBzVCq5zy+EELcj4S8qPJOi8PXP58jOK2LyI8G4OGltXZIQQtg1CX9R4W3+PZozV9J4ondj/P3cbV2OEELYPQl/UaFFRKex/sAVHmhRk+5tatu6HCGEqBAk/EWFlZ5dyFcbz+Ln5cJTDzWV+/xCCGEmCX9RIRlNJr7aeJaCIiOThwbjpNPYuiQhhKgwJPxFhbR232Wi4jJ4ul8z6tRwtXU5QghRoUj4iwrn0rVMth6MpXub2nQM8rN1OUIIUeFI+IsK5+DZRHQaNY/1bGTrUoQQokKS8BcViqIoHLuQTMsGXnKfXwgh7pGEv6hQoq9nk55dSNsmPrYuRQghKiwJf1GhhJ9PRq1S0bpRDVuXIoQQFZaEv6hQjkUl07S+B27OMoSvEELcKwl/UWHEp+RyPS2Pdk3lkr8QQtwPCX9RYRyLSgYgpLGEvxBC3A8Jf1FhHItKpmHtani6O9q6FCGEqNAk/EWFkJpZQPT1bOnlL4QQFiDhLyqEYxeKL/lL+AshxP2T8BcVwvGoZOrUcMXPy8XWpQghRIUn4S/sXnaenvNxGYTIWb8QQliEhL+weycupqAo0E7CXwghLELCX9i9Y+eT8a7mRP2abrYuRQghKgUJf2HX8gsNnI1OJ6RJDVQqla3LEUKISkHCX9i1M1fSMBhNcslfCCEsyCbhv379egYMGEBwcDADBw5k69atJfMiIiIYM2YMbdq0oUePHixZssQWJQo7cSwqGXcXLY3reti6FCGEqDTMCn+j0WixDW7YsIEZM2bw2GOPsWnTJgYNGsSrr75KeHg4aWlpjB07Fn9/f9asWcNLL73EvHnzWLlypcW2LyqOIoOJU5dSaNOoBmq1XPIXQghL0ZizUPfu3Xn44YcZPnw4gYGB97wxRVH47LPPePLJJ3n66acBeO655zh69CgHDx7kyJEjaLVaZs6ciUajITAwkJiYGBYtWsTIkSPvebuiYoqISSe/0CgD+wghhIWZdeY/ZMiQkrP0kSNHsnLlSnJycsq8scuXL3Pt2jUGDRpUavqSJUt4/vnnOXr0KO3bt0ej+euYJCwsjLi4OBITE8u8PVGxHYtKxknnQIsAT1uXIoQQlYpZ4f/aa6+xZ88eFi5ciJ+fH7NmzaJLly689tprHDx40OyNRUdHA6DX65kwYQIdO3ZkxIgR7N69G4DExET8/PxKfcfX1xeAhIQEs7cjKj6TSeHEhWRaBXqj1TjYuhwhhKhUzLrsD6BWq+nevTvdu3cnMzOTX375hbVr1zJu3Dhq167NY489xsiRI/Hw8LjtOm5cLZg+fTrPP/88r7zyCjt27GDy5MksWbKEgoICdDpdqe/c+FxYWFimH8zb27LPhPv4uFt0feLObXr2cipZeUX0aFdf2t5M0k6WJ21qWdKelnevbWp2+N+Qm5vLL7/8wtatWzl16hQeHh60bduW//73v3z99dd88skndO3a9Zbf1Wq1AIwbN47hw4cD0Lx5c86cOcPSpUtxcnJCr9eX+s6Nzy4uZRvTPTU1B5NJKeuPd0s+Pu4kJ2dbZF2i2N3adPfhGDQOKvx9XKTtzSD7qOVJm1qWtKfl3WhTtVpV5hNes8JfURQOHDjA+vXr2b17N4WFhXTs2JGPP/6YXr16odVq0ev1PPvss7zzzjsll/H/141L+k2aNCk1vXHjxuzatYv69euTlJRUat6Nz/97O0BUXoqicCwqmRYBXjg7lvn4VAghxF2Y9Ze1a9eupKamUqtWLZ599lmGDx9OrVq1Si2j0+kICwvju+++u+16WrRogaurK6dPnyYsLKxkelRUFPXr1yc0NJTvv/8eg8FQ0unv4MGDBAQE4OMjPb6ririkHFIyCxjUKcDWpQghRKVkVvi3a9eOESNG0Llz5zsOsTp8+PA7PpLn5OTE+PHjWbBgAb6+vrRp04bNmzdz4MABvvnmG5o0acLixYuZMWMGEyZM4MyZMyxbtox33nmn7D+ZqLCORSWjUkGbxjVsXYoQQlRKZoX/Z599RlJSElu2bGHgwIFAcc/9zZs389hjj1GjRvEf6f+9GnArkydPxsXFhXnz5nH9+nUaNmzI559/TseOHYHix/7ee+89hg4dio+PD1OnTmXYsGH3+vOJCuhYVDKN63pQzUV394WFEEKUmVnhHxkZydNPP42bm1tJ+CcnJ7NkyRJ++ukn/vvf/xIQEGD2RseOHcvYsWNvOS84OJgVK1aYvS5RuSSl53E1OZdRvRrbuhQhhKi0zHrO/6OPPqJBgwasWbOmZFpoaCh79uyhTp06fPTRR+VWoKhajkWlANBWLvkLIUS5MSv8T506xXPPPXfTM/zVqlVj/PjxHD16tDxqE1VQeFQS/jXdqeHhbOtShBCi0jIr/NVqNZmZmbecV1BQYNEX/4iqKyOnkEvXsmjbRM76hRCiPJkV/mFhYSxYsOCm8fWTk5NZuHBhqcf2hLhXxy/8eclfXuQjhBDlyqwOf9OmTWPEiBH06dOH1q1b4+3tTVpaGqdOncLJyYl58+aVd52iCjgWlUxNT2dq13C1dSlCCFGpmXXmX79+fTZt2sSYMWMoKioiIiKCvLw8Ro0axfr162nQoEF51ykqubyCIiJj0mnbxOeOY0kIIYS4f2aPnerj48Nrr71WnrWIKuzkxVSMJoW2TeWSvxBClDezwz8/P5+IiAj0ej2KUvzCHEVRyMvLIzw8nNdff73cihSV37GoZDzcdDSoVc3WpQghRKVnVvj/8ccfvPzyy2RlZd1yvpubm4S/uGf6IiOnr6TSObgWarnkL4QQ5c7s4X09PDyYNWsWmzZtQqVSMWzYMPbu3cuKFStYtGhRedcpKrGzV9LQF5mkl78QQliJWeF//vx5/v3vf9O3b1/y8vL48ccf6d69O927d6egoIAFCxbw9ddfl3etopI6FpWMq5OGpvU8bF2KEEJUCWb19jeZTPj6+gLQoEEDoqKiSub169ePiIiI8qlOVHoGo4kTF1No3agGGgezdkchhBD3yexH/c6fPw9AQEAA+fn5XLlyBQCDwUBubm75VSgqtai4DHILDHLJXwghrMis8B88eDBz587lm2++oXr16rRp04Z3332XX375hQULFtCoUaPyrlNUUseiktFp1LRs4GXrUoQQosow657/+PHjycjI4MyZMwC89dZbPPvss7zwwgu4u7uzYMGCci1SVE4mReH4hRSCGnrjqHWwdTlCCFFlmBX+Z8+eZdq0aajVxRcKWrZsyc6dO7l8+TINGzbEzc2tXIsUlVN0Qjbp2YU82l0u+QshhDWZddl//PjxrF27ttQ0Nzc3WrVqJcEv7ll4VBIOahWtGnnbuhQhhKhSzAp/nU6Hh4dHOZciqhJFUTgWlUKz+h64OmltXY4QQlQpZl32nzp1Ku+//z6pqak0btwYH5+bL9PWq1fP4sWJyisuMZvEtDz6tq9r61KEEKLKMSv8//Wvf2E0GnnnnXdu+8Y1eda/aigyGNE4qO/7zXt/nEkAoE1jud8vhBDWZlb4z5o1S16zWsUpisLO8Kus3H0RV2ctzf09aeHvSfMAT2pUdy7z+g6eTiCwTjU83R3LoVohhBB3Ylb4Dxs2rLzrEHassMjIt1sjOXgukeCG3rg6aTgXk86hc4kA+Ho40zzAkxYBXjSr74G7i+6O60vJzOfi1UxGPBhojfKFEEL8D7PC/8iRI3ddJjQ09L6LEfYnKT2P+WvPcC05h6HdGjKwoz9qlQpFUbiWkktEdDoRfx4I7D0RD0B9X7eSg4EmdT1w1JV+hv94VAqAjOonhBA2Ylb4jxkz5q6X/eWef+Vz6lIKizaeQ6WCl0e2JrjhX4/kqVQq6vq4UdfHjT6h9TCaTEQnZHMuOo2ImHR2hV9l++E4HNQqAmtXo0WAF80DPGlQqxrHopLx93OnpqeLDX86IYSouswK/2+++eamaTk5ORw6dIht27Yxf/58ixcmbMekKGz6PZoN+69Qz9eNycOC8fW48319B7WawDrVCaxTncGdG1BYZOTi1UzOxaQREZ3OhgNXWH/gCo46B/R6IyP7NLHSTyOEEOJ/mRX+HTt2vOX0Pn364OrqyuLFi+UAoJLIKyhi8aYITlxMoWNLP556qOk9Db3rqHWgZQOvkjH7c/KLOB+bzrmYdK4l5dA7tD6YTJYuXwghhBnMCv87eeCBB1i+fLklahE2djU5h/lrT5OaWcDoPk3o2baOxZ7ycHPW0q6pL+2aFr8a2sfbleTkbIusWwghRNncd/gfPXoUR0d5XKuiOxyRyNItETjrNEx/IoTGdT1sXZIQQohyYlb4T58+/aZpRqORhIQEjh8/zuOPP27xwoR1GE0mVv16iR1H4mhUtzqTHwnCw00O5oQQojIzK/yPHj160zSVSoWbmxuTJk1i4sSJFi9MlL+sXD0LN5whMjaDXm3r8livRmgczHrdgxBCiArMrPDfvXt3edchrOxSfCYL1p0hJ7+I8YOa0ymolq1LEkIIYSVmn+ZFRkaydOnSUp9nzJjBpUuXyqUwUT4URWHPiWt88P0xHNQqZjzZToJfCCGqGLPC/9ChQ4wcOZINGzaUTNPr9Rw6dIgRI0Zw5syZcitQWE6Rwcg3WyP577bzNKvvydtjQ/H3c7d1WUIIIazMrPCfO3cunTt3Zs2aNSXTWrVqxfbt2wkLC+Ojjz4qtwKFZZhMCh/9eIIDpxIY1Mmfl0e0xs1Za+uyhBBC2IBZ4X/+/HlGjx6NRlO6i4BGo2HUqFFy5l8BxCXlcPFaJqN6NWZYt0DUanlLoxBCVFVmhb+Liwvx8fG3nJeSkoJWK2eQ9i4iJh2A0Ga+Nq5ECCGErZkV/t26dePzzz/n9OnTpaZHREQwf/58unXrVi7FCcuJjE2nppcLnu7yDL8QQlR1Zj3qN23aNMLDwxk5ciS1atXC29ubtLQ04uPjqVevHq+99lp51ynug9FkIiougwda1LR1KUIIIeyAWeHv7e3Nxo0bWbt2LeHh4aSnp1O7dm3Gjh3LsGHDcHV1NXuDly9fpn///jdNnz17NiNGjCAiIoL333+f06dP4+HhwZgxY3j22WfN/4nETWKu51CgN9LM39PWpQghhLADZo/t7+TkROfOnXniiScASEtL4/Lly2UKfijuPOjm5sa2bdtKTXd3dyctLY2xY8fSp08fZs6cyalTp5g5cybu7u6MHDmyTNsRf4mMLb7f37Seh20LEUIIYRfMCv+0tDQmT55Mamoqv/zyCwCnT59m4sSJdOrUiXnz5uHm5mbWBqOioggMDMTHx+emecuWLUOr1TJz5kw0Gg2BgYHExMSwaNEiCf/7EBmTTi1vF6rLmP1CCCEws8PfRx99RHx8PG+99VbJtK5du7J06VIuX77Mp59+avYGz58/T2Bg4C3nHT16lPbt25d6pDAsLIy4uDgSExPN3ob4i8Fo4sLVTLnkL4QQooRZ4b9//36mTZtWqle/Wq2mU6dOvPjiiyVXA8wRFRVFUlISo0aNolOnTjzxxBMcOHAAgMTERPz8/Eot7+tb/GhaQkKC2dsQf4m+nk1hkZHm9SX8hRBCFDPrsn9ubi4uLi63nOfp6UlGRoZZG8vLy+Pq1at4eXkxdepUXF1d2bhxI+PHj2fp0qUUFBSg0+lKfefG58LCQrO2cYO3t3m3Iczl41Mxh8H99WTxQVOnkLp2d9m/orapvZL2tDxpU8uS9rS8e21Ts8K/ZcuWrFq1it69e980b/Xq1TRv3tysjbm4uBAeHo5Wqy0J9aCgIC5dusTixYtxcnJCr9eX+s6Nz7c7+Lid1NQcTCalTN+5HR8fd5KTsy2yLmsLj7hOXR9X9Pl6kvP1d/+ClVTkNrVH0p6WJ21qWdKelnejTdVqVZlPeM0K/0mTJjFhwgQGDx5M3759S57z37VrF5GRkSxatMjsDd7q6YAmTZrw66+/Uq9ePZKSkkrNu/H5f28HiLsrMpi4eDWTbq1r27oUIYQQdsSse/5dunRh4cKFODk5sWDBAt59912++OILVCoVCxcupE2bNmZt7Pjx44SEhHDq1KlS08+cOUPjxo0JDQ0lPDwcg8FQMu/gwYMEBATc8ukAcWdXErLQG0zS2U8IIUQpZj/n361bN7p160ZhYSEZGRm4u7tz+fJlVqxYwcsvv8zx48fvuo6goCDq1q3LW2+9xdtvv42Hhwc//vgjx48fZ+XKldSsWZPFixczY8YMJkyYwJkzZ1i2bBnvvPPOff2QVVVkTDoqoGl9D1uXIoQQwo6YHf5/99tvv/Hjjz9y5swZFEWhbdu2Zn1Pq9WyePFi5syZw4svvkhWVhYtW7Zk6dKltGjRAoAlS5bw3nvvMXToUHx8fJg6dSrDhg27lzKrvMjYdOrVdMPVSV68JIQQ4i9mh/+VK1dYsWIF69evJysri1q1ajFp0iSGDh1K/fr1zd5gzZo1+fDDD287Pzg4mBUrVpi9PnFrRQYjF69l0bNtHVuXIoQQws7cMfyNRiM7d+7kxx9/5NChQ2i1Wrp3787OnTv5+OOPzT7jF9Z38VoWBqPc7xdCCHGz24b/vHnzWLVqFcnJybRs2ZI333yTwYMH4+DgQLt27axZo7gHkTHpqFTQpK6HrUsRQghhZ24b/gsWLKBp06bMmzePkJCQkul5eXlWKUzcn8jYdAL83HFxuqduHUIIISqx2z7qN2LECK5du8aYMWN4+umnWbduHfn5+dasTdyjwiIjl+OzaCZD+gohhLiF24b/rFmzOHDgALNmzcJoNPLPf/6Tzp078/bbb6NSqVCpVNasU5TBxauZGE2K3O8XQghxS3cc5MfJyYmhQ4fy3XffsX37dkaPHs2hQ4dQFIWpU6cyZ84cIiMjrVWrMFNkbDoOahWN61a3dSlCCCHskFkj/AH4+/szdepU9u7dy8KFC2nevDnffPMNQ4cOZeDAgeVZoyijyJh0Amq546ST+/1CCCFuVuZ0UKvV9OjRgx49epCWlsa6detYu3ZtedQm7kF+oYErCdn0f8D8sReEEEJULWaf+d+Kl5cXzz77LJs3b7ZUPeI+XbiaiUmR+/1CCCFu777CX9ifG/f7G9WR+/1CCCFuTcK/komMSSewdjUctQ62LkUIIYSdkvCvRPIKDMQkZsslfyGEEHck4V+JRMVloCjI4D5CCCHuSMK/EomMTUfjoCawTjVblyKEEMKOSfhXIpEx6TSqUw2tRu73CyGEuD0J/0oiJ7+IuKQcud8vhBDiriT8K4nzsRkoyP1+IYQQdyfhX0lExqaj06ppWFvu9wshhLgzCf9KIjI2ncZ1qqNxkF+pEEKIO5OkqASy8vRcS86V+/1CCCHMIuFfCZyPzQDkfr8QQgjzSPhXApEx6TjqHPD3c7d1KUIIISoACf9KIDI2nSZ1PeR+vxBCCLNIWlRwGTmFJKTm0czfw9alCCGEqCAk/Cu4yNh0QO73CyGEMJ+EfwUXGZOBs6MD9Wu62boUIYQQFYSEfwV3/s/7/Q5q+VUKIYQwjyRGBZaeXUhier483y+EEKJMJPwrsMgYud8vhBCi7CT8K7CI2HRcnTTUk/v9QgghykDCvwKLjEmnST0P1CqVrUsRQghRgUj4V1ApmfmkZBbI/X4hhBBlJuFfQUXGZADQXO73CyGEKCMJ/woqMjYdN2cttX1cbV2KEEKICkbCvwJSFIXI2HSa1Zf7/UIIIcpOwr8CSs7IJy2rUO73CyGEuCcS/hVQZGwGIM/3CyGEuDcS/hVQZEw61V111PJ2sXUpQgghKiCbhf+VK1cICQlh1apVJdMiIiIYM2YMbdq0oUePHixZssRW5dktRVGIiE2naX0PVHK/XwghxD2wSfgXFRUxbdo08vLySqalpaUxduxY/P39WbNmDS+99BLz5s1j5cqVtijRbl1PyyMzRy/3+4UQQtwzjS02+vnnn+PqWvoRtZUrV6LVapk5cyYajYbAwEBiYmJYtGgRI0eOtEWZdunG/X55vl8IIcS9svqZ/5EjR/jpp5/44IMPSk0/evQo7du3R6P563gkLCyMuLg4EhMTrV2m3YqMScfT3RFfT2dblyKEEKKCsmr4Z2VlMX36dN58801q1apVal5iYiJ+fn6lpvn6+gKQkJBgtRrtmaIonP/z+X653y+EEOJeWfWy/8yZM2nTpg2DBw++aV5BQQE6na7UtBufCwsLy7wtb2/LvunOx8fdouu7FzHXs8jKKyK0ZS27qOd+VYafwZ5Ie1qetKllSXta3r22qdXCf/369Rw9epSff/75lvOdnJzQ6/Wlpt347OJS9kfaUlNzMJmUshd6Cz4+7iQnZ1tkXffjjxPXAKjj5WwX9dwPe2nTykLa0/KkTS1L2tPybrSpWq0q8wmv1cJ/zZo1pKam0qNHj1LT3333XZYtW0bt2rVJSkoqNe/G5/+9HVBVRcak413NCR8Pud8vhBDi3lkt/D/++GMKCgpKTevbty9Tpkxh0KBBbN68me+//x6DwVDS6e/gwYMEBATg4+NjrTLtlunP8fzbNK5h61KEEEJUcFbr8FezZk38/f1L/Qfg5eVFnTp1GD58OPn5+cyYMYOLFy+yfv16li1bxsSJE61Vol27mpRDboFBhvQVQghx3+xmeF9vb2+WLFlCbGwsQ4cOZd68eUydOpVhw4bZujS7UPJ8vwzuI4QQ4j7ZZJCfG86fP1/qc3BwMCtWrLBRNfYtMiYdXw9nvKo52boUIYQQFZzdnPmL21MUhQtXM2ha38PWpQghhKgEJPwrgIwcPbkFBurXlGdkhRBC3D8J/wogPiUXgNo1XO+ypBBCCHF3Ev4VwI3wryPhL4QQwgIk/CuAaym5uDlrcXfR2roUIYQQlYCEfwUQn5pL7Rqu8jIfIYQQFiHhb+cURSEhJVfu9wshhLAYCX87l5lb3NO/tnfZX24khBBC3IqEv52Tzn5CCCEsTcLfzsljfkIIISxNwt/Oxafk4uqkoZqrztalCCGEqCQk/O1cfIr09BdCCGFZEv52TFEUrklPfyGEEBYm4W/HsvKK/uzpL+EvhBDCciT87VhJZz8fCX8hhBCWI+Fvx0rCX878hRBCWJCEvx2LT8nFxVGDh5v09BdCCGE5Ev52THr6CyGEKA8S/nasuKe/DOsrhBDCsiT87VRWnp6c/CJq13CzdSlCCCEqGQl/O5VQMqyvnPkLIYSwLAl/O3VNevoLIYQoJxL+dio+JRdnRwc83R1tXYoQQohKRsLfTsWn5FLbW3r6CyGEsDwJfzsVn5JLLRnTXwghRDmQ8LdD2Xl6svKKqCPhL4QQohxI+NuhkmF9JfyFEEKUAwl/OxSfmgcgZ/5CCCHKhYS/HYpPycVRJz39hRBClA8JfzskPf2FEEKUJwl/OxSfkiuX/EWFoygKiqLYugwhhBkk/O1MTn4Rmbl66ewnKpy8je9RuP9bW5chhDCDhL+diZcx/UUFZMq4jinxIkXn92LKSrJ1OUKIu5DwtzPxqfKYn6h4iqLDi/9HpUZ/cqttixFC3JWEv52JT87FUeuAVzUnW5cihNkM0eGofRqgbdKVovP7MeVl2LokIcQdSPjbmfjUXGp5u6CWnv6igjDlpmNKuowmoC26NgNAMaI/tc3WZQkh7kDC385IT39R0Rj+vOSvCWiHupovmsAwis79ilKQY+PKhBC3I+FvR/IKisjIkZ7+omIxRB9DXd0PB8/aAOjaDARDIfqzO21cmRDidqwe/omJibz66quEhYUREhLChAkTuHDhQsn8iIgIxowZQ5s2bejRowdLliyxdok2E59SPKyvhL+oKJSCHIzxkWgatCuZ5uBVD4f6bdCf+QWlqMCG1Qkhbseq4a8oCv/4xz+4fv06S5YsYfXq1Tg5OTF27Fhyc3NJS0tj7Nix+Pv7s2bNGl566SXmzZvHypUrrVmmzUhPf1HRGGJPgmJCE9Cu1HTHkEFQmEtRxB7bFCaEuCONNTeWkpJCYGAgL774Ig0aNABg8uTJDBkyhKioKA4dOoRWq2XmzJloNBoCAwOJiYlh0aJFjBw50pql2sS15Fx0WjXe1aWnv6gYDFeOonL1Qu3ToNR0h5qNcKjdHP2pbWhb9kLloLVRhUKIW7Hqmb+Pjw9z584tCf6UlBSWLFmCr68vTZo04ejRo7Rv3x6N5q9jkrCwMOLi4khMTLRmqTZR3NPfVXr6iwpBKSrEcPUMmoCQW76HQtdmEEpeBkVRv9mgOiHEnVj1zP/v3njjDdatW4dOp+PLL7/E1dWVxMREGjVqVGo5X19fABISEqhZs6bZ6/f2drNovT4+7hZd360kpuUR3KiGVbZlD6rKz2kt1m7P3Miz5BiLqNGmK8632LZSI4z4440wntlGjS4DUKkdrFqfJcg+alnSnpZ3r21qs/B/9tlnGT16ND/88APPP/8833//PQUFBeh0ulLL3fhcWFhYpvWnpuZgMlnmJSM+Pu4kJ2dbZF23k1dgICWzAC83Xblvyx5Yo02rElu0Z/7JA+DoSrZzPXJus21VcH8MOz4n4dButI0esGp990v2UcuS9rS8G22qVqvKfMJrs0f9GjduTHBwMO+99x516tRh+fLlODk5odfrSy1347OLS+Ue6z7hz85+dWpY9oqFEOVBMRkwxJ5E4x9yxzN6jX8Ias/a6I9vQlFMVqxQCHEnVg3/pKQkfv7551Kv/VSr1TRq1IjExET8/PxISkq66TsAfn5+1izV6q7JC31EBWKMjwR9Htr/6eX/v1QqNbrWAzGlX8UYe9JK1Qkh7saq4Z+QkMC0adMIDw8vmVZUVMS5c+cIDAwkNDSU8PBwDAZDyfyDBw8SEBCAj4+PNUu1uviUXHQaNTWqO9u6FCHuynAlHDSOONRteddlNY3CULnXoPD4plIH/kII27Fq+AcHBxMWFsbbb7/N0aNHiYqK4vXXXycjI4OxY8cyfPhw8vPzmTFjBhcvXmT9+vUsW7aMiRMnWrNMm4hPzcXP2wW1Wnr6C/umKCYMMcfR1AtGpdHddXmVWoOu9QBMSZcwJkRaoUIhxN1YNfzVajWff/457dq14+WXX2bEiBFkZmby/fffU69ePby9vVmyZAmxsbEMHTqUefPmMXXqVIYNG2bNMm0iPiVXBvcRFYIp6TJKXgaagLZmf0fbpAsq52roj28qx8qEEOayem//6tWrM2vWrNvODw4OZsWKFVasyPbyCw2kZRXKC31EhVB0JRzUDmjqtzb7OyqNDm3wQ+gPr8SYdBkH34blWKEQ4m7kxT52ICH1zzH9vSX8hX1TFAVD9DEcajdH5Vi2/VXX4kHQuaA/sbmcqhNCmEvC3w5cSyl+9alc9hf2zpR+FSUr8aax/M2h0jmjC+qNITocY/q1cqhOCGEuCX87kJCSh8ZBjY+H9PQX9s1w5RigQhMQck/f1wb1AY0O/Yktli1MCFEmEv52oHhMf+npL+yfITocdc1A1C4e9/R9tZM72uYPYrj4B6bsZMsWJ4Qwm4S/HbiWLD39hf0zZSVjSo1F26Dsl/z/TtfqIVCp0J/caqHKhBBlJeFvYwV6A6lZBRL+wu4Zoo8B3NP9/r9Tu3qibdKZovP7MOVlWKAyIURZSfjbmPT0FxWFIToctVc91NV873tdutYDwGSk6PQOC1QmhCgrCX8bi/9zTP86PhL+wn6Z8jIxXr9QpoF97kRd3Q9Nww7oz+1GKcy1yDqFEOaT8Lex+JRcNA4qfDycbF2KELdliDkOKGju837/3+naDIKiAvRnd1lsnUII80j429i1lFz8vFxwUMuvQtgvQ/QxVO4+qL3qWWydDt71cKjfmqLTO1CKCi22XiHE3Uni2JiM6S/snaLPw3jtHJoG7VCpLPs4qmObQSiFORRF7rHoeoUQdybhb0OFeiOpmdLTX9g3Q+wpMBnuu5f/rTj4NcahVlP0p7ahGA13/4IQwiIk/G0oIS0XBenpL+ybIToclXM1HGoGlsv6dSGDUXLTKbrwW7msXwhxMwl/G5Ke/sLeKQY9hrjTaPzbolKVz58LhzotUdcIQH9iC4rJVC7bEEKUJuFvQ/EpeTioVTKmv7BbxmvnoKgATQPLPOJ3KyqVCl3IIJSsRAxXjpTbdoQQf5Hwt6H4P3v6axzk1yDskyE6HLTOONRuUa7b0QS0Re1RC/2JTSiKUq7bEkJI+NuU9PQX9kwxGTFEH0fj3xqVg6Zct6VSqdG1GYgpNQ5j7Ily3ZYQQsLfZgqLjCRn5Ev4C7tlvB6FUphTLr38b0XT6AFU1f3I37MYY2qcVbYpRFUl4W8j11PzUIA6Ev7CThmij4GDBk29YKtsT6XW4NJ/KiqNjvwtH2HKuG6V7QpRFUn420h8anFP/1oS/sIOKYqCIfoYDnWCUGmtN/S0upoPzgNfA0Uhb/OHmLKTrbZtIaoSCX8biU/JxUGtoqan9PQX9seUEoOSk4rWgmP5m8vBozbOA19DKSogb/NH8tpfIcqBhL+NxKfkUlN6+gs7ZbhyFFRqNP4hNtm+g3d9XPq/ipKfRf7mDzEVZNukDiEqK0keG4lPyaW2t4utyxDilgzRx3Co1RSVk5vNanCo2Qjnfi9hykomf/PH8upfISxIwt8GigxGkqSnv7BTpowETBnxaALKb2Afc2lqN8e5zwuY0q+St22uvP1PCAuR8LeBhNQ8FAUJf2GXiqLDAewi/AE09Vvh1HMSpqRL5O/4DMWgt3VJQlR4Ev42cKOnv4S/sEeGK8dQ+zRA7eZt61JKaBuG4tR9PMZr58jf+QWKSd4AKMT9kPC3gfiUXNQqFTU95Z6/sC+mnDRMyZetNrBPWWibdMaxy1MYY09SsHuRvARIiPtQvmN2iluKT8mjppczWo0cewn7Yog+BlCuL/K5H7oWPaGokMJDP1GgccSp+7hye9ugEJWZhL8NXEvJpa5c8hd2yBAdjtqjFg4etW1dym3pWvdHKSpAf2wDhVpHHDuNRqVS2bosISoUOWS2siKDiaT0PLnfL+yOUpCDMeG8XV7y/1+6do+gDe5H0dmd6I+ssXU5QlQ4cuZvZYlp0tNf2CdD7AlQTGhsMKpfWalUKhwfGAWGQvQnNoHWEceQwbYuS4gKQ8Lfyq6lSE9/YZ8MV8JRuXqhrhFg61LMolKpcOzyFEpRIfoja1BpndAF9bF1WUJUCBL+VhafkotKBX5e0tNf2A+lqBDD1TNom3WvUPfPVSo1Tj3GU2DQU/j796g0jmibdbN1WULYPbnnb2Xxqbn4erpIT39hVwxxp8BYVCEu+f8vldoBp16TcKgbRMG+byi6dMjWJQlh9+TM38pkTH9hjwxXwlE5uuHg18TWpdwTlYMW574vkL/1Ewp2L0LlXA1N7ea2Luu+GFNjKTy8Cu5zREOVczUcO49B7VzNQpWJykBOP63IYDSRmJZPHR+53y/shyknDcOVI2gahaFSO9i6nHum0jji3O9lVG5eFB5ahaIoti7pnhnT48nf/BGmlBhAdV//GWJOkL9FXowkSpMzfytKTMvDpCjU9pbwF/ZDf2obKKBr1d/Wpdw3lc4ZXZuBFO5fhjE+Ak2dFrYuqcxMWUnkb/4QVCpcHp6Burrffa3PEHeK/O2fkbf1E1wGvoZK62ShSkVFZvUz/5ycHN5//3169uxJSEgIw4YNY9euXSXzIyIiGDNmDG3atKFHjx4sWbLE2iWWG+npL+yNqSCbosg9aBo9gNq9hq3LsQhtk86oXDzQH//Z1qWUmSknjbzNH6EYi3AeOP2+gx9AU68VTr0mY0q+Qv52eTGSKGb18P/nP//Jnj17mD17NuvXr6dv375MmTKFP/74g7S0NMaOHYu/vz9r1qzhpZdeYt68eaxcudLaZZYL6ekv7E3RmV/AUISuzUBbl2IxKgctulYPYYyPwJh40dblmM2Un0X+5g9RCrJxGTANB6+6Flu3tkE7nHqMxxgfWfxiJKO8GKmqs+pl/+TkZHbs2MFXX31Fp06dAJg0aRJ//PEHq1evpnHjxmi1WmbOnIlGoyEwMJCYmBgWLVrEyJEjrVlquYhPycXHwxmdtuLeVxWVh6LPR39mJ5qAtjh42u9wvvdC27wHhcd/Rn9iM879XrJ1OXelFOaSv+UjTDlpOA+choNPA4tvQ9u4E0pRIYUHvqXg169w6jmpQvfxEPfHqmf+zs7OfP3117Rv377UdJVKRWZmJkePHqV9+/ZoNH8dk4SFhREXF0diYqI1Sy0X8al51JFL/sJO6M/9Cvo8dCGDbF2Kxd0Y8McQcxxj2lVbl3NHij6fvK1zMKUn4NzvRTTl+MSFrsWDOD7wGIbLRyjY9w2KIm9GrKqsGv5ubm5069YNNze3kmknTpzg4MGD9OjRg8TERPz8St/j8vX1BSAhIcGapVpccU9/GdNf2AfFoKfo9DYc6gaVy1mmPdC17A0aR/QnNtu6lNtSDIXkb/8UU3I0Tr0no6kbVO7b1LXqj67dIxiiDlD42/cV+qkIce9s2tv/0qVLTJkyhdatW/PYY4/x7bffotPpSi1z43NhYWGZ1u3t7Xb3hcrAx8f9vr4fez0Lo0mhaQPv+15XZSHtYFllac+s8G3k5Gfh22MEzpX29+COQ/t+ZB7ahEffJ9F6lr3zXHnuo4qxiOurPsOYEIXvIy/h1rJruW3rpm33e5I0rYnMgxtxqe6O14NPWmVkR/k3b3n32qY2C/8jR44wZcoUateuzVdffYVWq8XJyQm9vnRP1BufXVzK1kkuNTUHk8kyR7Q+Pu4kJ2ff1zrOXkgGwF3ncN/rqgws0abiL2VpT8VkIPe3dahrNiLbuT45lfj3YGrUEw5v4fqvq3DqOrZM3y3PfVQxGSnY9SWGK8dx7DaOfN825Fv596AED0WbmU3mH+vJL1Lj2Pbhct2e/Ju3vBttqlarynzCa5NBfjZu3Mi4ceNo2bIly5cvx8PDAwA/Pz+SkpJKLXvj8//eDqho4lNyUQF+MrqfsDHDxUMo2Sk4thlUocbxvxdqFw+0TbtSdP4Aptx0W5cDgKKYKNi7BMOVozh2fBxds+42qaP4xUhj0DTuhP7oWvSnt9ukDmEbVg//n3/+menTp9O/f3+++uqrUvf/Q0NDCQ8Px2D46zGUgwcPEhAQgI+Pj7VLtahrKbnU8HDCUXr6CxtSFBP6E5tRe9XDoX5rW5djFbrW/UEx2kW4KYpC4YHlGC78jq79MHTB/Wxaj0qlxqn7s2gC2lH4x4/oI/fatB5hPVYN/+vXr/PWW28RFhbGa6+9RkZGBsnJySQnJ5ORkcHw4cPJz89nxowZXLx4kfXr17Ns2TImTpxozTLLRXxqLnVqWLYfghBlZYg+jikjHl2bgZX+rP8GdTVfNIEPUHTuV5SCHJvVoSgKhYd+oijiV3StB6ALGWyzWv6u+MVIz+FQL5jCfcsounjQ1iUJK7DqPf8dO3aQn5/PwYMH6dq1dOeWtm3b8uOPP7JkyRLee+89hg4dio+PD1OnTmXYsGHWLNPiDEYT11PzaBXobetSRBWmKAr6E5tQVfNF0zDU1uVYla7NQAwX/0B/dieO7R6xSQ36YxspOrUNbYte6DqMsKuDL5WDBuc+U4pfjPTrItDo0Aa0tXVZohxZNfyfeuopnnrqqTsuExwczIoVK6xUkXUkZ+RjNMmY/sK2jNfOYUq+gmPXsVVucBcHr7po/EPQn/kFXXA/VDpnq25ff2or+vB1aJp0wbHzaLsK/htuvBgpb/NHFOxcgOqhl63y6KGwDXmrnxXE/zmmv7zNT9iS/sQmVC4eaJt0tnUpNqELGQSFuRRF7rHqdvXnfqXw4E9oGobi1G0cKpX9/tlV6Zxx6f8qao9a5G+fh+F6lK1LEuXEfvfCSuTGC31qeUn4C9swJl7EGB+BrlV/VA5aW5djEw6+gTjUbo7+1HYUY5FVtll04XcKD/wXh/qtcXpwYoW44qJycsN5wDTUbl7kb52LMfmKrUsS5UDC3wriU3KpUd0JR539/8MXlVPh8U2oHN3QNrfNY2X2QhcyGCUvg6Ko38p9W0VXjlKwZzEOtZvh3Pt5VA4V5w3qapfqOA+cjsrJlbwtH9v9EMmi7CrO3lhB5eQXceFqJvV8pae/sA1jWhzG2BPo2g+t8u9yd6jdHLVPQ/QnNqNt2rXczsQNcacp2PUlat+GOPd7CZVGd/cv2Rm1mxcuA6eTt/F98la/Cfd5u6LQpx7aPi+jdvW0UIXifkj4l6P8QgNzV54kO6+I/mH1bV2OqKL0JzaD1ql4rPsqTqVSoQsZRMGOeRguH0bbqKPFt2GIjyR/xzzUnnVweeiVCn3Apa7mi8vDM4qvlNzPS4AUE0XndmHY8hHOg/+J2kmG+bU1Cf9yUlhk5LPVp4hNzOb5ocE0rS9Hu8L6TFlJGC4dQhv8ECpH6XMCoPFvg9qzNvrjm9EEhlm0A54x6TL52z9F7e6D84BplaLN1dV8cWw/9L7X4x3UgYQfZ5O/5WNcBr2OSiejndqS3PMvB0UGE1+sO82FuAz+MbgFbRrXsHVJoorSn9gCagd0rWw7kpw9UanU6NoMwpR+FWPMSYut15gaR97WOaic3HEe+Bpq52oWW3dl4OwfhHOfKZjSrpK39ROUorK9rE1YloS/hRlNJr7aeJYzl9MY278ZHZrXtHVJoooy5aZTFHUAbdNuqF08bF2OXdEEhqFyr0HhiZ8t8kpbU0YC+Vs+QqXR4TJoutzXvg1N/dY49ZyEKekS+Ts+QzHo7/4lUS4k/C3IpCgs3RzBsahkHu/dmK6ta9u6JFGF6U9tA8WErlV/W5did1RqB3StB2BKuowxIfK+1mXKTiZv80cAuAycjtq9Yr+HpLxpG4bi1H08xmvnyN+5AMVkuPuXhMVJ+FuIoih8t/08f5xNZFi3hvRpX8/WJYkqTCnIoShiD5rAMNTVJIxuRdukCyrn6uiPb7rndZhy08nb9CFKUUHxs/EetSxYYeWlbdIZxy5PYYw9QcHuRSim++hMKO6JhL8FKIrCT7svsudEPAM7+jOoU4CtSxJVnP7ML2AoRNdmkK1LsVsqjQ5dq34Yr53FmHS5zN835WeRv/kjlIJsXAZMxcFbnugpC12LnjiGjcRw+TAF+75BuZ+nCUSZSfhbwIYDV9hxJI5e7eoyrFtDW5cjqjhFn4/+7E40AW1x8Kpj63Lsmrb5g6BzQX+ibGf/SmEu+VvmYMpOxrnfyzj4BpZThZWbrvUAdG2HYIjaT+HvP1ik/4Uwj4T/fdp2KJaNv0XTJbgWj/dubJcv7BBVS1HEHijMlbN+M6h0zuiC+mCIPoYx/ZpZ31GKCsjbNhdT+lWc+76Apnazcq6yctO1ewRtcD+Kzu5Ef2SNrcupMiT878Ovx6+x8teLdGjuy9j+zVBL8AsbUwx69Ke24VCnJQ6+chXKHLqgPqBxLB4M6S4Ug5787Z9hSrqMU6/n0NRrZYUKKzeVSoXjA6PQNuuB/sQmCu+jD4Ywn4T/Pfr9TALfbT9P60Bvxg9qgVotwS9sryjqN5T8THRtBtq6lApD5eSGtnkPDBcPYspKvu1yislA/s4vMMZH4NT9WbQN2luxyspNpVLh2OUpNI06oj+yurjPiihXEv734GhkEks2R9DM35PJQ4PQOEgzCttTTEb0J7eg9m2IQ+3mti6nQtG1eghUKvSntt5yvmIyUbB7EcbYkzh2earKvha5PKnUapx6jEcT0JbC37+nKHKfrUuq1CS1yujUpVS+2niWwNrVeWF4MFqNvKlP2AfDpUMo2ck4thksfU/KSO3qibZJF4rO78OUl1FqnqKYKNi3FMPlwziGPYauRU/bFFkFqNQOOPV6Doe6QRTs+4aiS4dsXVKlJeFfBudj0/li3Wnq+Ljy8ohWOOnk1QjCPiiKCf2Jzag96+Lg39rW5VRIutYDwGSk6PSOkmmKolD4+/cYog6gazsEXWsZMKm8qRy0OPd9AQe/xhTsXoQh5ritS6qUJPzNdCk+k09Xn6JGdSdefawNLk5aW5ckRIm8qKOY0q+hCxlo0RfVVCXq6jXRNAxDf243SmEuAPojayg6uwttcD907R6xbYFViErjiPNDr6CuUZ/8nV9guHrW1iVVOvJXwgxX4jOZ+9NJqrlomTYqhGouFe/d3KLyUhSFjN/XonL3QdOwg63LqdB0bQZCUQH6sztJ/20N+hOb0DbvgeMDo+RWipWpdM649J+Kurof+Ts+w3D9gq1LqlTkuvVdJCSm8sPqvQQ6wlN9mlItLw5jnq2rqvgK9K4Y03NtXUalYEqPpzD+Ao5dnkallj4o98PBux4O9VujP/4zeqMBTaOOOHZ5SoLfRlRObjgPeI28n/+P/K2f4PzgBFTO7rYu6/6p1KhrBKBS2+78W8L/LlJ2LGWC9s9LTrtAct8ypB0ty8HNS3qgW4hjyGDyYk/i0jQMddfxchvFxtQu1XEZ+Bp5G98nf8dnti7HYhw7jS4eY8JGVEolHU8xNTUHk+n+f7Ss9DQ8DInoC4osUJW4oXp1FzIz5RDAUmo0bERGkYuty6g0TJnX8W3YkJRU2UctxcfHneTk7Hv+vlKQgzG57O9gsEsqNQ61mqJyuL++YzfaVK1W4e3tVqbvypn/XVTz9MLbx/++dlpxMxcfd3KlTS1G6+EO0p4Wo67uJ7dQ7IzKyU1GVLQguZ4lhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVI+EvhBBCVDES/kIIIUQVo7F1AeVFrVbZ9fqEtKmlSXtanrSpZUl7Wp5arbqndlUpiqKUQz1CCCGEsFNy2V8IIYSoYiT8hRBCiCpGwl8IIYSoYiT8hRBCiCpGwl8IIYSoYiT8hRBCiCpGwl8IIYSoYiT8hRBCiCpGwl8IIYSoYiT8hRBCiCpGwv82TCYT8+bNo2vXrrRu3ZpnnnmGmJgYW5dVoV2+fJmmTZve9N+qVatsXVqF89VXX/H444+XmhYREcGYMWNo06YNPXr0YMmSJTaqrmK6VZu++uqrN+2v3bp1s1GF9i8nJ4f333+fnj17EhISwrBhw9i1a1fJfNlHy+5ubXrP+6gibmnevHnKAw88oOzZs0eJiIhQxo8fr/Tq1UspKCiwdWkV1pYtW5S2bdsqSUlJpf7Lz8+3dWkVynfffac0bdpUGTVqVMm01NRUpUOHDsq//vUv5eLFi8ratWuVVq1aKT/99JMNK604btWmiqIoAwYMUObPn19qf01NTbVRlfZvypQpSp8+fZTffvtNiY6OVr788kulWbNmyu+//y776D26U5sqyr3vo5X2rX73Q6/Xs3TpUqZNm0b37t0BmDt3Ll26dGHr1q088sgjti2wgoqKiiIwMBAfHx9bl1IhJSYm8s4773Do0CEaNGhQat7KlSvRarXMnDkTjUZDYGAgMTExLFq0iJEjR9qoYvt3pzbV6/VER0cTHBws+6wZkpOT2bFjB1999RWdOnUCYNKkSfzxxx+sXr2axo0byz5aRndr03bt2t3zPiqX/W8hIiKCvLw8HnjggZJpbm5utGjRgqNHj9qwsort/PnzBAYG2rqMCuvs2bO4urqyceNGWrduXWre0aNHad++PRrNX8fzYWFhxMXFkZiYaO1SK4w7temlS5cwGAw0atTIRtVVLM7Oznz99de0b9++1HSVSkVmZqbso/fgbm16P/uohP8t3NgRa9asWWq6r68vCQkJtiipUoiKiiIpKYlRo0bRqVMnnnjiCQ4cOGDrsiqMnj17MmfOHOrVq3fTvMTERPz8/EpN8/X1BZB99g7u1Kbnz59Ho9Hw1Vdf0bNnT/r06cPs2bPJzs62QaX2z83NjW7duuHm5lYy7cSJExw8eJAePXrIPnoP7tam97OPSvjfQn5+PgA6na7UdJ1Oh16vt0VJFV5eXh5Xr14lOzubV155hUWLFhEUFMT48eP5/fffbV1ehVdQUHDL/RWgsLDQFiVVeBcuXACgbt26LFy4kOnTp7Nnzx6ee+45TCaTjauzf5cuXWLKlCm0bt2axx57TPZRC/jfNr2ffVTu+d+Ck5MTUHzP7+87q16vx8XFxVZlVWguLi6Eh4ej1WpL2jQoKIhLly6xePHikvtZ4t44OTnddGB647Pss/dm6tSpTJw4kWrVqgHQpEkTatSowahRozhx4gRt27a1cYX268iRI0yZMoXatWvz1VdfodVqZR+9T7dq0/vZR+XM/xZq1aoFQFJSUqnpSUlJN90KEOZzdXW96ci/SZMmxMfH26iiysPPz++W++uNeaLs1Gp1yR/VG5o2bQrIZeo72bhxI+PGjaNly5YsX74cDw8PQPbR+3G7Nr2ffVTC/xaaNWuGm5sbhw8fLpmWk5PDuXPn6NChgw0rq7iOHz9OSEgIp06dKjX9zJkzNG7c2EZVVR6hoaGEh4djMBhKph08eJCAgADpqX6Pnn/+eZ577rlS027sv9IJ8NZ+/vlnpk+fTv/+/fnqq69K3auWffTe3KlN72cflfC/BZ1Ox5NPPsncuXPZuXMnkZGRvPLKK9SsWZO+ffvaurwKKSgoiLp16/LWW28RHh7OpUuXmD17NsePH79p5xVlN3z4cPLz85kxYwYXL15k/fr1LFu2jIkTJ9q6tAprwIAB7N69m0WLFhEbG8uePXuYMWMG/fr1Kzm7En+5fv06b731FmFhYbz22mtkZGSQnJxMcnIyGRkZso/eg7u16f3so3LP/zZefPFFjEYjb7/9Nvn5+bRr147FixffdNlamEer1bJ48WLmzJnDiy++SFZWFi1btmTp0qW0aNHC1uVVeN7e3ixZsoT33nuPoUOH4uPjw9SpUxk2bJitS6uwBg4ciMlkYvHixXzxxRe4u7szcOBAXnnlFVuXZpd27NhBfn4+Bw8epGvXrqXmtW3blh9//FH20TIyp03vdR9VKYqilFfhQgghhLA/ctlfCCGEqGIk/IUQQogqRsJfCCGEqGIk/IUQQogqRsJfCCGEqGIk/IUQQogqRp7zF6KSe+ONN1i3bt0dlzl//ryVqik2ZswYDAYDP/74o1W3K4QoJuEvRBXg5eXF559/busyhBB2QsJfiCpAq9XSvn17W5chhLATcs9fCAEUX4qfNm0aixYtonPnzrRt25ZJkyYRFxdXarno6GhefPFFunTpQuvWrXnyySc5cuRIqWVyc3N5//336d69O61bt+aRRx5h27ZtN21z2bJl9OzZk+DgYIYOHcpvv/1WMk9RFObPn0+fPn0ICgqie/fuzJ49m7y8vPJpACGqEAl/IaoIg8Fwy/9MJlPJMvv27eOnn37ijTfe4O233yYiIoIxY8aQm5sLwMWLFxk2bBjR0dG8/vrrfPjhhwCMHTuWP/74AwCTycQ//vEPVq9ezVNPPcX8+fNp0aIFL7/8Mnv37i3Z1smTJ9mwYQOvvfYac+bMoaCggOeff560tDQAvvrqK7755hvGjRvH119/zbhx41i5ciXvv/++tZpMiEpLLvsLUQUkJibSsmXLW8575plneP3114HiM/ZVq1bh7+8PQOPGjRk2bBhr165lzJgxzJ8/H41Gw3fffVfyHvGePXsyaNAgPvzwQ9atW8f+/fsJDw9n7ty5DBgwAICuXbsSHx/PgQMH6N69OwAODg4sWbIELy8vABwdHZkwYQInTpygZ8+eHD16lNatW/PEE08A0LFjR9zd3UsORIQQ907CX4gqwNvbm6+++uqW8/7+LvU2bdqUBD9Ay5YtqVevHkeOHGHMmDEcPnyYbt26lQQ/FPcnGDRoEPPnzyc7O5ujR4+iVqvp06dPqe0sW7as1OfAwMCS4AeoX78+AFlZWQB07tyZ//znPzz55JP07t2bzp07M3z48HtrACFEKRL+QlQBGo2G4ODguy5Xs2bNm6Z5e3uTmZkJQGZmZqmDhRtq1KgBQHZ2Nunp6VSvXh2tVnvHbTk7O5f6rFYX34W8cRti7NixuLm5sWbNGj788EOMRiP+/v5MmzaNvn373vVnEULcntzzF0KUSE9Pv2lacnIy3t7eAFSvXp3k5OSblklKSgLAw8MDd3d3srKyMBgMpZY5f/48J06cMLsWlUrFiBEjWLFiBQcPHmTu3Lm4uLjwyiuvlGxPCHFvJPyFECWOHz9OSkpKyefTp09z7do1OnbsCEBoaCj79u0ruTQPxR0Jt2zZQosWLXBxcaF9+/YYjUZ2795dat3//ve/mTNnjtm1jBo1ilmzZgFQrVo1BgwYwKRJkzAYDCQmJt7PjylElSeX/YWoAoqKijh69Oht5zdp0gSAwsJCnn32WSZPnkxubi6ffvopjRo1YsiQIQBMmTKFffv28eSTTzJhwgQcHR1Zvnw5cXFxJX0KevToQUhICP/6179ITEzE39+fbdu2ceLECZYsWWJ2zaGhoSxZsoTq1avTvn17UlNTmT9/Pg0aNKB58+b30RpCCAl/IaqAtLQ0Ro8efdv5X3/9NVDc4a9Hjx68/fbbKIrCgw8+yOuvv45OpwOKe///8MMPfPLJJ7z11lsAtGrVim+//ZbQ0FCguBf/4sWLmTNnDgsXLiQ3N5fGjRuzcOHCkisI5nj55ZdxdnZmw4YNLF68GBcXFzp37sxrr72GRiN/uoS4HypFURRbFyGEsD0Zb1+IqkPu+QshhBBVjIS/EEIIUcXIZX8hhBCiipEzfyGEEKKKkfAXQgghqhgJfyGEEKKKkfAXQgghqhgJfyGEEKKK+X/Z8rNhKfu5AQAAAABJRU5ErkJggg==\n", |
|
|
1789 |
"text/plain": [ |
|
|
1790 |
"<Figure size 576x576 with 1 Axes>" |
|
|
1791 |
] |
|
|
1792 |
}, |
|
|
1793 |
"metadata": {}, |
|
|
1794 |
"output_type": "display_data" |
|
|
1795 |
}, |
|
|
1796 |
{ |
|
|
1797 |
"data": { |
|
|
1798 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAH9CAYAAACHq3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABqx0lEQVR4nO3dd3gUVdsG8Hu2pffeE0ISWhJK6KGFKkW6AoJSFFGQFwTEru8n+lpAUBAI0hQBld6LiPTeew0JAUIS0nuyu/P9EYhGWkh2d3az9++6YtiZ2dlnzzVm7z1z5owgiqIIIiIiMlsyqQsgIiIiaTEMEBERmTmGASIiIjPHMEBERGTmGAaIiIjMHMMAERGRmWMYIDJBQ4YMQVhYGHr37v3Ybb788kuEhYVhyJAhOnnNsLAwTJ8+/ZmeM2TIEAwcOPCx62/duoWwsDCsWLGiquURURUwDBCZKJlMhgsXLiA+Pv6hdaIoYvPmzYYviohMEsMAkYmqXbs2rK2tsWXLlofWHT16FOnp6ahZs6YElRGRqWEYIDJRFhYWiImJeWQY2LhxI1q1agV7e/tyyzUaDZYtW4YePXogMjISbdq0wVdffYXCwsJy2+3cuRN9+vRBREQEunfvjqNHjz70GsXFxZg6dSratm2LevXqoVu3blizZo1u3+R9RUVFmD17Nrp06YLw8HB07NgRsbGx0Gg0ZdskJiZizJgxaNasGSIiItC7d29s3LixbL0oipg1axY6duyIevXqoU2bNpgyZQry8/P1UjORKVFIXQARVV7Xrl3x5ptvIi4uDjVq1AAAqNVqbNu2DZ988gmWLFlSbvuPP/4Ya9aswbBhw9CkSRNcvHgRs2fPxsWLF7Fo0SIIgoDdu3fjzTffRIcOHfDWW28hISEBY8aMeei133rrLRw+fBhvvPEGatWqhZ07d+Ldd99Ffn4+XnrpJZ29R1EUMWrUKJw8eRKjRo1C7dq1ceTIEXz33XeIj4/H//73P2i1WowcORKOjo6YMmUKLCwssHLlSkyYMAGenp6IiopCbGwsFi1ahAkTJiAoKAiXL1/Gt99+i8LCQkyZMkVn9RKZIoYBIhP24Nv/li1bMHr0aADAvn37UFxcjHbt2pULA9euXcPKlSvx1ltvlX24t2nTBh4eHnj33Xexc+dOtG/fHrNnz0ZYWBhmzpwJQRAAAE5OTnjnnXfK9nXgwAHs2rULX331FXr16lW2L61WixkzZqBv376wtLTUyXvcs2cPDhw48NBrWVlZYebMmXjllVfg6uqKuLg4TJ06FR06dAAANGvWDB4eHmXv4dixY4iMjMSgQYMAAM2bN4ednR3y8vJ0UieRKeNpAiITplKp0KFDB2zdurVs2caNG9G+fXtYWVmV2/bIkSMAgB49epRb3qNHD8jlchw5cgSFhYU4ffo0OnToUPYhCpT2QMhkf/+5OHjwIAAgJiYGarW67KdDhw7Izs7GmTNndPYejxw5AplMhq5du5Zb/iAYHDlyBC4uLggLC8NHH32E9957D5s3b0Zubi7ef/99NGrUCADQsmVL7N+/H4MHD8bixYtx9epV9O3bFy+//LLOaiUyVewZIDJxXbt2xerVq3H9+nX4+Pjgzz//xIwZMx7aLisrCwDg6upabrlCoYCTkxOys7ORlZUFURTh7OxcbhulUlluWUZGBgCgcePGj6wpOTm5Km/pobrt7e2hUqnKLXdzcwMAZGdnQxAELFq0CLGxsfjjjz+wevVqyOVytGrVCv/973/h6emJoUOHwtbWFqtWrcLXX38NjUaDgIAATJw4EZ06ddJZvUSmiGGAyMQ1b94cTk5O2LJlC4KDg6FSqdCiRYuHtnNwcAAA3Lt3DzY2NmXLS0pKkJGRAScnJzg5OUEmkyE1NbXcc7VabVmYAAA7OztYWlril19+eWRNvr6+unhrZXVnZ2ejuLi4XCBISUkBUHoKAwBcXFzw/vvv4/3330dcXBx27NiB2bNn45NPPkFsbCwEQUD//v3Rv39/ZGdnY9++fZg3bx7Gjx+Pv/76C+7u7jqrmcjU8DQBkYlTKBTo1KkTtm3bhi1btqBLly5QKpUPbdekSRMAwIYNG8ot37RpEzQaDRo1agSVSoWoqChs3bq13Ej93bt3o6SkpOxx06ZNUVhYiJKSEoSHh5f9JCQkYMaMGSgoKNDZ+2vSpAm0Wu1D8yasW7cOANCoUSOcPHkSLVq0KDs9UaNGDYwcORJNmzbF7du3AQADBgzAZ599BgCwt7dH165dMWrUKKjVap32ZBCZIvYMEFUD3bp1w2+//YYbN25g0aJFj9ymZs2a6N27N2bPno3CwkI0adIEly5dwuzZs9G4cWO0bdsWADB+/Hi8/PLLGDlyJAYNGoTk5GTMmjWrXMBo3bo1mjRpgjFjxuD1119HSEgILly4gFmzZqFBgwbw9vZ+pvoPHDjwyIF8MTExaN26NZo2bYpPP/0UycnJqF27No4ePYoFCxage/fuqFWrFoqKimBlZYWJEyfizTffhLu7O06fPo19+/bhzTffBFB6SmPBggVwcHBAVFQU0tLSMGvWLAQFBaF27drPVC9RdcMwQFQNNG7cGO7u7pDJZIiKinrsdp9//jkCAgKwatUqLF68GO7u7hg8eDDGjBkDuVwOAGjYsCEWLFiA6dOnY/z48fDw8MBHH31U7vI7mUyGefPm4fvvv8eiRYtw7949uLu7Y+DAgY+8DPFpNm/e/MgZE319feHv74/Y2Fh8//33WLZsGdLS0uDj44Nx48ZhxIgRAErnXFi0aBGmTZuGb775BllZWWXbvPrqqwCAcePGwcrKCuvWrcP8+fNhbW2Nli1bYtKkSVAo+KeQzJsgiqIodRFEREQkHY4ZICIiMnMMA0RERGaOYYCIiMjMMQwQERGZOYYBIiIiM2c219NkZORBq9XNhRMuLrZIS8vVyb6oFNtUt9ieusc21S22p+49aFOZTICTk83Tn/APZhMGtFpRZ2Hgwf5It9imusX21D22qW6xPXWvsm3K0wRERERmjmGAiIjIzDEMEBERmTmGASIiIjPHMEBERGTmGAaIiIjMHMMAERGRmWMYICIiMnMMA0RERGaOYYCIiMjMMQwQERGZOYYBIiIiM8cwQEREZOYYBoiIiMwcwwAREZGZYxggIiIycwwDzyg1swA7jyVKXQYREZHOMAw8o0sJGZi+/ARuJudIXQoREZFOMAw8o0ZhbrBQybHj+C2pSyEiItIJhoFnZG2pREwjPxw6n4yc/GKpyyEiIqoyhoFK6BYdBLVGiz2n70hdChERUZUppC7AFAV42qN2gBP+OnkbXZr6Qy5jpqKKEzUlEPOzIOZnQpufCTEv8+9/52cC6mLI/SOgrNkcMlsXqcslIjPAMFBJHRr5Yubqszh19R4ahblLXQ4ZAVHUQsxNh5iXUfbBLuZnQZufUfrhf/9DXyzKffjJggyCtSMEawdAFFF8ZCWKj6yC3CsMypAWUNSIgqCyNvybIiKzwDBQSZE1XeHqYIkdx24xDJghsbgA2vRb0KQnQpuWWPo7/RZQUlh+Q0EOwdoBgrUjZPZuELxC/35s7VgaAGycIFjaQhD+7mHSZqeg5OpBlFw7gMI9C4H9S6AIaABlSHPI/cIhyPi/LhHpDv+iVJJMJqBdQx+s+Os6ElNy4eduK3VJpAeiqIWYnVr2oa9NT4QmLRFiTurfG6msIHf2gzK0JWROvpDZupR+4D/iQ76iZPbusGjUE6qGz0ObGoeSqwegvn4E6rgjECxsoQhuCmVIc8jcgyEIgg7fMRGZI4aBKmgV4Y11e2/gz+O3MPS5WlKXY5ZErRYoKYBYXACIWgACIOD+b+Efv/H37wfLBAEC/l4najXQZt2FNu0mtGm3/v62ry4q20Zm7wG5WxBkYa0gd/GDzMUfgo2z3j6QBUGA3D0YcvdgiM0HQpN4DiVXD6Dk8h6UXPgTgr0HlCHNS8cXOHjopQYiqv4YBqrA1kqJZnU9cej8XfRrGwxbK6XUJZkMUasG1CUQ1UWAuhhFmntQJ98DigsgFudD/MfvsmUPPvTL1hc83C2vKxY2pd/2a7WGzNkXchd/yJy8ISgs9PN6FSDIFFAE1IcioD7E4nyobxxHydUDKD6+DsXH10LmURPKms2hDG4KwE6yOonI9AiiKIpSF2EIaWm50Gqr/lbFkkJYZ1xCdmYeACA9uxCr98ShSW13RAS7AvjHazypaUURIsSHlj387ycsE+//R7z/A+39h+Lfy//9+6F//8Ojvt3+89v049Zp1BDVxYC6GKLm/m91MaAuuv/77w/9B9tB1Dy+bf5JrigdOKeygqCyvv9jBUFlBfzj34LSCpDJ/n5P/2zff77vsnYUy7cfRAACZA4ekDn7lXbxm0j3uzY3DSXXDkF99QC0GbcBQQ7rmg2hDWgCRUB9CHKGVF1wc7NDaipnHtUVtqfuPWhTmUyAi8uznbpmGHhGJVf2o3DXjzqoSGIPutDLPuQfFT4e+sdj9iUDFCoIChWgsLj/W/X3b/m/Hiss/rVeCQdXZ2QXCg9/0PODrMJEUYQ2PRElVw9Ae/0QNHmZgIUNlMFNoQxpwfEFVcQPL91ie+oew0AF6CoMAICjsgDpaX8fxGevp+GXP67g5c5hqBvkjHLfosv97f3XH+Jyf5j/fV67AuuB0sFpwr/Pj//zPLns/lMf/BZ08oEg/qOXojID5P6Nfxh0y9XFGndPHUbJ1f1Q3zgBaIohOHhCGdKiNBjYuUpdosnhMapbbE/dq0oY4JiBSlA6ukNWYlX2uF6kK8SD6dh6oQDhkeZxmaHwpNMHJDlBJofCLxwKv3CIxQVQxx1FydX9KD62GsXHVkPuXbt0/oKgqNKeGCIyawwDOiCXydCugQ9W7Y7D7dRc+LjxMkMyHoLKCsparaGs1Rra7FSUXDuAkisHULh7Qen8BYGNoAxtCbl3HQicTZPILDEM6EjrSG+s2xePP0/cxsudw6Quh+iRZPZusGjYE6oGz0Obch0lV/ah5PoRqK8dhGDtWNpbENoScicfqUslIgNiGNARO2sVmtXxwIFzSejbpgZsLDnwjYyXIAiQe9SE3KMmLJoPgvrmaZRc2YfiM1tRfHozZK6BUIZGQxnakqcRiMwA+wR1qH0jXxSXaLHvTJLUpRBVmKBQQVmjMay7jIfN4BmwaD4IEEUUHfgFuUvfRuHB5dD+c8ZFIqp22DOgQwGedgjxdcDOE7fQMcoPMhkH15FpkVnZQxXeCarwTtCkxKH47DaUnPsDJee2l44tCO8MuUdNXqJIVM2wZ0DH2jfyRWpmIc7EpUldClGVyN1rwKr9G7AZOBWqiOegvnMRBes/R/7a/0PJtUOls0gSUbXAMKBjDUPd4GRngT+PJUpdCpFOyGydYdH0BdgO+hYW0S9DLC5A4c65yFs+CUWnNkIsfMQtmYnIpPA0gY4p5DK0beCDNXvikJSWBy8XG6lLItIJQWkBVZ0YKGu3hSbxDIrP/oHiIytRfHw9lKEtoQzvCLmjt9RlElElMAzoQZtIb2zYX3o3w8GdeJkhVS+CIIPCvz4U/vWhSU9EydntKLmyFyUX/4LcLwKq8E6Q+9TluAIiE8LTBHpgb6NCk9oe2H/2LvILeV6Vqi+5sx8s24yAzaBvoWrUG9p78SjYPBX5Kz9C8aXdpTemIiKjx54BPWnfyBcHzt3F/rNJ6NjYT+pyiPRKZmUPi0Y9oarfFeprh1B8djuK9ixC0f4lkDl6Q+bkU3oraGcfyJx8Idi6sOeAyIgwDOhJkJc9gn3s8eeJW2gf5QsZ//CRGRDkSijDWkERGg1N0iWob56BNuM2NEmXob528O8NlZaQOfmUhQOZs29pYLB2kK54IjPGMKBH7Rv5Yt76CzgXl46IYBepyyEyGEEQoPCuDYV37bJlYnE+tOm3ocm4DW36LWgzbkMdfxLipT1/P8/S7u9g4OwLuZMPZI5egIUNexKI9IhhQI+iwtzxm8017DieyDBAZk9QWUPuGQK5Z0i55dqC7LJwoE2/BU36LZRc2QeUFP69kdIKMjtXyOxcIdi53f+3GwR7V8hsXTllMlEVMQzo0YPLDNftu4G76fnwdLaWuiQioyOzsofMpw7gU6dsmSiKEHPTSkNCVjK0OanQ5tyDNjsV2tsXAHVRuX0IFrYQ7N0gs3UpDQv2bqUh4UFYUKgM/baITArDgJ61re+NjQfisfP4LQzqGCp1OUQmQRAECPd7Av5NFEWIRbkQs+8HhJx7EHNSSwND+i1ob54CNOWv4hHs3CB3C4LcvQZk7jUgdwmAoLQw0LshMn4MA3rmYGuBxrXdse9sEnq3rgErCzY5UVUIggDB0g6wtIPcvcZD60VRCzE/C2LOvb97FNIToUm5DnXckfs7kZUOYHQPgsytRmlIcPKBIJMb+N0QGQd+MhlA+0a+OHQ+GQfO3UX7Rr5Sl0NUrQmCDIKNE2Dj9OjxCalx0KTcgCY1DiU3jgMPBjDKVZC7BpT2HNzvRRDs3DhwkcwCw4ABBHs7IMjLDn8ev4V2DX14mSGRRGRW9pDdnz0RuH/KIScVmpQ4aFJvQJsSh5ILf6FEsw1A6VgEmXsQ5G41kOsfBLXaEjIbJwg2jhAUPM1A1QfDgIF0aOSHHzdewIX4dNQL4pUFRMZAEAQI9u6Q2btDWbMZAEDUqksvgUy9UdaLUHxrPVJOiOWfrLKGzMYRgnVpOJDd/y3YON3/txMEK3ueeiCTwDBgIFG13PHbzqvYcewWwwCRERNkCshdAyB3DQBqtwUAiCVFcFQVIi3xFsT8TGjzMiDmZ0DMy4Q2PwPa20lQ52cBouZfOxMgWDlAsHaEYO0Ima0zBFtXyOxcSq98sHWBYO0AQeDM8CQthgEDUSpkaFPfBxsPxCMlIx/uTrzMkMhUCEoLqFxdoRAfP0OiKGohFuT8HRLyMiDmZ0LMz4A2LxNibhpKkq8CRXnlnyiTQ7Bxvn9ZpEvppZC2zpDZut4PDM68NJL0TtIwEBsbi127dmH58uWP3SYxMRGff/45Tpw4AaVSieeeew4TJkyAlZXpTTLStoEPNh9KwM4TtzGgfcjTn0BEJkMQZBCsHQBrB+DhKyLLiMUF0OamQ8y9B21uWul8CjmlvzW3L0KdnwGI5U9JCFb2EGzv9yaorAC5ClAoIciVgEIF4cFjhQqQqyAolMC/15VtYwEoLTkwksqRLAwsXboU06dPR4MGDR67TXZ2NgYOHAhfX1/Mnz8fgiDgs88+w+jRo7Fw4UIDVqsbTnYWaBTmhr1n7qBXqyBYqtgxQ2RuBJUV5M4+gLPPI9eLWjXEvIyygFAWGHLToM24DbGkEFCXQNQUA+oSAOIj9/NEMjkES7vSkGFl/49/20Fmaf/3cqv7yzlYstoz+KdRcnIyPvnkExw+fBhBQUFP3HbNmjXIycnBrFmz4OpaGrVnzJiBdu3a4dixY4iKijJEyTrVoZEfjlxMwcFzd9GuIS8zJKLyBJni/pTLbk/dVhRFQKsG1MUQNSWlv9UlgOZBWCj+R3B4sE0RxMI8iAXZ0BZkQyzMhjYrGWJB9kMzO5ZRWPwjNNiV/laoSkOFXAnI5IBcAcgUEO7/hlwBQaa4v04JQS4vXX5/myKNA7R5Ymkvhcq69HkmShS193tzxPvZTHzCY/HBkyD+47FgYQtBJt3YEYO3/vnz52FjY4P169fjhx9+QEJCwmO3TUhIQFBQUFkQAABvb284Ozvj8OHDJhkGgn3sEeBhhx3Hb6FNA15mSESVJwhC6ekAuRK6+EsiqotKxz3cDwliQU5pYHjwU5hTOh4iLbE0cGjVpbM9atR41h6K/H8vkCtLT4GorErDgcoKgvLB4wfLLIEH61TWpT0WMhkgPPgRyv4t/POxrPz6cutELcSSQojF+RCLC4HifIjFBWU/KCkov65s2wLgwTZa9aPe4jNR1GwOq5jXq7yfSr++oV8wJiYGMTExFdrWzc0NqampUKvVUChKS83NzUVWVhbS09P1WabeCIKALk39Ebv+PI5dSkGT2h5Sl0REBAAQFBYQ7CyAR0wD/TSiVlv6oagpgajVlAYErRri/d/QqP8OD1o17G0UyLqXUfbBWvbhWvLggzgfYn723x+8JYWo1CmRqhIEQPkgkNwPIdaOkDl4lS2DQlW63YNIJsju/7N0Wekqoexx6a8HvQClj+VetQz+1v7JqPtlunbtijlz5uDzzz/HhAkToNFo8Omnn0IQBBQXFz/TvlxcbHVam5ubXaWf+1wrW2w+nIBNh26iS3Qw5DL2DgBVa1N6GNtT99imumUTVvFtRVELsbgQ2qL8v3+KCwGttrSbXqst/Zb/oMteq4Uoav61Xry/XlsaXkQtIAiQqawhs7SGzOIfPyoryCytIZjYYMvKHqNGHQYCAgIwc+ZMfPzxx1i+fDksLS0xZMgQ1KtXD7a2z/bhnpaWC61WN6nSzc0Oqak5VdpHt2YBmLvuPLbsvY6mddg7oIs2pb+xPXWPbapblW9Pi9IfC6fSf+qDCKAIQJEaQK6eXkT3HrSpTCY88xdgow4DANCmTRvs3r0bqampsLOzg6WlJVq0aIE+ffpIXVqVRIW5w9s1Huv330DjWu6QsXeAiIgkYtTTXh0/fhyDBw9GcXEx3NzcYGlpiWPHjiEjIwMtWrSQurwqkckEPN8yEElp+ThyKVnqcoiIyIwZVRjQaDRITU1FYWEhACA4OBhXr17FF198gcTERBw8eBDjx4/HgAED4OfnJ3G1VRdVyx0+rjbYsD9eZ6cwiIiInpVRhYGkpCRER0dj8+bNAABHR0fMmzcPly5dQo8ePfD+++/jxRdfxIcffihxpbohEwQ8Hx3E3gEiIpKUIIqiWXwlNbYBhA9oRRGfLDwCrVbEZyOamu3YAQ7O0i22p+6xTXWL7al7VRlAaFQ9A+ZIJgjo2fJ+78BF9g4QEZHhMQwYgYZhbvB1s8F6jh0gIiIJMAwYAZkg4PmWQbibno/D7B0gIiIDYxgwEqW9A7ZYvz8eGq1W6nKIiMiMMAwYCZkgoGd0IJLT83HkQorU5RARkRlhGDAiDUIf9A7cYO8AEREZDMOAESntHQhCckYBDl/g2AEiIjIMhgEj0yDUFX7uHDtARESGwzBgZB70DqRkFODQefYOEBGR/jEMGKEGIa7wd7fFhgPsHSAiIv1jGDBCAnsHiIjIgBgGjFT9EFf4e9hiA8cOEBGRnjEMGKmy3oHMAhw8x94BIiLSH4YBI1a/pisCPOywkWMHiIhIjxgGjNg/ewcOnLsrdTlERFRNMQwYuciaLgjwLO0dUGvYO0BERLrHMGDkHvQOpGYW4iB7B4iISA8YBkxAZLALAj3tsIG9A0REpAcMAybgQe/AvaxCjh0gIiKdYxgwERHBLgjy4tgBIiLSPYYBE8HeASIi0heGARMSXsMFQV727B0gIiKdYhgwIf/sHdh/NknqcoiIqJpgGDAx4TWcUcPbHhsPJLB3gIiIdIJhwMQ86B1Iy2bvABER6QbDgAmqF+SMYG97rNodh3uZBVKXQ0REJo5hwAQJgoDh3WpDqxXx3cozKChSS10SERGZMIYBE+XlYoM3etdDUlo+Ytefh1YrSl0SERGZKIYBE1Y30BkvdQzBmetp+P2va1KXQ0REJkohdQFUNe0a+uJOWj62H02El4s12tT3kbokIiIyMewZqAYGtK+JekHO+GX7FVxMyJC6HCIiMjEMA9WAXCbDqJ714OFsjdlrzuJuer7UJRERkQlhGKgmrC0VGNsvAoIg4LuVZ5BXWCJ1SUREZCIYBqoRd0crjOkTjnuZBZi95hxnKCQiogphGKhmQv0c8UqXWriYkIFlO65CFHnJIRERPRmvJqiGoiO8kJSWhy2Hb8LLxRodo/ykLomIiIwYw0A11bdtMO6m5+PXP6/C09ka4TVcpC6JiIiMFE8TVFMyQcBrPerA180Wc9edw+17eVKXRERERophoBqzVCnwn34RUCrk+G7FaWTnF0tdEhERGSGGgWrO2d4Sb/UNR2ZuMX5YfRYlal5hQERE5TEMmIFgbweM6FYbV29l4eetl3iFARERlcMBhGaiaR0PJKXlYf3+eHi72uC5ZgFSl0REREaCYcCM9IwOwt30fKzcdR0eztZoGOomdUlERGQEeJrAjAiCgOFdayPQyw7zNpzHzeQcqUsiIiIjwDBgZlRKOd7qGwEbSyW+W3kGmblFUpdEREQSYxgwQ462FhjbNwJ5hSWYtfosStQaqUsiIiIJMQyYqQBPO7zWvQ7i7mTj562XeYUBEZEZYxgwY43C3PF8y0DsP3cXfxxNlLocIiKSCMOAmXs+OggNQ93w21/XcP5GutTlEBGRBBgGzJxMEPBq99rwdrXB3HXnkJyRL3VJRERkYAwDBEuVAm/1jQAAfL/yDAqK1BJXREREhiRpGIiNjcXAgQOfuE1KSgrGjx+Ppk2bomnTpvjPf/6Du3fvGqhC8+HuaIU3e9VDcnoBftxwAVoOKCQiMhuShYGlS5di+vTpT91u7NixSEpKwsKFC7Fo0SLcvXsXb7zxhgEqND+1A50xsEMITl27h7V746Quh4iIDMTgYSA5ORmjRo3C1KlTERQU9MRt09PTcfLkSYwcORJ169ZFnTp1MHLkSFy4cAFpaWkGqti8xDT0QasIL2w8kIAjF5OlLoeIiAzA4GHg/PnzsLGxwfr16xEZGfnEba2trWFtbY21a9ciNzcXeXl52LhxIwIDA+Ho6GiYgs2MIAgY3CkMNX0csHDzRU5ZTERkBgweBmJiYjBt2jT4+fk9dVtLS0v873//w5EjRxAVFYWoqCgcO3YM8+bNg1wuN0C15kmpkGF073qwsVRi5qozyM4vlrokIiLSI0GUcOq5d999FwkJCVi+fPkj14uiiOnTp+Py5csYOXIkNBoNZsyYgaysLPz666+ws7MzcMXm5VpiJibP2osQfyd89noLKBW8+ISIqDoy6lsYb968GUuXLsWuXbvKPvjnzJmDdu3a4ffff8eIESMqvK+0tFxotbrJPW5udkhNrf7d5w6Wcgx9rhbmbbiAmb+ewJDOYXp7LXNpU0Nhe+oe21S32J6696BNZTIBLi62z/Rcow4Dx48fR0BAQLkeAAcHBwQFBSEhIUHCysxHs7qeSEzJxZbDN+Hnbou2DXykLomIiHTMqPt9PT09cfPmTRQUFJQty8/Px61btxAYGChdYWamb5tgRAS7YOkfV3D5ZobU5RARkY4ZVRjQaDRITU1FYWEhAKBXr16Qy+UYP348Ll26hEuXLuHtt9+GUqlE3759Ja7WfMhkAkb2qAs3RyvMXnsO97IKnv4kIiIyGUYVBpKSkhAdHY3NmzcDANzd3bFs2TIAwNChQzF06FDI5XIsX74cDg4OUpZqdqwtFXirbzjUGhGzVp1FUbFG6pKIiEhHJL2awJA4gFA3zlxPw3crTiOqljtG9awLQRB0sl9zblN9YHvqHttUt9ieuleVAYRG1TNAxi8i2AX92gXj6KUUbDrIQZxERNUBwwA9sy5N/NGsrgfW7InDqav3pC6HiIiqiGGAnpkgCBjapRb8Pe0wb8N53L6XJ3VJRERUBQwDVCkqpRxv9QmHSinHvPXnodZopS6JiIgqiWGAKs3Z3hJDOoUhMSUX248mSl0OERFVEsMAVUmjMDc0CHHFun03kJKRL3U5RERUCQwDVGWDO4VBIRfw09bLMJMrVYmIqhWGAaoyJzsL9GsTjIsJGThw7q7U5RAR0TNiGCCdaNPABzV9HPDbzmvIzi+WuhwiInoGDAOkEzJBwCtdwlBQpMZvf16VuhwiInoGDAOkMz5utujaLAAHzyfjXFya1OUQEVEFMQyQTnVvEQBPZ2v8vO0yb2ZERGQiGAZIp5QKOV7pEoZ7WYVYt++G1OUQEVEFMAyQzoX5O6F1pDe2Hb2JhLu8KxkRkbFjGCC9eKFdMOytVVi85RI0Wk5VTERkzBgGSC+sLZUY1DEUCck5+OPoLanLISKiJ2AYIL2JCnND/ZquWLsvDqmZBVKXQ0REj8EwQHojCAIGdwqFIAhYso1TFRMRGSuGAdIrZ3tL9G1dA+dupOPwhWSpyyEiokdgGCC9i2noixre9lj+51XkFpRIXQ4REf0LwwDpnUwmYGiXWsgvVOO3nZyqmIjI2DAMkEH4utuiS1N/7D97Fxfi06Uuh4iI/oFhgAymR4tAuDtZ4eetl1FcwqmKiYiMBcMAGYxKKccrXWohJbMA6/fHS10OERHdxzBABlU7wAnR4V7YevgmbiZzqmIiImPAMEAG90JMTdhYKfDT1kvQajn3ABGR1BgGyOBsrZQY2CEEN5Jy8OdxTlVMRCQ1hgGSRNPaHgiv4YLVe+KQllUodTlERGaNYYAkIQgChnQOhQgRS7ZzqmIiIikxDJBkXB2s0KdVDZy5noY/jyZKXQ4RkdliGCBJdYjyQ5ifI2auOIVjl1KkLoeIyCwxDJCkZDIBY/tFIMzfCXPXnWcgICKSAMMASc7KQoFPX2uGGt72iF1/Hscvp0pdEhGRWWEYIKNgbanE+BciEehph7nrzuHkFQYCIiJDYRggo2FlocD4F+ojwNMOs9eew8mrDARERIbAMEBGxdpSgbdfqA9/DzvMXnMOp67dk7okIqJqj2GAjI61pQITXoyEn7stZq85i9MMBEREesUwQEbJ2lKJCQPqw8fNFj+sOYsz1xkIiIj0hWGAjJaNpRITB9SHj6stZq0+i7NxaVKXRERULTEMkFGzud9D4O1qg5mrzuIcAwERkc4xDJDRs7VSYuKABvB2scb3q87i3A0GAiIiXWIYIJNga6XExIEN4OVijZmrzuJ8fLrUJRERVRsMA2QySnsI6sPDyQrfrzyDCwwEREQ6wTBAJsXOWoWJAxvA/X4guJiQIXVJREQmj2GATI69tQqTBjSAm6MVvltxGpcYCIiIqoRhgEySvY0KkwY2gKujFWasPI3LNxkIiIgqi2GATNaDQOBib4npK07jRlK21CUREZkkhgEyaQ42KrwzsAGsLRT4ZfsViKIodUlERCaHYYBMnoOtBXq3qoEbSdk4dpl3OiQielYMA1QttAz3go+rDVbtug61Rit1OUREJoVhgKoFmUxAv7bBSMkswO5Td6Quh4jIpEgaBmJjYzFw4MDHrp85cybCwsIe+fPee+8ZsFIyBRHBLqjl74j1+2+goEgtdTlERCZDsjCwdOlSTJ8+/YnbDB8+HPv27Sv3M27cOFhaWuKVV14xUKVkKgRBQP92NZGTX4Ith29KXQ4RkclQGPoFk5OT8cknn+Dw4cMICgp64rY2NjawsbEpexwfH4+5c+di8uTJqFWrlr5LJRMU5GWPxrXcsf3oTbRr4AMnOwupSyIiMnoG7xk4f/48bGxssH79ekRGRj7Tc7/88kuEhIRgwIABeqqOqoO+bWpAoxGxbt8NqUshIjIJBu8ZiImJQUxMzDM/7/Tp0/jrr7+wePFiyGQc90iP5+5kjbYNfLDzxC10auwHb1ebpz+JiMiMGTwMVNZPP/2E8PBwNG/evFLPd3Gx1Wk9bm52Ot0f6bZNhz1fDwfO3cWGgwn4cHhTne3XlPAY1T22qW6xPXWvsm1qEmEgLy8PO3bswEcffVTpfaSl5UKr1c3sdG5udkhNzdHJvqiUPtq0S1N/rNkTh/0nEhHq56jTfRs7HqO6xzbVLban7j1oU5lMeOYvwCbR375v3z5otVp06tRJ6lLIhHSK8oODrQor/rrGaYqJiJ7AJMLAsWPHULduXTg4OEhdCpkQC5UcvVvVwPU72TjOaYqJiB7LqMKARqNBamoqCgsLyy2/ePEiQkNDJaqKTFnLcE94uVhj1W5OU0xE9DhGFQaSkpIQHR2NzZs3l1uemprKXgGqFLlMhv5tayI5owB7T3OaYiKiR5F0AOGXX35Z7rGvry8uX7780Hbbtm0zVElUDUXWdEGorwPW7buBZnU9YWVhEuNmiYgMxqh6Boj04cE0xdn5Jdh2hNMUExH9G8MAmYVgHwdEhblh25FEZOUWSV0OEZFRYRggs9G3TTDUGi3W7Y+XuhQiIqPCMEBmw8PZGm3qe2PPqTtISsuTuhwiIqPBMEBm5fmWQVAqZVi1O07qUoiIjAbDAJkVexsVnmvijxNXUnHtVpbU5RARGQWGATI7nZr4wcFGhd85TTEREQCGATJDlioFekYH4drtLJy8ek/qcoiIJMcwQGapVaQXPJ2tsXLXdWi0nKaYiMwbwwCZJblMhn5tg3E3PR97TydJXQ4RkaSeKQzk5+cjOTkZAKBWq7Fo0SJMmTIFx44d00txRPrUIMQVNX1KpykuKtZIXQ4RkWQqHAbOnz+Pdu3aYcmSJQBK7yvw1VdfYfXq1XjllVewe/duvRVJpA+CIOCFdjWRlVeMbUc5TTERma8Kh4Fvv/0W3t7e6NOnD4qLi7F69WoMGDAAJ06cQLdu3TBnzhx91kmkFzV9HdAw1A1bDt9Edl6x1OUQEUmiwmHg9OnTGD16NGrUqIFjx46hoKAAvXv3BgD06NHjkXcbJDIFfdvUQEmJFuv335C6FCIiSVQ4DGi1WtjY2AAA9u7dC3t7e0RERAAAiouLoVKp9FMhkZ55udigdX1v7D51B3fucZpiIjI/FQ4DYWFh2Lx5M1JTU7FlyxZER0dDEAQUFxdj6dKlCA0N1WedRHrVs2UgrCwUmLnqDHILSqQuh4jIoCocBsaOHYsNGzagdevWyMrKwmuvvQYA6NKlC44fP47Ro0frrUgifXOwtcCYPuFIyy7ErNVnUaLm3ANEZD4UFd2wefPm2LBhA86ePYsGDRrAy8sLAPDKK6+gWbNmCAsL01uRRIYQ6ueI4d1qY976C1i85SJe7V4HgiBIXRYRkd5VOAwAgJ+fH/z8/Moe37t3D1FRUQgJCdF5YURSaFbHEykZBVi79wY8nKzxfHSQ1CUREeldhU8TFBQU4OOPP8Yvv/wCAPjjjz/Qtm1b9OvXDz169CibjIjI1PVoEYgW9Tyxdt8NHDx/V+pyiIj0rsJhYNq0aVi3bl3ZFQVTp05FaGgoZsyYAY1Gg2nTpumtSCJDEgQBr3SphTA/RyzafBFXEjOlLomISK8qHAZ27NiBCRMmoHfv3rh27RoSEhIwcuRIdO7cGaNHj8a+ffv0WSeRQSkVMozuEw4XByvMWn0WyRn5UpdERKQ3FQ4DaWlpZZcP7tu3DwqFAtHR0QAAV1dX5OfzjyVVL7ZWSozrXzqXxozfT/OSQyKqtiocBry8vJCQkAAA+PPPPxEeHg5bW1sAwLFjx+Dp6amfCokk5OFkzUsOiajaq3AYeP755zF16lSMGDECR48eRb9+/QAAU6ZMQWxsLHr16qWvGokkFerniOFda+NKYiYWb7kEURSlLomISKcqfGnhmDFjoFAocPz4cbz77rvo27cvAODcuXMYPnw4Xn/9db0VSSS1ZnU9kZL54JJDK15ySETVyjPNMzBq1KiHlv366686K4bImPVoEVg6B8G+G3B3skKzujw1RkTVwzOFgbS0NMyfPx+HDx9GTk4OnJyc0KhRIwwfPhxubm76qpHIKDy45PBeViEWbr4IZ3tLhPo5Sl0WEVGVVXjMwJ07d9CrVy8sWbIENjY2CA8Ph0qlwpIlS9C7d28kJSXps04io6BUyDCGlxwSUTVT4TAwdepUKBQKbN68GUuWLMG3336LX375BZs3b4aFhQWmT5+uzzqJjEa5Sw5X8C6HRGT6KhwG9u/fj7feegv+/v7llvv7+3PSITI7ZZccZhXwkkMiMnkVDgMajQZOTk6PXOfo6Ii8vDydFUVkCnjJIRFVFxUOA7Vq1cLatWsfuW7t2rW8cyGZpWZ1PdErOggHz9/FhgPxUpdDRFQpFb6a4M0338Tw4cMxbNgwdOvWDW5ubkhNTcXGjRtx+PBhfP/99/qsk8ho9WgZiOT7tz12d+Qlh0RkeiocBlq0aIGvvvoK33zzDT788MOy5a6urvjf//6Hjh076qVAImMnCAKGPlcLadm85JCITFOFTxMAQM+ePbF3715s2rQJy5Ytw6ZNm7B37144ODhgzJgx+qqRyOj985LDmavO4G46LzkkItPxTGEAKP0WFBwcjIYNGyI4OBiCIODmzZv4888/9VEfkcmwtVJifP8IyGQCpv9+Ctn5xVKXRERUIc8cBojo8dydrDG2bwQyc4sxc+UZFJdopC6JiOipGAaIdCzYxwGvda+DuDvZ+HHjBWh5ySERGTmGASI9iKrljhdiauL45VSs+Oua1OUQET3RM92oiIgqrlNjP9zLLMS2I4lwdbBC+0a+UpdERPRITwwDL730UoV2kpycrJNiiKoTQRAwsEMI0rILsWzHFbg4WKJ+TVepyyIiesgTTxPIZLIK/Xh5eSEqKspQNROZDJlMwOvP14W/hx3mrjuH+LvZUpdERPSQJ/YMLFmyxFB1EFVbFio5xvWLwJSfj+O7FWfwwcuN4OpgJXVZRERlOICQyAAcbC0wrn8EitVafLfiDPILedtjIjIeDANEBuLjZosxvevhbno+flhzDmoNb3tMRMaBYYDIgGoHOmPoc7VwMSEDP/G2x0RkJHhpIZGBtQz3wr2sQqzbdwNujlZ4PjpI6pKIyMwxDBBJ4PmWgUjNLMDafTfg4mCJluFeUpdERGaMYYBIAg9ue5yRU4TFWy7B2c4CtQOdpS6LiMwUxwwQSUQhl2F073rwcLbGrDXncPtentQlEZGZYhggkpC1pRLj+kdApZBhxu+nkZVbJHVJRGSGJA0DsbGxGDhw4BO3KSkpwbRp09CqVSvUr18fgwcPxsWLFw1UIZH+uTpYYWy/COQUFGPGyjMoKuZtj4nIsCQLA0uXLsX06dOfut2nn36KFStW4LPPPsOqVavg7OyMV199FdnZnNaVqo8gL3uMer4ebibnIHb9eWi0nIOAiAzH4GEgOTkZo0aNwtSpUxEU9ORLqhITE7Fy5UpMmTIFbdu2RXBwMD7//HNYWFjgzJkzBqqYyDDqh7hiUIdQnLp2D0u2XeEcBERkMAYPA+fPn4eNjQ3Wr1+PyMjIJ267b98+2NjYoF27dmXL7OzssHPnTkRHR+u7VCKDa9/IF92aB2DP6TtYszdO6nKIyEwY/NLCmJgYxMTEVGjb+Ph4+Pr6YteuXZgzZw6SkpJQp04dvPvuuwgODtZzpUTS6NO6BnLyi7HxQALsrFXoGOUndUlEVM0Z9TwDubm5uH37NmbMmIFJkybB0dERc+fOxaBBg7Bp0ya4ulb83vAuLrY6rc3NzU6n+yO26T+9/VIUijVHsXzHVfh42KNNQ99n3gfbU/fYprrF9tS9yrapUYcBpVKJ3NxcTJ06FWFhYQCAb7/9Fm3atMGqVavw+uuvV3hfaWm50Gp1cw7Wzc0Oqak5OtkXlWKbPmxYlzCkZxVi+vIT0JaoUa+GS4Wfy/bUPbapbrE9de9Bm8pkwjN/ATbqeQY8PT0hCAJCQkLKlllaWsLPzw+3bt2SsDIi/VMq5BjbNwLerjb4Yc05xN3hFTREpB9GHQaioqIgiiLOnTtXtqywsBCJiYnw9/eXsDIiw7C2VGD8C5Gws1ZixorTSErjLIVEpHtGFQY0Gg1SU1NRWFgIoDQMtGjRApMnT8bRo0dx7do1vPPOOxAEAX369JG4WiLDcLS1wIQB9SETgG9/O4X07EKpSyKiasaowkBSUhKio6OxefPmsmWzZs1Cs2bN8NZbb6Fv377Izs7Gzz//DBeXip8/JTJ1Hk7WGP9CfeQVqvHt76eRW1AidUlEVI0IopnMbMIBhMaNbVoxFxMyMP33UwjwtMPEAQ1goZQ/cju2p+6xTXWL7al71XYAIRGVVzvACSN71EXc7WzMWXsOag2nLSaiqmMYIDIxUbXcMaRzGM5cT8PiLZegNY/OPSLSI6OeZ4CIHq1tAx9k5xdj7d4bsLdW4YWYmlKXREQmjGGAyET1aBGI7LxibD1yE3Y2SjzXNEDqkojIRDEMEJkoQRAwqGMocgtKsOKv67CzUiE6wkvqsojIBDEMEJkwmSBgRLc6yC0oweItl2BrpUT9kIrfs4OICOAAQiKTp1TIMLp3OPw9bDFn3TlcvZUpdUlEZGIYBoiqASsLBca9EAlne0t8t+IMEpJ4HwMiqjiGAaJqwt5ahQkvREKllOGj2AM4c/2e1CURkYlgGCCqRlwdrTBhQAPYWqswY8UZzFl7Dlm5RVKXRURGjmGAqJrxcbXBd2+3Re9WQTh59R4++PEwdp26zcmJiOixGAaIqiGlQoYeLYPwfyOawN/DFj9vvYyvlp7AnXu8BTIRPYxhgKga83S2xqSBDTCsay3cuZeHTxYewdq9cShRa6QujYiMCOcZIKrmBEFAqwhvRAa74tedV7F+fzyOXEzBK13CEObvJHV5RGQE2DNAZCbsbVQY2aMu3n4xEmqNFl8tO4mFmy8it6BE6tKISGIMA0Rmpl6QCz57tSmea+qPA2fv4sMfD+HQ+bsQOcCQyGwxDBCZIQulHP3b1cTHQ6Pg4mCFeRsuYPrvp5GaWSB1aUQkAYYBIjPm72GHD4Y0wqAOIbh6OwsfzT+MLYcToNFqpS6NiAyIAwiJzJxMJqBDlB8ahrrhl+1XsOKv6zh0PhmvdKmFGt72UpdHRAbAngEiAgA421virb7hGN27HnLyizHl52OYseI0riRmSl0aEekZewaIqIwgCGgU5o46gc7YcfwW/jiaiC+XnkCIrwO6NQ9AeA0XCIIgdZlEpGMMA0T0ECsLBXq0CESnxn7Ye/oOth65iRkrzsDP3RZdmwWgcS13yGQMBUTVBcMAET2WhVKODlF+aNvAB4fOJ2PL4QTErj+PNXvi0KWZP1rW84JSwbONRKaOYYCInkohlyE6wgstwj1x8koqNh1MwM9bL2Pdvhvo3Ngfbep7w8qCf06ITBX/7yWiCpPdH1PQMNQNFxIysPlgAn7/6xo2HYxH+0a+6BDlB1srpdRlEtEzYhggomcmCALqBjqjbqAz4u5kY9PBeKzfH4+tR26iTaQPOjfxg7O9pdRlElEFMQwQUZXU8LbHW30jcPteHrYcSsCfx29h54lbaF7PE92aBcDD2VrqEonoKRgGiEgnfFxt8Gr3OujVKgjbDidiz5k7OHIxGW/2CkdEsIvU5RHRE3AYMBHplKuDFV7qFIovX28OT2drzFx1BgfOJUldFhE9AcMAEemFk50FJg9qiFA/R8zfeBFbD9+UuiQiegyGASLSGysLBcb1j0RULXf8/tc1/L7zGrS8VTKR0eGYASLSK6VChlHP18UyayW2HrmJrLxiDOtaCwo5v4sQGQuGASLSO5lMwEsdQ+Fga4E1e+KQW1CCN3vVg4VKLnVpRASeJiAiAxEEAT1aBOKVLmE4dyMN3/x6Ejn5xVKXRURgGCAiA2tT3weje4cjMSUX//vlBO5lFUhdEpHZYxggIoNrGOqGCS/WR1ZeMf73ywncSs2VuiQis8YwQESSCPVzxHsvNYQoivjylxO4kpgpdUlEZothgIgk4+tui/eHNIK9jQrTfjuFk1dTpS6JyCwxDBCRpFwdrPDe4IbwdbPFrNVnsef0HalLIjI7DANEJDk7axUmDayPuoHOWLzlEjYeiIfIyYmIDIZhgIiMgqVKgbH9ItC8rgdW74nDsh1XOVshkYFw0iEiMhoKuQwjuteBnbUK248mIie/GCO61YFSwe8tRPrEMEBERkUmCBjQPgSOthb4/a9rKCjSYGy/cMhlDARE+sL/u4jIKHVp6o+XO4fhbFwaVvx1XepyiKo19gwQkdFq28AHd9LysP1oInxcbdAq0lvqkoiqJfYMEJFRezGmJuoEOuHnbZdx9Vam1OUQVUsMA0Rk1OQyGUb1rAcXB0v8sPos0rIKpS6JqNphGCAio2drpcTYvhEo0Wgxc/UZFJVopC6JqFphGCAik+DtaoPXn6+LxORcLNx0kZMSEekQwwARmYyIYFf0axeMo5dSsPFAvNTlEFUbvJqAiExKlyb+uJWSizV7b8Db1RaNwtykLonI5EnaMxAbG4uBAwc+cZtff/0VYWFhD/0kJCQYqEoiMiaCIGDoc7UQ5GWP+Rsv4FZKrtQlEZk8ycLA0qVLMX369Kdud/nyZbRq1Qr79u0r9+Pr62uAKonIGCkVcozpEw4rCzm+X3UG2fnFUpdEZNIMHgaSk5MxatQoTJ06FUFBQU/d/sqVK6hVqxbc3NzK/cjlcgNUS0TGysnOAm/1jUBmbjFmrzkHtUYrdUlEJsvgYeD8+fOwsbHB+vXrERkZ+dTtr1y5gpo1axqgMiIyNUFe9hjWtRauJGZi2Y6rUpdDZLIMPoAwJiYGMTExFdo2KSkJ2dnZOHDgAH788UdkZ2cjMjISEydORGBgoH4LJSKT0LyuJ26l5mLLoZvwc7NBu4Y8hUj0rIz6aoIrV64AAGQyGb7++mvk5+dj9uzZGDBgADZs2AA3t4qPInZxsdVpbW5udjrdH7FNdc2c2vP1vvWRmlWEpTuuolawKyJq6ucKA3NqU0Nge+peZdtUECWcuePdd99FQkICli9f/thtMjMz4ejoWPY4Pz8f7dq1w7BhwzBq1KgKv1ZaWi60Wt28VTc3O6Sm5uhkX1SKbapb5tieBUVqTPn5GLLzivHR0MZwd7TS6f7NsU31ie2pew/aVCYTnvkLsNFPOvTPIAAA1tbW8PX1xZ07d6QpiIiMkpWFAmP7RQAAZq48g4IitcQVEZkOow4DCxcuRHR0NIqL/75sKCcnB/Hx8QgJCZGwMiIyRh5O1nijVz0kpeXjxw0XoOWUxUQVYlRhQKPRIDU1FYWFpXcli4mJQX5+PiZPnoxr167hzJkzGD16NBwcHNC3b1+JqyUiY1Qn0BkD2tfEqWv3sGZPnNTlEJkEowoDSUlJiI6OxubNmwEAgYGBWLx4MTIyMjBgwAAMGzYMjo6O+Pnnn2FtbS1xtURkrNo38kXrSC9sOpiAQxfuSl0OkdGTdAChIXEAoXFjm+oW2xNQa7T4ZvlJxN/NweRBDVHD275K+2Ob6hbbU/eq9QBCIqLKUMhlGN07HPbWKvzvl+NY+scVTltM9BgMA0RUbdnbqPDhK1FoFeGFv07cxnuxB7HpYDyKSjRSl0ZkVBgGiKhac7BR4eUutfB/I5ogzM8Jq3bH4f15h7D3zB2dnTokMnUMA0RkFrxdbTC2XwQmD2oAR1sLLNp8CZ8uOoKzcWkwk6FTRI/FMEBEZiXM3wkfvtwIo3rWRVGJBtN/P42pv55Cwl0OZiPzZdT3JiAi0gdBENCktgcahrrhr5O3sWF/PP67+Cia1/VA79Y14Oqg26mMiYwdwwARmS2FXIaOUX5oWc8Tmw/dxB/HEnH0Uio6RPmiW/MA2FgqpS6RyCAYBojI7FlbKtGvbTBiGvpgzZ44bDt8E3tP30H3FoGIaegLpYJnVKl64xFORHSfs70lRnSvg0+GNUaQlz1+23kNH/x4CIcu3OWVB1StMQwQEf2Lv4cd3n6xPia8WB9WFgrMW38Bs1edlrosIr1hGCAieoy6Qc74ZFhjdGjki22HEnD1VqbUJRHpBcMAEdETyAQBfdsEw9XRCku2XYFGq5W6JCKdYxggInoKC5Ucr/ash1upudh54rbU5RDpHMMAEVEFtAj3Qr0gZ6zdG4fM3CKpyyHSKYYBIqIKEAQBL3UMRYlaixV/XZO6HCKdYhggIqogD2drdGkagIPnk3H5ZobU5RDpDMMAEdEz6NY8AC72lvhl+xWoNRxMSNUDwwAR0TOwUMoxqEMIbt/Lw5/Hb0ldDpFOMAwQET2j+iGuiAh2wdp9N5CRw8GEZPoYBoiInpEgCBjUIQQajYjfdl6VuhyiKmMYICKqBHcna3Rt5o8jF1NwMT7dIK+ZlJaH1MwCiCLvk0C6xbsWEhFVUtdmATh4/i5++eMK/ju8CRRy/X2/+vP4LSz94woAwMZSgUBPOwR62Zf+9rSHs70FBEHQ2+tT9cYwQERUSSqlHIM6hOK7lWfwx9FEPNcsQC+vs+VwAlb8dR31a5aOVYi/m434pBxsPXwTmvt3U7SzViLQ0x4BnnYIuh8UHG1VDAhUIQwDRERVEFnTFQ1CXLF+fzya1vGAs72lzvYtiiLW74/Hun030KS2O17tXud+74MPAKBErUFiSl5ZOIi/m43zN9KhvX8awcFG9a8eBDs42FrorD6qPhgGiIiqaGD7EHww/zB+3XkNb/aqp5N9iqKIlbuvY8uhm2hZzxPDutaGTFb+W75SIUcNb3vU8LYvW1ZUokFiSi7ik7IRfzcH8XdzcOZ6Gh6MMnCxt8CwrrVRJ9BZJ3VS9cAwQERURa6OVujePABr9t7AuRtpqBfkUqX9iaKI5TuuYsfxW2jbwAeDO4VCVsHufgulHDV9HFDTx6FsWWGxGjeTcxF/Nwe7T93GD2vO4v0hUfBxtalSnVR98GoCIiId6NI0AO5OVlj6x1WUqCs/M6FWFPHT1svYcfwWOkb5YcgzBIHHsVQpEOrniE6N/fD2C/WhUsjx3YrTyMorrtJ+qfpgGCAi0gGlQoaXOoYiOT0f24/erNQ+NFotFmy8iD2n76Bb8wAMaF9T5wMAXRwsMbZfBLLzijFz1RkUl2h0un8yTQwDREQ6El7DBY1C3bBhfzzuZRU803PVGi1i153HwfN30bt1DfRtE6y3KwGCvOzxWo+6uHEnG/M3XSwbcEjmi2GAiEiHBrQPAQTg1z8rfpvjErUGs9ecw7HLqXgxpiZ6tAjUX4H3NQpzQ/92NXHsUgrW7InT++uRcWMYICLSIRcHS/RoEYgTV1Jx5nraU7cvKtHg+5VncOraPQzpFIrOTfwNUGWpzk380Ka+NzYdTMDeM3cM9rpkfBgGiIh0rHMTf3g6W2PZH1dQon78OfmCIjWm/34aFxIyMLxrbbRr6GvAKkvvsfBSx1DUDXTCz1sv42JChkFfn4wHwwARkY4p5DK81CkUKZkF2HL40YMJ8wtL8O1vp3DtVhZG9qiL6AgvA1dZSiGX4Y1e4fBwtsbsNWeRlJYnSR0kLYYBIiI9qBvojMa13LHpYAJSM8sPJszJL8bXy08i/m4O3uxdD03reEhUZSlrSwXG9YuAXCbguxVnkJPPSw7NDcMAEZGeDGgfApkgYPmOv29znJVbhK+Xn0RSWj7G9otAw1A3CSv8m6ujFd7qG4GM3CLMXH22SnMlkOlhGCAi0hMnOwv0jA7CqWv3cOrqPaRnF+LLZSdxL7MQ4/pFILxG1WYq1LVgHwe82r0Ort3KwqLNF3mrZDPC6YiJiPSoQ5Qv9p1NwtI/rkAQgLzCErz9YiRCfB2lLu2RGtdyR0qbGli1Ow7uTlbo1aqG1CWRAbBngIhIjxRyGQZ3DEVadiEKitSYOKCB0QaBB7o2C0B0uBfW74/HwfN3pS6HDIA9A0REelYrwAlv9qoHHzcbeLkY/82BBEHAy13CcC+rAIs2X4SLvSVC/RylLov0iD0DREQGEFXL3SSCwAMKuQyj+4TD1cEKs1afRXJGvs72LYoi74lgZBgGiIjokWwslRjXPwIAMGPFGeQWlFRqP1qtiIS7OfjjWCJ+WHMW42ftR//3N2HTwXgOUjQSPE1ARESP5e5kjTF9wjH115OYveYs3n6xPhTyJ3+PLFFrcSMpG1dvZeJKYhau3c5EQVFpT4CLvSXqBjpBCwGrdsfhRlIORnSrDSsLfhxJia1PRERPFOrniOFda2Pehgv4acslDO9Wu9wdFQuK1Lh+JwtXErNwJTETcXeyodaUzlPg7WqDprU9EOrniFA/RzjbWwIAXF1tsWzzBfz+13V89tMxjO4TDh9X0zmNUt0wDBAR0VM1q+uJlIwCrN13A872lvD3sLv/zT8TN5NzoRVFyAQBAZ62iGnog1A/R4T4OsDOWvXI/QmCgE5N/BHgaYc5a89hyk/HMLxbbTSu5W7gd0YAwwAREVVQj5aBSM7Ix4YD8QAApUKGYG97dGsegFA/RwT72MNS9WwfK2H+TvhkWBPMXnsWc9aeQ1wTP/RrGwy5jEPaDIlhgIiIKkQQBAx9rjZqBTjBy9kGAZ52UCqq/qHtZGeByYMa4tc/r2LbkUQk3M3B6z3rwcHm0b0KpHuMXkREVGFKhQytIrxR09dBJ0HgAYVchsGdwvBq99q4ficb/7f4KK7fztLZ/unJGAaIiMhotKjnhQ+GNIJCLuDLpSfw14lbvPzQABgGiIjIqPh72OHjoY1RN8gZS7ZfwcJNFzlJkZ4xDBARkdGxsVRibL8I9IwOwoFzd/HFkuNIzSyQuqxqi2GAiIiMkkwQ0DM6CP/pH4F7WYX4v8VHceZ6mtRlVUuShoHY2FgMHDiwwttv2LABYWFhSEhI0GNVRERkTCKCXfHx0Cg421viuxWnsX7fDWg5jkCnJAsDS5cuxfTp0yu8/e3bt/Hf//5XjxUREZGxcneyxvtDGqFZXQ+s3XcDM1eeQX5h5e6VQA8zeBhITk7GqFGjMHXqVAQFBVXoOVqtFpMmTULdunX1XB0RERkrC6Ucr3avg5c6huLcjXT830/HkJVXLHVZ1YLBw8D58+dhY2OD9evXIzIyskLPmTt3LkpKSvD666/ruToiIjJmgiCgfSNfTBrYABk5RZi79hw0Wq3UZZk8g4eBmJgYTJs2DX5+fhXa/syZM1i4cCG++eYbyOVyPVdHRESmINTPEa90CcPlxEys+Ou61OWYPKOejjg/Px8TJ07ExIkTERgYiOTk5Ervy8XFVoeVAW5udjrdH7FNdY3tqXtsU92qanv2bGeHuxmF2Lj/BiJC3dGmoa+OKqsYURSxcMN53EzOwScjmkEmE57+JD2rbJsadRiYMmUKAgMDMWDAgCrvKy0tF1qtbkafurnZITU1Ryf7olJsU91ie+oe21S3dNWez7cIwOWEdHz/20nYWcjh567bL35PsnrPdWw8UHp1219H4hER7Gqw136UB20qkwnP/AXYqOcZWLVqFQ4ePIgGDRqgQYMGeO211wAAPXv2xMcffyxxdUREJDWFXIY3etWDlaUCP6w+izwDXWHwx7FEbDyQgOgILzjZWWDbkUSDvK6+GHXPwPbt28s9Pn36NCZNmoQ5c+YgNDRUp69VUJCH3NxMaDTqp26bkiKDlgNWdMqc2lQuV8DW1hFWVjZSl0JULTjaWmB0r3B8tewEftxwAWP7RUAm6K/L/tD5u1i+4yoahrrhlS5h2H4kESt2XcfN5Bz4e5jmqSSjCgMajQbp6emws7ODpaUlAgICyq2/e/cuAMDb2xsuLi46e92Cgjzk5GTA0dENSqUKwlMOIoVCBrXaPD64DMVc2lQURZSUFCMzMxUAGAiIdKSmrwMGdgjBL9uvYP2+G+jVqoZeXudsXBoWbLqIMD9HvP58HchlMrSp7431++Ox7UgiXutRRy+vq29GdZogKSkJ0dHR2Lx5s0FfNzc3E46OblCpLJ4aBIiqQhAEqFQWcHR0Q25uptTlEFUr7Rr4oGW4J9bvj8epq/d0vv/rd7Lww5qz8HG1wVt9I6BUlF7hZm2pRKsILxy5mIyMnCKdv64hCKKZ3BvySQMI795NgIeHf4WDgLl8izUkc2tTURSRnHwTnp4BT9+4EjjYTffYprqlr/YsLtHgf7+cQEpmPj5+pTE8nK11st879/Lwv1+Ow8ZSifeGNIKDjarc+tTMArwbexBdmvqjf9uaOnnNZ1VtBxAaEnsEyJB4vBHph0opx+g+9SCXyTBr9VkUFj99HNjTpGcXYtpvp6CQy/D2gPoPBQEAcHO0QqNQN+w+eUcnr2loDANERFStuDpY4fWedXEnLQ+LNl9CVTrAcwtKMO23UygsVmP8C5Fwd7R67Ladm/gjv0iNfWeSKv16UmEYICKiaqduoDP6tQnG0Usplb7sr7BYjRkrTiM1sxBj+0Y89UqBYB8HBPvY449jiTqb18ZQjOpqAqq8zz//FFu2bHziNitWrIeXl3el9n3rViLmzFlQoe3HjBkJd3cPfPzxZ8/8WhUVHR2FyZM/RI8evfT2GkRk2ro09UdcUjZW7LqGAA9b1A50rvBz1RotZq85hxtJ2RjTOxxh/k4Vel7nxv6YvfYcTl5NRaMw98qWbnAMA9XEf/4zEaNGjSl73LNnF4wZMw4dO3YpW+boWLGD+VH71mo1Fd7+iy++gUzG+0gQkbQEQcDwrrWRlJaPOevO45OhjeHiYPnU52lFEQs2XcS5G+kY+lwtNAh1q/BrNgx1g6uDJbYdSTSpMMDTBNWEra0tXFxcy34AwMam/LLK3ujJ1tYW9vYOFd7e3t4BtraGmxKUiOhxrCwUGN27HjRaLX5YcxYl6id/sRFFEb/uuIrDF5LRt00NtI58tt5UmUxAx8Z+uHY7C9dvZ1WldINiz8Bj7D+b9NhBIIIA6PuCzOgIL7QM99LpPk+cOIaxY0fhzTf/g6VLF8PFxRULFy7F+fNnsWBBLC5duoiSkmJ4e/tg8OCheO657gDKnyZ4sI9vvvkOs2d/hzt3bsPfPwDDh49Eq1ZtAZQ/TbB58wYsXDgPI0a8jsWL5yMt7R5q1gzFm2+ORUREfQBAYWEhfvhhBnbu/AMlJWrExHRAUVERFAoFPvjg00q/3y1bNuK335YhMTEB9vYO6NChM159dRQsLCwAAAcP7sP8+bGIj4+DlZUVmjVribFj3y4LPsuWLcHatSuRmpoCFxdXdO3aA0OHvgqZjBmayJR4udjg1W51MHP1WSzZfgXDnqv12Ct6Nh1MwI7jt9CpsR+6Nqvcpb+tIrywbu8NbDuaiDd9Kv5FSkr8q2aGdu/eiTlzFuLDD/+LjIx0vP32GISG1sLChb9g4cKlqFOnHr76agru3Xv8pB2zZ3+HceMmYd68n+Dq6obPPvsE+fl5j9z23r1UrF27Ch999BlmzfoRarUaU6Z8Ujb98JQpn+DQoQP49NPPMXfuAuTl5WHHjm1Veo+//74MX301BV279sDixcsxbtwkbN++Gf/974cAgIyMDLz//iR06/Y8li5diS++mIrTp09h5szpAIC9e3dhyZJFmDTpPSxfvgZvvPEWlixZhK1bN1WpLiKSRoNQN3RvEYh9Z5Kw+9SdR26z+9RtrN4Th+Z1PfBCTM1KXwJsqVKgTQNvHL+cgtTMgqqUbTDsGXiMluGP/2Zu6hPkDBw4GP7+pYn39u1bGD58JAYOHFL2jffll4djy5aNuHkzHq6uj74L16uvjkKjRo0BACNGjMKrrw5BXNx11KsX8dC2arUab789GWFhtQAAgwe/gg8/nIz09HQUFxdh164/MW3ad2jcuBkA4MMP/4uzZ09X+v2JoohffvkJvXr1xQsvDAQA+Pn5QxS1+PDDybhxIw5qdQlKSkrg7u4OT08veHp64auvvoVGU9qFmJR0ByqVEh4envD0LP1xdXWHh4dHpesiImn1ig5Cwt0cLP3jCvzcbRH8j2/txy+n4OdtlxFewwXDutau8r0N2jf0xfYjifjjWCIGddDtvXT0gWHADPn6+pf928fHF1279sDKlb8iLu46bt1KxLVrVwGg7IPxUfz8/u4+ezA+oKTk8XcLexA+gNKxDACgVpfgypVLAFAuRFhYWKB27crP752RkY709DRERjYot7x+/UYAgOvXr6JDh87o0KEz3n13AlxcXBEV1QQtWrRCu3btAQCdOnXFpk3rMWhQPwQG1kDjxk3Rrl17eHrq9tQNERmOTCbgtR518NlPR/HDmrP4ZFgTONiocDEhA7Hrz6OGtz3e7FUPCnnVO82d7S3RpLY79p5JQq/oIFhbKnXwDvSHpwnMkKXl36Npb9yIw8CBfbF//174+vrhpZdewYwZPzx1HyrVwzNwPWliD6Xy4f8RRFH8x6BG/V+TK4ra+7WU1v7pp59j2bKVeOmll5GTk43PP/8EkyaNgyiKcHR0xKJFyzB79ny0a9ceFy6cw+jRr2HJkkV6r5OI9MfWSonRvcORX6jGnLXnEHcnGzNXnYG7kzX+0y8SFirdXQnVqbE/ioo12H360acljAnDgJlbt24VHB0d8d13czB48FA0b97yH2MF9P8BHRwcAkEQcP78ubJlarUaly9fqvQ+nZ1d4OzsgtOnT5ZbfvLkCQBAUFANnDlzCt99Nw3+/oF44YVB+PrrGXjvvY9x+PABpKXdw5YtG7FmzQpERNTHiBGvIzZ2EXr06IVNmzZUui4iMg7+HnYY+lwtXEnMxBdLjsPaUoG3X4iErZVuv70HeNqhlr8jdhy7BbXGuE8t8zSBmXN398C9e6k4cGAfatQIxuXLFzFjxlQAQHHx47v9dcXb2wcxMR3w7bdfY+LE9+Hq6oalS39CSkryUwfv3LhxHYcOHSi3zMbGBuHhkRg8+BXMnv09vL190aJFNK5fv4bvvpuKVq3awt8/AGq1GmvWrIBSqUSPHr1QUlKCHTu2wdvbB05OziguLsYPP3wPa2sb1K/fECkpKThx4jjCwx8eE0FEpqdZXU8kpubi0PlkTHixPpztnz7/QGV0buKP71aewbFLKWhW11Mvr6ELDANmrl+/AUhIiMeUKZ+gpKQEfn5+GDnyTSxcOA8XLpxDy5at9F7DO+98gO++m4YPP3wHoiiiY8cuqFs3HArFkw/P339fjt9/X15uWc2aoVi8eBleeGEQVCoL/P77Msye/V25SwMBoEaNYHz++TdYvPhHrFmzAjKZDA0aNMK3386CXC5Hz559kJeXi59+WoBvvvkCdnZ2aN06Bm+88Zbe2oGIDKt/25ro2ya4yoMFnyQ82AVeLtbYdiQRTet4GO1NyngLY5TewvhZbiVr6lcTGJOioiIcOrQfTZs2haWlTdnygQP7oHPnrmUf3tXRsx53z4K329U9tqlumVN77jp1Gz9vvYx3BjZArYDKzQRbEbyFMZkslUqFGTOm4uuv/4f4+BtITLyJOXNmIjn5Ltq16yB1eUREVdairifsrJXYfrRyN0wyBIYBkpQgCPj66+nIzMzEqFHDMHz4Szh37gy+/XYWAgICpS6PiKjKVEo52jXwwalr95CU9ujJ2aTGMQMkuZCQMHz//WyeeiGiaiumoS82H7qJP44m4uUutaQu5yHsGSAiItIzexsVWtTzwP5zd5GTXyx1OQ9hGCAiIjKATo39UaLW4q+Tt6Uu5SEMA0RERAbg7WqDiGAX7Dx+66m3UjY0hgEiIiID6dTYD9n5JTh0PlnqUsphGCAiIjKQ2gFO8HO3xfajiU+8n4uhMQwQEREZiCAI6NzED7fv5eHcjXSpyynDMFBNvPXW63jllYGPXT9nzkx0797hibcZBoDNmzcgOjoKarUaANCvXw/Mmzf7sdvPmzcb/fr1qHCdoihiy5aNyMgo/Z/gxIljiI6OQmLizQrv41n9+z0REUmpSW0PONqqsP2I/v7uPSuGgWqiR49euH79Kq5fv/bQOq1Wi+3bt6Bz526PvJXwk/z4488YPHiojqoEjh8/is8//xSFhYUAgPDwSKxbtxXe3j46ew0iImOmkMvQvpEvzsdnIDElV+pyADAMVBtt2sTAzs4e27ZtfmjdsWNHkJqagh49ej3zfp2cnGBtba2DCkv9+xyZUqmEi4sr5HLd3UOciMjYtW3gA5VSZjS9AwwD1YSFhQU6duyMHTu2QastP5Pfli0bER4eicDAICQn38Unn7yP7t07ok2bpujV6zn88MN30GgefZnLv08TrFu3Gi++2AsxMS3x3nsTkJtb/kYjcXHX8M4749ClSzu0bdsM/fs/j6VLfwJQekpg/PjRAID+/Z/HggWxD50mKCoqxPz5c/HCCz0RE9MCgwf3x4YNa8v2/2D7gwf3Y8iQF9C+fUsMGzYIe/fuqlL7ZWdnYfr0r9GnTzfExLTA8OGDy+1To9Fg9uzv0adPN7Rr1xwDB/bBmjUry9ZnZKTjww8no1u39oiJaYlRo4bjxIljVaqJiKovG0slWoV749CFZGTkFEldDqcjfpySK/tRcnnPI9cJgqD3UaDKsNZQhrZ8puf06NELq1evwKlTJ9CwYRQAID8/D3v2/IUJE94FAEye/DacnJwwffosWFvbYP/+vfj++2moU6fuU28MtGPHNnz77VcYO/ZtNG7cDLt378S8ebPh4VF6j+7CwkKMHz8ajRo1wdy5CyGXy7Fx4zrMmTMTjRo1Rnh4JP7v/77Exx+/ix9//AkBAUG4dOlCudf49NMPcPHiBbz99mQEBdXAgQN7MW3alygsLET//gPKtps9+zuMGzcJjo5OmDt3Jj777BOsXbsZ1tY2eFYajQbjxo1GUVEh3nvvY3h4eGDLlk14//1J+N//piI6ug1Wrfodf/31J/773y/g5uaO/fv3YNq0LxEQEIiGDaPw9ddfQKNRY+bMeVCpVPj554V4990Jla6JiKq/jo19sfPELew8cQt92wRLWgt7BqqRkJAwhIXVLneqYOfOP6BQKBAT0xFFRYXo3LkrJk/+ECEhYfDx8cULLwyEq6sb4uKuP3X/K1b8irZt26Nv3xfh7x+AIUOGoXnzvwNLQUEB+vcfiAkTJiMwMAh+fv549dVRAIDr169BqVTCzs4OAODo+PDph/j4G9i7dzfGj5+E1q3bws/PHy+++BJ69uyDJUsWlQtgr746Co0aNUZwcE2MGDEK+fl5FXoPj3LkyCFcuXIJH388BY0bN4W/fyBef300mjePxk8/LQAAJCXdgZWVJTw9veDp6YW+fV/E9Ok/IDAwqGy9ra0dvL194Ovrh//8ZwI+//xrnv4gosdyd7JGw1A37Dp5G0XF0k5CxJ6Bx1CGtnzsN3OFQma0N9Xp3r0nYmNn4e23J8PCwgJbtmxCx45dYGlpCQDo06c/du36E8uXL8Ht27dw/fo13LuX+tjTBP8UF3cN7dq1L7esXr2Isg9hJycn9O7dDzt2bMfVq5dx61Yirl27CgAPnbp4lOvXS7eNjGxYbnn9+g2xatXvSE9PK1vm5xdQ9m9b29L7dj/tSoknva6VlRXCwsrfPKR+/YaYP38ugNJ227PnL/Tp0w0hIWFo0qQZOnToDGdnFwDAsGGv4bPPPsKuXTsRERGJJk2aoXPnrrCwsKxUTURkHjo18cPxK6nYdzYJ7Rv5SlYHewaqmY4du0CtVmP//r24c+c2zpw5he7dewEo/eb+xhvD8dNPC2BnZ4/nnuuBOXMWwN3do4J7F/DvsyMKxd95Mi3tHl5+eQA2bFgLV1c39OnzAhYtWlrl96TVlr6oUqkqW6ZSqR7armqnboRH7E8LpbL0/fn5+eO339bi229nIiqqCQ4e3I8RIwaX9cK0adMOa9duxQcffAIvLx+sWPErXn75RcTFPXx1BxHRAzV9HFDTxwFn49KevrEesWegmrG1tUXbtu2xc+d2JCYmICQkFLVq1QYAHDlyEFeuXMaaNZvh5uYOoHTgXHp6WoU+SENCQnHu3GkAg8uWXbz49zn/P/7YiqysTPz665qySxgfXOr4YP+C8PCH7gPBwSEAgNOnT6BNm5iy5adOnYCrqxvs7e0r0gTPLDg4BAUF+bh8+VK53oFTp04gKKj0PN6vv/4CFxdXdOzYBY0bN8Obb47F22+Pwdatm9C2bQzmzv0Bzz3XDe3bd0L79p1QVFSE55/vhH379qBGjZp6qZuITJ8gCBjXPwJqrbSzETIMVEPdu/fExIljER8fjz59+pctfxAAtm/fgvbtOyE5ORmxsbOgVqsr1MU+ePBQvPvu21i27Ge0atUWBw/ux969u+Dq6gYAcHf3RFFREf78czvq12+ImzcT8P333wIASkpKb9n5YJzAlSuXYWdX/sM9MDAIrVq1wfTp30AQZGUDCDdsWIM33/xPVZsFR48egiCU7wwLDAxCkybNEBpaC5999hHGjZsEd3d3bNmyCQcP7scXX0wFAGRlZWHJkkWwsrJCzZqhSEiIx5Url9C7d39YWFji4sXzOHv2NMaNmwgXF1ccOnQA+fn5qFcvosp1E1H1Zm35bPO/6APDQDVUv35DuLm5IynpNjp1eq5seZ069fDWW+Px22/LsGDBPLi5uaF9+05wd/fAhQvnnrrfFi2i8cknU7Bw4TzMnz8X9epF4MUXX8Kff24HALRr1x6XL7+M2bO/R15eLry8vNG9e0/s27cHFy6cQ9++LyIkJAzR0a3x6afvo2fPPmjdul251/j0088xb94cTJv2JbKzs+DvH4BJk95Ht27PV7ldJk0a99CysWPfxgsvDML06bMwe/b3+PTT95GfX4CaNUPw5ZffIjq6NQBgxIjXodVqMX36N0hPT4Ozswuef74PXnllBABgypSvMHPmdLz33kTk5ubA3z8AH330f2VXdRARGTNBNKY7JehRWlpu2bnnf7t7NwGengGPXPcoxjyA0FSZY5s+63H3LNzc7JCamvP0DanC2Ka6xfbUvQdtKpMJcHGxfabncgAhERGRmWMYICIiMnMMA0RERGaOYYCIiMjMMQwQERGZOYaB+8zkogoyEjzeiMiYMAwAkMsVZZPiEBlCSUkx5HJO80FExoFhAICtrSMyM1NRXFzEb2ykV6Ioori4CJmZqbC1dZS6HCIiAJyBEABgZVV6v/msrHvQaNRP3V4mk1XoLnxUcebUpnK5AnZ2TmXHHRGR1BgG7rOysqnwH2fOnKV7bFMiIunwNAEREZGZYxggIiIycwwDREREZo5hgIiIyMyZzQBCmUww6v0R21TX2J66xzbVLban7slkQqXaVRB5YT0REZFZ42kCIiIiM8cwQEREZOYYBoiIiMwcwwAREZGZYxggIiIycwwDREREZo5hgIiIyMwxDBAREZk5hgEiIiIzxzBARERk5hgGnoFWq8X333+PVq1aITIyEsOHD0dCQoLUZZmsuLg4hIWFPfSzYsUKqUszSbGxsRg4cGC5ZRcvXsSQIUNQv359tG3bFgsWLJCoOtPzqPZ8++23HzpeW7duLVGFxi83NxdffPEFYmJi0KBBA/Tp0wd//vln2Xoen8/uaW1a6WNUpAr7/vvvxWbNmom7du0SL168KL766qti+/btxcLCQqlLM0mbN28WGzZsKKakpJT7KSgokLo0k/PLL7+IYWFh4oABA8qWpaWliU2aNBE/+OAD8dq1a+Lq1avFiIgI8bfffpOwUtPwqPYURVHs2rWrOGvWrHLHa1pamkRVGr8xY8aIHTt2FPfv3y/Gx8eLc+bMEWvVqiUeOHCAx2clPalNRbHyx6jZ3LWwqoqLi7Fw4UJMnDgRbdq0AQBMnz4d0dHR2LJlC3r16iVtgSboypUrCA4Ohpubm9SlmKzk5GR88sknOHz4MIKCgsqt+/3336FUKvHpp59CoVAgODgYCQkJmDdvHl544QWJKjZuT2rP4uJixMfHIzw8nMdsBaSmpmL79u2IjY1FixYtAACjRo3CwYMHsXLlSoSEhPD4fEZPa9NGjRpV+hjlaYIKunjxIvLz89GsWbOyZba2tqhTpw6OHTsmYWWm6/LlywgODpa6DJN2/vx52NjYYP369YiMjCy37tixY4iKioJC8Xfmb9q0KRITE5GcnGzoUk3Ck9rz+vXrUKvVqFmzpkTVmRYrKyv8+OOPiIqKKrdcEARkZWXx+KyEp7VpVY5RhoEKenBwenh4lFvu7u6OpKQkKUoyeVeuXEFKSgoGDBiAFi1aYNCgQdi3b5/UZZmUmJgYTJs2DX5+fg+tS05OhqenZ7ll7u7uAMBj9jGe1J6XL1+GQqFAbGwsYmJi0LFjR0yZMgU5OTkSVGr8bG1t0bp1a9ja2pYtO3XqFA4dOoS2bdvy+KyEp7VpVY5RhoEKKigoAACoVKpyy1UqFYqLi6UoyaTl5+fj1q1byMnJwfjx4zFv3jzUq1cPr776Kg4cOCB1edVCYWHhI49XACgqKpKiJJN29epVAICvry/mzp2Ld955B7t27cIbb7wBrVYrcXXG7/r16xgzZgwiIyPx4osv8vjUgX+3aVWOUY4ZqCBLS0sApecN/3kAFxcXw9raWqqyTJa1tTWOHz8OpVJZ1p716tXD9evXMX/+/LLzYVR5lpaWDwXVB495zD67CRMm4PXXX4e9vT0AIDQ0FK6urhgwYABOnTqFhg0bSlyh8Tp69CjGjBkDb29vxMbGQqlU8visoke1aVWOUfYMVJCXlxcAICUlpdzylJSUh04dUMXY2Ng89M0gNDQUd+7ckaii6sXT0/ORx+uDdfRsZDJZ2R/ZB8LCwgCwW/tJ1q9fj2HDhqFu3bpYsmQJHB0dAfD4rIrHtWlVjlGGgQqqVasWbG1tceTIkbJlubm5uHDhApo0aSJhZabp5MmTaNCgAc6cOVNu+blz5xASEiJRVdVL48aNcfz4cajV6rJlhw4dQmBgIEfDV8Lo0aPxxhtvlFv24PjloMJH27BhA9555x0899xziI2NLXeum8dn5TypTatyjDIMVJBKpcLgwYMxffp07NixA5cuXcL48ePh4eGBTp06SV2eyalXrx58fX3x0Ucf4fjx47h+/TqmTJmCkydPPnQwU+X07dsXBQUFeP/993Ht2jWsXbsWixcvxuuvvy51aSapa9eu2LlzJ+bNm4ebN29i165deP/999G5c+eyb1/0t7t37+Kjjz5C06ZNMWnSJGRmZiI1NRWpqanIzMzk8VkJT2vTqhyjHDPwDMaOHQuNRoOPP/4YBQUFaNSoEebPn/9QVzc9nVKpxPz58zFt2jSMHTsW2dnZqFu3LhYuXIg6depIXV614OLiggULFuDzzz9H79694ebmhgkTJqBPnz5Sl2aSunXrBq1Wi/nz5+OHH36AnZ0dunXrhvHjx0tdmlHavn07CgoKcOjQIbRq1arcuoYNG2L58uU8Pp9RRdq0sseoIIqiqK/CiYiIyPjxNAEREZGZYxggIiIycwwDREREZo5hgIiIyMwxDBAREZk5hgEiIiIzx3kGiMzQu+++izVr1jxxm8uXLxuomlJDhgyBWq3G8uXLDfq6RMQwQGS2nJ2dMXPmTKnLICIjwDBAZKaUSiWioqKkLoOIjADHDBDRYw0ZMgQTJ07EvHnz0LJlSzRs2BCjRo1CYmJiue3i4+MxduxYREdHIzIyEoMHD8bRo0fLbZOXl4cvvvgCbdq0QWRkJHr16oWtW7c+9JqLFy9GTEwMwsPD0bt3b+zfv79snSiKmDVrFjp27Ih69eqhTZs2mDJlCvLz8/XTAERmgmGAyIyp1epH/mi12rJt9uzZg99++w3vvvsuPv74Y1y8eBFDhgxBXl4eAODatWvo06cP4uPjMXnyZHz99dcAgKFDh+LgwYMAAK1Wi9deew0rV67Eyy+/jFmzZqFOnToYN24cdu/eXfZap0+fxrp16zBp0iRMmzYNhYWFGD16NNLT0wEAsbGxWLRoEYYNG4Yff/wRw4YNw++//44vvvjCUE1GVC3xNAGRmUpOTkbdunUfuW748OGYPHkygNJv9CtWrEBAQAAAICQkBH369MHq1asxZMgQzJo1CwqFAr/88kvZvdRjYmLQvXt3fP3111izZg327t2L48ePY/r06ejatSsAoFWrVrhz5w727duHNm3aAADkcjkWLFgAZ2dnAICFhQVGjhyJU6dOISYmBseOHUNkZCQGDRoEAGjevDns7OzKggkRVQ7DAJGZcnFxQWxs7CPX/fN+8vXr1y8LAgBQt25d+Pn54ejRoxgyZAiOHDmC1q1blwUBoHQ8Qvfu3TFr1izk5OTg2LFjkMlk6NixY7nXWbx4cbnHwcHBZUEAAPz9/QEA2dnZAICWLVviyy+/xODBg9GhQwe0bNkSffv2rVwDEFEZhgEiM6VQKBAeHv7U7Tw8PB5a5uLigqysLABAVlZWufDwgKurKwAgJycHGRkZcHBwgFKpfOJrWVlZlXssk5WeyXxw2mLo0KGwtbXFqlWr8PXXX0Oj0SAgIAATJ05Ep06dnvpeiOjROGaAiJ4oIyPjoWWpqalwcXEBADg4OCA1NfWhbVJSUgAAjo6OsLOzQ3Z2NtRqdbltLl++jFOnTlW4FkEQ0L9/f/z66684dOgQpk+fDmtra4wfP77s9Yjo2TEMENETnTx5Evfu3St7fPbsWdy+fRvNmzcHADRu3Bh79uwp68oHSgcmbt68GXXq1IG1tTWioqKg0Wiwc+fOcvv+73//i2nTplW4lgEDBuCzzz4DANjb26Nr164YNWoU1Go1kpOTq/I2icwaTxMQmamSkhIcO3bssetDQ0MBAEVFRRgxYgTefPNN5OXlYcaMGahZsyZ69uwJABgzZgz27NmDwYMHY+TIkbCwsMCSJUuQmJhYNiahbdu2aNCgAT744AMkJycjICAAW7duxalTp7BgwYIK19y4cWMsWLAADg4OiIqKQlpaGmbNmoWgoCDUrl27Cq1BZN4YBojMVHp6Ol566aXHrv/xxx8BlA4gbNu2LT7++GOIooh27dph8uTJUKlUAEqvLli2bBm+/fZbfPTRRwCAiIgI/PTTT2jcuDGA0qsE5s+fj2nTpmHu3LnIy8tDSEgI5s6dW9bDUBHjxo2DlZUV1q1bh/nz58Pa2hotW7bEpEmToFDwzxlRZQmiKIpSF0FExon3CyAyDxwzQEREZOYYBoiIiMwcTxMQERGZOfYMEBERmTmGASIiIjPHMEBERGTmGAaIiIjMHMMAERGRmft/G9f7IfiAIuEAAAAASUVORK5CYII=\n", |
|
|
1799 |
"text/plain": [ |
|
|
1800 |
"<Figure size 576x576 with 1 Axes>" |
|
|
1801 |
] |
|
|
1802 |
}, |
|
|
1803 |
"metadata": {}, |
|
|
1804 |
"output_type": "display_data" |
|
|
1805 |
} |
|
|
1806 |
], |
|
|
1807 |
"source": [ |
|
|
1808 |
"plt.figure(figsize=(8,8))\n", |
|
|
1809 |
"plt.plot(acc_train, label='Training Accuracy')\n", |
|
|
1810 |
"plt.plot(acc_val, label='Validation Accuracy')\n", |
|
|
1811 |
"plt.legend()\n", |
|
|
1812 |
"plt.title('Model accuracy')\n", |
|
|
1813 |
"plt.xlabel('Epochs')\n", |
|
|
1814 |
"plt.ylabel('Accuracy')\n", |
|
|
1815 |
"plt.savefig('results/accuracy_1120.png')\n", |
|
|
1816 |
"plt.show()\n", |
|
|
1817 |
"\n", |
|
|
1818 |
"plt.figure(figsize=(8,8))\n", |
|
|
1819 |
"plt.plot(loss_train, label='Training Loss')\n", |
|
|
1820 |
"plt.plot(loss_val, label='Validation Loss')\n", |
|
|
1821 |
"plt.legend()\n", |
|
|
1822 |
"plt.title('Model Loss')\n", |
|
|
1823 |
"plt.xlabel('Epochs')\n", |
|
|
1824 |
"plt.ylabel('Loss')\n", |
|
|
1825 |
"plt.savefig('results/loss_1120.png')\n", |
|
|
1826 |
"plt.show()" |
|
|
1827 |
] |
|
|
1828 |
}, |
|
|
1829 |
{ |
|
|
1830 |
"cell_type": "markdown", |
|
|
1831 |
"id": "107a00a9", |
|
|
1832 |
"metadata": {}, |
|
|
1833 |
"source": [ |
|
|
1834 |
"Confusion matrix" |
|
|
1835 |
] |
|
|
1836 |
}, |
|
|
1837 |
{ |
|
|
1838 |
"cell_type": "code", |
|
|
1839 |
"execution_count": 23, |
|
|
1840 |
"id": "944521b3", |
|
|
1841 |
"metadata": {}, |
|
|
1842 |
"outputs": [ |
|
|
1843 |
{ |
|
|
1844 |
"data": { |
|
|
1845 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG6CAYAAADpkFmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGw0lEQVR4nO3de3wU9b3/8Vcg3C9FwRsIAiKf41H84a3eUSstCkrFWq9oRUQrRxBtj9bTaqn3S89RqFqt2ioU7amltsjFKoICoi2tlVORfiAQREGhCgkBEUyyvz9mg2FJsoFsZjYz76ePfSz5zszO5+tsdj/53qYglUohIiIikmTNog5AREREJGpKiERERCTxlBCJiIhI4ikhEhERkcRTQiQiIiKJp4RIREREEq8w6gBERERE6sPM+gJvA+Pc/cla9ukMTATOAgqA54Eb3X1zXa+tFiIRERHJe2bWApgCtMuy6++APsBAYFj6+fFsr6+ESERERJqCnwBlde1gZicCpwEj3P1td38NGAVcbGY96jpWCZGIiIjkNTMbAFwDfCfLrqcA6939vWpl84FUelutNIZIREREQmVmnYBONWwqcfeSGvadDIxx9w/MrK6X7gZ8WL3A3beb2SdA97oOjE1CVNiym27KllBv7Xts1CFE6vj1i6IOITKXdz0h6hAkQpPWvhl1CJEq376mIMzzffHJylx+z/4E+HEt5eMzyn4OvOnuz9bjddsC22oo3wa0ruvA2CREIiIi0mQ8BDxdQ3lJ9R/M7DKCrq5+9XzdrUCrGspbAXXOMlNCJCIiItlVVuTspdLdYiX12PVKYD8gs6vsYTO7wd0Py9j/A6Br9QIzawl0IaMrLZMGVYuIiEh2qcrcPepvOHAo0L/aA4KutcE17D8P2N92zp4GpJ/n13UitRCJiIhIXnL3NZll6VznX+7+vpk1B/YBSt19K/Bn4A3gOTP7LtCGYA2iyTW9VnVqIRIREZHsKitz98id7sBHwIUA7p4CzgNWAHOAqcArwLXZXkgtRCIiIpJVave6uhqNuxdU+/cqgttzVN++Hvj27r6uWohEREQk8dRCJCIiItnltqsr7yghEhERkezypMussajLTERERBJPLUQiIiKSXQ4XZsxHSohEREQkO3WZiYiIiMSbWohEREQkO80yExERkaTLl4UZG4u6zERERCTx1EIkIiIi2anLTERERBJPXWYiIiIi8aaEqIFGXnkJS5csoKy0iAXzpnH8cUdHHVKoElv/Zs3Yb9RQDpv7M45c9hsOm/Mz9rlicNRRhSqx1z5D/4HH8Oi7k6MOIzJJrH9i3/uVFbl75CElRA0wfPj5PPrIvTz73FQuuPBqSkpKmTljCj17do86tFAkuf5dx11At5uHs+H3r1M04m42Tn+DHuNHsv+1w6IOLRRJvvbVHXyUMerBsVAQdSTRSGL9E/3eT1Xm7pGHClKpVNQx5ERhy26hV6Ro2Vu89Ke5XDfmliCGwkLee3ceM2bO5oYbbws7nNDlS/3f2vfY0M4FQEEBR743hXVPTWftT5/dUdzjzqvZ6+wTWdz/ilDDOX79olDPB/lz7S/vekJo56qusGUhA0cMYdiNF7Ft6+cUtihk9GGXRRJLFPKl/pPWvhn6OfPlvQ9Qvn1NqKnotqVzc/Y92+rQ0/MujVYL0R7q06cXPXt2Z/r0l3eUlZeXM3PWqwwadHqEkYUjyfVv3rEtn06dy8ZZO38Yf75yDS26dKJZm1YRRRaOJF/7Kv1OO5Iho4fx/D2TefWZWVGHE7qk1j/x7/3Kytw98lCos8zMrCXwbWAA0B1oDWwGPgReA37v7uVhxrSn+h7SG4CiFat2Ki8uXs3BvQ+iWbNmVObpRc+FJNe/onQLq3/0xC7lnQYey/a1n1C5dVsEUYUnyde+SvHiFdx0ymi2bvqMb467IOpwQpfU+if+vZ+nXV25EloLkZkdDLwHPA4cCmwCPgA+Aw4Hfgn8w8x6hhVTQ3To2B6AsrLNO5WXlW2mefPmtGvXNoqwQpP0+mfqcvFAOg7oz8c/fyHqUBqdrj2UrNvA1k2fRR1GZJJaf7334y3MFqJHAQeOdPeyzI1m1hH4DfAwcHaIce2RgoKg+zNzDFZVeaz/SkD1r27vYQM46J5r2TD9Ddb/akbU4TQ6XXtJqsS/92NevzDHEJ0M3FxTMgTg7puAHxB0p+W9TaVBNTp0aL9Tefv27aioqGDLlnj/9ZT0+lfZ76pz6DVhHCWz/0rxmAejDicUuvaSVEl/76dSFTl75KMwE6KNQLcs+/QEtjR+KA23vKgYgN69euxU3qtXD3zZiihCClXS6w/Q7ebhdB8/kk+nvsaKa+4j9UWTGP7WYLr2klR678dbmAnRU8AzZnaNBdqZWWH6+RAzG5Xe51chxrTHli9fyerVaxg69MwdZYWFhQw+6wzmzFkQYWThSHr99x15NgeMOZ91T77IqhsmQkW8m5KrS/q1l+RK/Hs/5usQhTmGaDyQAh4A2tWwvYxg/FCTWcDn/gceYeKEOykpKWXhwkWMvvYKunTZmwkTd52BFEdJrX+LfffiwFsu57Olq9gwbT7tjuq70/Yti4tinyAl9dqLJPq9H/MxRKElRO6eAsab2d1Af4Lus7bAVoLZZovdfXtY8eTCY48/Q5s2rRlz3UiuHzuKxYuXMHjIpRQXr446tFAktf4dTz2SZq1b0vbQnhw67f5dtr/T7zLKN9Y4VC42knrtRRL93s/Tlp1c0UrV0uSFvlJ1nolipep8EdVK1ZIfolipOp+EvVL153/7Q86+Z1sffW7erVQd6sKMIiIi0kTl6U1Zc0UJkYiIiGQX8y4z3ctMREREEk8tRCIiIpKdZpmJiIhI4qnLTERERCTe1EIkIiIi2anLTERERBIv5gmRusxEREQk8dRCJCIiIlmlUlqYUURERJIuoi4zM+sG/BT4OtAaeB24yd2X1LL/NcBjNWw6xN2LajuPusxEREQkL5lZATATOBAYBBxLcFP4V82sfS2HHQG8BByQ8Siu61xqIRIREZHsolmHaD9gKXCbuy8DMLM7gHeAfkBNd/jtByx0949350RKiERERCS7HHaZmVknoFMNm0rcvaTqh3RSc1G14/YDvg+sBf5Ry8v3A57c3ZjUZSYiIiJhG0fQhZX5GFfbAWb2NPAx8G1ghLtvrmGf7gSJ1kAzW2Jma8zs92Z2SLaAlBCJiIhIdqnK3D3gIaBXDY+H6ojgAYIxRM8BfzCzo2vY5/D0cyVwGXAx0AFYaGb711U9dZmJiIhIdjnsMkt3i5Xs5jFLAMxsJHAcMBb4TsY+s8yss7tvqCozs3OB1cCVwN21vb5aiERERCQvmdkBZnZJerYZAO5eCSwButV0TPVkKP3zFmAl0KOucykhEhERkexy22VWXz2AKcBJVQVm1gI4imD22U7M7Htm9pGZtaxW9hWgL0ESVSt1mYmIiEh20SzMuAiYC/zCzK4m6Gb7IdAZ+B8zaw7sA5S6+1ZgGvBjYJKZ3Q60A+4DNgK/rOtEaiESERGRvJTuHvsWsAB4HvgLsDdwirsXA92Bj4AL0/svBwYCXYCFwGxgA3BauuusVgWpVKqRqhGuwpbd4lER2W2b7vhG1CFEquOtL0cdgkTk8q4nRB1CpCatrWlNvuQo376mIPteubN1xkM5+55tM2RcqLHXh7rMREREJLtoVqoOjbrMREREJPHUQiQiIiLZRXS3+7AoIRIREZHs1GUmIiIiEm9qIRIREZHs1GUmIiIiiacuMxEREZF4UwuRiIiIZKcuMxEREUm8mCdE6jITERGRxFMLkYiIiGQXk3uf1kYJkYiIiGSnLjMRERGReFMLkYiIiGQX8xYiJUQiIiKSnRZmFBEREYk3tRCJiIhIduoyExERkcSL+bR7dZmJiIhI4ikhaqCRV17C0iULKCstYsG8aRx/3NFRhxSqxNa/WXNanHIerb/7AG1ueIxWF91EwX4HRR1VqBJ77dOSXv8q/Qcew6PvTo46jFAl9tpXVubukYeUEDXA8OHn8+gj9/Lsc1O54MKrKSkpZeaMKfTs2T3q0EKR5Pq3OONiCo8eSPlbM9n2ws/gi220vvgmCjp2jjq0UCT52oPqX+Xgo4xRD46FgqgjCU+ir33ME6KCVEz6BAtbdgu9IkXL3uKlP83lujG3BDEUFvLeu/OYMXM2N9x4W9jhhC5f6r/pjm+Edi4AWrahzdiJfPH685QvejkoK2xBm7E/44s3Z1D+5ouhhtPx1pdDPR/kz7WPSr7U//KuJ4R2ruoKWxYycMQQht14Edu2fk5hi0JGH3ZZ6HFMWvtm6OfMl2sPUL59Taip6Nanvp+z79k2I3+ad2m0BlXvoT59etGzZ3emT//yy6i8vJyZs15l0KDTI4wsHImu/xfb+HzSHaRKP/myrKICUlBQGP9fqURfe1R/gH6nHcmQ0cN4/p7JtNurPYOuOifqkEKR+Gsf83WI4v/p3Uj6HtIbgKIVq3YqLy5ezcG9D6JZs2ZU5mmzYC4kuv6pSlLrV6d/KKDgK51pcfK5QIryJeH/xRq2RF97VH+A4sUruOmU0Wzd9BnfHHdB1OGEJunXPlUZjx6l2igh2kMdOrYHoKxs807lZWWbad68Oe3atd1lW5wkvf5VCk8aSsuTzwVg+/zfk9rwcbQBhSDp1z7p9QcoWbch6hAioWsfb6EmRGY2H6hXiunuAxo5nAYpKAi6PzPHYFWVx/mvBFD9q1Qs+xufr/4nzXv8Gy1OHEpB80K+mP9C1GE1qqRf+6TXP8kSf+1jXr+wZ5nNBE4COgMrsjzy2qbSMgA6dGi/U3n79u2oqKhgy5bPoggrNEmvf5XUvz6k8gPnizf+SPnfZlP41bOgWfOow2pUSb/2Sa9/kiX+2qcqc/fIQ6G2ELn7PWZWCtwLDHH3VWGeP5eWFxUD0LtXD1ZU60/u1asHvizv87kGS3T923Wkee8jqPC/wvbPdxRXrltNQWELaNMOtmyKMMDGlehrj+qfZLr28Rb6OkTu/ijwOnBn2OfOpeXLV7J69RqGDj1zR1lhYSGDzzqDOXMWRBhZOJJc/4JWbWk1eCTN7Zidypv3OozUllLYUhZRZOFI8rUH1T/JEn/tK1O5e+ShqAZVXw00+aU973/gESZOuJOSklIWLlzE6GuvoEuXvZkw8YmoQwtFUuuf2vAx5b6IlqdfyBfNCqksXU/zvkdTePhJbJv5FPUcJtekJfXaV0l6/ZMs0dc+5mOIIkmI3P0jYHoU586lxx5/hjZtWjPmupFcP3YUixcvYfCQSykuXp394BhIcv23T3+SFid9k8IThlDQ7iukPl3Ltj88EnSjJUCSrz2o/kmW6Gsf84RIK1VLkxf6StV5JoqVqiU/RLVSdb6IYqXqfBL2StWfTfhuzr5n217/mFaqFhERkSYoJg0otVFCJCIiItnFvMtMCZGIiIjkLTPrBvwU+DrQmmCm+k3uvqSW/TsDE4GzgALgeeBGd69zGfHQp92LiIhIExTBtHszKyBY1PlAYBBwLLAVeNXM2tdy2O+APsBAYFj6+fFs51JCJCIiItlFs1L1fsBSYKS7/83dlwJ3pMv7Ze5sZicCpwEj3P1td38NGAVcbGY96jqRusxEREQkL7n7x8BFVT+b2X7A94G1wD9qOOQUYL27v1etrOo+qqcAU2o7lxIiERERyS6HK0ybWSegUw2bSty9pJZjnga+A2wDhtYyJqgb8GH1AnffbmafAN3rikldZiIiIpJVqrIyZw9gHFBcw2NcHSE8QDCG6DngD2ZW0x0v2hIkTJm2EQzIrpVaiERERCRsDwFP11BeUtsBVbPKzGwkcBwwlqDFqLqtQKsaDm8F1DnLTAmRiIiIZJfDLrN0t1hJtv3M7ADgdOA5d0+lj600syUE3WOZPgC6ZrxGS6ALGV1pmdRlJiIiItlFM8usB8FA6JOqCsysBXAUweyzTPOA/c3MqpUNSD/Pr+tEaiESERGRfLUImAv8wsyuJmhV+iHQGfgfM2sO7AOUuvtW4M/AG8BzZvZdoA3BGkST3X1NXSdSC5GIiIhkF8HCjO5eCXwLWECw4vRfgL2BU9y9mGDm2EfAhen9U8B5wApgDjAVeAW4Ntu51EIkIiIi2UV0LzN33whcXcu2VQS356heth749u6eRy1EIiIiknhqIRIREZHscjjLLB8pIRIREZHsdm92WJOjLjMRERFJPLUQiYiISHbqMhMREZGkS0U0yywsSoikyWsx8taoQ4jWrS9HHYFEZNLaN6MOQSQ2lBCJiIhIduoyExERkcSLeUKkWWYiIiKSeGohEhERkexivg6REiIRERHJTl1mIiIiIvGmFiIRERHJKhXzFiIlRCIiIpJdzBMidZmJiIhI4qmFSERERLLTrTtEREQk8dRlJiIiIhJvaiESERGR7GLeQqSESERERLJKpeKdEKnLTERERBJPLUQiIiKSnbrMREREJPFinhCpy0xEREQSTy1EIiIikpXuZSYiIiIS84RIXWYNNPLKS1i6ZAFlpUUsmDeN4487OuqQQpX0+gNs376dcy65mh/e+d9RhxKqpF971T+59U9y3eNMCVEDDB9+Po8+ci/PPjeVCy68mpKSUmbOmELPnt2jDi0USa9/lUd/+SzF738QdRihSvq1V/2TW/8k153KHD7yUEFcFloqbNkt9IoULXuLl/40l+vG3BLEUFjIe+/OY8bM2dxw421hhxO6fKn/1rXzQztXpqXLirh89H/SulVLBpzwVe760fdCj6FN11NCP2e+XPuoqP7JrX8+1b18+5qCMM9XcunXcvY922nKnFBjrw+1EO2hPn160bNnd6ZPf3lHWXl5OTNnvcqgQadHGFk4kl5/gPLyCm69+0FGXHI++3bpEnU4oUn6tVf9k1v/JNc9CUIdVG1mpwEjgb2B6cAv3L2i2va9gD+6+4Aw49oTfQ/pDUDRilU7lRcXr+bg3gfRrFkzKivztF0wB5Jef4CnpvyWL74oZ9RlF/Dq6wujDic0Sb/2qn9y65/kugMaVJ0rZnYOMBs4AGgJPAy8bmadqu3WEjgprJgaokPH9gCUlW3eqbysbDPNmzenXbu2UYQVmqTXf+X7H/DEM//LT24ZR4sWLaIOJ1RJv/aqf3Lrn+S6A7EfQxRml9mtwK3uPtDdv06Q+PQGXjGzdiHGkRMFBUH3Z+YYrKryWP+VQLLrX1lZyW33PMR5Z3+D/ocfGnU4oUvytQfVP8n1T3LdkyDMhOhQ4H+rfnD3t4AzgF7A78yseYixNNim0jIAOnRov1N5+/btqKioYMuWz6IIKzRJrv+U303jo4/X8R9XXUZ5eQXl5UGvbyqV2vHvOEvytQfVP8n1T3LdIViYMVePfBRmQvQJcFD1AndfCpwHnA48BeTdqPPaLC8qBqB3rx47lffq1QNftiKKkEKV5Pq/Om8h6/71KSeddQH9Tz2b/qeejRetZNpLr9L/1LNZ89G6qENsVEm+9qD6J7n+Sa47EPsuszAHVf8BeMzMrgfmu/sWAHefZ2YjgUlAtxDjaZDly1eyevUahg49k1dmzwOC6ZeDzzqDmbNejTi6xpfk+v/4P8ey5bOd/xL8wU/u56Ae3bh2xKXs22XviCILR5KvPaj+Sa5/kuseJTPrANwODAO6AP8Ebnf3abXsfw3wWA2bDnH3otrOE2ZCdCvQA5gBnAXsmLfo7lPMLAX8IsR4Guz+Bx5h4oQ7KSkpZeHCRYy+9gq6dNmbCROfiDq0UCS1/r0OOnCXslatWtGpY0cOP7RvBBGFL6nXvorqn9z6J7nuEXZ1PQ0cAVwFrAIuAF4ws6+7+5wa9j8CeAkYkVH+r7pOElpC5O6bgW+Z2X7Alhq2P2tmrxN0oTUJjz3+DG3atGbMdSO5fuwoFi9ewuAhl1JcvDrq0EKR9PonWdKvveqf3Ponue5RdHWZ2f4EecHZ7j47XXy3mZ1BsIxPTQlRP2Chu3+8O+fSStXS5EW5UnU+iGKlahGJXtgrVX96zqk5+549cdnHewGdathU4u4lVT+ku8tOAt5w97Jq5bOBL9z9rMwXMLONwPXuPml3YtLd7kVERCRs44Af11D+E2B81Q/pJOil6juY2fHA14CxmQebWXeCRGugmd2c/vefgZvdfXldASkhEhERkexy22X2EMHYoEwldR1kZocCLxAkOY/XsMvh6edK4DKgPcEY5oVm1q+ubjQlRCIiIpJVKocJUbpbrGR3jjGzAQTJ0PvAEHf/oobXnWVmnd19Q7XjzgVWA1cCd9f2+rq5q4iIiOQ1M7sUeAX4G3Bq9YQnU+a29DI/KwlmutdKCZGIiIhkF9HCjGZ2CTAZ+C1By1BZHft+z8w+MrOW1cq+AvQFltR1HnWZiYiISFa57DKrLzM7EHgCmAvcBHQ2s6rN24FSYB+g1N23AtMIBmtPMrPbgXbAfcBG4Jd1nUstRCIiIpKvzgPaEswqWwt8VO0xDeie/veFAOmZZAMJVrReCMwGNgCnVd0hozZah0iaPK1DpHWIRJIo7HWI1p+Ru3WI9n319by7d6m6zERERCSrKLrMwqQuMxEREUk8tRCJiIhIdqm86+XKKSVEIiIikpW6zERERERirtYWIjO7cndeyN3rnN8vIiIiTVeqMrldZk/uxuukyLLgkYiIiDRdce8yqysh6hVaFCIiIiIRqjUhcvf3wwxERERE8ldKs8wCZtYN+BHwDaArcBJwCfA3d3+uccITERGRfBD3LrN6zTIzs77AO8C3gD8DVXeR3Rf4tZmd1yjRiYiIiISgvtPu/xv4ADgYuBwoAHD3y4HfE9yBVkRERGIqVVmQs0c+qm+X2WnASHcvM7PmGdueAn6b06hEdsM1xyQ7H39r32OjDiEyx69fFHUIkbq86wlRhxCpSWvfjDqERInJveBrVd8WokqCqfU1aZfeLiIiItIk1beFaB7wX2b2MrA5XZZKtxb9R3q7iIiIxFS+dnXlSn0TopuAhcBy4DWC1qKbgcOAg4CTGyM4ERERyQ9xT4jq1WXm7kuBY4CXCZKfCuBrwFLgBHf/v0aLUERERKSR1XsdIndfAQxvxFhEREQkT8V9UHW9EyIAMzsTGAjsBawD5rr7K40RmIiIiOSPuHeZ1SshMrN9gT8AxwPlwCdAF+BmM3sVONfdP2usIEVEREQaU32n3f8U6AsMA1q5e1egDXApcBxwf+OEJyIiIvkglSrI2SMf1bfL7BzgJnf/Y1WBu1cAvzGzfYDbgOsaIT4RERHJA7qXWaAS+Fct25bz5b3NRERERJqc+iZETwM/MLN21QvNrAUwFvh1juMSERGRPFKZKsjZIx/V2mVmZpMy9jsKKDazGcDHwN7AIKAz8F5jBikiIiLRytexP7lS1xiiAex8/7I16efTqpWlCGacnQd8P6eRiYiIiISk1oTI3XuGGIeIiIjksbivQ1TfMUR1MrO9cvE6IiIikp9Sqdw98lF9F2ZsDdxI0F3WCqhKE5sB7YBDgdaNEJ+IiIhIo6vvOkT3E6wz9C6wD7CVYBp+P4Ip97c1SnQiIiKSF9RlFjgPmODuRwATgUXufhzB6tWrgRaNFJ+IiIjkgbhPu69vQrQvMDP978UEt+vA3T8E7gMuzH1oIiIiIuGob0JUQnDvMghWpu5uZh2q/dwjx3GJiIhIHon7vczqmxDNB8amk6AVQBnwzfS2E4DSRoitSRh55SUsXbKAstIiFsybxvHHHR11SKFKev0B+g88hkffnRx1GOFq1oz9Rg3lsLk/48hlv+GwOT9jnysGRx1VqPTeDyTx/Z/Uax/3WWb1TYjGA8cAs9y9EngYeMrMFgM/AaY2Tnj5bfjw83n0kXt59rmpXHDh1ZSUlDJzxhR69uwedWihSHr9AQ4+yhj14Ngv510mRNdxF9Dt5uFs+P3rFI24m43T36DH+JHsf+2wqEMLhd77gSS+/3Xt46sgVc9Uzcz2B45w95fNrAC4BTgJ+DNwr7tvb7wwsyts2S30nLNo2Vu89Ke5XDfmliCGwkLee3ceM2bO5oYb4z/xLl/qf3nXE0I7V5XCloUMHDGEYTdexLatn1PYopDRh10WehwAo8vLwz1hQQFHvjeFdU9NZ+1Pn91R3OPOq9nr7BNZ3P+K0EI5fv2i0M5VXZLf+5A/7/9Ja98M/Zz5cu0ByrevCTUVfeegoTn7nu3//rR6x57unbodGAZ0Af4J3O7u02rZvzPBBLCzCNL154Eb3X1zXeep77R73P1jgnuY4e4p4O76HhtHffr0omfP7kyf/vKOsvLycmbOepVBg06PMLJwJL3+/U47kiGjh/H8PZNpt1d7Bl11TtQhhaZ5x7Z8OnUuG2ft/GX0+co1tOjSiWZtWlG5dVtE0TW+pL/3Ibnv/6Rf+wjH/jwNHAFcBawCLgBeMLOvu/ucGvb/HdAWGAh0BH4JPA5cWtdJ6rq565W7E627/zLbPmbWlmDton+4+2dmdiQwFuhGcIPYB939/d05b1T6HtIbgKIVq3YqLy5ezcG9D6JZs2ZUVlZGEFk4kl7/4sUruOmU0Wzd9BnfHHdB1OGEqqJ0C6t/9MQu5Z0GHsv2tZ/EOhkCvfchue9/XfvwpXunzgPOdvfZ6eK7zewMYCQwJ2P/EwkWkT7M3d9Ll40CXjGzW9x9dW3nqquF6MndiDlFkIHVysz+HXgV2A/4MJ1w/ZEg21sCnA1cbmYnV1Uin3Xo2B6AsrKdW+DKyjbTvHlz2rVru8u2OEl6/UvWbYg6hLzS5eKBdBzQn9W37pooxU3S3/uQ3Pd/0q99RIOhtxB0fb2RUZ4C9q5h/1OA9Rl5xPz0/qcAU2o7UV0JUa96hVp/9wMLgDuA/wSmAc8BV7l7yswKgcnAfxNUPq8VFARNh5ljsKrK4/5XQtLrL1/ae9gADrrnWjZMf4P1v5oRdTiNTu/95Er6tc/lgopm1gnoVMOmEncvqfrB3cuAlzKOPR74GkEPU6ZuwIfVC9x9u5l9AtQ58r2uu93nuuvqVOAYd3cz+z5BX94j6fFIuHu5md0FvJXj8zaKTaVlAHTo0J716z/ZUd6+fTsqKirYsuWzqEILRdLrL4H9rjqHA28bQcnLiyge82DU4YRC7/3k0rXPqXHAj2so/wnBzPYamdmhwAsEE7oer2GXtkBN/fbbyHLP1Zzc7b6ePie9uKO7rwOeIbgnWnVfoYmsabS8qBiA3r12XpOyV68e+LIVUYQUqqTXX6DbzcPpPn4kn059jRXX3Efqi5Bnu0VE7/3kSvq1z/HCjA8R9ERlPh6q7fxmNoCgp+kjYIi7f1HDblsJbkKfqRVQZ39mmAnRbGCCmfUBcPcR7r60amN6INTjwIshxrTHli9fyerVaxg69MwdZYWFhQw+6wzmzFkQYWThSHr9k27fkWdzwJjzWffki6y6YSJUxLuroDq995Mr6dc+l/cyc/cSd19Vw6OkpnOb2aXAK8DfgFPdvbaBbB8AXTOObUkwXf/DGo9Iq/e0+xz4HsH90G4HLqm+wcwuJhjoNAe4OcSYGuT+Bx5h4oQ7KSkpZeHCRYy+9gq6dNmbCRPjP7AUVP+karHvXhx4y+V8tnQVG6bNp91RfXfavmVxUewTJL33k0vXPnxmdgnBGOMpwJW1tAxVmQfcZ2bm7p4uG5B+nl/XeUJLiNx9LdDfzParYfNc4HhgUdWYoqbgscefoU2b1oy5biTXjx3F4sVLGDzkUoqLa53VFytJr39SdTz1SJq1bknbQ3ty6LT7d9n+Tr/LKN9YFkFk4dF7P7mSfO2j+HI2swOBJwjyhJuAzmZWtXk7wTCbfYBSd99KMLboDeA5M/suwVCdx4HJ7r6mrnPVe6XqdGCtgK8SjOL+E9Aufcf7yEWxUrXkh6hW680Xoa9UnUeiWqk6XyT9vR/FStX5JOyVqhce8K2cfc+e+NHUesVuZmOBCbVsfgMYDhQDI9z96fQx+wKPEMxY/5xgocYb0glTrerdQpTOtO4C9iJIFI8lWBwJ4Dx31/B6ERGRmIpipWp3n0hwG4667BSYu68Hvr2756rXoGozuxx4lCDLGlLt5M8AJ1Pz1DkRERGRJqG+s8xuAn7u7tcAO27i4u7PEawZsNuZmIiIiDQdlTl85KP6JkR9qH06/NvAAbkJR0RERPJRioKcPfJRfROidQR3mq3JYentIiIiIk1SfQdVPwfcamZr+LKlKJW+n8h/EYwlEhERkZiqjPlc7vomRLcBhxMsjFT1v2Q+wfz+19GgahERkVirzNOurlypV0Lk7tuBs81sIHAG0BkoAV4DZjWlxRRFREREMu3WStXuPpvgnmQiIiKSIPk6GDpX6pUQmdlt2fZx99sbHo6IiIjko3ydLp8r9W0hGl/HtjKCWWZKiERERKRJqu+0+xY1PDoD5wObgJGNEp2IiIjkhbivQ1TfQdUVNRRvBH6fvnv9T4HjchmYiIiI5I+4d5nVt4WoLsuBfjl4HREREZFI7NYss0xm1hr4LvBRbsIRERGRfBT3FqL6zjL7gC8XZKzSnGAcUUvg+hzHJSIiInkkX8f+5Ep9W4hqWnsoRTCgepq7z8ldSCIiIiLhqm9C9EfgdXff2JjBiIiISH6qjHcDUb0HVT8DDGnMQERERCR/VVKQs0c+qm9C9C+gpqn3IiIiIk1efbvM7gYeNrN+wLvAx5k7aByRiIhIfMX9Lu71TYieTD//IKM8BRSkn5vnKigRkfq4vOsJUYcQqUlr34w6BEkQTbsPnN6oUYiIiIhEqNaEyMxWAue7+9vu/nqIMYmIiEieqSzIz8HQuVJXC1FPoHVIcYiIiEgei/sYolzcy0xERESkScs2hijuCaGIiIjUQ9IHVb9gZtvr8Topdz8oFwGJiIhI/on7StXZEqK/AevDCEREREQkKtkSorvcfWEokYiIiEjeytdbbuRKfdchEhERkQSL+6BizTITERGRxKurhegZYF1YgYiIiEj+SuygancfEWYgIiIikr/iPu1eXWYiIiKSeBpULSIiIlnFfVC1EiIRERHJKrFjiERERETyiZndAgxx95Pr2Oca4LEaNh3i7kW1HacxRCIiIpJVZQ4fe8LMRgN31WPXI4CXgAMyHsV1HaQWIhEREckqqllmZtYVeBw4HfB6HNIPWOjuH+/OedRCJCIiIvnsaKCMoOXnz/XYvx/w3u6eRC1EIiIiklUqh4OqzawT0KmGTSXuXlK9wN1fBF5MH5ftdbunX3egmd2c/vefgZvdfXldx6qFqIFGXnkJS5csoKy0iAXzpnH8cUdHHVKokl5/gP4Dj+HRdydHHUa4mjVjv1FDOWzuzzhy2W84bM7P2OeKwVFHFYlEXn+S/buf1LrneAzROIIxPZmPcQ0M8/Bq4V4GXAx0ABaa2f51HaiEqAGGDz+fRx+5l2efm8oFF15NSUkpM2dMoWfP7lGHFoqk1x/g4KOMUQ+OJeY3gd5F13EX0O3m4Wz4/esUjbibjdPfoMf4kex/7bCoQwtVUq9/kn/3k1z3HHsI6FXD46GGvKi7zwI6u/sV7v62u88DziXId66s69iCVCoeSy0VtuwWekWKlr3FS3+ay3VjbgliKCzkvXfnMWPmbG648bawwwldvtT/8q4nhHauKoUtCxk4YgjDbryIbVs/p7BFIaMPuyz0OABGl5eHe8KCAo58bwrrnprO2p8+u6O4x51Xs9fZJ7K4/xWhhfJoYTS9/vly/SetfTP0c0L+/O5HIZ/qXr59Taip+MPdh+fse/a6D369R7Gb2dNAn7qm3ddy3CLgb+7+3dr2ibyFyMz+ke7za1L69OlFz57dmT795R1l5eXlzJz1KoMGnR5hZOFIev37nXYkQ0YP4/l7JvPqM7OiDidUzTu25dOpc9k4a+cv489XrqFFl040a9MqosjCk+Trn+Tf/STXHYKVqnP1aCxm9j0z+8jMWlYr+wrQF1hS17Gh/HllZnU1U/UBLjazTwDc/ZdhxNRQfQ/pDUDRilU7lRcXr+bg3gfRrFkzKivjeyu8pNe/ePEKbjplNFs3fcY3x10QdTihqijdwuofPbFLeaeBx7J97SdUbt0WQVThSvL1T/LvfpLrnq/MrDmwD1Dq7luBacCPgUlmdjvQDrgP2AjUmV+E1d48AWib/ndNzWT3pp9TZAk4X3To2B6AsrLNO5WXlW2mefPmtGvXdpdtcZL0+pes2xB1CHmly8UD6TigP6tv3TVRiqMkX/8k/+4nue6Qt7fu6E4wGHsE8LS7LzezgcDdwEKCnOMV4Ep331LXC4WVEB0NTAFKge+4+5qqDWZWBvw/d18ZUiw5UVAQvDMyx2BVlcf9r4Sk11++tPewARx0z7VsmP4G6381I+pwpJEl+Xc/yXWH6BZmrM7dr8j4eRUZDS3u/hdg4O6+dihjiNx9GXAC8BfgHTO7MIzzNqZNpWUAdOjQfqfy9u3bUVFRwZYtn0URVmiSXn8J7HfVOfSaMI6S2X+leMyDUYcjIUjy736S654EoQ2qdvdyd/8v4FvAfWY2JT3QqUlaXhTcEqV3rx47lffq1QNftiKKkEKV9PoLdLt5ON3Hj+TTqa+x4pr7SH0R8mw3iUSSf/eTXHeI/l5mjS30WWbpNQH6EzRxvQu0rPOAPLV8+UpWr17D0KFn7igrLCxk8FlnMGfOgggjC0fS6590+448mwPGnM+6J19k1Q0ToSJfP+Ik15L8u5/kukPTmGXWEJEs4pFelvsSM7uMYCDU1ijiaKj7H3iEiRPupKSklIULFzH62ivo0mVvJkxMxsDSpNc/qVrsuxcH3nI5ny1dxYZp82l3VN+dtm9ZXKQEKeaS/Luf5LrHXaT3MnP3yUCTXfP+scefoU2b1oy5biTXjx3F4sVLGDzkUoqLV0cdWiiSXv+k6njqkTRr3ZK2h/bk0Gn377L9nX6XUb6xLILIJCxJ/t1Pct3zdJZZzmilamnyolipOp+EvlJ1Holqpep8EdVK1ZIfwl6p+t6DcrdS9Q/e37OVqhtTsj9NREREpF7i3uoQ+a07RERERKKmFiIRERHJqjLmbURKiERERCSruM8dVZeZiIiIJJ5aiERERCSreHeYKSESERGRelCXmYiIiEjMqYVIREREsor7StVKiERERCSruE+7V5eZiIiIJJ5aiERERCSreLcPKSESERGRetAsMxEREZGYUwuRiIiIZBX3QdVKiERERCSreKdD6jITERERUQuRiIiIZBf3QdVKiERERCSruI8hUpeZiIiIJJ5aiESauOPXL4o6hMhc3vWEqEOI1Fv7Hht1CJFK8ns/CvFuH1JCJCIiIvUQ9zFE6jITERGRxFMLkYiIiGSVinmnmRIiERERyUpdZiIiIiIxpxYiERERySru6xApIRIREZGs4p0OqctMRERERC1EIiIikp26zERERCTx8mGWmZndAgxx95Pr2KczMBE4CygAngdudPfNdb22usxEREQk75nZaOCueuz6O6APMBAYln5+PNtBaiESERGRrKJamNHMuhIkNKcDnmXfE4HTgMPc/b102SjgFTO7xd1X13asEiIRERHJKpddZmbWCehUw6YSdy/JKDsaKAOOAG4jaP2pzSnA+qpkKG0+wSS5U4AptR2oLjMREREJ2ziguIbHuMwd3f1Fd7/E3VfW43W7AR9mHL8d+AToXteBaiESERGRrHLcZfYQ8HQN5SUNfN22wLYayrcBres6UAmRiIiIZJXLLrN0t1hJDl+yylagVQ3lrQDNMhMREZFE+ADoWr3AzFoCXcjoSsukhEhERESyqkylcvZoRPOA/c3MqpUNSD/Pr+tAdZmJiIhIVvm4TrWZNQf2AUrdfSvwZ+AN4Dkz+y7QhmDK/mR3X1PXa6mFSERERJqq7sBHwIUA7p4CzgNWAHOAqcArwLXZXkgJUQONvPISli5ZQFlpEQvmTeP4446OOqRQJb3+AP0HHsOj706OOozQ6doHEnn9mzVjv1FDOWzuzzhy2W84bM7P2OeKwVFHFZqkvvcrSeXssafc/Yrqt+1w91XuXuDuT1crW+/u33b39u7exd2/m249qpMSogYYPvx8Hn3kXp59bioXXHg1JSWlzJwxhZ4961zqIDaSXn+Ag48yRj04NrhbToLo2geSev27jruAbjcPZ8PvX6doxN1snP4GPcaPZP9rh0UdWqNL8ns/lcP/8lFBqnEHN4WmsGW30CtStOwtXvrTXK4bc0sQQ2Eh7707jxkzZ3PDjbeFHU7o8qX+l3c9IbRzVSlsWcjAEUMYduNFbNv6OYUtChl92GWhxwEwae2boZ8zydce8uf6jy4vD/2cFBRw5HtTWPfUdNb+9NkdxT3uvJq9zj6Rxf2vCC2U49cvCu1cVfLlvQ9Qvn1NqKn4xQedm7Pv2efe/0Pe/RmhFqI91KdPL3r27M706S/vKCsvL2fmrFcZNOj0CCMLR9Lr3++0IxkyehjP3zOZV5+ZFXU4oUr6tYdkX//mHdvy6dS5bJy1cyL++co1tOjSiWZtaloCJh6S/t6vzOEjH4U2y8zMrgSmuPu2amVfA24CegBLgDvc/f/Ciqkh+h7SG4CiFat2Ki8uXs3BvQ+iWbNmVFbm62VvuKTXv3jxCm46ZTRbN33GN8ddEHU4oUr6tYdkX/+K0i2s/tETu5R3Gngs29d+QuXWmhYJjoekv/cbMvanKQizhegJ4CtVP5jZ1wlGfgNMJ1g06S9mdnINx+adDh3bA1BWtvPCl2Vlm2nevDnt2rWNIqzQJL3+Jes2sHXTZ1GHEYmkX3tI9vWvSZeLB9JxQH8+/vkLUYfSqPTej7cw1yHK7C+8FZjg7jdWFZjZBOAegjvS5rWCgqA6mWOwqsrj/FcCqP5Jpmsv1e09bAAH3XMtG6a/wfpfzYg6nEaV9Pd+vg6GzpUoxxD1BTLnqj4KNIn5i5tKywDo0KH9TuXt27ejoqKCLVvi/ddj0uufZLr2UmW/q86h14RxlMz+K8VjHow6nEaX9Pd+3McQhZkQpdh5ocsioEPGPp1pnJu95dzyomIAevfqsVN5r1498GUroggpVEmvf5Lp2gtAt5uH0338SD6d+horrrmP1BcRzHgLmd778RZmQlQALDOzhWb2JFAG3GNmhQBmdjTwMPByHa+RN5YvX8nq1WsYOvTMHWWFhYUMPusM5sxZEGFk4Uh6/ZNM1172HXk2B4w5n3VPvsiqGyZCRb7+zZ9bSX/vp1KpnD3yUZhjiP4NOALol34+BOgFtATKgbnASuAHIcbUIPc/8AgTJ9xJSUkpCxcuYvS1V9Cly95MmLjrDIw4Snr9k0zXPrla7LsXB95yOZ8tXcWGafNpd1TfnbZvWVwU6wQpye/9uM8yCy0hcvdlwDLgd1VlZtbW3as6Xb8B/NXdm0y762OPP0ObNq0Zc91Irh87isWLlzB4yKUUF6+OOrRQJL3+SaZrn1wdTz2SZq1b0vbQnhw67f5dtr/T7zLKN5ZFEFk49N6PL61ULU1eVKsV54soVqrOF0m/9pGsVJ1HolipOp+EvVL1OT3Oztn37Iurp+fdStVhdpmJiIhIExX3afdKiERERCSruI8h0r3MREREJPHUQiQiIiJZxWXMcW2UEImIiEhW8V1MIaAuMxEREUk8tRCJiIhIVpplJiIiIomnWWYiIiIiMacWIhEREclKs8xEREQk8dRlJiIiIhJzaiESERGRrDTLTERERBKvMuZjiNRlJiIiIomnFiIRERHJKt7tQ0qIREREpB40y0xEREQk5tRCJCIiIlnFvYVICZGIiIhkpZWqRSSvXd71hKhDkIg8WqiPcJFc0W+TiIiIZKUuMxEREUk8rVQtIiIiEhEzawb8GLgK2AtYAIx296Ja9r8GeKyGTYfUdgxo2r2IiIjUQyqVytljN90GXAuMAo4HyoE/mVnrWvY/AngJOCDjUVzXSdRCJCIiIllFMYbIzFoB3wNudveZ6bKLgI+AbwOTazisH7DQ3T/enXOphUhERETyVX+gPTC3qsDdNwFvAwNqOaYf8N7unkgtRCIiIpJVLtchMrNOQKcaNpW4e0m1n7ulnz/M2G8t0L2G1+2eft2BZnZz+t9/JmhhWl5XTGohEhERkawqSeXsAYwjGNOT+RiXcdq26edtGeXbgJrGEB2+I1y4DLgY6AAsNLP966qfWohEREQkbA8BT9dQXpLx89b0cytge7XyVsDmzIPdfZaZdXb3DVVlZnYusBq4Eri7toCUEImIiEhWuVyHKN0tVlKPXT9IP3cFvFp5V2BJLa+9IePnLWa2EuhR14nUZSYiIiJZVaZSOXvshsXAJuC0qgIz6wgcBbyeubOZfc/MPjKzltXKvgL0pZYEqopaiERERCQvufs2M3sYuNvMPiYYZ3QvsAaYambNgX2AUnffCkwjWMRxkpndDrQD7gM2Ar+s61xqIRIREZGsUjn8bzfdBjwB/AJYCBQAZ7r7doKZZh8BFwKkZ5INBLqk950NbABOc/ctdZ2kIJfT6KJU2LJbPCoiu013exdJpklr34w6hEiVb19TEOb5Dt33qzn7nl26/i+hxl4faiESERGRxNMYIhEREclKd7sXERGRxNvN2WFNjrrMREREJPHUQiQiIiJZqctMREREEk9dZiIiIiIxp4SogUZeeQlLlyygrLSIBfOmcfxxR0cdUqiSXn+A/gOP4dF3J0cdRmRUf9U/afVP6udehAszhkIJUQMMH34+jz5yL88+N5ULLryakpJSZs6YQs+e3aMOLRRJrz/AwUcZox4cG6ybmkCqv+qftPon+XMvlarM2SMfKSFqgPG3fZ8nnpzCHXc+yKyX5nDueSP45JMNXD92VNShhSLJ9S9sWciZ13yTm54bT0VFRdThhE71V/2TWv8kf+7FXaiDqs3sBOBr7n5X+uczgO8DvYAi4Kfu/lqYMe2pPn160bNnd6ZPf3lHWXl5OTNnvcqgQadHGFk4kl7/fqcdyZDRw3j+nsm026s9g646J+qQQqX6q/5JrH/SP/cq87SrK1dCayEys/OB+cBJ6Z/PBl4GKoE/pmOZbWZDw4qpIfoe0huAohWrdiovLl7Nwb0PolmzeDe+Jb3+xYtXcNMpo5n99Exi/hlRI9Vf9U9i/ZP+uZdKpXL2yEdhthCNB25z97vTP/8IuNPdf1y1g5n9EPgJMC3EuPZIh47tASgr27xTeVnZZpo3b067dm132RYnSa9/yboNUYcQKdVf9U+ipH/uxV2Y6ezBwG+q/dwLmJqxz3PAv4UWUQMUFASjCDMz3aryysr8HDSWK0mvv4gkT9I/9ypJ5eyRj8JMiFYCg6v9vAg4MmOf44EPQ4uoATaVlgHQoUP7ncrbt29HRUUFW7Z8FkVYoUl6/UUkeZL+uacus9y5D3jKzHoStATdA0wys3bAu8CxwK3AbSHGtMeWFxUD0LtXD1ZU60/u1asHvmxFRFGFJ+n1F5Hk0edevIXWQuTuk4ARwHkErUPzCLrNHgZeI0iEHnD3iWHF1BDLl69k9eo1DB165o6ywsJCBp91BnPmLIgwsnAkvf4ikjxJ/9yrTKVy9shHoU67d/dfA782MwP6Ah2B7QTdZH9398/DjKeh7n/gESZOuJOSklIWLlzE6GuvoEuXvZkw8YmoQwtF0usvIsmT5M+9fF1hOlciubmruzvgUZw7lx57/BnatGnNmOtGcv3YUSxevITBQy6luHh11KGFIun1F5Hk0edefBXk6+Cm3VXYsls8KiK77fKuJ0QdgohEYNLaN6MOIVLl29eEetOU/b7ybzn7nl1X+s+8u+FLJC1EIiIi0rTk63T5XFFCJCIiIlnFpUepNvFeZ1xERESkHtRCJCIiIlnl63T5XFFCJCIiIlmpy0xEREQk5tRCJCIiIllplpmIiIgknrrMRERERGJOLUQiIiKSlWaZiYiISOLF/eau6jITERGRxFMLkYiIiGSlLjMRERFJPM0yExEREYk5tRCJiIhIVnEfVK2ESERERLKKqsvMzJoBPwauAvYCFgCj3b2olv07AxOBs4AC4HngRnffXNd51GUmIiIi+ew24FpgFHA8UA78ycxa17L/74A+wEBgWPr58WwnUUIkIiIiWaVSqZw96svMWgHfA8a7+0x3/z/gImB/4Ns17H8icBowwt3fdvfXCBKpi82sR13nUpeZiIiIZJXLDjMz6wR0qmFTibuXVPu5P9AemFtV4O6bzOxtYAAwOeP4U4D17v5etbL5BOGfAkypLabYJETl29cURB2DiIiE55dRB5AwufyeNbPxBOOCMv0EGF/t527p5w8z9lsLdK/h+G6Z+7r7djP7pJb9d4hNQiQiIiJNxkPA0zWUl2T83Db9vC2jfBtQ0xiitjXsW9f+OyghEhERkVClu8VK6rHr1vRzK2B7tfJWQE2zxramt2Wqbf8dNKhaRERE8tUH6eeuGeVd2bUbrWr/nfY1s5ZAl1r230EJkYiIiOSrxcAmgpljAJhZR+Ao4PUa9p8H7G9mVq1sQPp5fl0nKoj7vUlERESk6TKzu4DvAlcCxcC9BOsMHQ5UAPsApe6+1cwKCBKftulj2hCMv5/v7lfUdR61EImIiEg+uw14AvgFsJBg9ekz3X07wcyxj4ALAdw9BZwHrADmAFOBVwgWdqyTWohEREQk8dRCJCIiIomnhEhEREQSTwmRiIiIJJ4WZmwAM2tGsPT4VcBewAJgtLsXRRpYBMzsFmCIu58cdSxhMLMOwO0Ed1LuAvwTuN3dp0UaWEjMrBvwU+DrBKu/vg7c5O5LIg0sAmbWF3gbGOfuT0YdTxjSU5r/WcOmUQn6f3A58AOgN8EA3vHu/ny0UUlDqIWoYW4jGLk+CjgeKAf+ZGZ1Lg8eN2Y2Grgr6jhC9jRwNkEy3B/4PfCCmX0twphCkZ7WOhM4EBgEHEuwOuyrZtY+ytjCZmYtCG4W2S7qWEJ2BMHaMAdkPGq9cWacmNlwgqncjxNM/X4W+I2ZnRRpYNIgaiHaQ2bWCvgecLO7z0yXXUQw/e/b7HoH3tgxs64EHwinAx5xOKExs/0JpnWe7e6z08V3m9kZwEiCqZ5xth+wFLjN3ZcBmNkdwDtAP+DN6EIL3U+AsqiDiEA/YKm7fxx1IGFL/0FwB/Azd5+QLr7LzE4Bvga8EVlw0iBKiPZcf6A9MLeqwN03mdnbBKtixj4hAo4m+DI4gqC1rE+04YRmC3AWu37wpYC9ww8nXOkvwYuqfjaz/YDvE9x9+h9RxRU2MxsAXEPwWbA62mhCdwTwXtRBRMSAngStQju4+5mRRCM5o4Roz3VLP2feG2UtwUJRsefuLwIvAuy8Snq8uXsZ8FL1MjM7nuCvw7GRBBURM3sa+A7BnaSHunudN0+MCzPrRPBHzxh3/yBJ7/+0fsByM3uD4A+hZcAd7v5ytGGFom/6uZWZzSDoMi4G7kx/JkoTpTFEe65t+nlbRvk2gkGmkhBmdijwAvBngi7EJHmA4AvhOeAPZnZ0xPGE5efAm+7+bNY9Y8bM2gG9gE7AD4HBwF+Bl8xsYIShhaVj+nky8DvgG8CfgD+a2dcji0oaTC1Ee25r+rkVsL1aeSsgEX8ly45ukxeA9wlm2X0RcUihqppVZmYjgeMIWsi+E2lQjczMLgNOIWglSRx335K+ueb29K0TAP5mZv8O3ATMrv3oWKiq8/+4+6/S/37HzI4h6Dp+JZqwpKHUQrTnPkg/d80o78qu3WgSQ2Z2KcGH39+AU919Q8QhhcLMDjCzS9KDSwFw90pgCV92JcfZlQQDyz8ws81mVvUH0MNmlohlB9x9c7VkqMr/AT2iiCdkVZ/vmePl3iVoOZMmSgnRnltMMO30tKqC9F9NRxGsySIxZmaXEDSZ/5agZShJM416EEyv3jHFOD39/CiC2WdxNxw4lGAwddUDghlngyOJKERmdoKZlZnZsRmbjiVIiuPu7wSTSTLr3w9I3Bp0caIusz3k7tvM7GGC6dYfEwyquxdYQ3B3XYkpMzuQ4M7Lcwm6CDpXG1S7PQEtRYsI6v4LM7saKCEYS9IZ+J8I4wqFu6/JLEtf/3+5+/vhRxS6vxJ83j1hZv8BfEqwHtuJBN2msebuW83sfuBWM1sLvEUw63IQwUKl0kSphahhbiP4YvwFsBAoAM6soSlZ4uU8gkH1XyOYVfhRtUfsV6pOd499i2Bl9ueBvxAsN3CKuxdHGZs0vvQ4uTMJusimEqw/dQzwdXf/e4Shhcbd7yT4/L+dYPmBC4BvufurkQYmDVKQSqWijkFEREQkUmohEhERkcRTQiQiIiKJp4RIREREEk8JkYiIiCSeEiIRERFJPCVEIlIv1VemFhGJGy3MKBICM3sNODWjeDvBOkazgB811oKOZtaTYCG9Ue7+pJmdRrCw4tfdvV73nUrfq6wfMC4H8YwHfgy0cPfyWvZJAXe5+49243VfAwrd/eQcxLjb5xeRpk0tRCLh+QfBTUGrHmcBjxDcG2t6iC0wf0+ff9FuHHMr0KVxwhERiZ5aiETCs8ndF2SUzTGzNgQr3h5HcBuARuXupQSrTIuISJoSIpHo/TX9fBDwVrrrZzXB7+dQ4B/ufoKZtSK4geglBHdbLwLud/dnqr+YmV0J/CfQk+D2CrdnbD+NjC4zMzsGuIPgflRfENyg+D/dfWW6+wjgIDO71N0L0sf8O3AfQVdgM+A14Hvu7tXO9RXgAWAY0Ar4NVC6u/+D0t1+twMDgX2AjcBLwI3u/knGvrcA1wMdgFfT+xRV235gOu4zgTYELWU3u3ujJ6Mikr/UZSYSvao7w1a/U/ZFQGuC+6bdnS6bCowBfk6QYMwDnjaz0TteyOwa4ClgPsH9xmYB/1vnyc2OIGgx6gyMAq4huJv7K2bWlqB77WPg5fS/MbM+BPfv6wFcDVwFdAPeMLPu6X0KgJnA+cB44DKgN3BjPf+/VMXXhiDZqhrDNJigq/ESghsqV3ccQRfkDel6/D/gVTNrnX6tzum4TwK+D1wKlANzzezo3YlLROJFLUQiITKz6r9zewMDgB8RfEm/XW1bAXCFu29KHzcQGAJ8x90npfeZaWbNgbvM7FfA5wSDlae5+9XV9iknaP2pzQ+BTcDX3H1z+nz/JEimvurur5nZNoK7uVd1tY0nSCROrxoMbmazCJK6HxEkI98gaHE6z91fSO8zHVjCl0lgfRjB4PMR1VqfXkm3ap2WsW8lQcvXqvT5lhD8f70SeJQgUdoPONzdl1eL6R2CxHPQbsQlIjGihEgkPCcRdEdVVwm8QjADrPqdlt+vSobSzkg/T8tIql4gaNX5KkErzgHpsuqepe6EaADwUlUyBODuSwhaf2pzBkGrzaZq8WwBZhMkQhAkKxXAi9Vet8LMfkswSLte3P0d4EQzKzCzXsAhwOHAvxF0w1X3VlUylD7272a2kqCr7dF03P8AiqvFnUrHeIOZtXT37fWNTUTiQwmRSHgWE3QtQfAl/DlB4rO5hn0/zvi5aobXxlpeuxtfJlv/yti2NktcXYB1Wfap6ZhvsWuCR7WyzsDGGqbWZ4tnF2Z2PfBfwL4Esf6VIAFrk7Fr5v83gPXAXtXi7lNL3FXbdzs+EWn6lBCJhGezu/81+241KgG2ErTm1KSYoAsOYP+Mbdmmy5cQDFTeiZkNApa6++pajpkL3F/H6/4L2NvMWrh79QRkt6bvm9klwEPATcDT7v6vdPlva3itvdnV/sBfqsW9gKDrrCaf1FIuIjGnQdUiTcNrBK0hLd39r1UPgu6ju4B26TExqwgGZFd3bpbXng+cmR68DOwYNP0ScHq6qKKGeA4DFmfEM5ZgsDMEXYHNgAsyjv1mlngynUyQTD5QLRnqkC7P/Aw7MT1wuqoexxPMtptbLW4DijLivpAgSaqt5UhEYk4tRCJNwyyCL/MXzOxugoHJRxIMbl5YrRXnJuB/zexZYApB0nJTlte+A3gTeNnMHiT4XPgx8B7wu/Q+JcD/M7MzCJKLnxCsmfSymT1C0H11JcGMsssA0oOxZwCPmdl+gAMjgH/fzbr/GbjWzCYQjPXpCnyPoOWnrIb9Z5nZnQRddnen61G1NMH/pOOba2b/TdCddi5wLXBrxjguEUkQtRCJNAHuXkkwy2wSQTIwA/gPvpyCX7Xf88C3CRKhqQRf/sOzvPbfCdYS2g5MBh4mWM366+6+Jb3b3QQJyB+BHu7+LkELzRbgl8DzBOsoXeDuv6728ucDTxAkZb8laGm6czerP4lgDaLzCBKi2wjWSboa6JheNqDKdIKWrV8CEwiSt6+5+9Z0XT8CTiBIziYAfyBYSmC0u+9uXCISIwWplP4gEhERkWRTC5GIiIgknhIiERERSTwlRCIiIpJ4SohEREQk8ZQQiYiISOIpIRIREZHEU0IkIiIiiaeESERERBLv/wN1P20oLqN/YgAAAABJRU5ErkJggg==\n", |
|
|
1846 |
"text/plain": [ |
|
|
1847 |
"<Figure size 720x504 with 2 Axes>" |
|
|
1848 |
] |
|
|
1849 |
}, |
|
|
1850 |
"metadata": { |
|
|
1851 |
"needs_background": "light" |
|
|
1852 |
}, |
|
|
1853 |
"output_type": "display_data" |
|
|
1854 |
} |
|
|
1855 |
], |
|
|
1856 |
"source": [ |
|
|
1857 |
"conf_matrix = confusion_matrix(y_test, predictions)\n", |
|
|
1858 |
"df_cm = pd.DataFrame(conf_matrix, index = [i for i in \"0123456\"], columns = [i for i in \"0123456\"])\n", |
|
|
1859 |
"plt.figure(figsize = (10,7))\n", |
|
|
1860 |
"sn.set(font_scale=1.4)\n", |
|
|
1861 |
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16})\n", |
|
|
1862 |
"plt.ylabel('True label')\n", |
|
|
1863 |
"plt.xlabel('Predicted label')\n", |
|
|
1864 |
"plt.savefig('results/conf_matrix_1120.png')\n", |
|
|
1865 |
"plt.show()" |
|
|
1866 |
] |
|
|
1867 |
}, |
|
|
1868 |
{ |
|
|
1869 |
"cell_type": "markdown", |
|
|
1870 |
"id": "43da79a3", |
|
|
1871 |
"metadata": {}, |
|
|
1872 |
"source": [ |
|
|
1873 |
"Looking at the performance, we can safely conclude that the model is overfitting the training data. This is expected as deep learning models are data hungry. We have only 140 signals. To avoid this, we need to augment the data." |
|
|
1874 |
] |
|
|
1875 |
}, |
|
|
1876 |
{ |
|
|
1877 |
"cell_type": "markdown", |
|
|
1878 |
"id": "93cc3066", |
|
|
1879 |
"metadata": {}, |
|
|
1880 |
"source": [ |
|
|
1881 |
"#### Data augmentation" |
|
|
1882 |
] |
|
|
1883 |
}, |
|
|
1884 |
{ |
|
|
1885 |
"cell_type": "markdown", |
|
|
1886 |
"id": "a841552a", |
|
|
1887 |
"metadata": {}, |
|
|
1888 |
"source": [ |
|
|
1889 |
"Now, before we proceed with deep learning model training, we will augment the data. Our signal length is 40,000. We can make use of this. We will chop these 40,000 samples long signals into smaller 5,000 samples signals. As a result, from one signal, we will generate 8 signals. Finally, we will have 140 * 8 = 1120 signals" |
|
|
1890 |
] |
|
|
1891 |
}, |
|
|
1892 |
{ |
|
|
1893 |
"cell_type": "markdown", |
|
|
1894 |
"id": "117e5950", |
|
|
1895 |
"metadata": {}, |
|
|
1896 |
"source": [ |
|
|
1897 |
"Loading the processed data and performing data augmentation" |
|
|
1898 |
] |
|
|
1899 |
}, |
|
|
1900 |
{ |
|
|
1901 |
"cell_type": "code", |
|
|
1902 |
"execution_count": 6, |
|
|
1903 |
"id": "3d92649b", |
|
|
1904 |
"metadata": {}, |
|
|
1905 |
"outputs": [], |
|
|
1906 |
"source": [ |
|
|
1907 |
"data = np.load('data_processed.npy', allow_pickle = True)" |
|
|
1908 |
] |
|
|
1909 |
}, |
|
|
1910 |
{ |
|
|
1911 |
"cell_type": "code", |
|
|
1912 |
"execution_count": 7, |
|
|
1913 |
"id": "4982cf2f", |
|
|
1914 |
"metadata": {}, |
|
|
1915 |
"outputs": [], |
|
|
1916 |
"source": [ |
|
|
1917 |
"aug_data = []\n", |
|
|
1918 |
"for i in range(140):\n", |
|
|
1919 |
" current_chunk = data[i]\n", |
|
|
1920 |
" for i in range(8):\n", |
|
|
1921 |
" aug_data.append(current_chunk[:, i*5000:i*5000 + 5000])" |
|
|
1922 |
] |
|
|
1923 |
}, |
|
|
1924 |
{ |
|
|
1925 |
"cell_type": "code", |
|
|
1926 |
"execution_count": 8, |
|
|
1927 |
"id": "bf4556c3", |
|
|
1928 |
"metadata": {}, |
|
|
1929 |
"outputs": [], |
|
|
1930 |
"source": [ |
|
|
1931 |
"aug_data = np.array(aug_data)" |
|
|
1932 |
] |
|
|
1933 |
}, |
|
|
1934 |
{ |
|
|
1935 |
"cell_type": "code", |
|
|
1936 |
"execution_count": 9, |
|
|
1937 |
"id": "c964a39e", |
|
|
1938 |
"metadata": {}, |
|
|
1939 |
"outputs": [], |
|
|
1940 |
"source": [ |
|
|
1941 |
"labels = []\n", |
|
|
1942 |
"for i in range(7):\n", |
|
|
1943 |
" for j in range(160):\n", |
|
|
1944 |
" labels.append(i)" |
|
|
1945 |
] |
|
|
1946 |
}, |
|
|
1947 |
{ |
|
|
1948 |
"cell_type": "code", |
|
|
1949 |
"execution_count": 10, |
|
|
1950 |
"id": "e39e2d3e", |
|
|
1951 |
"metadata": {}, |
|
|
1952 |
"outputs": [], |
|
|
1953 |
"source": [ |
|
|
1954 |
"labels = np.array(labels)" |
|
|
1955 |
] |
|
|
1956 |
}, |
|
|
1957 |
{ |
|
|
1958 |
"cell_type": "markdown", |
|
|
1959 |
"id": "5a4df7ac", |
|
|
1960 |
"metadata": {}, |
|
|
1961 |
"source": [ |
|
|
1962 |
"Lets check the final data shape" |
|
|
1963 |
] |
|
|
1964 |
}, |
|
|
1965 |
{ |
|
|
1966 |
"cell_type": "code", |
|
|
1967 |
"execution_count": 11, |
|
|
1968 |
"id": "e61792c8", |
|
|
1969 |
"metadata": {}, |
|
|
1970 |
"outputs": [ |
|
|
1971 |
{ |
|
|
1972 |
"name": "stdout", |
|
|
1973 |
"output_type": "stream", |
|
|
1974 |
"text": [ |
|
|
1975 |
"Augmented data shape: (1120, 16, 5000)\n", |
|
|
1976 |
"Number of data points: 1120\n", |
|
|
1977 |
"Number of channels: 16\n", |
|
|
1978 |
"Signal length: 5000\n" |
|
|
1979 |
] |
|
|
1980 |
} |
|
|
1981 |
], |
|
|
1982 |
"source": [ |
|
|
1983 |
"print('Augmented data shape: ', aug_data.shape)\n", |
|
|
1984 |
"print('Number of data points: ', aug_data.shape[0])\n", |
|
|
1985 |
"print('Number of channels: ', aug_data.shape[1])\n", |
|
|
1986 |
"print('Signal length: ', aug_data.shape[2])" |
|
|
1987 |
] |
|
|
1988 |
}, |
|
|
1989 |
{ |
|
|
1990 |
"cell_type": "markdown", |
|
|
1991 |
"id": "aa8d9470", |
|
|
1992 |
"metadata": {}, |
|
|
1993 |
"source": [ |
|
|
1994 |
"Saving the augmented data" |
|
|
1995 |
] |
|
|
1996 |
}, |
|
|
1997 |
{ |
|
|
1998 |
"cell_type": "code", |
|
|
1999 |
"execution_count": 46, |
|
|
2000 |
"id": "801761d0", |
|
|
2001 |
"metadata": {}, |
|
|
2002 |
"outputs": [], |
|
|
2003 |
"source": [ |
|
|
2004 |
"np.save('data_1120.npy', aug_data)\n", |
|
|
2005 |
"np.save('labels_1120.npy', labels)" |
|
|
2006 |
] |
|
|
2007 |
}, |
|
|
2008 |
{ |
|
|
2009 |
"cell_type": "markdown", |
|
|
2010 |
"id": "95d3f7be", |
|
|
2011 |
"metadata": {}, |
|
|
2012 |
"source": [ |
|
|
2013 |
"Loading the augmented data" |
|
|
2014 |
] |
|
|
2015 |
}, |
|
|
2016 |
{ |
|
|
2017 |
"cell_type": "code", |
|
|
2018 |
"execution_count": 67, |
|
|
2019 |
"id": "fecdbc3b", |
|
|
2020 |
"metadata": {}, |
|
|
2021 |
"outputs": [], |
|
|
2022 |
"source": [ |
|
|
2023 |
"x_data = np.load('data_1120.npy', allow_pickle = True)\n", |
|
|
2024 |
"y_data = np.load('labels_1120.npy', allow_pickle = True)" |
|
|
2025 |
] |
|
|
2026 |
}, |
|
|
2027 |
{ |
|
|
2028 |
"cell_type": "markdown", |
|
|
2029 |
"id": "2d0bfcf6", |
|
|
2030 |
"metadata": {}, |
|
|
2031 |
"source": [ |
|
|
2032 |
"splitting the data in trainset and valset with 4:1 ratio" |
|
|
2033 |
] |
|
|
2034 |
}, |
|
|
2035 |
{ |
|
|
2036 |
"cell_type": "code", |
|
|
2037 |
"execution_count": 68, |
|
|
2038 |
"id": "e25e0491", |
|
|
2039 |
"metadata": {}, |
|
|
2040 |
"outputs": [], |
|
|
2041 |
"source": [ |
|
|
2042 |
"train_x = []\n", |
|
|
2043 |
"train_y = []\n", |
|
|
2044 |
"val_x = []\n", |
|
|
2045 |
"val_y = []\n", |
|
|
2046 |
"for i in range(7):\n", |
|
|
2047 |
" current_class_data = x_data[i*160: i*160 + 160]\n", |
|
|
2048 |
" current_class_labels = y_data[i*160: i*160 + 160]\n", |
|
|
2049 |
" idx = np.random.permutation(160)\n", |
|
|
2050 |
" current_class_data = current_class_data[idx]\n", |
|
|
2051 |
" current_class_labels = current_class_labels[idx]\n", |
|
|
2052 |
" train_x.append(current_class_data[0: 128])\n", |
|
|
2053 |
" val_x.append(current_class_data[128: ])\n", |
|
|
2054 |
" train_y.append(current_class_labels[0: 128])\n", |
|
|
2055 |
" val_y.append(current_class_labels[128: ])\n", |
|
|
2056 |
"train_x = np.array(train_x).reshape(-1, 16, 5000)\n", |
|
|
2057 |
"val_x = np.array(val_x).reshape(-1, 16, 5000)\n", |
|
|
2058 |
"train_y = np.array(train_y).reshape(-1)\n", |
|
|
2059 |
"val_y = np.array(val_y).reshape(-1)" |
|
|
2060 |
] |
|
|
2061 |
}, |
|
|
2062 |
{ |
|
|
2063 |
"cell_type": "markdown", |
|
|
2064 |
"id": "891b8bbb", |
|
|
2065 |
"metadata": {}, |
|
|
2066 |
"source": [ |
|
|
2067 |
"Creating dataloader with a batch size of 32" |
|
|
2068 |
] |
|
|
2069 |
}, |
|
|
2070 |
{ |
|
|
2071 |
"cell_type": "code", |
|
|
2072 |
"execution_count": 69, |
|
|
2073 |
"id": "900fc1bc", |
|
|
2074 |
"metadata": {}, |
|
|
2075 |
"outputs": [], |
|
|
2076 |
"source": [ |
|
|
2077 |
"trainset = Dataset(train_x, train_y)\n", |
|
|
2078 |
"valset = Dataset(val_x, val_y)\n", |
|
|
2079 |
"batch_size = 32\n", |
|
|
2080 |
"train_loader = data.DataLoader(dataset = trainset, batch_size = batch_size, shuffle = True)\n", |
|
|
2081 |
"val_loader = data.DataLoader(dataset = valset, batch_size = batch_size, shuffle = False)" |
|
|
2082 |
] |
|
|
2083 |
}, |
|
|
2084 |
{ |
|
|
2085 |
"cell_type": "markdown", |
|
|
2086 |
"id": "e7f5aa22", |
|
|
2087 |
"metadata": {}, |
|
|
2088 |
"source": [ |
|
|
2089 |
"Instantiating a model with 7 class classification.\n", |
|
|
2090 |
"\n", |
|
|
2091 |
"As our problem is of classification nature, we will use Cross Entropy loss.\n", |
|
|
2092 |
"\n", |
|
|
2093 |
"For optimizing model's parameters, Adam optimizer will be used.\n", |
|
|
2094 |
"\n", |
|
|
2095 |
"To improve the convergence rate, we will use a scheduler with gamma equal to 0.5\n", |
|
|
2096 |
"\n", |
|
|
2097 |
"We will train the model for 25 epochs" |
|
|
2098 |
] |
|
|
2099 |
}, |
|
|
2100 |
{ |
|
|
2101 |
"cell_type": "code", |
|
|
2102 |
"execution_count": 70, |
|
|
2103 |
"id": "ba60a3c6", |
|
|
2104 |
"metadata": {}, |
|
|
2105 |
"outputs": [], |
|
|
2106 |
"source": [ |
|
|
2107 |
"model = CNN1D(7).to(device).double()\n", |
|
|
2108 |
"criterion = nn.CrossEntropyLoss()\n", |
|
|
2109 |
"learning_rate = 0.0005\n", |
|
|
2110 |
"optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n", |
|
|
2111 |
"scheduler = lr_scheduler.MultiStepLR(optimizer, milestones = [5, 10, 15], gamma = 0.5)" |
|
|
2112 |
] |
|
|
2113 |
}, |
|
|
2114 |
{ |
|
|
2115 |
"cell_type": "code", |
|
|
2116 |
"execution_count": 71, |
|
|
2117 |
"id": "5559d8bf", |
|
|
2118 |
"metadata": { |
|
|
2119 |
"scrolled": true |
|
|
2120 |
}, |
|
|
2121 |
"outputs": [ |
|
|
2122 |
{ |
|
|
2123 |
"name": "stdout", |
|
|
2124 |
"output_type": "stream", |
|
|
2125 |
"text": [ |
|
|
2126 |
"Saving model parameters...\n", |
|
|
2127 |
"Validation accuracy: 14.285714285714285\n", |
|
|
2128 |
"EPOCH: 0\n", |
|
|
2129 |
"TRAIN_LOSS: 1.9590199476896797\n", |
|
|
2130 |
"TRAIN_ACC: 13.727678571428573\n", |
|
|
2131 |
"VAL_LOSS: 1.9449057967102927\n", |
|
|
2132 |
"VAL_ACC: 14.285714285714285\n", |
|
|
2133 |
"+++++++++++++++++++++++++\n", |
|
|
2134 |
"Saving model parameters...\n", |
|
|
2135 |
"Validation accuracy: 19.196428571428573\n", |
|
|
2136 |
"EPOCH: 1\n", |
|
|
2137 |
"TRAIN_LOSS: 1.5061663222151647\n", |
|
|
2138 |
"TRAIN_ACC: 35.714285714285715\n", |
|
|
2139 |
"VAL_LOSS: 3.35406034365203\n", |
|
|
2140 |
"VAL_ACC: 19.196428571428573\n", |
|
|
2141 |
"+++++++++++++++++++++++++\n", |
|
|
2142 |
"Saving model parameters...\n", |
|
|
2143 |
"Validation accuracy: 54.91071428571429\n", |
|
|
2144 |
"EPOCH: 2\n", |
|
|
2145 |
"TRAIN_LOSS: 1.0566340432375683\n", |
|
|
2146 |
"TRAIN_ACC: 48.549107142857146\n", |
|
|
2147 |
"VAL_LOSS: 0.9059904854630068\n", |
|
|
2148 |
"VAL_ACC: 54.91071428571429\n", |
|
|
2149 |
"+++++++++++++++++++++++++\n", |
|
|
2150 |
"Saving model parameters...\n", |
|
|
2151 |
"Validation accuracy: 66.51785714285714\n", |
|
|
2152 |
"EPOCH: 3\n", |
|
|
2153 |
"TRAIN_LOSS: 0.7613526331512179\n", |
|
|
2154 |
"TRAIN_ACC: 63.61607142857143\n", |
|
|
2155 |
"VAL_LOSS: 0.754616161920149\n", |
|
|
2156 |
"VAL_ACC: 66.51785714285714\n", |
|
|
2157 |
"+++++++++++++++++++++++++\n", |
|
|
2158 |
"Saving model parameters...\n", |
|
|
2159 |
"Validation accuracy: 69.64285714285714\n", |
|
|
2160 |
"EPOCH: 4\n", |
|
|
2161 |
"TRAIN_LOSS: 0.5165788347477279\n", |
|
|
2162 |
"TRAIN_ACC: 75.78125\n", |
|
|
2163 |
"VAL_LOSS: 0.6150627250686466\n", |
|
|
2164 |
"VAL_ACC: 69.64285714285714\n", |
|
|
2165 |
"+++++++++++++++++++++++++\n", |
|
|
2166 |
"Saving model parameters...\n", |
|
|
2167 |
"Validation accuracy: 77.67857142857143\n", |
|
|
2168 |
"EPOCH: 5\n", |
|
|
2169 |
"TRAIN_LOSS: 0.38510833255279037\n", |
|
|
2170 |
"TRAIN_ACC: 80.91517857142857\n", |
|
|
2171 |
"VAL_LOSS: 0.3670332872344387\n", |
|
|
2172 |
"VAL_ACC: 77.67857142857143\n", |
|
|
2173 |
"+++++++++++++++++++++++++\n", |
|
|
2174 |
"Saving model parameters...\n", |
|
|
2175 |
"Validation accuracy: 80.80357142857143\n", |
|
|
2176 |
"EPOCH: 6\n", |
|
|
2177 |
"TRAIN_LOSS: 0.3771237065516358\n", |
|
|
2178 |
"TRAIN_ACC: 80.80357142857143\n", |
|
|
2179 |
"VAL_LOSS: 0.3563044145725575\n", |
|
|
2180 |
"VAL_ACC: 80.80357142857143\n", |
|
|
2181 |
"+++++++++++++++++++++++++\n", |
|
|
2182 |
"Saving model parameters...\n", |
|
|
2183 |
"Validation accuracy: 83.92857142857143\n", |
|
|
2184 |
"EPOCH: 7\n", |
|
|
2185 |
"TRAIN_LOSS: 0.26615271891580616\n", |
|
|
2186 |
"TRAIN_ACC: 86.27232142857143\n", |
|
|
2187 |
"VAL_LOSS: 0.2689904779390869\n", |
|
|
2188 |
"VAL_ACC: 83.92857142857143\n", |
|
|
2189 |
"+++++++++++++++++++++++++\n", |
|
|
2190 |
"EPOCH: 8\n", |
|
|
2191 |
"TRAIN_LOSS: 0.30374097225927066\n", |
|
|
2192 |
"TRAIN_ACC: 84.48660714285714\n", |
|
|
2193 |
"VAL_LOSS: 0.33215460754900455\n", |
|
|
2194 |
"VAL_ACC: 81.25\n", |
|
|
2195 |
"+++++++++++++++++++++++++\n", |
|
|
2196 |
"EPOCH: 9\n", |
|
|
2197 |
"TRAIN_LOSS: 0.26407111521727383\n", |
|
|
2198 |
"TRAIN_ACC: 86.94196428571429\n", |
|
|
2199 |
"VAL_LOSS: 0.38802365235027053\n", |
|
|
2200 |
"VAL_ACC: 80.80357142857143\n", |
|
|
2201 |
"+++++++++++++++++++++++++\n", |
|
|
2202 |
"EPOCH: 10\n", |
|
|
2203 |
"TRAIN_LOSS: 0.21542848267831008\n", |
|
|
2204 |
"TRAIN_ACC: 89.50892857142857\n", |
|
|
2205 |
"VAL_LOSS: 0.2814097737651493\n", |
|
|
2206 |
"VAL_ACC: 81.69642857142857\n", |
|
|
2207 |
"+++++++++++++++++++++++++\n", |
|
|
2208 |
"Saving model parameters...\n", |
|
|
2209 |
"Validation accuracy: 84.375\n", |
|
|
2210 |
"EPOCH: 11\n", |
|
|
2211 |
"TRAIN_LOSS: 0.2017790482648937\n", |
|
|
2212 |
"TRAIN_ACC: 91.07142857142857\n", |
|
|
2213 |
"VAL_LOSS: 0.2706128154960024\n", |
|
|
2214 |
"VAL_ACC: 84.375\n", |
|
|
2215 |
"+++++++++++++++++++++++++\n", |
|
|
2216 |
"EPOCH: 12\n", |
|
|
2217 |
"TRAIN_LOSS: 0.2036891140554476\n", |
|
|
2218 |
"TRAIN_ACC: 90.625\n", |
|
|
2219 |
"VAL_LOSS: 0.3876150789769975\n", |
|
|
2220 |
"VAL_ACC: 80.35714285714286\n", |
|
|
2221 |
"+++++++++++++++++++++++++\n", |
|
|
2222 |
"EPOCH: 13\n", |
|
|
2223 |
"TRAIN_LOSS: 0.1691157666493482\n", |
|
|
2224 |
"TRAIN_ACC: 92.52232142857143\n", |
|
|
2225 |
"VAL_LOSS: 0.29897545957509203\n", |
|
|
2226 |
"VAL_ACC: 84.375\n", |
|
|
2227 |
"+++++++++++++++++++++++++\n", |
|
|
2228 |
"EPOCH: 14\n", |
|
|
2229 |
"TRAIN_LOSS: 0.1606464041348731\n", |
|
|
2230 |
"TRAIN_ACC: 93.97321428571429\n", |
|
|
2231 |
"VAL_LOSS: 0.3589175096245225\n", |
|
|
2232 |
"VAL_ACC: 82.14285714285714\n", |
|
|
2233 |
"+++++++++++++++++++++++++\n", |
|
|
2234 |
"EPOCH: 15\n", |
|
|
2235 |
"TRAIN_LOSS: 0.1306489548748053\n", |
|
|
2236 |
"TRAIN_ACC: 95.3125\n", |
|
|
2237 |
"VAL_LOSS: 0.32740888222513026\n", |
|
|
2238 |
"VAL_ACC: 83.48214285714286\n", |
|
|
2239 |
"+++++++++++++++++++++++++\n", |
|
|
2240 |
"EPOCH: 16\n", |
|
|
2241 |
"TRAIN_LOSS: 0.09574562578772612\n", |
|
|
2242 |
"TRAIN_ACC: 97.09821428571429\n", |
|
|
2243 |
"VAL_LOSS: 0.32672850730518294\n", |
|
|
2244 |
"VAL_ACC: 83.92857142857143\n", |
|
|
2245 |
"+++++++++++++++++++++++++\n", |
|
|
2246 |
"Saving model parameters...\n", |
|
|
2247 |
"Validation accuracy: 84.82142857142857\n", |
|
|
2248 |
"EPOCH: 17\n", |
|
|
2249 |
"TRAIN_LOSS: 0.0716685914292285\n", |
|
|
2250 |
"TRAIN_ACC: 98.4375\n", |
|
|
2251 |
"VAL_LOSS: 0.36425706307720185\n", |
|
|
2252 |
"VAL_ACC: 84.82142857142857\n", |
|
|
2253 |
"+++++++++++++++++++++++++\n", |
|
|
2254 |
"EPOCH: 18\n", |
|
|
2255 |
"TRAIN_LOSS: 0.08824129661591865\n", |
|
|
2256 |
"TRAIN_ACC: 97.20982142857143\n", |
|
|
2257 |
"VAL_LOSS: 0.3987111953391284\n", |
|
|
2258 |
"VAL_ACC: 84.82142857142857\n", |
|
|
2259 |
"+++++++++++++++++++++++++\n", |
|
|
2260 |
"EPOCH: 19\n", |
|
|
2261 |
"TRAIN_LOSS: 0.05731875333226757\n", |
|
|
2262 |
"TRAIN_ACC: 98.77232142857143\n", |
|
|
2263 |
"VAL_LOSS: 0.38234717326786144\n", |
|
|
2264 |
"VAL_ACC: 84.82142857142857\n", |
|
|
2265 |
"+++++++++++++++++++++++++\n", |
|
|
2266 |
"EPOCH: 20\n", |
|
|
2267 |
"TRAIN_LOSS: 0.05638218273223334\n", |
|
|
2268 |
"TRAIN_ACC: 98.88392857142857\n", |
|
|
2269 |
"VAL_LOSS: 0.4471752823468783\n", |
|
|
2270 |
"VAL_ACC: 84.82142857142857\n", |
|
|
2271 |
"+++++++++++++++++++++++++\n", |
|
|
2272 |
"EPOCH: 21\n", |
|
|
2273 |
"TRAIN_LOSS: 0.05057646273793283\n", |
|
|
2274 |
"TRAIN_ACC: 98.4375\n", |
|
|
2275 |
"VAL_LOSS: 0.4938572397000099\n", |
|
|
2276 |
"VAL_ACC: 83.48214285714286\n", |
|
|
2277 |
"+++++++++++++++++++++++++\n", |
|
|
2278 |
"Saving model parameters...\n", |
|
|
2279 |
"Validation accuracy: 85.71428571428571\n", |
|
|
2280 |
"EPOCH: 22\n", |
|
|
2281 |
"TRAIN_LOSS: 0.0460625520852577\n", |
|
|
2282 |
"TRAIN_ACC: 98.77232142857143\n", |
|
|
2283 |
"VAL_LOSS: 0.46609283684746916\n", |
|
|
2284 |
"VAL_ACC: 85.71428571428571\n", |
|
|
2285 |
"+++++++++++++++++++++++++\n", |
|
|
2286 |
"EPOCH: 23\n", |
|
|
2287 |
"TRAIN_LOSS: 0.03413231908886034\n", |
|
|
2288 |
"TRAIN_ACC: 99.33035714285714\n", |
|
|
2289 |
"VAL_LOSS: 0.47333160075346453\n", |
|
|
2290 |
"VAL_ACC: 85.26785714285714\n", |
|
|
2291 |
"+++++++++++++++++++++++++\n", |
|
|
2292 |
"EPOCH: 24\n", |
|
|
2293 |
"TRAIN_LOSS: 0.031098445320638136\n", |
|
|
2294 |
"TRAIN_ACC: 99.55357142857143\n", |
|
|
2295 |
"VAL_LOSS: 0.4629455077815075\n", |
|
|
2296 |
"VAL_ACC: 85.26785714285714\n", |
|
|
2297 |
"+++++++++++++++++++++++++\n" |
|
|
2298 |
] |
|
|
2299 |
} |
|
|
2300 |
], |
|
|
2301 |
"source": [ |
|
|
2302 |
"num_epochs = 25\n", |
|
|
2303 |
"loss_train, loss_val, acc_train, acc_val = train(model, num_epochs, criterion, \\\n", |
|
|
2304 |
" train_loader, val_loader, optimizer, scheduler, True)" |
|
|
2305 |
] |
|
|
2306 |
}, |
|
|
2307 |
{ |
|
|
2308 |
"cell_type": "markdown", |
|
|
2309 |
"id": "dbab1b91", |
|
|
2310 |
"metadata": {}, |
|
|
2311 |
"source": [ |
|
|
2312 |
"Let us check the performance on validation set with the best model and save their outputs for generating the confusion matrix" |
|
|
2313 |
] |
|
|
2314 |
}, |
|
|
2315 |
{ |
|
|
2316 |
"cell_type": "code", |
|
|
2317 |
"execution_count": 72, |
|
|
2318 |
"id": "d1dc7f14", |
|
|
2319 |
"metadata": {}, |
|
|
2320 |
"outputs": [ |
|
|
2321 |
{ |
|
|
2322 |
"name": "stdout", |
|
|
2323 |
"output_type": "stream", |
|
|
2324 |
"text": [ |
|
|
2325 |
"Accuracy: 0.8571428571428571\n" |
|
|
2326 |
] |
|
|
2327 |
} |
|
|
2328 |
], |
|
|
2329 |
"source": [ |
|
|
2330 |
"val_loader = data.DataLoader(dataset = valset, batch_size = 1, shuffle = False)\n", |
|
|
2331 |
"\n", |
|
|
2332 |
"dir_name = \"results/\"\n", |
|
|
2333 |
"test = os.listdir(dir_name)\n", |
|
|
2334 |
"for item in test:\n", |
|
|
2335 |
" if item.endswith(\".pth\"):\n", |
|
|
2336 |
" PATH = os.path.join(dir_name, item)\n", |
|
|
2337 |
"\n", |
|
|
2338 |
"weights = torch.load(PATH)\n", |
|
|
2339 |
"model.load_state_dict(weights)\n", |
|
|
2340 |
"\n", |
|
|
2341 |
"observations = evaluate(model, val_loader)\n", |
|
|
2342 |
"predictions, y_test = observations[:, 0], observations[:, 1]\n", |
|
|
2343 |
"accuracy = accuracy_score(predictions, y_test)\n", |
|
|
2344 |
"print('Accuracy: ', accuracy)" |
|
|
2345 |
] |
|
|
2346 |
}, |
|
|
2347 |
{ |
|
|
2348 |
"cell_type": "markdown", |
|
|
2349 |
"id": "8cf94e16", |
|
|
2350 |
"metadata": {}, |
|
|
2351 |
"source": [ |
|
|
2352 |
"Training stats and graphs" |
|
|
2353 |
] |
|
|
2354 |
}, |
|
|
2355 |
{ |
|
|
2356 |
"cell_type": "code", |
|
|
2357 |
"execution_count": 73, |
|
|
2358 |
"id": "495cb07a", |
|
|
2359 |
"metadata": {}, |
|
|
2360 |
"outputs": [ |
|
|
2361 |
{ |
|
|
2362 |
"data": { |
|
|
2363 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAH9CAYAAACOQN/ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8KElEQVR4nO3dd3gU5d7G8e/WdEgIgdA7ofciHWkqggrYFUXFjh3L0aNyjuU9x4YiIiJYjmIviAg2FEGaEKUJhN5Dem+b3Z33j5CVlZINbLIJ3J/r4oKdmez88mTJ3jtPGZNhGAYiIiIiR5gDXYCIiIhULQoHIiIi4kXhQERERLwoHIiIiIgXhQMRERHxonAgIiIiXhQORKqA8ePHExcXx5gxY054zH/+8x/i4uIYP368X84ZFxfH1KlTy/U148eP56qrrvLL+UWk6lI4EKkizGYzmzdvZs+ePcfsMwyDhQsXVn5RInJWUjgQqSLatm1LaGgoixYtOmbfmjVrSE9Pp2XLlgGoTETONgoHIlVEUFAQQ4YMOW44WLBgAQMGDKBGjRpe210uFx988AGjR4+mc+fODBo0iP/+978UFhZ6HffTTz8xduxYOnXqxKhRo1izZs0x53A4HLzwwgsMHjyYDh06cOGFF/Lll1+W+/vYunUrkyZN4pxzzqF9+/YMGDCAp556ioKCAs8xhmHw3nvvceGFF9KpUyeGDh3Ka6+9hsvl8hyzceNGJk6cSPfu3enduzd33XUX+/fvB+DAgQPExcXx6aefep176tSpxMXFeR4/8sgjXH/99Tz99NN0796doUOHUlRURHp6Ov/6178499xz6dChA7169eLOO+/0PH+pX3/9lWuuuYauXbvSr18//vGPf5Ceno7T6aR///7cc889x3z/l112GZMmTSp3u4lUJdZAFyAifxk5ciR33HEHu3btonnz5gA4nU6+++47nnzySd577z2v45944gm+/PJLbrjhBnr16sWWLVuYMWMGW7Zs4e2338ZkMvHLL79wxx13MGzYMO666y727t173Devu+66i9WrV3P77bfTpk0bfvrpJx555BHy8/O55pprfKo/OTmZa665hvbt2/P0008TFBTEL7/8wnvvvUd0dDR33HEHUPImPmvWLK699loeeughEhISmDZtGgUFBUyePJmtW7dy9dVXExcXx1NPPYXFYuGVV17hhhtu4Ouvvy5Xm8bHx1NcXMzLL79MTk4Odruda6+9lrS0NO655x7q1q3L1q1bmTZtGo8//jjvvPMOAEuXLuXWW2+lX79+PPfcc+Tl5fHiiy+ya9cuPv74Y8aMGcM777xDdna2J7Tt3LmTDRs28Prrr5erRpGqRuFApAopvTqwaNEi7rzzTqDk06vD4eDcc8/1Cgc7duzgs88+46677vK82Q8aNIi6devyyCOP8NNPPzF06FBmzJhBXFwcr776KiaTCYCoqCgeeughz3OtWLGCJUuW8N///pdLLrnE81xut5uXX36ZcePGERwcXGb9CQkJtGrViunTp3veMAcMGMDq1av57bffuOOOO8jJyeGtt97iyiuv5J///KfnXHl5eaxatQq3283MmTMJDw/n3XffJSwsDIDmzZtz8803s2HDBho0aOBzmxYXF/PUU0/RokULAJKSkrDb7TzzzDP06dMHgD59+nDgwAE+/PBDz9e9+uqrtGjRglmzZmE2mz3t9u9//5vdu3dz6aWX8uabb7Jw4UKuvPJKAD7//HNiYmIYOHCgz/WJVEXqVhCpQux2O8OGDePbb7/1bFuwYAFDhw4lJCTE69jffvsNgNGjR3ttHz16NBaLhd9++43CwkLWr1/PsGHDPMEASq5QlL7hAaxcuRKAIUOG4HQ6PX+GDRtGdnY2GzZs8Kn+AQMG8NFHHxEWFsbu3btZsmQJM2fOJD09HYfDAcC6desoLi7mvPPO8/ra++67j48//hiz2czatWsZMGCAJxgAtGrViiVLltC7d2+faills9lo1qyZ53HdunWZO3cuffr04fDhw6xatYq5c+fyxx9/4HK5cLlcFBYWsnHjRoYPH+7VToMGDWLx4sU0a9aMJk2a0LNnT+bNmweUdPHMnz+fiy66CKtVn7uketMrWKSKGTlyJF988QU7d+6kQYMGLF68mJdffvmY47KysgCoXbu213ar1UpUVBTZ2dlkZWVhGAa1atXyOsZms3lty8jIAKBnz57HrSkpKcmn2t1uN6+88grvv/8+ubm51KtXj06dOhEUFETpDWBLz/X3uo+WkZFBdHS0T+csS61atbze4KEkcL300kscPHiQyMhI2rVr57kyYhiGp91OViPApZdeykMPPcTevXvZtWsXKSkpjBs3zi91iwSSwoFIFdOnTx+ioqJYtGgRLVq0wG6307dv32OOq1mzJgCpqalen7CLi4vJyMggKiqKqKgozGYzKSkpXl/rdrs94QIgIiKC4OBg3n///ePW1LBhQ59qnzVrFrNnz+bpp59m2LBhREREACVvoqVKuxvS09O9vjY5OZmdO3fStWtXIiIiPCHiaMuWLaNFixaeqyBHD2AEyMvLK7PGtWvX8uCDDzJ+/Hhuuukm6tatC8Bzzz1HfHw8AOHh4ZhMpmNqdLlcLFu2jI4dOxIdHc15553H008/zcKFC9m1axddu3b1dF+IVGfqVhCpYqxWKyNGjOC7775j0aJFnH/++dhstmOO69WrF8AxA/S++eYbXC4X3bt3x26306NHD7799luvN9JffvmF4uJiz+PevXtTWFhIcXExHTt29PzZu3cvL7/8stdMg5OJj4+nefPmjBkzxhMMDh8+zLZt2zxXDjp16oTNZuOHH37w+tq5c+dy++23YxgGPXr0YNmyZV6zLvbu3cvEiRNZvXo14eHhACQmJnr2G4bh6Wo5mT/++AO3283tt9/uCQZOp5Ply5cDJcEpLCyMtm3b8uOPP3rqBli9ejW33norO3fuBCA4OJhRo0axaNEili5dytixY31qJ5GqTlcORKqgCy+8kI8//pjdu3fz9ttvH/eYli1bMmbMGGbMmEFhYSG9evVi69atzJgxg549ezJ48GCgpC//uuuu45ZbbuHqq68mKSmJ6dOnewWOgQMH0qtXLyZNmsStt95Kq1at2Lx5M9OnT6dr167Ur1/fp7o7d+7MsmXLmDFjBl27dmXv3r3MmjULh8NBfn4+UHKZ/7rrruPtt9/GZrPRt29ftmzZwpw5c7j11lsJCQnhjjvu4IorruDGG29kwoQJOJ1OXnvtNVq2bMl5551HaGgo3bt3Z+7cuTRq1IiYmBg+++yzY66QHE+nTp0AeOqppxg3bhxZWVl88MEHJCQkAFBQUIDdbufuu+/m9ttv58477+TSSy8lMzOTV155hXPOOYcePXp4nu+yyy7jgw8+ICQkhJEjR/rUTiJVnck4OhaLSECMHz8ep9PpGS3vdrsZNGgQZrOZJUuWeC6jX3XVVVitVs+sBZfLxaxZs/j88885fPgwderUYeTIkUyaNMlrdsHq1auZOnUqmzdvpm7dutx///08/fTTXHrppdx3331AyZvitGnTWLRoEampqdSpU4fzzjuPSZMmebot/l7n3zkcDv7zn//w/fffk5OTQ7169Rg5ciRWq5UZM2awbNkyoqKiMAyDd955hw8//JBDhw7RoEEDrrrqKq6//nrP97p+/Xpeeukl1q9fT0hICP369ePBBx/0fNrfv38/Tz31FL/99pvnE3zr1q15/PHHPW/0jzzyCCtWrGDp0qVedc6dO5e3336bpKQkateuTa9evRg+fDh33nknM2bMYOjQoUDJFZbXXnuNLVu2EBkZybBhw7jvvvuOWW9i4MCB9OnTh//+97+n+AoQqVoUDkRETsPWrVu5+OKL+eCDD+jevXugyxHxC3UriIicgtK1G+bPn0/Xrl0VDOSMogGJIiKnIDs7m7feeouIiAief/75QJcj4lfqVhAREREvunIgIiIiXhQORERExMtZOyAxIyMPt9s/PSrR0eGkpeX65bmkhNrU/9Sm/qX29D+1qX8d3Z5ms4moqLAyvuIvZ204cLsNv4WD0ucT/1Kb+p/a1L/Unv6nNvWvU21PdSuIiIiIF4UDERER8aJwICIiIl4UDkRERMSLwoGIiIh4OWtnK5SloCCP3NxMXC5nmccmJ5txu92VUNXZQ23qf39vU4vFSnh4JCEhvk9vEpGzg8LBcRQU5JGTk0FkZAw2m91zC9kTsVrNOJ16I/Mntan/Hd2mhmFQXOwgMzMFQAFBRLyoW+E4cnMziYyMwW4PKjMYiFRHJpMJuz2IyMgYcnMzA12OiFQxCgfH4XI5sdnsgS5DpMLZbHafus5E5OyicHACumIgZwO9zkXkeAIaDt544w2uuuoqr21btmxh/PjxdOnShcGDBzNnzhyv/W63m2nTpjFgwAA6d+7MjTfeyN69eyuzbBERkTNawMLB3LlzmTp1qte29PR0JkyYQJMmTfj888+55557mDZtGp988onnmNdee40PP/yQp59+mo8//hiLxcJNN91EUVFRZX8LIiIiZ6RKn62QlJTEk08+yerVq2nWrJnXvk8++QSbzcaUKVOwWq20aNGCvXv3MmvWLC6//HIcDgdvvfUWkydPZtCgQQBMnTqV/v37s2jRIi655JLK/naqrGeemcKiRQtOesynn86nXr36p/TcBw7s5/XX55R9MDBp0i3UqVOXJ554qtznKo+CggIuvvh8zGYTX365iJCQkAo9n4jImarSw8Gff/5JWFgY8+fP57XXXvPqEli7di09evTAav2rrN69e/P666+TlJTE4cOHyc/P55xzzvHsDw8Pp127dqxdu1bh4Cj33DOZ226b5Hl88cXnM2nSvQwffr5nW2Rk1Ck/t9vt8vn4Z599HrPZckrnKo+ff/6RsLAw8vLy+PHH7xg9+pIKP6eIyJmo0sPBkCFDGDJkyHH3JSUl0bJlS69tderUASAxMZHk5GQA6tate8wxiYmJFVBt9RUeHk54eLjXtrCwcKKja/vlucujRo2ap31OXyxY8BU9e/amsLCQL7/8TOFAROQUValFkAoLC7HbvacQlj4uKiqioKDAa9vRxzgcjnKdKzr6xG9wyclmrNbyDcco7/GBYDabvOqMj1/LnXfewl133cv//vcOtWvX5t1357Jp00befHMmW7ZsobjYQf36Dbjuuhu48MLRAPz7309y4MB+Zs16y/McL730KtOnv8zBgwdp0qQJEyfeysCBgwG4/fabqVOnDv/61zMsWDCf2bPf4Oabb+Ptt98kNTWVVq1aM2nSvXTu3AWAwsICXnxxKj/99CPFxcUMHTqcoqIirFYrTzzxr+N+b/v27WPDhnWMG3cZNpudRx99kISEzbRv38HruM8++5hPP/2Yw4cTqVs3lmuuuY6LLx4DlHRLvPHGayxe/AM5OTm0atWaO++8hy5dunq+z08/nUejRo0B2L9/H5dddgmvvTaL7t178O9/P0leXi5FRYVs2LCBq666hptuuoX333+XBQvmk5h4CJvNTseOHXnggUdo3Lhxmee97rqraNGiJU8++VeXzLp1f3D77RP5/POvqV+/fN1Cx3udms1mYmIiyvU8UkLt5n9qU/861fasUuEgODj4mDf50sehoaEEBwd7th0dEBwOB6GhoeU6V1paLm63cdx9brf7mNX5lm9M5NcNx786YTKBcfyn8pv+nerRr2O903oOt9vw+r5crpJ///TTYl5/fQ6FhQWkpKRxzz13MmbMZTz44GMUFxfzwQf/4//+7ym6d+9N7dq1MQwDwyh5rtLnePXVqdx774NERkYxc+arTJnyOPPmLSQ0NOzI8eB0unG7DVJTU/jii8/45z+fwmq18sIL/8e//vU4H330JWazmSlTniAhYQtTpjxNdHRt3n57NkuWLOb88y884aqJX331JXZ7EH369MdisRIaGsbnn39KXFw7zzEffPAec+bM5O67H6BHj17Ex6/hueeeJSKiJgMHDuaxxx5m9+7dPPTQP2nUqDEff/wB9903iblzP/N8ny7XX23ochmednQ63RiGwS+//MzNN9/OPfc8iM1m48MP5/K//73DP//5L1q2bMXBgwd47rlnePnlF3juuZcBTnreCy+8iJkzp3PffQ97XuMLFsynW7ce1KkTW65VJE+06qTb7SYlJcfn55ESMTERajc/O1vatNjpIr/QSX5RyZ+CIqfncem/oyKCGNKt4Wmd5+j2NJtNJ/1Q/HdVKhzExsZ6ug5KlT6OjY3FOPIOnJyc7HVpOzk5+ZjuCPHdVVddS+PGTQA4ePAAN954C1ddNR6zueRT5nXX3ciiRQvYt28PtWsfv1ti4sTb6N69JwA33XQbEyeOZ9eunXTo0OmYY51OJ/ff/zBxcW0AuPba6/nnPx8mPT0dh6OIJUsW8+KLr9CzZ8nYkn/+819s3Lj+hPW7XC6+/fYb+vTpS2hoyTLAAwYMYvHi75k06T5q1KiBYRh8/PFcxo27nIsvHgtAgwYNKSoqwmw2sW/fHlas+JXnn3+ZPn36AXDvvZMJCgoiJ8f3X1ZhYWFcd92NnvUDGjRoxD//OYX+/QcCEBtbjyFDhvP994sAyjzv8OEX8Npr0/jll5+44IJRFBUV8vPPP/LAA4/4XJOIVCzDMMjMdXA4LY/D6fmkZBWSX1hMfpGLgiN/5xc5Pf92uk4e6k0maBpb47TDwemoUuGgZ8+ezJ07F6fT6RmUuGrVKpo2bUpMTAw1a9YkPDyc3377jebNmwOQm5vL5s2bufrqqyu0tn4dT/zJvbrfB6Bhw8aefzdo0JCRI0fz2WcfsWvXTg4c2M+OHduBkjfhE2nUqInn36XBrbi4+ITHl4YRKBkLAeB0FrNt21YAr1ARFBRE27btOJGVK5eTlpbK0KHnebYNGzaC775byLffLuDyy68mKyuLtLRU2rfv6PW1l112JVAymBHw2m+xWJg06V4Afv997QnPf7QGDRp6LSzUv/9ANm3ayKxZMzhwYD/79u1l9+6d1KoVDcDOnTtOel6AgQMHs2jRAi64YBS//PIzJpOJQYPO9akeEfGfQoeTpPQCDqfn//UnLZ/DGfkUOf76/Wi1mAkLsRIaVPInLMRKTGQwoUFWQoKshAYf+fsEj4PtloAvUFalwsG4ceOYPXs2jz76KLfccgubNm3inXfe4cknnwRKxhZce+21TJ06ldq1a9OwYUNefPFF6taty4gRIwJcffVV2l0DsHv3Lm6//Sbi4trQs2dvBg0aQlRUFBMnXnfS5/j7OBDAc6XneGw223GPt1hKZzX43k/zzTfzAfjXvx7jX/96zGvfvHmfc/nlV2Oznfylfrx6jna8/6hO57HLDgcFBXs9/t//3uKdd+YwcuQounfvyZVXXsPSpUv47ruFPp0XYNSoi7nvvjtJSjrMt98uZOjQEcecRyTQDMPA5TYodropPtLVVuxylzx2unEe9W+vx66/HtevWwO7GWrXCKZWjWBsARjL5XYbpGUX/vXGf1QQyMj5az0dExBdM5jYWqG0aliP2OhQYmuV/ImKqP735alS4SA6Opo5c+bwzDPPMGbMGGJiYnjggQcYO3as55i7774bl8vFE088QUFBAd27d2f27NnHfXOS8vvqq8+JjIzklVde92z79delR/5VwQMrgBYtWmEymfjzz0306tUXKHkTTkjY6um2OFpGRjorV/7KeeeN5JprvAPMggVf8cknH/L772vp1q0HtWvHsGXLZgYN+mu2zFNPPYHVauXaaycAsGXLZnr37gOU9MVfffU4rr32epo2LblSlZeX5/naAwf2l/n9vP/+u1x//Y1cf/1Nnm1z577rCU5NmjQ76XlHjbqE7t17Ehtbn0WLFvD772t47bXZZZ5XpDJk5Rbxy7pDLN1wiIycIr+PvaoZbqd2jWCiawYTfZy/Q4J8ewszDIOCIhfZ+Q6ycovIzi8mO89BVl4R2XkOsvOKycpzkJ1XRFaeA6frr28kNMhKbHQobRpHERsdSr0jAaBOVAh2W8VP0Q6UgIaD//znP8ds69ixIx999NEJv8ZisTB58mQmT55ckaWdterUqUtqagorVvxK8+YtSEjYwssvvwCAw3HibgJ/qV+/AUOGDOOll55j8uRHqV07hrlz3yU5Oem4SXzRom9wOp1cc831NG/ewmvf+PE3MG/eF3z55Wd069aD8eMnMHPmdJo0aUqnTl1Yu/Y3fvzxO5599gUaNWrM4MFDmDr1eSZPfoS6dWP5+OMPyMrKolevPoSHhxMaGsZ7773FbbfdRUpKMrNnzyzz+6lTpy5r1qxmwIDBWK0Wvv12Ib/88jM1a5ZM7yzrvFBy1eLCC0fz3ntv07Bh42NmYMjZyely8+fudCwWE20aR2G1VN6n7J2Hsli89gBrtibjcht0aF6Lvh3qYbOasVnMJX8f9W/r0duOfnzUdrPZhDXIxvbdaaRlF5KWVUjqkb/3JOYQn5CC62+DyMOCrV6BISoiqCQE5DmOvPn/9ffx+vlNJqgRaqdGmJ2aYXbqRYdSM8xO3Vp/XQWICLVV+6sAp6JKXTmQwLv00ivZu3cPTz/9JMXFxTRq1IhbbrmDt96axebNm+jXb0CF1/DQQ4/xyisv8s9/PoRhGAwffj7t23f0Whyr1MKFJSP3/x4MAKKianHeeSNZtOhr0tJSGTv2coqKinjrrTdJS0uhQYOGPPbYvzzf0z/+8QSvvfYKU6Y8SlFREXFxbZk6dTp16pSsq/HEE08xc+Z0xo+/nMaNm3L33fdzzz23n/R7efzxf/PSS//l5puvIzQ0jPbtOzB58j944YX/4+DBAzRo0LDM8wJccMEoZs+eyYUXXnQ6TSvVnGEY7ErMZsWmw6zZkkxuQUlgDwu20q11DD3b1KFNk4oJCsVON79tSeKn3w+wOzGHkCAL53ZrwNBuDalbq3yzxU4kJjoMi/v447fchkFWruOv4JBVQFp2EWlZhSRlFLB5TwZFxS5MJogILXmzrxFmJ7ZWKDXD7dQo3RZup+aRQBAeYsNsPvve+H1hMk7WMXwGO9lUxsOH9xIb2+S4+46nug9IrEqKiopYtWo5vXv3Jjg4zLP9qqvGct55I5kwYWIAqwucTZs2ctddt/DFFwuJijq1lS1P9Dot7+tdSlTmtLvUzAJW/nmYFX8mkZSej81qpmur2vTtEIvbDWu2JvHH9lQKHS7Cgq10j4uhR5s6frmikJFTxM9/HOCXdYfIyS+mXnQoQ7s3pE/7WJ8v6/vqdNrUMAwKHS6CbBa94R9xxkxlFLHb7bz88gt07dqN6667CYvFwoIFX5GUdJhzzx0W6PIq3b59e9ixYwdz577L8OHnn3IwkOonv7CYtQkprNiYyLYDWQC0aRzJyN6N6dGmjtcbc5dWtSl2uti0O501W5NZvSWZpesTCQ+xHXVFIRKL2begYBgG2w9k8WP8AX5PSMEwDDq3rM3QHg1p1ySqSl5mN5lMfg8rZzO1pFQpJpOJ556byuuvv8ptt92Ay+Wides2vPRSyViBs83+/ft59tkptGnTjjvvvCfQ5UgFc7rcbNqdzspNh/ljeypOl5t60aGMHdicc9rXpXbNE99MzGa10LVVDF1bxZQEhV2lQSGJpesPER5iO+qKwvGDgqPYxarNSfwUf4B9ybmEBVsZ0bMR53ZrQEykbmR2NlG3wnGoWyHw1Kb+p24F//JXt4JhGOw5nMPKTYdZvSWJnPxiwkNs9G5Xl74dYmkaG3Fan9QdxX9dUVi3PZWiYpcnKPRsU4e4xpElXQe/H2Tp+kPkFTppGBPG0O4NOad9LEGVOCL/bFkhsbKoW0FEpJrJyClixaZEVmw6TGJaPlaLmS6tatO3fSwdmtfy26BCu81Ct9YxdGsdg6PYxcZd6azZmsSqP5P4Zd0hwoKt5Bc5MWGia+vaDOvekNaNIqtk14FUHoUDEZFKlJpZwMJVe/l1YyJOl0HrhjUZcX4cPdvUITS47EWxTofdZqF7XAzd42IoKnaxaVcaf2xPJSoiiHO7NqBWDS2uJSUUDkREKkFSej4LVu5h1Z9JmEzQv1N9zu/ViDpR/pkGWF5BNgvd4+rQPa5OQM4vVZvCgYhIBTqYksuClXv5bUsSVouZc7s14ILeTYiKCAp0aSInpHAgIlIB9h7OYcGKPcRvSyHIZuH8Xo0Z0asxNcO01LtUfQoHIiJ+tPNQFl8v38OGnWmEBFkZ3bcpw3s2IjykYscTiPiTwoGIiB8k7Mvg6xV72Lwng7BgK2MGNmdotwYVPshQpCJU/v0wpVLcddetXH/9VSfc//rrrzJq1DCKi09+M6WFC7+mf/8entsTX3rpaGbNmnHC42fNmsGll472uU7DMFi0aAEZGekA/P77Wvr378H+/ft8fo5TtWjRAvr378F///t0hZ9LzkyGYfDn7nT+8348//3gDw4k53LZuS14/o6+jO7bVMFAqi2FgzPU6NGXsHPndnbu3HHMPrfbzfffL+K88y7EZivfL6833/yf5/bG/hAfv4ZnnplCYWEhAB07duarr76lfv0GfjvHiXzzzXyaNGnKDz98S25uboWfT84chmHw2+bDPPNePC9+vI6UrEKuGtaK527vywW9mxBs10VZqd4UDs5QgwYNISKiBt99t/CYfWvX/kZKSjKjR19S7ueNiooiNNR/U6/+vkCnzWYjOro2FkvFrsp28OAB1q//g9tum4TL5eLbbxdU6PnkzJCaWcDXy3fz6KxVPDVnNdl5Dq47L47/3NqH4T0aYa/E1QRFKpLi7RkqKCiI4cPP48cfv+O22yZhPmod9UWLFtCxY2eaNm1GUtJhZsyYRnz8GnJysomKqsXw4edz222TjvsGfemloxkx4gJuueUOAL766gs++OB/pKSk0Lv3OcTEeM+Z3rVrBzNnTmfDhvUUFhYQE1OHSy4ZxzXXXM/vv6/lvvvuBOCyyy7ihhtupmvX7tx99218+uk86tVrSFFRIe+99w7ff7+I1NQU6tdvwBVXXOMJNr//vpa7776N559/hRkzXuHQoYM0btyEG2+8hQEDBp+wfRYs+Irg4BDOOacfPXuew7x5X3DppVd6HZOZmcmMGa+wYsUyHI5i2rfvwF133e+5PfS2bVt5/fVX2bRpI0FBQfTt25+77rqfiIgInnlmCgcO7Of11+d4nm/WrBl8//0iPvvsawD69+/BhAkT+fbbbygqKuLll2cQHh5e5s/jROc9fDiRG264mldeeZ3u3Xt6zvuf/zzFoUMHmTFj1klfM3J8+YVO1iYke90AKa5RJFef34a2DWtWyO2RRQJN4cBHxduWU5yw9Lj7TCbTMZ+A/c0WNxBb637l+prRoy/hiy8+Zd263+nWrQcA+fl5LF36Mw888AgADz98P1FRUUydOp3Q0DCWL1/GtGkv0q5d+zLvgvjjj9/x0kv/5e6776dnz3P45ZefmDVrBnXrxgJQWFjIfffdSffuvZg58y3PHRZff/1VunfvSceOnfn3v//DE088wptvvkuTJs3YunWz1zmmTHmMLVs2c//9D9OsWXNWrFjGiy/+h8LCQi677K838xkzXuHeex8kMjKKmTNf5amnnmTevIWEhobxdyVXCr6hf/+B2Gw2hg0bwb///Tjr1v1Oly7dAHA6ndx33x2YTCaeeeZ5oqKimDVrBvfddyeffDKPtLQ07rzzFvr1G8DMmW9RUFDAf/7zFM8+O4X/+78Xff4Zff75J7zwwjQMw6B58xbccMM1J/15HDp08KTnjYtry6JFCzzhoKiokJ9//pH77nvI55rk+DdAiq0VypiBzenTri61I0N0HwA5oykcnMFatYojLq4t33230BMOfvrpB6xWK0OGDKeoqJDzzhvJuecOJTa2HgCXX34VH3zwP3bt2llmOPj0048YPHgo48ZdAcD48TewceN6du3aCUBBQQGXXXYVY8ZcSlhYyQ0/Jk68jblz32Xnzh20adOOiIgIACIjj+2u2LNnN8uW/cIzzzzHwIGDAbjiims4dOgg7733NpdeeoXn2IkTb/O8Id50021MnDieXbt20qFDp2Pq/u23laSkJDN06AgA+vcfRFBQEF9++ZknHMTHr2H79m28994nNGvWHICHHvon7747m8zMTObP/5Lw8HAee2yKZ9zGI488zsqVv+J2+37DqBEjzqd9+w4APv08yjrvqFEXM2PGKzzwwCOEhITwyy8/AzB48FCfazpbnegGSIM616dvx9O/AZJIdaJw4CNb634n/ORele8gOGrUxbzxxnTuv/9hgoKCWLToG4YPP5/g4JI11MeOvYwlSxbz4YfvcfDgAXbu3EFqagoul6vM5961awfnnuv9ptOhQydPOIiKimLMmEv58cfv2b49gQMH9rNjx3YAn95Ad+4sObZz525e27t06cbnn39CenqaZ1ujRn/dVTA8vCSInGgmxoIFXxEeHkHv3n0ACA0NpW/fASxd+jMZGelERdVi584dhISEeoIBQI0aNbjrrvs933vr1nFeAzo7dOhIhw4dy/y+jtawYWPPv4OCgsv8eZR13uHDz2f69KksWbKYCy4YxcKFXzNkyAjPz1uOlZZVyKrNh4+6AZKJLi1r06dDLB2bR6vbQM5KCgdnuOHDz+e1115m+fJltGnTlg0b1nne4AoKCrjzzokUFhYyZMhwLrhgNO3bd+COOyb6+Owm/t6bYrX+9ZJKS0vlllsmEBVVi/79B9KrVx/atm3HmDEjT+t7Kr3Vts3210pzdvuxq84dr6snIyOD5cuX4XQ6GTasv9exbrebBQu+Yvz4G7DZbCf9lGi12nC5nCfcf7yvLZ0OerSj37R9+XmUdd7w8HAGDx7Cd98tpGfP3vz++1pmzLj9hMefrQqKnMQnpLBiUyIJ+zIxgFYNa3LdkRsghWkKopzlFA7OcCVvFkP56afv2b9/L61ataZNm7ZAyeX1bdsS+PLLhZ6BhNnZWaSnp/k0hqJVq9Zs2rQeuNazbcuWv8YM/PDDt2RlZfLRR196PumWTq0sff6TvQG3aNEKgPXrf2fQoCGe7evW/U7t2jHUqFHDlybw8t133+B0Onnmmedo1Kix176HH36A+fO/5Jprrqdp06bk5+exb98eGjduCpSM17jssot48slnaNKkKd99txCn0+kJRL/9toqnn36SuXM/w2q1kp+f5/X8Bw/uP2ltvvw8yjpvREQEF154MffddycLFnxF48ZNyn0140xlGAbbD2Txy7pDxCck43C6qRMVwsX9m3FOh1jqRIYEukSRKkPh4CwwatTFTJ58N3v27GHs2Ms820vfgL7/fhFDh44gKSmJN96YjtPpLHNxJIBrr53AI4/czwcf/I8BAwazcuVyli1bQu3aMQDUqRNLUVERixd/T5cu3di3by/Tpr0EQHGxA8AzzmDbtgQiIrzf7Js2bcaAAYOYOvV5TCazZ0Di119/yR133HNKbfHNN/Np06adV9godfnlV/HKKy+wevUKzjmnH23btuOpp57knnsmEx4ezqxZMwgNDaNDh040b96Szz77mOeee4arrhpPTk4206a9SKdOXYiIiKBjx858/fU8Fi78mq5du/Prr0v57bfV1KxZ84S1+fLzGDfuipOeF6Br1+7Extbjvffe5qabbj2ldjqT5OQ7WL7xMMs2HCIxLZ+QIAt9O9ajb4dYWtSvoXEEIsehcHAW6NKlGzExdUhMPMiIERd4trdr14G77rqPjz/+gDlzZhETE8PQoSOoU6cumzdvKvN5+/btz5NPPs1bb81i9uyZdOjQiSuuuIbFi78H4Nxzh5KQcB0zZkwjLy+XevXqM2rUxfz661I2b97EuHFX0KpVHP37D2TKlEe5+OKxDBx4rtc5pkx5hlmzXufFF/9DdnYWjRs34cEHH+XCCy8qdzv8+ecmdu/exWOPTTnu/lGjLuatt2bx5Zef06dPf/7v/17k1VdfYvLkuzAMg86du/HSS9MJDQ0lNDSUqVOnM3PmdG66aTzh4eEMGjSE22+fBJR052zfnsBrr72Mw+Ggb9/+3HjjLXz++ccnrM+Xn0ft2rVPel4ouRpzwQWjePvtNznvvNPrwqmu3IbB1r0ZLF1/iPiEFFxugxYNanDjyLb0bFOHILvWIxA5GZNR0XPwqqi0tFxP3/XfHT68l9jYJsfddzxVeUBidaU2PT3PP/8s6enp/N//veDZdqI2Le/rvSrLyi3i142JLFufSHJmAWHBVvp0iGVg5/o0jAn367k0ldH/1Kb+dXR7ms0moqN9/z+gKwciZ5A1a1azd+9uFi36hpdeejXQ5VQKt9tg0+50lq4/xPodqbjcBnGNIrlkQDO6x8Vgs+oqgUh5KRyInEG++WY+y5cvY/z4CZ41G85U6dmFLNuQyK8bDpGWXUREqI3hPRsxsHN9Ymv5b4lvkbORwoHIGWTKlGcCXUKFcrsN1u9I5Zf1h9i4Kw0MaNesFlcMaUWXVrW1JoGInygciEiV5zYM1m5N5qtfd5OYlk/NcDsX9mnCgE71idEURBG/Uzg4AcMwNMVJznhVfTyyYRis35HGl8t2sT85lwa1w7j9kg50a10bi1lXCUQqisLBcVgsVoqLHdjtQYEuRaRCFRc7sFiq3q8BwzDYvCeDL5buYndiNnWiQrhldDt6ta2L2azQLlLRqt5vhSogPDySzMwUIiNjsNnsuoIgZxzDMCgudpCZmUJERFSgy/GybX8mXyzdxbb9mUTXCGLCBW3o2yFW4wlEKpHCwXGEhJTc5jcrK/Wk69iXMpvN5boTn5RNbep/f29Ti8VKRESU5/UeaLsTs/ly6S427U6nZpida4a3ZmDn+tisCgUilU3h4ARCQsJ8/qWphTv8T23qf1W1TQ8k5/Llsl38sT2V8BAbl5/bknO7NSDIpvUJRAJF4UBEypSUns+6HamEBduIrhlMdM1gakUEndal/sPp+cxbtos1W5IJDrJwyYBmDO/RiJAg/VoSCTT9LxSR43IbBpt2pbM4/kDJmgJ/YwIiI4KIrlESFqJrBFO75l//jq4ZfNxP/6mZBcxfvoflmxKxWy2M7NOE83o1JjxEt0kWqSoUDkTES36hk+UbE/np9wMkZRRQM8zOxf2bMaBTPZwuN2lZhaRmF5KWVUjakb93Hsxi7dZkXH+7X0l4SMmVhtpHwkKhw8nyjYcxmUwM79GIkec0oUaYPUDfqYiciMKBiABwMDWPn+IPsGLTYYqKXbRoUIOLBzSjR1wdr+6DOlHHX5rY7TbIzC3yBIbSv1OzCjmUlsfGXWm43AYDOtdndN+mREVoqrBIVaVwIHIWK12O+Mf4A2zZm4HVYqZ32zoM7dGQprE1yvVcZrOJWjWCqVUjmFYNj91vGAYut6EpiSLVgMKByFkot6CYZRsO8fPvB0nNKiQqIoixA5szsEt9aoRWzGV+k8mE1aI1Q0SqA4UDkbPI/uRcFsfvZ9WfSTicblo3iuTyc1vSVcsRi8hRFA5EznCGYfD7thSWfLKeP3elYbeaOad9XYZ0a0jjuhGBLk9EqiCFA5EzWFaeg7cXbmHDzjTq1ArlsnNbMKBTfU0bFJGTUjgQOUP9sS2FtxdtpajYxVVDW3HF+W1JT8sNdFkiUg0oHIicYQodTj78cTvLNiTSuE44N1/Unga1w7DoboYi4iOFA5EzyI6DWcz+ejMpmQWMPKcJlwxopqmDIlJuCgciZwCny8385Xv4ZuUeakUE8/A13WjdKDLQZYlINaVwIFLNJabl8ebXm9lzOId+HWK5enhr3bxIRE6LfoOIVFOGYfDzHwf55Kcd2Kxm7rikAz3a1Al0WSJyBlA4EKmGsnKLeGvhVjbuSqNDs1rcMLKt7lUgIn6jcCBSzcQnpPDutyVTFK8Z3poh3RpgMmkmgoj4j8KBSDVRUFQyRfHXjYk0qRvBzaPbUb92WKDLEpEzkMKBSDWw/UAmb369mbTsQi7s04SL+2uKoohUHIUDkSrM6XLz1a+7WbhqL9E1gnnkmm60ahgZ6LJE5AyncCBSRe09nMOcbzZzICWP/h3rcdWwVpqiKCKVQr9pRKoYp8vNghV7+GblXsJDbdw9rhNdWtUOdFkichZROBA5gd2J2QTbLdSLrrxBf/uScpjzzRb2J+fSp30sVw1rpTsoikilUzgQOY4DKbn83/vxuFwG3eJiGN23KY3rRlTY+byuFoTYuGtcR7q2iqmw84mInIzCgcjfOF1u5nyzhZAgKwM61efnPw4Qn5BCl5a1GdW3Kc3r1/Dr+fYl5fDWN1vYl5zLOe3rcvWw1rpaICIBpXAg8jeLVu1l7+Ecz3LEI89pzOL4A3y/Zj9P/28t7ZtGMbpfs9O+sZHT5Wbhyr18vWIPYSE2Jo3tSLfWulogEgiGYeDcuZrizT+BPQRzeG3MEdGYPH9HYwqpedYsOKZwIHKUfUk5zF++h15t63juUxAabGN0v2YM69GIJesO8t3qffxn7u+0bhTJ6H5Nadckqty/MPYn5zLnm83sS8qld7u6XDNcVwtEAsWdmUjh8vdwHdyMObIeFBdQfHg7OPK9D7RYS8JCePRfwSE8GlPEkb/DojCZLYH5JvxM4UDkCKfLzVvfbCEsxMa1I+KO2R8SZOWC3k0Y0q0hS9cf4tvV+3jxo3W0qF+DUX2b0qlFdJkhwelys3DVXr5evoewYCt3julI9zhdLRAJBMNZhOP3r3FsWARWO0H9xmNrey4mc8kCY4YjH3dOGkZuKu6cNNy5qRi5abhzUnHu3Y9RkO39hCZzSUAIi8JkOr1FysyRsQQPvPG0nuN0KByIHPHNyr3sS87lrrEdT/opPshmYXiPRgzu0oDlGxP5ZuVeXvlsA43rhjO6b1O6to7BfJyQcCA5lznfbGFvUg692tbhmuGtiQi1V+S3JCIn4Nz7B4XL38fITcPaqh9BvS/HHFrT6xiTPRRLdChENzrucxhOR0lYOBIYjJxU3LlpGPmZp1+gKbBXIBQORChZcGjBij30aV+Xrj72+9usZgZ3bUD/TvVY+edhvlm5l9e+3ESD2mFc2LcJvdrUxWw24XK7WbhqH/N/3U1osFW3VpbTYhgGRk4qrsStuA5vw/33T6/VlMlkJrNlJ9z1umIOjayw87hzUihcPhfXvnWYo+oTPOoRrPXbnNJzmax2TJH1SroizjAKB3LWK5mdsJnwUBtXDWtd7q+3WswM6FSfvh1iWbMlmQUr9zJr/ma+Wrabod0bsmLTYfYczqFnmzpcM6I1NXS1QMrBMAzcWYm4DiXgOpyAK3EbRl56yc6gMMzhteEMGCNnOB2kL/4DTP/D0qA9tlZ9sTbtjsnmn1uRG65iHBu+xfH712AyEdT7Cmwdh2My623weNQqctabv3wPB1LyuPvSTqc1KNBiNnNO+1h6tavL7wkpLFixhw9+3E54iI3bL+lAz2p8tcCdmYhjyxLsnS+o0E91ZXGl7qV4x0rsHc/DHBYVsDoqkuF2407fj+vwNlyJCbgSEzAKcwAwhdTEUi/O88ccVf+0+7arkpqmLJJ/+5Hi7Sso/HkW2IKxNuuOrVU/LPXaeMYClJfzwJ8ULn8PI+sw1mY9COpzFebwaD9Xf2ZROJCz2u7EbBau3Eu/DrF0aemfJYrNJhM92tShe1wMuxNzqBMVUm1nIhiGgXPbrxQufx+cRbgObSZ09D8w2UMrvRZX5iEKvnkeoyiX4i1LCOo+BluHYdV+dLjhduJO3YcrcSvOxARcR42SN4VHY2nUEUu9OKz14jDVqHtGT6Wz125IUM9x2HuMwZW4Def2FRTvWoNz23JMYbWwtTwHa6t+WGo18On53HkZFK36COfO1Zhq1CHkgvuxNupUwd/FmUHhQM5axc6S2Qk1wmxcNayV1z7DcFP850+Ya9Y55V8mJpPJ7wsmVSbDUUDhr+/i3LEKS7022OIGULj0LQq+e4WQCx7AZK287hF3bjoFC18Es5mQkZNxbPyeolUfUrztV4L6X4c1tlXZTxJgRnHhXyPfc9NKxg2k7sWVtAOcRQCYasZia96z5MpAbGvMEWfnPTVMJjPW+m2w1m9DUL9rce79g+LtK0q6BdYvxFy7SUm3Q4tzjhlECGC4XRT/+SNFa78EtxN790uwdx5Zqa/Z6k7hQM5a85fv5mBqHvde1pnQ4L8+2RvOIgp/fhPn7rUA2NoPI6j35WfVLxZX8i4KFr+OkZuGvcdY7F1GlVzSNVso/OkNCn+aSfCwOyvlU7tRmEvBohcwivIIHf0PLLWbYGnQHuee3ylaMZeC+c9gbT2AoN6XYQ4JTBgzDAOK8nAfmfJm/O1vd24qFOV5f5HZgjmyHrbW/bHUPxIGAthlU1WZrHZsLXpja9Ebd35WyUJF21dQtPJDilZ9jKVhB2yt+2Ft0hWT1Y7r8HYKf/0f7vT9WBp1JLjfeMw1qm+XXqAoHMhZadehbBau2suATvXo1OKvvkd3fiYF372CO2UP9l6XY+RnULzpB1yHEwgZescZOSr5aIbhpnjDtxT99jmmsEhCRv/D61O5reU5GIU5FK2YS9Gv7xI04IYKvcxtFBeR/93LuLOSCRn5AJbaTYCSqzK2Zt2xNuyA4/evcGz4Dufe3wnqeSm2toMqtB/eKC7CuSee1LV7yU9J9ASA0k//HlY75ojamMJrY6vTHFNEdMmqe0cWzTGF1jyjxgtUBnNoTewdR2DvOAJXxsGSboftKylc/DrYQrDUaYbr4GZMYbUIHj6pZEDjGdwNU5FMhmEYgS4iENLScnG7/fOtx8REkJKS45fnkhIV2abFThdT3l5DUbGLf9/Ym9DgkozsSt9PwbcvYxTmEDzkNmxNuwHg3LuOwiWzMVwOgvuNx9q6f7X8hVNWm7rzsyhc8iauA5uwNutB8MAbMAUd/46URWs+x/HH19i7jCKo16UVUq/hdlLw3TRcBzYSPOxObM16nPBYV8ZBin59D1fiVswxzQnufx2WmKZ+rMWNK3ErxduW49wTD8WFmINCwWuFvNqeAGCKiMYUFF4tXyeBdCr/7w3DjevQVoq3r8B1cDO2ludg73YRJltwBVVZfRzdnmaziejocJ+/VlcO5Kzz5bLdJKblc/8VnT3BwLlvAwWLZ2CyBRN60aNYajf1HG9t0oXQS58quZz+yxysB/4keMB1ARmUV1GcBzZR+PMsDEcBQf2vx9Z28Enf2Ow9xmIU5OBYtwBTSAT2juf5tR7DcFO4ZA6u/RsIGjDhpMEAwBLVgJBRD+PcsZKiVR+RP+9f2NoOIajn2BMGHF+40g/i3L6c4h0rMfIywBaCrXkvrK36EtupO6mpeWU/iVQok8mMtUE7rA3aBbqUM4rCgZxVdhzI4rvV+xjUpT4dmpV0Jzj+/JGiFXMx12pEyHn3Yg6vdczXmcOiCLnwIRzrFuCIn0de8k5Cht6OpU7zyv4W/MpwOSla8znFGxZhjmpAyIUPYanVsMyvM5lMBPW/rqSLYeWHmIIjsLXq65+aDIOilR/h3LGyZLxD28E+fZ3JZCoZpNa4M0Vrv6R482Kcu9cQdM6VWFv28flTfEm/9iqKt6/AnboXTOaSfu1zrvT0a5ecT10CcuZSOJCzhqPYxZyFW6hVI5jLz22J4XaXjHjf9AOWxl0IGXrbSS9FmsxmgrpdhLV+Wwp+mkn+V89g7zkOe+fzq+UbhTs7mYLFM3Gn7MLWdjBBfa7CZPV9wRmT2UzwkFsp+HYqhUvmYAoKx9r49KeJOdZ/Q/Gm77F1GI696+hyf70pKIzgftdii+tP4bL/UfjzLCxbfyGo33UnnAJnOB049/xecmn6wCYw3JhrNyGoz9VYW/Q+7oh4kTOZxhz4gcYc+F9FtOlHi7fz/Zr9TL6yC23rh1Dw00xc+9Zj63geQb2vKNcCK0ZRHoVL38a5ey2WBu0JPvfmKj/S/Og2Ld6xisJl74DJTPDAG7A173nKz2s4Csj/+j+4MxMJHfUQlrotT/m5HFt/oWjp21hbnEPwkFtOO3QZhpvirUsp+u1TcBRi73Sepz/aMNy4EhOOzKVfC8UFJXPpW/XB2qovlqiTz6XX/3v/U5v61+mMOVA48AO9oP3P3226bX8m/537O4O7NeCavrUp+PZl3BkHCep3LfZ2Q07pOQ3DoHjLEopWfoDJHkLw4JuxNurot5r9LSYmguRDJevKO7ctw1y3JSFDbvPLXHp3fhb585/FKMotGbNRxhvr8RTviafwh+lYGrQn5Lx7MVn8d2HTXZCN47dPKU5YhimsFtZm3XHu+R0jN+2UV+HT/3v/U5v6l8LBKVA4qNr82aZFDhdPvv0bbrfBlIvr4F78KobTQciwO/zyZu5KP0jh4hm4Mw5i63Q+QT0v9esbm7/UcKWS+NkLuLOSsHcdhb37JX5dp8CdnUL+V0+D2ULoxY+Va3laZ2ICBQufxxzdmNALH/bbevp/55kDn3HgtNfv1/97/1Ob+pfCwSlQOKja/NmmH/ywjR/jD/DEEAvRG+diCokg5Pz7fV6C1ReG00HRyg8p3vIz5phmhAy9vcosvGIU5lK8bTlFaz7FFBRO8JBbsdZvWyHncqXtJ//rZzGHRhJy0aOYgyN8+Jp95M//P8xhUYRe9CimYN9/gZ0Kw3CD03HaU930/97/1Kb+pamMIieQsC+DH+P3c2uLA0Sv+xlznRaEjLjb7wPMTFY7wQOux9KgHYVL3ybv8ycI7n+d30bwl4c7P9Nzwx5X4jbcGQcACG3ZHVPfCT69YZ8qS3TJjI+ChS9QsGgqoaMeOumbsDs7mYKFL2CyhxAy8oEKDwZwZJaB5sCLnJTCgZyxCh1O3v7mTyZEraFdxlaszXsRPHhihS6DbGveE0ud5hQunknhz7NwHvwTe6cLShbKsYdUyDndOameMOA8nICRlXSkmGAsdVtib9kbS7021O3QldTU3Aqp4WjWenGEDLuDgu9fpeCH6SccP+DOzyR/4QsYbhehox7RXfJEqhCFAzljfbV4E5e5F9Dachh719HYe4yplCmH5vBoQkY/UrKs7+9f49y2vGRHUFjJ8rkR0ZjCS1fSK3lsDq8NQWFlzsU3DAMjKwnn4YS/buebm+Z5fmtsayxtB2OJjcNcu4nXmILKXK3P2qQrwQNvoPCXORQueZPgIbd6tb3hyKdg0UsY+ZmEjnoYS1T9SqtNRMqmcCBVzvKNiWzcvRm3243NYsJmNWOzWLBZzVitJmwWMzbrkcel+60WbJa/9mcnH6LbnrepY8shePDN2Fr3q9TvwWS2ENRjLNYW5+BO24c7NxUjJw13bhrurMO4D/x5nLX4g44Eh9pH1uSPLrniEBqJO+MArsRtJWGgIKvkHCE1Su7e1+kCLPXiMNdqUKXWW7DFDcBdkIPjt08oCg4nqO+1mEwmDKej5P4V6QcJOf9eLHVaBLpUEfmbKhcOHA4Hr776Kl9//TVZWVm0bduWyZMn061byTr3W7Zs4dlnn2Xjxo1ERkYyfvx4brrppgBXLf6ybX8mby3cQu3IEKxmE8VON8UuN84jfxc73ZQ1hLaZNZmJ4T9jNoP9gsnYGgVuWVVLVP3jfir2votfaXBIxchNw52TRnHyzmPu4mcKq4WlQTss9eKw1ovDVDO2yq/db+98AUZhNsUbvsUUUhN7lwsp/GkmrsSEkoGRVXjqp8jZrMqFg9dee43PP/+c//73vzRq1IjZs2czceJEFi1ahM1mY8KECQwfPpwpU6awYcMGpkyZQkREBJdffnmgS5fTlF9YzJtfb6Z2zWCmTz6XvJzCY44xDAOX28B5JCj8PTxY9v5GzQ0/4AyOwjbiXkLqlr0UcCCYTCYIDscSHO51H4ejGY4C3LnpGPkZmGvWxRReu8qHgb8zmUwE9b685D4Ma7/AuW897uSdBPW9BlvLPoEuT0ROoMqFg8WLF3PRRRcxYMAAAB555BE+/fRT4uPj2bdvHzabjSlTpmC1WmnRogV79+5l1qxZCgfVnGEYvPf9NjJyivjHtd0IDbYdNxyYTCasFhNWi5lgu/fXO+Ln4Vj/FZZ6cUQMv6tSRr5XJJM9pGS6pR+nXAaCyWQmeNANFBTl4tq3vmT8R4fhgS5LRE6i6nRQHlGrVi1+/vlnDhw4gMvl4tNPP8Vut9OuXTvWrl1Ljx49sFr/yjS9e/dm//79JCUlBbBqOV0r/zzM6s1JXNS/KS0alG+aoeF0UPjzGzh+/wpr6/6EjHyw2geDM43JbCVk2J2EjHoYe4+xgS5HRMpQ5a4cPP7449x7770MHToUi8WC2Wzm5ZdfpmnTpiQlJdGypfe67XXqlCw0k5iYSN26dX0+T3kWg/BFTEzFzR0/0x1Oy2PuD9tp16wWEy7qiMVccunclzZ15WVx+LMXcR5IoNa511Czz5hqd+m9MgX8dVrvzJquGPD2PAOpTf3rVNuzyoWD7du3Ex4ezmuvvUbdunX59NNPeeihh3jvvfcoLCzEbveeo176uKio6HhPd0JaIbFqcLrc/Hfu7wBMOD+O9LSSefi+tKkr4xAF307FyM8keNgdFDfvVSnz+KsrvU79S+3pf2pT/zpjVkg8dOgQDz30ELNnz+acc84BoGPHjuzYsYNp06YRHByMw+Hw+prSx6GhoZVer5y+r5fvYeehbG67uD21a/q+SJDz4GYKfngVk8VG6OhHNB1ORMSPqtSYgw0bNlBcXEzHjt7Tmzp37syePXuIjY0lOTnZa1/p49jY2EqrU/xj2/5MFqzcQ78OsfRq63uXkGPLEgoWvog5LJrQS55QMBAR8bMqFQ5K3+ATEhK8tm/bto1mzZrRs2dP4uPjcTqdnn2rVq2iadOmxMTEVGqtcnpKpi3+SUzNEK4e3tqnrzEMN4WrPqZo2TtYGrYrufOfH243LCIi3qpUOOjUqRPdu3fn0UcfZdWqVezZs4eXX36ZFStWcMsttzBu3DgKCgp49NFH2bFjB/PmzeOdd97h1ltvDXTpUg6GYfC/7xLIyHFw80XtCAkqu3fLKC6i8IfpFG9YhK3dkJL1+ivoXgUiIme7KjXmwGw28/rrr/Pyyy/zj3/8g8zMTOLi4nj77bc9KyTOmTOHZ555hjFjxhATE8MDDzzA2LGaGlWdrNh0mN+2JDNmYHNa1C972qI7L6Nkud20vSWL57QfphkJIiIVyGQYZS1Ge2bSbIXASM7I58m319CkbgQPXdUVs/n4b/KlbepK20fBty9jFOURMvR2rE26VG7BZxC9Tv1L7el/alP/OmNmK8iZzelyM+vrzVhMJm4e1e6EwcBz/N51FCx+HVNQGKEXP4YlunElVSoicnZTOJBKM3/5HnYdmbYYXTP4hMcZhkHWbwso+PEdzNFNCDn/XsyhkZVXqIjIWU7hQCpFwr4Mvlmxh34dy5626Ph9PrnxX2Jt2o3gc2/FZAuqpCpFRAQUDqQS5BUW8+aCzcREhnD1sJNPW3QXZONYt4Cwtn0w9b8Zk6lKTagRETkr6DevVCjDMPjftwlk5Tq45aL2ZU5bLN78E7iKiRp4pYKBiEiA6LevVKjlGw+zZmsyF/dvRvP6NU56rOEsovjPxVgad8Feu2ElVSgiIn+ncCAVJikjn7k/bCOuUSQjz2lS5vHF25ZjFOZg73xBJVQnIiInonAgFcLpcjNr/p9YzCZuHl32tEXD7cax4VvMdZpjifVtOWUREakYCgdSIb76dTe7E3O4/oI21Kpx4mmLpZx74jGyk7F3ukCrH4qIBJjCgfhdwr4MFq7cS/+O9ejZpk6ZxxuGgWPDIkw16mJt2r0SKhQRkZNROBC/yissZtbXm4mJCuHq4a18+hrX4W24k3dh73QeJrNekiIigabfxOJX85buJjvPwa0XtSfY7tsyGo71izAFR2Br3b+CqxMREV8oHIjfuA2DtduS6dqqNs3qnXzaYilXxiFc+9Zhaz8Uk9VewRWKiIgvFA7Eb/YeziEr10GXVrV9/priDd+CxYat/dAKrExERMpD4UD8Zv2OVEwm6NTCt3Dgzs+kePsKbHEDMAdHVHB1IiLiK4UD8Zt121Np2aAm4SE2n44v3vQjuF3YO55XwZWJiEh5KByIX6RnF7IvOdfnLgXDUYBj809Ym3XHXPPkd2kUEZHKpXAgfrF+RyoAXVr6Fg6KE5aCI19LJYuIVEEKB+IX63akUScqhNhaoWUea7idODZ+jyW2NZY6LSqhOhERKQ+FAzlthQ4nW/am06VlbZ+WPnbuWoORm6arBiIiVZTCgZy2P3dn4HQZPnUpGIaBY/0izJH1sDTuXAnViYhIeSkcyGlbvyOV0CArLRvWLPNY16EtuNP2Yet0PiaTXn4iIlWRfjvLaXG7DdbvTKVji2islrJfTo71CzGF1MTWqm8lVCciIqdC4UBOy67EbHLyi+ncMrrMY11p+3Ed2IStw3BMFt/WQhARkcqncCCnZf2OVCxmEx2blx0OHBsWgTUIe7tzK6EyERE5VQoHclrW7UilVcOahAWf/EqAOzcN547V2NoMwhQUVknViYjIqVA4kFOWklnAwZQ8n2YpODb9ABjYO46o+MJEROS0KBzIKVt3ZFXEzmUsmWw48inesgRri16YI3y/Y6OIiASGwoGcsvU7UqkXHUrdqJOviujYvASKC7F30qJHIiLVgcKBnJKCIicJ+zLL7FIwXE6KN32PpUF7LLWbVFJ1IiJyOhQO5JRs2p2Oy23QuYxw4NyxEiM/U0sli4hUIwoHckrWbU8hPMRGywYnXhXRMAwcG77FHN0IS4P2lVidiIicDoUDKTeX282GnWl0ahGN2XziGy259m/AnXEQe6cLfLohk4iIVA0KB1JuOw9mk1foLHO8gWP9IkxhtbC26FVJlYmIiD8oHEi5rTuyKmL7ZrVOeIwrZTeuxK3YOw7HZLZWYnUiInK6FA6k3NZtT6VN40hCgk78pu9YvwhsIdjaDK68wkRExC8UDqRcktLzOZyeT5dWMSc8xp2djHP3GuztzsVkD6nE6kRExB8UDqRcPKsinuQujI6N34HJjK3D8MoqS0RE/EjhQMpl/Y5UGsaEUbvm8a8IGIW5FCcsw9qyD+awqEquTkRE/EHhQHyWV1jMtv1ZJ1z4yDAMiuK/BKdDSyWLiFRjGkYuPtu4Mw23YdDlODdaMlzFFP7yFs4dK7G1G4KlVoMAVCgiIv6gcCA+W7cjlRphdprVq+G13V2YQ+H3r+I6vA17j7HYu44OUIUiIuIPCgfiE6fLzcZd6XSPi8F81GqH7sxE8r+dipGXTvDQ27G16B3AKkVExB8UDsQn2/dnUlDkvSqi89AWCr5/FZPZQuioR7DUbRnACkVExF8UDsQn63akYbWYad+0ZFXE4q1LKVz2LubIuoScdx/mGide90BERKoXhQMpk2EYrN+RSrumUdhtJopWf4Jj/UIsDdoTMvxOTPbQQJcoIiJ+pHAgZUpMyyc5s4ALesRS+OMMnLvXYms7mKB+1+q+CSIiZyD9ZpcyrduRSg1TPl32vIMzfR9B51yFreMI3YZZROQMpXAgZdq/bSsPRn2LOdtByIi7sTbtGuiSRESkAikcyEnlbI9nbMGnYAsh9KJHsdRuGuiSRESkgikcyAk5Nv2AseIDUlxRhI+4F0vtxoEuSUREKoHurSDHMNwuCpe/R9GKuRywN+d/7tE0atoo0GWJiEgl0ZUD8WI4CihY/Dqu/RuwtB/B9NX1OKddPQ0+FBE5iygciIc7L4OCRS/izjhEUP/r2RbSiULH+hPehVFERM5M6lYQD8faL3FnJRNywf3Y253L+u1p2K1m2jaJCnRpIiJSiRQOBCgZZ+Dc+wfWZt2wNuyAYRis25FCu6a1sNssgS5PREQqkcKBAOA6vB2jMAdr0+4AHEjJIy27iC6t1KUgInK2UTgQAJx74sFixdqoI1CyKiJA5xbRgSxLREQCQOFAMAwD557fsTTogMkWDMD6Hak0q1eDmuFBAa5OREQqm8KB4E7bi5Gbhq1ZSZdCVm4Ruw9l06WlrhqIiJyNFA4E5+54MJmwNOkCwPqdaRhAl1YxAa1LREQCQ+FASroUYuMwB0cAJV0K0TWCaBgTFuDKREQkEBQOznLurMO4Mw5iPdKlUOx08eeedDq3rK1VEUVEzlIKB2e54t2/A2Bt2g2ALXszcBS76aJVEUVEzloKB2c55554zLWbYg4vGXy4bnsqQXYLcY21KqKIyNlK4eAs5s7LwJ2803PVwDAM1u9Mo0OzWtisemmIiJytfHoHcLlcFV2HBIBz7x8AnvEG+5JyycgpUpeCiMhZzqdwMGjQIJ577jl27txZ0fVIJXLujsdUMxZzZH2gZJaCCeioVRFFRM5qPoWDiy++mAULFjBq1Cguv/xyPvnkE3Jzcyu6NqlARlEerkNbsTXt5pmVsHVfBo3rRlAj1B7g6kREJJB8CgcPPvggS5YsYebMmcTGxvLUU0/Rv39/HnzwQVatWlXRNUoFcO5bD4brqCmMbnYeyqZ1o8jAFiYiIgFn9fVAs9nMoEGDGDRoEFlZWfzwww988cUX3HDDDdSvX58rrriCyy+/nMjIyAosV/zFuTseU2gk5phmAOw5nE2x001c48jAFiYiIgFX7iHpeXl5/PDDDyxatIgNGzYQGRlJt27d+N///sfw4cNZtmxZRdQpfmQ4HTgPbMTatBsmU8lLYNv+TABaNawZwMpERKQq8OnKgWEY/Prrr8ybN4+ffvqJoqIi+vTpwwsvvMDQoUOx2Ww4HA5uuukmnnzySX766aeKrltOg/PAJnA6sDbt7tmWsC+TBjFhRGi8gYjIWc+ncDBgwADS0tKoV68eN910E+PGjaNevXpex9jtdnr37s37779fIYWK/zj3xIM9FEv9OABcbjfbD2bRt0NsgCsTEZGqwKdw0L17dy677DL69et30vX2x40bx+WXX+634sT/DLcL5951WBt3xmQu+fHvS8qlyOEiToMRRUQEH8ccvPLKK7Ru3ZqFCxd6tu3Zs4fXXnuN1NRUz7Z69epRp04d/1cpfuNKTICiPM8sBSjpUgA0U0FERAAfw8HWrVsZPXo0L730kmdbSkoKc+bMYezYsezZs6ei6hM/c+6JB4sNa8OOnm3b9mdSNyqEyPCgAFYmIiJVhU/h4Pnnn6dZs2Z8/vnnnm09e/ZkyZIlNGjQgOeff77CChT/MQwD554/sDbsgMlWEgTchsH2A5m6aiAiIh4+hYMNGzZw++23H7OGQY0aNZg4cSJr166tiNrEz9wpuzHy0r26FA6m5JFX6NT6BiIi4uFTODCbzWRlZR13X2FhoW7MVE049/wOJjPWxl0820rXN9CVAxERKeVTOOjduzczZswgKSnJa3tKSgozZ86kd+/efi1q3rx5jBw5ko4dO3LhhReyaNEiz74tW7Ywfvx4unTpwuDBg5kzZ45fz30mc+6Jx1IvDlNwuGdbwr4MomsEU7tmSAArExGRqsSnqYyTJ0/msssuY/jw4XTu3Jno6GjS09PZsGEDwcHBTJs2zW8FffXVVzz66KM8/PDDDB48mIULF3L//fdTp04dmjVrxoQJExg+fDhTpkxhw4YNTJkyhYiICE2hLIMr8xDuzESC2g31bDMMg237M2nfTHdhFBGRv/gUDho3bsyCBQt45513iI+PZ8uWLURERHDllVcyYcIEYmP9s3iOYRi88sorXHvttVx//fUA3H777axdu5ZVq1axZs0abDYbU6ZMwWq10qJFC/bu3cusWbMUDsrg3P07ANam3TzbDqfnk51frPEGIiLixecbL8XExPDggw9WZC3s2rWLgwcPMmrUKK/tpV0HEydOpEePHlitf5Xdu3dvXn/9dZKSkqhbt26F1ledOffEY45phjm8lmdbwpHxBlr8SEREjuZzOCgoKGDLli04HA4MwwBKPunn5+cTHx/Pww8/fNrFlK6X4HA4uOWWW9i4cSMNGzbk9ttvZ8iQISQlJdGyZUuvrylddCkxMbFc4SA6Orzsg8ohJibCr8/nT87sNHJSdhM1+BqijqpzX3IeURFBtG9d56QrXwZKVW7T6kpt6l9qT/9Tm/rXqbanT+Fg5cqV3HvvvWRnZx93f3h4uF/CQW5uLgAPPfQQd955J/fddx/ff/89d9xxB3PmzKGwsBC73fvGQKWPi4qKynWutLRc3G7jtGuGksZPScnxy3NVBMefSwEoqtPeU6dhGKzfnkLLBjVJTc0NZHnHVdXbtDpSm/qX2tP/1Kb+dXR7ms2mcn0o9ikcvPLKK0RGRvLUU0+xYMECTCYTY8eO5ZdffuGjjz5i1qxZp1b539hsNgBuuOEGxo0bB0Dbtm3ZtGkTb731FsHBwTgcDq+vKX0cGhrqlxrORM49v2OOrIclsr5nW2pWIRk5RRpvICIix/BpKmNCQgJ33nknI0aMYMiQIRw+fJhBgwbxxBNPcMkllzBjxgy/FFM6sLF169Ze21u1asWBAweIjY0lOTnZa1/pY38NijzTGIW5uA5t9bo9M2h9AxEROTGfwoHb7fb07Tdr1oxt27Z59p133nls2bLFL8W0a9eOsLAwNm7c6LV927ZtNG7cmJ49exIfH4/T6fTsW7VqFU2bNiUmJsYvNZxpnPvWg+H2mqUAJTdbCgu2Ur92WIAqExGRqsqncNC4cWMSEhIAaNq0KQUFBezevRsAp9NJXl6eX4oJDg5m4sSJzJgxg/nz57Nv3z5ef/11fv31V2688UbGjRtHQUEBjz76KDt27GDevHm888473HrrrX45/5nIuSceU1gtzDHNvLZv219yPwVzFRyIKCIigeXTmIPRo0czdepU3G43N9xwA126dOHf//43V199NTNnzjxmBsHpuOOOOwgNDWXatGkcPnyY5s2b8+qrr9KnTx+gZFrjM888w5gxY4iJieGBBx5g7Nixfjv/mcRwFuHcvwlbmwFesxEycopIzixgSLcGAaxORESqKp/CwcSJE8nMzGTTpk0APP7449x0003cddddRERE+G3MQakJEyYwYcKE4+7r2LEjH330kV/Pd6Zy7t8ELscx4w0S9mcAENc4KhBliYhIFedTOPjzzz+ZPHkyZnNJL0T79u358ccf2bVrF82bNyc83L9rBoh/OPfEQ1AYlnpxXtu37c8i2G6hUR393ERE5Fg+jTmYOHEiX3zxhde28PBwOnXqpGBQRRluJ86967A26YLJbPHal7Avg1YNIzGbNd5ARESO5VM4sNvtREZGVnAp4k+uQwngyD+mSyE7z0FiWr7WNxARkRPyqVvhgQce4NlnnyUtLY1WrVodd9pgo0aN/F6cnDrnnniw2rE27OC1ffuBTEDrG4iIyIn5FA4ee+wxXC4XTz755AnX4PfXWgdy+gzDjXPP71gbdsRk9V5uOmFfJnarmaaxWr9cRESOz6dw8NRTT1XJG/PI8blTdmPkZ2Jt1v2Yfdv2Z9KiQU2sFp96lERE5CzkUzjQOgLVi3N3PJgsWBt39tqeV1jM/uRcLu7f7ARfKSIi4mM4WLNmTZnH9OzZ87SLkdNnGAbFe37HUr8NpiDvpZG3H8jCQOMNRETk5HwKB+PHjy+zW0FjDqoGd+YhjKzDWDsMP2bftv2ZWC0mmtevEYDKRESkuvApHLz99tvHbMvNzWX16tV8++23TJ8+3e+Fyalx7o4HOOZGS1AyGLFZvRrYbZZj9omIiJTyKRyU3tfg74YPH05YWBizZ89WQKginHt+x1ynOeYw76WRCx1O9h7OYWSfxgGqTEREqovTHrJ+zjnnsGLFCn/UIqfJnZuGO3XPMQsfAew4mIXbMDTeQEREynTa4WDt2rUEBQX5oxY5Tc49vwNgO0442LY/E7PJRIv6NSu7LBERqWZ86lZ46KGHjtnmcrlITEzkjz/+4KqrrvJ7YVJ+zt3xmKPqY46MPWbftn2ZNImNICTIpx+5iIicxXx6p1i7du0x20wmE+Hh4dx2223ceuutfi9MysddmIPrcAL2LqOO2ecodrErMZth3bXEtYiIlM2ncPDTTz9VdB1ymlz7NoBhHHe8we7EbJwujTcQERHf+DzmYOvWrbz11ltejx999FF27txZIYVJ+bizDoPJjDn62NkICfszMQGtGmm8gYiIlM2ncLB69Wouv/xyvvrqK882h8PB6tWrueyyy9i0aVOFFSi+cedlYAqticl87I80YV8mDeuEExZsC0BlIiJS3fgUDqZOnUq/fv34/PPPPds6derEd999R+/evXn++ecrrEDxjZGfiSk06pjtTpebnQez1KUgIiI+8ykcJCQkcM0112C1eg9RsFqtXHnllbpyUAUYeZmYwyKP2b7ncA4Op5s4hQMREfGRT+EgNDSUQ4cOHXdfamoqNpsuVweaOz8DU2jkMdu37c8EdLMlERHxnU/hYODAgbz66qts3LjRa/uWLVuYPn06AwcOrJDixDeG0wFFeZjCju1W2LY/k3rRodQIswegMhERqY58mso4efJk4uPjufzyy6lXrx7R0dGkp6dz6NAhGjVqxIMPPljRdcpJGPmZAJj/duXA7TbYfiCT3m3rVn5RIiJSbfkUDqKjo5k/fz5ffPEF8fHxZGRkUL9+fSZMmMDYsWMJCwur6DrlJNx5GQDHXDnYn5xLQZFLXQoiIlIuPq+lGxwcTL9+/bj66qsBSE9PZ9euXQoGVUDplYO/z1ZI0HgDERE5BT6NOUhPT+fKK69k4sSJnm0bN27k2muv5cYbbyQ3N7fCCpSyGXmZAMfMVkjYl0FMZDC1agRXflEiIlJt+RQOnn/+eQ4dOsTjjz/u2TZgwADeeustdu3axcsvv1xR9YkP3PkZYLGBPfSvbYbB9gNa30BERMrPp3CwbNkyJk+e7DUrwWw207dvX+6++25++OGHCitQymbkZWIKjcRkMnm2HUrNI7egmLhGx85gEBERORmfwkFeXh6hoaHH3RcVFUVmZqY/a5JyMvIzMP9tMKJnfYPGkZVfkIiIVGs+hYP27dvz6aefHnffZ599Rtu2bf1alJSPOz/zmAWQtu3PJCoiiJiaGm8gIiLl49Nshdtuu41bbrmF0aNHM2LECM86B4sXL2br1q3MmjWrouuUEzAMAyMvA1PjLl7bEvZl0rZJlFdXg4iIiC98Cgf9+/dn5syZvPrqq8yYMQPDMDCZTLRt25aZM2fSpUuXCi5TTqi4AJwOr5kKyRkFZOU5NBhRREROic/rHAwcOJCBAwdSVFREZmYmERER7Nq1i48++oh7772XP/74oyLrlBNwH5nGePQaB6XrG8RpvIGIiJwCn8PB0ZYvX86HH37Ipk2bMAyDbt26+bsu8ZFRujriUWMOEvZlEhFqI7bW8QeRioiInIzP4WD37t189NFHzJs3j+zsbOrVq8dtt93GmDFjaNy4cUXWKCfhua/CUbMVtu3PpHWjSI03EBGRU3LScOByufjxxx/58MMPWb16NTabjUGDBvHjjz/ywgsv6IpBFeDO975ykJpVQFp2Ief1ahTAqkREpDo7YTiYNm0an376KSkpKbRv355//vOfjB49GovFQvfu3SuzRjkJIy8D7CGYbEHAUesbaDCiiIicohOGgxkzZhAXF8e0adPo2rWrZ3t+fn6lFCa+MfIyj+lSCA2y0jAmPIBViYhIdXbCRZAuu+wyDh48yPjx47n++uv58ssvKSgoqMzaxAclCyAdNVNhX8l4A7NZ4w1EROTUnDAcPPXUU/z666889dRTuFwu/vGPf9CvXz+eeOIJTCaTBrtVEUZehme8QWZuEUkZBepSEBGR03LS5ZODg4MZM2YM77//Pt999x3XXHMNq1evxjAMHnjgAV588UW2bt1aWbXK3xiGGyM/y9OtoPEGIiLiDz7dWwGgSZMmPPDAA/zyyy/MnDmTtm3b8vbbbzNmzBguvPDCiqxRTsAozAXD5blykLA/kyCbhSaxGm8gIiKnrtyLIJnNZgYPHszgwYNJT0/nyy+/5IsvvqiI2qQMngWQjiydvG1/Ji0b1sRi9jnziYiIHOO03kVq1arFTTfdxDfffOOveqQcjCNrHJhDI8nJd3AwJY84dSmIiMhp0kfMasxzX4WwKLYfyAI03kBERE6fwkE1Vrp0sim0Jn/uScduM9OsXo3AFiUiItWewkE1ZuRlYAqpASYLG3em0bZxFDarfqQiInJ69E5SjZUugHQ4PZ/UrEI6togOdEkiInIGUDioxoy8TExhkWzclQ5Ax+YKByIicvoUDqoxIz8Dc2gkG3emUi86lJjIkECXJCIiZwCFg2rKcDsxCrJxB9ckYX+mrhqIiIjfKBxUU0Z+ydTFxAI7TpehcCAiIn6jcFBNla6OuDPDhN1m1voGIiLiNwoH1ZT7yBoHGxNdtGtSS1MYRUTEb/SOUk0ZR1ZH3JttoWPzWoEtRkREzigKB9WUkZ+J22QhzwjWeAMREfErhYNqyp2XQR6hxEaHUVtTGEVExI8UDqopV24GacW6aiAiIv6ncFBNFWWnkeUO0ZLJIiLidwoH1ZQpP5McwmjdMDLQpYiIyBlG4aAacjsKsRlFBNeM1hRGERHxO72zVEPJiYkARMfGBrgSERE5EykcVEN7du4DoEHj+gGuREREzkQKB9VQ4sGSKweRdXTlQERE/E/hoJopdDjJT08FwBwWGdhiRETkjKRwUM1s3ZtJhCkPt9kONi1+JCIi/qdwUM1s3JVGlKUQS3gUJpMp0OWIiMgZSOGgGjEMg4270ogNcahLQUREKozCQTWSmJZPalYhkZYCTKFRgS5HRETOUAoH1cjGXWmAQZAzB5OuHIiISAVROKhGNu5Ko1m0DZOrGLOuHIiISAVROKgmCh1Otu3PpFtDK4CuHIiISIVROKgmtu7NxOkyaBNTMkPBFKYrByIiUjEUDqqJDbvSCLJZqB9WDIA5NDKwBYmIyBlL4aAaMAyDjTvTaNskCnNhFgAmhQMREakgCgfVQGJaPmnZhXRqEY2RlwFBYZis9kCXJSIiZyiFg2qgZAojdGwejZGfqZkKIiJSoRQOqoGNu9KoXzuM6JrBuPMyNVNBREQqlMJBFVc6hbFj81oAGPkZGm8gIiIVSuGgituyNwOny6BT82gMtxsjPwuzpjGKiEgFqtLhYPfu3XTt2pVPP/3Us23Lli2MHz+eLl26MHjwYObMmRPACivexl3pBNkttGoUiVGYDYZbVw5ERKRCVdlwUFxczOTJk8nPz/dsS09PZ8KECTRp0oTPP/+ce+65h2nTpvHJJ58EsNKKUzqFsV2TKKwWM0ZeJqDVEUVEpGJZA13Aibz66quEhYV5bfvkk0+w2WxMmTIFq9VKixYt2Lt3L7NmzeLyyy8PUKUVp3QK44V9mgAl4w0AzVYQEZEKVSWvHKxZs4aPP/6Y//73v17b165dS48ePbBa/8o0vXv3Zv/+/SQlJVV2mRVuw86/pjACuD1XDhQORESk4lS5cJCdnc1DDz3EP//5T+rVq+e1LykpidjYWK9tderUASAxMbHSaqwsG3el0eDIFEYAIz8TTCZMITUCW5iIiJzRqly3wpQpU+jSpQujR48+Zl9hYSF2u/fKgKWPi4qKynWe6OjwUy/yOGJiIvz6fAVFTrYfyGL0gOae505x5eIKi6RO3Ui/nquq8nebitrU39Se/qc29a9Tbc8qFQ7mzZvH2rVr+frrr4+7Pzg4GIfD4bWt9HFoaGi5zpWWlovbbZxaoX8TExNBSkqOX56r1B/bU3C63LSMDfc8d356CkZwTb+fqyqqiDY926lN/Uvt6X9qU/86uj3NZlO5PhRXqXDw+eefk5aWxuDBg722//vf/+add96hfv36JCcne+0rffz37obqbuPONM8UxlJGfgamsOjAFSUiImeFKhUOXnjhBQoLC722jRgxgkmTJjFq1Ci++eYb5s6di9Pp9AxKXLVqFU2bNiUmJiYQJVcIwzDYuOuvKYye7XmZWOq0DGBlIiJyNqhSAxLr1q1LkyZNvP4A1KpViwYNGjBu3DgKCgp49NFH2bFjB/PmzeOdd97h1ltvDXDl/nUoLZ+07CI6tvjrKoHhKsYozNEaByIiUuGqVDgoS3R0NHPmzGHfvn2MGTOGadOm8cADDzB27NhAl+ZXG49MYezU/KhwkJ8FoNURRUSkwlWpboXjSUhI8HrcsWNHPvroowBVUzlKpzDWqhHs2WbkHVkASWsciIhIBatWVw7OBgVFpXdh9B546M7PBMCk1RFFRKSCKRxUMVv3ZuByG17jDeDIAkjovgoiIlLxFA6qmI27jkxhbFjTa7uRlwFmK6Yg/y7eJCIi8ncKB1XIiaYwArjzMjCFRWIymQJUnYiInC0UDqqQ401hLGXkZ2qmgoiIVAqFgyrkeFMYSxl5GZgVDkREpBIoHFQhG3el0SDGewpjKXd+pm7VLCIilULhoIo40RRGAMNRAMWFmsYoIiKVQuGgivBMYTxeODiyOqJZ0xhFRKQSKBxUESeawgjgzi9ZHVHdCiIiUhkUDqoAwzDYsCuN9k1rHTOFEY5aOlkDEkVEpBIoHFQBh1LzSM8uomPzWsfd71kdUeFAREQqgcJBFbD9QMmYgnZNjx8O3HkZYAvGZA+pzLJEROQspXBQBRxMzSPIbqF2zWOnMELJlQN1KYiISGVROKgCDqXmUT867IRLIxt5WuNAREQqj8JBFXAwNY8GtcNOuN+dn6HxBiIiUmkUDgIst6CY7DwH9U8QDgzDwMjLxKwrByIiUkkUDgLsUGoewAnDAUV54HbqyoGIiFQahYMAO3gkHJyoW8GdpwWQRESkcikcBNihlDyC7RZq1Qg67n4jXwsgiYhI5VI4CLCDqbnUr33ymQoAJt1XQUREKonCQYAdSsunfvTJZipkAlodUUREKo/CQQCVNVMBSu6rYAqOwGSxVWJlIiJyNlM4CKCDKbkANIg5STjIz9RVAxERqVQKBwF0KC0fOPFMBSjpVtB4AxERqUwKBwFUOlMhKuL4MxWgpFvBHKppjCIiUnkUDgKozJkKbhdGQZauHIiISKVSOAigQ6l5Jx+MWJANhqExByIiUqkUDgIkJ99Bdn7xSacxGkdWR9R9FUREpDIpHARI6T0VTjZT4a81DhQORESk8igcBMihMu6pACXTGEGrI4qISOVSOAiQg6m+zVTAZMYUXKMSKxMRkbOdwkGAlA5GPNFMBQB3Xiam0JqYzPoxiYhI5dG7ToCUNVMBSu7IqJkKIiJS2RQOAqB0psLJxhtAyR0ZNVNBREQqm8JBAPgyGBHArSsHIiISAAoHAVAaDk66AJLTAUV5CgciIlLpFA4C4GBqHiFBZcxUyM8CtACSiIhUPoWDADiUmkf96DJmKuSXrI5oUjgQEZFKpnAQAAd9mamQlwmgbgUREal0CgeVLDvfQU5+sU/TGAHMCgciIlLJFA4qWaKvMxXyMsBig6CTHyciIuJvCgeV7KAPMxWg5L4KptDIk45LEBERqQgKB5XMl5kKoAWQREQkcBQOKlmiDzMVQAsgiYhI4CgcVDKfZioYBkZepqYxiohIQCgcVKLSmQplDUakuBCcRZqpICIiAaFwUIkOpRwZjBjjw0wFtACSiIgEhsJBJTqUdiQcRJc9UwG0AJKIiASGwkEl8n2mwpEFkMIiK6EqERERbwoHlehQSslgxLJnKmQCYApVt4KIiFQ+hYNKdDA1r+zBiBy5cmAPwWQ7+RUGERGRiqBwUEmy8x3kFhSXOd4ASsYcmHXVQEREAkThoJL4OlMBSroVNFNBREQCReGgkhz03HApvMxjjTytjigiIoGjcFBJDh2ZqRAZbj/pcYbhLulW0EwFEREJEIWDSnIo1beZCkZhLrhdunIgIiIBo3BQSco1UwGtjigiIoGjcFAJsvOOzFTwZbzBkTUOdF8FEREJFIWDSlA6GLF+7dAyj/UsgKQrByIiEiAKB5XgUDlnKgCYQmtWaE0iIiInonBQCUpmKljLnKkAYORlYgqpgclsrYTKREREjqVwUAlKByOWNVMBwJ2vNQ5ERCSwFA4qmGEYR6Yxlj3eAI5cOdB4AxERCSCFgwqWk1/s80wFACM/QzMVREQkoBQOKthfyyb7sMaB24lRkKNuBRERCSiFgwp2yDON0Ze7MWYDhroVREQkoBQOKli5Zirkl0xj1H0VREQkkBQOKli5ZirkZQJgCtWVAxERCRyFgwr010yFsrsU4K8rB+pWEBGRQFI4qEDZR2Yq+DIYEUqmMWKyYAr2bWaDiIhIRVA4qEDlGYwIpQsg1cRk0o9FREQCR+9CFai84aBkAaTICqxIRESkbAoHFehgah6hPs5UgNIFkDTeQEREAkvhoAIdSsmlfoxvMxWgZLaCrhyIiEigKRxUEMMwOJiaR/1oH7sUnEXgyNc0RhERCTiFgwqSnV9MXqGzfDMVALOmMYqISIApHFSQQym5ANSP8XWmQiaA7qsgIiIBp3BQQcpzwyUAI690AaTIiipJRETEJwoHFeRQWj6hQVZqhvk6UyETULeCiIgEXpULB7m5uTz77LMMGTKErl27MnbsWBYvXuzZv2XLFsaPH0+XLl0YPHgwc+bMCWC1J1b+mQoZYLWDLaSCKxMRETm5KhcO/vGPf7BkyRKefvpp5s2bx4gRI5g0aRIrV64kPT2dCRMm0KRJEz7//HPuuecepk2bxieffBLosr2UzlTwtUsBSq4cmEKjfA4TIiIiFcUa6AKOlpKSwvfff88bb7xB3759AbjttttYuXIln332Ga1atcJmszFlyhSsVistWrRg7969zJo1i8svvzzA1f8lO89BXqHT52mMUBIOdKtmERGpCqrUlYOQkBDefPNNevTo4bXdZDKRlZXF2rVr6dGjB1brX5mmd+/e7N+/n6SkpMou94Q8yyb7OFMBSroVtMaBiIhUBVUqHISHhzNw4EDCw/+6K+G6detYtWoVgwcPJikpidjYWK+vqVOnDgCJiYmVWuvJlHumgmHovgoiIlJlVKluhb/buXMnkyZNonPnzlxxxRW8++672O3eo/9LHxcVFZXruaOj/Xtb5JiYCM+/0/OKCQ+x0bJptE9jCFyFeeS6HETUiSXyqOc528WoLfxObepfak//U5v616m2Z5UNB2vWrGHSpEnUr1+fN954A5vNRnBwMA6Hw+u40sehoaHlev60tFzcbsMvtcbERJCSkuN5vHN/BrHRoaSm5vr09a70gwDkGyEUH/U8Z7O/t6mcPrWpf6k9/U9t6l9Ht6fZbCrXh+Iq1a1Qav78+dxwww20b9+e9957j8jISABiY2NJTk72Orb08d+7GwLFMAwOlXumwpEFkLQ6ooiIVAFVLhx8/fXXPPTQQ1xwwQW88cYbXuMPevbsSXx8PE6n07Nt1apVNG3alJiYmECUewzPTIVyjDco3roUTGbMNetWcHUiIiJlq1Lh4PDhwzz++OP07t2bBx98kMzMTFJSUkhJSSEzM5Nx48ZRUFDAo48+yo4dO5g3bx7vvPMOt956a6BL9yjvYMTiLT/j3PUb9p5jMevKgYiIVAFVaszB999/T0FBAatWrWLAgAFe+7p168aHH37InDlzeOaZZxgzZgwxMTE88MADjB07NkAVH6s0HPhy5cCVupeilR9gadQRe+eRFV2aiIiIT6pUOLjuuuu47rrrTnpMx44d+eijjyqpovJLTM0jLLjseyoYjgIKFs/AFBRO8OCbMZmq1EUcERE5i+kdyc8OpuZRv/bJ76lgGAaFy97FyE4meOjtmENqVGKFIiIiJ6dw4Ee+zlQo3voLzp2rsPcYi7VeXCVVJyIi4huFAz/KOjJTod5JwoErbT9FK+ZiadgBe5cLK7E6ERER3ygc+NGhMmYqGMWFFP74GqagMILPvUXjDEREpErSu5MfnWwaY+k4A3d2EsFDbtU4AxERqbIUDvzo0JGZCjWOM1OhOGEpzh0rsXe/BGv9tgGoTkRExDcKB350opkKrvQDFC2fi6VBe+xdRgeoOhEREd8oHPiJYRgkHmemgmecgT2kZJyBWU0uIiJVm96p/CTrBPdUKPz1PdyZh0vGGYTWDFB1IiIivlM48JPjDUYsTliGc/ty7N0vxtqgXaBKExERKReFAz85lOJ9TwVX+kEKf30PS/222LteFMjSREREykXhwE8Opf01U8EoLqJw8WuY7MEED7lV4wxERKRa0buWnxw8MhjRZDJRuPx93BmJBJ97q27DLCIi1Y7CgR8YhsGhlDzqx4RTvG05zm3LsHcbjbVh+0CXJiIiUm4KB36Qnl1IfpGT5qG5FP76LpZ6bbB3uyTQZYmIiJwShQM/2J+Ugw0n7fZ/iskapHEGIiJSrekdzA/2Hc5hXOhvWHOP3DchLCrQJYmIiJwyhQM/cG5fTp/gHdi7XIi1YYdAlyMiInJaFA5Ok7swh/aHF3LIXJ+gHmMCXY6IiMhpswa6gOrPxBpnK7KaDCHObAl0MSIiIqdNVw5OU1axjY+zexAdGxvoUkRERPxC4eA05RUWA9AkNiLAlYiIiPiHuhVOU4PaYbz+8BCCTIGuRERExD905eA0mUwmGtbRVQMRETlzKByIiIiIF4UDERER8aJwICIiIl4UDkRERMSLwoGIiIh4UTgQERERLwoHIiIi4kXhQERERLwoHIiIiIgXhQMRERHxonAgIiIiXhQORERExIvCgYiIiHhROBAREREvCgciIiLiReFAREREvFgDXUCgmM2mKv18ojatCGpT/1J7+p/a1L9K27O87WoyDMOoiIJERESkelK3goiIiHhROBAREREvCgciIiLiReFAREREvCgciIiIiBeFAxEREfGicCAiIiJeFA5ERETEi8KBiIiIeFE4EBERES8KB6fB7XYzbdo0BgwYQOfOnbnxxhvZu3dvoMuqtnbt2kVcXNwxfz799NNAl1YtvfHGG1x11VVe27Zs2cL48ePp0qULgwcPZs6cOQGqrvo5Xnvef//9x7xeBw4cGKAKq4fc3FyeffZZhgwZQteuXRk7diyLFy/27NdrtHzKas9Tfo0acsqmTZtmnHPOOcaSJUuMLVu2GBMnTjSGDh1qFBYWBrq0amnhwoVGt27djOTkZK8/BQUFgS6t2nn//feNuLg448orr/RsS0tLM3r16mU89thjxo4dO4wvvvjC6NSpk/Hxxx8HsNLq4XjtaRiGMXLkSGP69Oler9e0tLQAVVk9TJo0yRg+fLixfPlyY8+ePcbrr79utGnTxlixYoVeo6fgZO1pGKf+Gj1r78p4uhwOB2+99RaTJ09m0KBBAEydOpX+/fuzaNEiLrnkksAWWA1t27aNFi1aEBMTE+hSqq2kpCSefPJJVq9eTbNmzbz2ffLJJ9hsNqZMmYLVaqVFixbs3buXWbNmcfnllweo4qrtZO3pcDjYs2cPHTt21GvWRykpKXz//fe88cYb9O3bF4DbbruNlStX8tlnn9GqVSu9RsuhrPbs3r37Kb9G1a1wirZs2UJ+fj7nnHOOZ1t4eDjt2rVj7dq1Aays+kpISKBFixaBLqNa+/PPPwkLC2P+/Pl07tzZa9/atWvp0aMHVutfnwl69+7N/v37SUpKquxSq4WTtefOnTtxOp20bNkyQNVVPyEhIbz55pv06NHDa7vJZCIrK0uv0XIqqz1P5zWqcHCKSl+odevW9dpep04dEhMTA1FStbdt2zaSk5O58sor6du3L1dffTW//vproMuqVoYMGcKLL75Io0aNjtmXlJREbGys17Y6deoA6DV7Aidrz4SEBKxWK2+88QZDhgxh+PDhPP300+Tk5ASg0uohPDycgQMHEh4e7tm2bt06Vq1axeDBg/UaLaey2vN0XqMKB6eooKAAALvd7rXdbrfjcDgCUVK1lp+fz4EDB8jJyeG+++5j1qxZdOjQgYkTJ7JixYpAl3dGKCwsPO7rFaCoqCgQJVVr27dvB6Bhw4bMnDmThx56iCVLlnD77bfjdrsDXF31sHPnTiZNmkTnzp254oor9Bo9TX9vz9N5jWrMwSkKDg4GSvodj34xOxwOQkNDA1VWtRUaGkp8fDw2m83Tnh06dGDnzp3Mnj3b058mpy44OPiY4Fr6WK/Z8nvggQe49dZbqVGjBgCtW7emdu3aXHnllaxbt45u3boFuMKqbc2aNUyaNIn69evzxhtvYLPZ9Bo9Dcdrz9N5jerKwSmqV68eAMnJyV7bk5OTj+lqEN+EhYUd86mhdevWHDp0KEAVnVliY2OP+3ot3SflYzabPb90S8XFxQG6BF6W+fPnc8MNN9C+fXvee+89IiMjAb1GT9WJ2vN0XqMKB6eoTZs2hIeH89tvv3m25ebmsnnzZnr16hXAyqqnP/74g65du7Jhwwav7Zs2baJVq1YBqurM0rNnT+Lj43E6nZ5tq1atomnTphptfwruvPNObr/9dq9tpa9fDVI8sa+//pqHHnqICy64gDfeeMOrv1yv0fI7WXuezmtU4eAU2e12rr32WqZOncqPP/7I1q1bue+++6hbty4jRowIdHnVTocOHWjYsCGPP/448fHx7Ny5k6effpo//vjjmBe3nJpx48ZRUFDAo48+yo4dO5g3bx7vvPMOt956a6BLq5ZGjhzJTz/9xKxZs9i3bx9Llizh0Ucf5bzzzvN8OhNvhw8f5vHHH6d37948+OCDZGZmkpKSQkpKCpmZmXqNllNZ7Xk6r1GNOTgNd999Ny6XiyeeeIKCggK6d+/O7Nmzj7k0LmWz2WzMnj2bF198kbvvvpvs7Gzat2/PW2+9Rbt27QJd3hkhOjqaOXPm8MwzzzBmzBhiYmJ44IEHGDt2bKBLq5YuvPBC3G43s2fP5rXXXiMiIoILL7yQ++67L9ClVVnff/89BQUFrFq1igEDBnjt69atGx9++KFeo+XgS3ue6mvUZBiGUVGFi4iISPWjbgURERHxonAgIiIiXhQORERExIvCgYiIiHhROBAREREvCgciIiLiResciAiPPPIIX3755UmPSUhIqKRqSowfPx6n08mHH35YqecVEYUDETmiVq1avPrqq4EuQ0SqAIUDEQFKVqns0aNHoMsQkSpAYw5ExGfjx49n8uTJzJo1i379+tGtWzduu+029u/f73Xcnj17uPvuu+nfvz+dO3fm2muvZc2aNV7H5OXl8eyzzzJo0CA6d+7MJZdcwrfffnvMOd955x2GDBlCx44dGTNmDMuXL/fsMwyD6dOnM3z4cDp06MCgQYN4+umnyc/Pr5gGEDlLKByIiIfT6TzuH7fb7Tlm6dKlfPzxxzzyyCM88cQTbNmyhfHjx5OXlwfAjh07GDt2LHv27OHhhx/mueeeA2DChAmsXLkSALfbzc0338xnn33Gddddx/Tp02nXrh333nsvv/zyi+dc69ev56uvvuLBBx/kxRdfpLCwkDvvvJP09HQA3njjDd5++21uuOEG3nzzTW644QY++eQTnn322cpqMpEzkroVRASApKQk2rdvf9x9N954Iw8//DBQ8on/008/pUmTJgC0atWKsWPH8sUXXzB+/HimT5+O1Wrl/fff99xLfsiQIYwaNYrnnnuOL7/8kmXLlhEfH8/UqVMZOXIkAAMGDODQoUP8+uuvDBo0CACLxcKcOXOoVasWAEFBQdxyyy2sW7eOIUOGsHbtWjp37szVV18NQJ8+fYiIiPAEFRE5NQoHIgKU3LXxjTfeOO6+mJgYz7+7dOniCQYA7du3p1GjRqxZs4bx48fz22+/MXDgQE8wgJLxDKNGjWL69Onk5OSwdu1azGYzw4cP9zrPO++84/W4RYsWnmAA0LhxYwCys7MB6NevH//5z3+49tprGTZsGP369WPcuHGn1gAi4qFwICIAWK1WOnbsWOZxdevWPWZbdHQ0WVlZAGRlZXmFiVK1a9cGICcnh4yMDGrWrInNZjvpuUJCQrwem80lPaGl3RwTJkwgPDyczz//nOeeew6Xy0WTJk2YPHkyI0aMKPN7EZHj05gDESmXjIyMY7alpKQQHR0NQM2aNUlJSTnmmOTkZAAiIyOJiIggOzsbp9PpdUxCQgLr1q3zuRaTycRll13GRx99xKpVq5g6dSqhoaHcd999nvOJSPkpHIhIufzxxx+kpqZ6Hm/cuJGDBw/Sp08fAHr27MnSpUs9l/6hZKDjwoULadeuHaGhofTo0QOXy8VPP/3k9dz/+te/ePHFF32u5corr+Spp54CoEaNGowcOZLbbrsNp9NJUlLS6XybImc1dSuICADFxcWsXbv2hPtbt24NQFFRETfddBN33HEHeXl5vPzyy7Rs2ZKLL74YgEmTJrF06VKuvfZabrnlFoKCgnjvvffYv3+/Z0zD4MGD6dq1K4899hhJSUk0adKEb7/9lnXr1jFnzhyfa+7Zsydz5syhZs2a9OjRg7S0NKZPn06zZs1o27btabSGyNlN4UBEAEhPT+eaa6454f4333wTKBmQOHjwYJ544gkMw+Dcc8/l4Ycfxm63AyWzFz744ANeeuklHn/8cQA6derEu+++S8+ePYGSWQizZ8/mxRdfZObMmeTl5dGqVStmzpzpuQLhi3vvvZeQkBC++uorZs+eTWhoKP369ePBBx/EatWvN5FTZTIMwwh0ESJSPeh+ByJnB405EBERES8KByIiIuJF3QoiIiLiRVcORERExIvCgYiIiHhROBAREREvCgciIiLiReFAREREvPw/CsO3vpsDdVUAAAAASUVORK5CYII=\n", |
|
|
2364 |
"text/plain": [ |
|
|
2365 |
"<Figure size 576x576 with 1 Axes>" |
|
|
2366 |
] |
|
|
2367 |
}, |
|
|
2368 |
"metadata": {}, |
|
|
2369 |
"output_type": "display_data" |
|
|
2370 |
}, |
|
|
2371 |
{ |
|
|
2372 |
"data": { |
|
|
2373 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAH9CAYAAACHq3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABz6klEQVR4nO3dd3xV9eH/8de5KzskZLJ3wkY2MmSJA7Qq1lkcqLVU0a+Kq7ai/RVnRawiiorYUlfdolCteyAiAqKAhCE7ZJG97jq/Py4JxDAy7kjI+/l4xCTnnnvOJ5/Hlfu+n2mYpmkiIiIiLZYl1AUQERGR0FIYEBERaeEUBkRERFo4hQEREZEWTmFARESkhVMYEBERaeEUBkSaocsuu4z09HTOO++8o57z4IMPkp6ezmWXXeaXe6anpzNv3rx6Peeyyy7jkksuOerje/bsIT09nddee62xxRORRlAYEGmmLBYLGzduZMeOHbUeM02TZcuWBb9QItIsKQyINFO9evUiMjKS5cuX13rsu+++48CBA3Tv3j0EJROR5kZhQKSZCgsLY8KECUcMA++99x5jxowhNja2xnGPx8NLL73E2WefzYABAxg7diwPPfQQFRUVNc775JNPmDp1Kv379+ess87iu+++q3UPp9PJI488wrhx4+jbty9Tpkzhrbfe8u8feVBlZSULFizgjDPOoF+/fkyaNImFCxfi8Xiqz9m9ezczZ85kxIgR9O/fn/POO4/33nuv+nHTNJk/fz6TJk2ib9++jB07ljlz5lBWVhaQMos0J7ZQF0BEGm7y5Mlcd911bN++na5duwLgdrv54IMPuOeee1iyZEmN82fPns1bb73F9OnTGTZsGJs2bWLBggVs2rSJxYsXYxgGn3/+Oddddx2nnnoqN9xwAzt37mTmzJm17n3DDTfw7bff8sc//pGePXvyySefcOedd1JWVsbvfvc7v/2NpmkyY8YM1q5dy4wZM+jVqxerVq3iH//4Bzt27OCBBx7A6/Vy7bXXEhcXx5w5cwgLC+P1119n1qxZpKamMmTIEBYuXMjixYuZNWsWXbp0YfPmzTz66KNUVFQwZ84cv5VXpDlSGBBpxqo+/S9fvpzrr78egK+++gqn08n48eNrhIGtW7fy+uuvc8MNN1S/uY8dO5aUlBTuvPNOPvnkEyZOnMiCBQtIT0/niSeewDAMAOLj47n99turr7VixQo+++wzHnroIc4999zqa3m9Xh577DHOP/98wsPD/fI3fvHFF6xYsaLWvSIiInjiiSe44oorSExMZPv27TzyyCOceuqpAIwYMYKUlJTqv2H16tUMGDCASy+9FICTTz6ZmJgYSktL/VJOkeZM3QQizZjD4eDUU0/lv//9b/Wx9957j4kTJxIREVHj3FWrVgFw9tln1zh+9tlnY7VaWbVqFRUVFfzwww+ceuqp1W+i4GuBsFgO/XPxzTffADBhwgTcbnf116mnnkpRURHr16/329+4atUqLBYLkydPrnG8KhisWrWKhIQE0tPTufvuu/nTn/7EsmXLKCkp4a677mLw4MEAjBo1iq+//ppp06bxwgsvsGXLFs4//3wuv/xyv5VVpLlSy4BIMzd58mTefPNNtm3bRrt27fj444957LHHap1XWFgIQGJiYo3jNpuN+Ph4ioqKKCwsxDRNWrduXeMcu91e41h+fj4AQ4cOPWKZsrKyGvMn1Sp3bGwsDoejxvGkpCQAioqKMAyDxYsXs3DhQv73v//x5ptvYrVaGTNmDH/9619JTU3lyiuvJDo6mjfeeIOHH34Yj8dDp06duPXWWznttNP8Vl6R5khhQKSZO/nkk4mPj2f58uV069YNh8PByJEja53XqlUrAHJzc4mKiqo+7nK5yM/PJz4+nvj4eCwWCzk5OTWe6/V6q8MEQExMDOHh4fz73/8+Ypnat2/vjz+tutxFRUU4nc4agSA7OxvwdWEAJCQkcNddd3HXXXexfft2PvroIxYsWMA999zDwoULMQyDCy64gAsuuICioiK++uornnnmGW6++WY+/fRTkpOT/VZmkeZG3QQizZzNZuO0007jgw8+YPny5ZxxxhnY7fZa5w0bNgyApUuX1jj+/vvv4/F4GDx4MA6HgyFDhvDf//63xkj9zz//HJfLVf378OHDqaiowOVy0a9fv+qvnTt38thjj1FeXu63v2/YsGF4vd5a6ya88847AAwePJi1a9cycuTI6u6Jrl27cu211zJ8+HD27t0LwMUXX8zf/vY3AGJjY5k8eTIzZszA7Xb7tSVDpDlSy4DICWDKlCm8+uqr/PLLLyxevPiI53Tv3p3zzjuPBQsWUFFRwbBhw/j5559ZsGABQ4cOZdy4cQDcfPPNXH755Vx77bVceumlZGVlMX/+/BoB45RTTmHYsGHMnDmTP/zhD/To0YONGzcyf/58Bg4cSNu2betV/hUrVhxxIN+ECRM45ZRTGD58OPfeey9ZWVn06tWL7777jkWLFnHWWWfRs2dPKisriYiI4NZbb+W6664jOTmZH374ga+++orrrrsO8HVpLFq0iFatWjFkyBDy8vKYP38+Xbp0oVevXvUqr8iJRmFA5AQwdOhQkpOTsVgsDBky5Kjn3XfffXTq1Ik33niDF154geTkZKZNm8bMmTOxWq0ADBo0iEWLFjFv3jxuvvlmUlJSuPvuu2tMv7NYLDzzzDM8/vjjLF68mNzcXJKTk7nkkkuOOA3xeJYtW3bEFRPbt29Px44dWbhwIY8//jgvvfQSeXl5tGvXjptuuomrr74a8K25sHjxYubOncvf//53CgsLq8+55pprALjpppuIiIjgnXfe4bnnniMyMpJRo0Zx2223YbPpn0Jp2QzTNM1QF0JERERCR2MGREREWjiFARERkRYu6GEgKyuLW265heHDhzNw4ECuvfZatmzZctTzX3nlFdLT02t97dy5M4ilFhEROXEFddSMaZr8/ve/Jzo6mkWLFhEREcE//vEPrrzySj788MMac5+rbN68mTFjxvDAAw/UOP7rRVFERESkYYIaBnJzc+nWrRs33ngjXbp0AeC6667jnHPOISMjg4EDB9Z6TtXxqtXGRERExL+CGgaSkpKYN29e9e+5ubksWrSI5ORk0tLSjvicjIwMLrjggkbfOz+/FK/XPxMnEhKiycsr8cu1xEd16l+qT/9TnfqX6tP/qurUYjGIj6/d0n4sIZtce+edd/LWW2/hcDh46qmnjthFkJmZSVFREStWrODZZ5+lqKiIAQMGcOutt9K5c+d63c/rNf0WBqquJ/6lOvUv1af/qU79S/Xpfw2t05CtM7BlyxYqKip46aWXWLZsGS+++CJ9+/atcc7nn3/Otddey3nnncdll11GWVlZ9d7rS5cuVdeBiIiIH4R80SGv18tZZ51Fv379eOihh2o9XlBQQFxcXPXvZWVljB8/nunTpzNjxow63ycvr8RvKTQpKYacnGK/XEt8VKf+pfr0P9Wpf6k+/a+qTi0Wg4SE6Ho9N6hTC7Ozs1m6dCmH5w+LxUL37t2PulHI4UEAIDIykvbt27Nv375AFlVERKTFCGoYyMzM5NZbb+X777+vPuZyudi4cSPdunWrdf7zzz/P6NGjcTqd1ceKi4vZsWMHPXr0CEqZRURETnRBDQP9+vVj+PDhzJ49m9WrV5ORkcEdd9xBQUEBV155JR6Ph5ycHCoqKgDfjmVlZWXccccdbN26lfXr13P99dfTqlUrzj///GAWXURE5IQV9DEDhYWFPPLII3z66acUFxczZMgQbr/9dtLT09mzZw8TJ07kgQceYOrUqQCsX7+eRx99lJ9++gnTNBk1ahS333477du3r9d9NWagaVOd+pfq0/+OVafl5aWUlBTg8biDXKrmy2Kx4PV6Q12MZslqtREdHUdERM1ZeI0ZMxDyAYTBojDQtKlO/Uv16X9Hq9Py8lKKi/OJi0vCbndgGEYIStf82GwW3G6FgfoyTROXy0lBQQ4xMfE1AkGzGUAoInKiKSkpIC4uCYcjTEFAAs4wDByOMOLikigpKfDbdRUGREQaweNxY7c7Ql0MaWHsdodfu6UUBkREGkktAhJs/n7NKQyIiIi0cAoDIiIiLVzINioSEZGm4b777mX58veOec5rr71LmzZtG3TtPXt289RTi+p0/syZ15KcnMLs2X+r973qavToIdxxx184++xzA3aP5kZhQESkhfu//7uVGTNmVv9+zjlnMHPmTUyadEb1sbi4+AZf2+v11Pn8++//OxaLtUH3koZTGBARaeGio6OJjq45Lz0qKpqEhES/XLs+YmNbNfqeUn8KAyIiclxr1qzmxhtncN11/8eLL75AQkIizz//Ihs2/MiiRQv5+edNuFxO2rZtx7RpV3LmmWcBNbsJqq7x97//g6eeepy9e/fQsWMnrrrqWsaMGQfU7CZYtmwpzz//DFdf/QdeeOE58vJy6d49jeuuu5H+/U8CoKKigvnz5/Hppx/hcrmZMOFUKisrsdls/PnP9zb4712+/D1effUldu/eSWxsK0499XSuuWYGYWFhAHzzzVc899xCduzYTkREBCNGjOLGG2+pDjMvvbSEt99+nZycbBISEpk8+WyuvPIaLJamOVRPYSAEPAd24y3Mxt5lcKiLIiIB8PWPmXy1PjNk9x/dvw2j+rUJyLU///wTnnrqeSoqysnPP8Att8zkvPMu4Pbb/4zL5eKll/7FQw/NYejQESQmHrllYcGCfzBr1u3ExMTx9NNP8Le/3cPbby8jMjKq1rm5uTm8/fYb3H3337DZbDzyyAPMmXMPr7zyFhaLhTlz7mHz5k3ce+99JCQksnjxc3z22cecccaUBv+N//nPSyxY8DjXXfd/nHzyKLZv38ajjz7I3r17uP/+v5Ofn89dd93GDTfcwsiRo8nOzuJvf7uHJ56Yx5//fC9ffvkZS5Ys5v/9v/vp0KEzGzasZ86ce0hNbcPkyWc3uFyBpDAQAs51y/Ds+UlhQESanUsumUbHjp0A2Lt3D1dddS2XXHJZ9Sfeyy+/iuXL32PXrh1HDQPXXDODIUOG4XZ7ufrqGVxzzWVs376Nvn371zrX7XZzyy13kJ7eE4Bp067gL3+5gwMHDuB0VvLZZx/z8MOPMXToCAD+8pe/8uOPPzT47zNNk3//+5+ce+75XHjhJQB06NAR0/Tyl7/cwS+/bMftduFyuUhOTiY1tQ2pqW146KFH8Xh8YyMyM/fhcNhJSUklNdX3lZiYTEpKSoPLFWgKAyFglhVgOsswTVOLlYicgEb1C9wn81Br375j9c/t2rVn8uSzef31V9i+fRt79uxm69YtANVvjEfSoUOn6p+rxhS4XK6jnl8VPsA3lgHA7XaRkfEzAH379qt+PCwsjF69etfnT6ohP/8ABw7kMWDAwBrHTzrJ9+Ft27YtnHrq6Zx66unceecsEhISGTJkGCNHjmH8+IkAnHbaZN5//10uvfS3dO7claFDhzN+/ERSU5vua6Jpdl6c4MyyAvB6wHP0F7+ISFMUHh5e/fMvv2znkkvO5+uvv6R9+w787ndX8NhjTx73Gg5H7eWbj7Vnnt1uP+L5Vqv1uM/1F9P0HiyLr+z33nsfL730Or/73eUUFxdx3333cNttN2GaJnFxcSxe/BILFjzH+PET2bjxJ66//vcsWbI44OVsKIWBEPCWFgBgOstCWxARkUZ45503iIuL4x//eIpp067k5JNHkZube/DRwL9Bd+vWA8Mw2Ljxp+pjbrebzZt/bvA1W7dOoHXrBH74YW2N42vXrgGgS5eurF+/jn/8Yy4dO3bmwgsv5eGHH+NPf5rNt9+uIC8vl+XL3+Ott16jf/+TuPrqP7Bw4WLOPvtc3n9/aYPLFWjqJggy01UBrnLfL85yiIwLaXlERBoqOTmF3NwcVqz4iq5du7F58yYee+wRAJzOwLd8tm3bjgkTTuWxxx7BbneQmJjEiy/+k+zsrON2wf7yyzZWrlxR41hUVBT9+g1g2rQrWLDgcdq2bc/IkaPZtm0r//jHI4wZM46OHTvhdrt5663XsNvtnH32ubhcLj766APatm1HfHxrnE4nTz75OJGRUZx00iCys7NZs+Z7+vWrPSaiqVAYCDKzrODQz87y0BVERKSRfvvbi9m5cwdz5tyDy+WiQ4cOXHvtdTz//DNs3PgTo0aNCXgZbr/9zzz22CP85S+3Y5omkyadQZ8+/bDZjv329p//vMx//vNyjWPdu6fxwgsvceGFl+JwhB2cVfCPGlMDAbp27cZ99/2dF154lrfeeg2LxcLAgYN59NH5WK1WzjlnKqWlJfzzn4v4+9/vJyYmhlNOmcAf/3hDwOqhsQwzGJ0tTUBeXgler3/+1KSkGHJyihv0XHfmZsqXPgBAxOTbsLXv45cyNXeNqVOpTfXpf0er0/37d5Ka2ukIz5BjsdksuN3eRl2jsrKSlSu/ZvDgYTUWN7rkkqmcfvrk6jfvE9WvX3tVr1GLxSAhoX6LPallIMjM0vxDP2vMgIhIgzkcDh577BEGDBjIlVdeg9Vq5b333iEraz/jx58a6uI1KwoDQXZ4NwHqJhARaTDDMHj44XksWPA4M2ZMx+PxkJbWk0cfnU+nTp1DXbxmRWEgyLxlBYABmBozICLSSD16pDNv3vGnM8qxaWphkJmlBRjRrX0/q5tARESaAIWBIDPL8rFEJ4A9XC0DIiLSJCgMBJm3rBAjMg7DEaEwICIiTYLCQJCZZQXVYaB68SEREZEQUhgIItNZDq4KjMg4cESqZUBERJoEhYEgqppWaImq6ibQAEIREQk9hYEg8h4MA0ZkHIZdYwZERKRpUBgIoqqWASMqDsMRCWoZEJEm4IYb/sAVV1xy1MefeuoJzjrrVFyuY28+tGzZUkaPHoLb7Qbgt789m2eeWXDU8595ZgG//e3ZdS6naZosX/4e+fkHAFizZjWjRw9hz57ddb5Gff36bzpRKQwEkXlw62JLZDw4NLVQRJqGs88+l23btrBt29Zaj3m9Xj78cDmnnz4Fu91er+s+++y/mDbtSj+VEr7//jvuu+9eKioqAOjXbwDvvPNf2rRp67d7tFQKA0HkLSsAmwPs4b6WAY8L03Nip00RafrGjp1ATEwsH3ywrNZjq1evIicnm7PPPrfe142PjycyMtIPJfT59b56drudhIRErFar3+7RUikMBJFZmo8RGY9hGL6phYCp6YUiEmJhYWFMmnQ6H330AV5vzZ0Ely9/j379BtC5cxeysvZzzz13cdZZkxg7djjnnnsmTz75DzwezxGv++tugnfeeZOLLjqXCRNGcfvtt1BSUnMXyO3bt3L77TdxxhnjGTduBBdc8BtefPGfgK9L4Oabrwfgggt+w6JFC2t1E1RWVvDcc09z4YXnMGHCSKZNu4ClS9+uvn7V+d988zWXXXYhEyeOYvr0S/nyy88aVX9FRYXMm/cwU6dOYcKEkVx11bQa1/R4PCxY8DhTp05h/PiTueSSqbz11uvVj+fnH+Avf7mDKVMmMmHCKGbMuIo1a1Y3qkz1pb0JgsgsK8ASFQfgaxkA32ZF4TGhK5SI+J0r42tcm78I2f3t6adgTxtVr+ecffa5vPnma6xbt4ZBg4YAUFZWyhdffMqsWXcCcMcdtxAfH8+8efOJjIzi66+/5PHH59K7d5/j7hL40Ucf8OijD3HjjbcwdOgIvvzyU55++klSUlIBqKio4Oabr2fw4GE8/fTz1TsQPvXUEwwePJR+/Qbw//7fg8yefSfPPvtPOnXqws8/b6xxj3vv/TObNm3kllvuoEuXrqxY8SVz5z5IRUUFF1xwcfV5Cxb8g5tuuo24uHiefvoJ/va3e3j77WVERkbVq87A90Z/003XU1lZwZ/+NJuUlBSWL3+fu+66jQceeITRo8fyxhv/4dNPP+avf72fpKRkvv76C+bOfZBOnTozaNAQHn74fjweN0888QwOh4N//et57rxzVoPL1BBqGQgi78EFhwCoahnQIEIRaQJ69EgnPb1Xja6CTz75HzabjQkTJlFZWcHpp0/mjjv+Qo8e6bRr154LL7yExMQktm/fdtzrv/baK4wbN5Hzz7+Ijh07ccUVV3HyyYcCS3l5ORdccAmzZt1B585d6NChI9dcMwOAbdu2YrfbiYnxfXCKi6vd/bBjxy98+eXn3HzzbZxyyjg6dOjIRRf9jnPOmcqSJYtrdDFcc80MBg8eSrdu3bn66hmUlZXW6W84klWrVpKR8TOzZ89h6NDhdOzYmT/84XpOPnk0//znIgAyM/cRERFOamobUlPbcP75FzFv3pN07tyl+vHo6Bjatm1H+/Yd+L//m8V99z0c1O4PtQwEiWma1asPAoe6CTSIUOSEY08bVe9P5k3BWWedw8KF87nlljsICwtj+fL3mTTpDMLDwwGYOvUCPvvsY15+eQl79+5h27at5ObmHLWb4HDbt29l/PiJNY717du/+k04Pj6e8877LR999CFbtmxmz57dbN26BaBW18WRbNvmO3fAgEE1jp900iDeeOM/HDiQV32sQ4dO1T9HR0cDHHemxLHuGxERQXp6z1r3fe65pwFfvX3xxadMnTqFHj3SGTZsBKeeejqtWycAMH367/nb3+7ms88+oX//AQwbNoLTT59MWFh4g8rUEGoZCBZXObidtboJ1DIgIk3FpEln4Ha7+frrL9m3by/r16/jrLPOBXyf3P/4x6v45z8XERMTy5lnns1TTy0iOTmljlc3+NX4P2y2Q59H8/Jyufzyi1m69G0SE5OYOvVCFi9+sdF/k9fru6nd7qg+5nA4ap3368GJ9WMc4Xpe7Hbf39ehQ0deffVtHn30CYYMGcY333zN1VdPq26FGTt2PG+//V/+/Od7aNOmHa+99gqXX34R27fXnt0RKGoZCBLvwWmFv24ZQC0DItJEREdHM27cRD755EN2795Jjx5p9OzZC4BVq74hI2Mzb721jKSkZMA3cO7Agbw6vZH26JHGTz/9AEyrPrZp06E+///9778UFhbwyitvVU9hrJrqWHV9w6j9plulW7ceAPzwwxrGjp1QfXzdujUkJiYRGxtblyqot27delBeXsbmzT/XaB1Yt24NXbp0A+CVV/5NQkIikyadwdChI7juuhu55ZaZ/Pe/7zNu3ASefvpJzjxzChMnnsbEiadRWVnJb35zGl999QVdu3YPSLl/TWEgSMzDVh8EDhszoDAgIk3HWWedw6233siOHTuYOvWC6uNVAeDDD5czceJpZGVlsXDhfNxud52a2KdNu5I777yFl176F2PGjGPVqhV8+eVnJCYmAZCcnEplZSUff/whJ500iF27dvL4448C4HI5AarHCWRkbCYmpuabe+fOXRgzZizz5v0dw7BUDyBcuvQtrrvu/xpbLXz33UoMo2ZjeufOXRg2bARpaT3529/u5qabbiM5OZnly9/nm2++5v77HwGgsLCQJUsWExERQffuaezcuYOMjJ8577wLCAsLZ9OmDfz44w/cdNOtJCQksnLlCsrKyujbt3+jy11XCgNBYpbmAwcXHOLwMQPqJhCRpuOkkwaRlJRMZuZeTjvtzOrjvXv35YYbbubVV19i0aJnSEpKYuLE00hOTmHjxp+Oe92RI0dzzz1zeP75Z3juuafp168/F130Oz7++EMAxo+fyObNl7NgweOUlpbQpk1bzjrrHL766gs2bvyJ88+/iB490hk9+hTuvfcuzjlnKqecMr7GPe699z6eeeYp5s59kKKiQjp27MRtt93FlCm/aXS93HbbTbWO3XjjLVx44aXMmzefBQse595776KsrJzu3Xvw4IOPMnr0KQBcffUf8Hq9zJv3dw4cyKN16wR+85upXHHF1QDMmfMQTzwxjz/96VZKSorp2LETd9/9/6pndQSDYTauo6TZyMsrqe47aqykpBhycoqPf+JhKtctw7nqP0Rf+VR1EChedC32PhMIH3HxcZ594mtIncrRqT7972h1un//TlJTOx3hGXIsNpsFt/v4AwPl6H792qt6jVosBgkJ0fW6lgYQBolZln9w5cGI6mOGI0JjBkREJOQUBoLk8GmFVXzbGCsMiIhIaCkMBIlZWoDlV2EAR6TGDIiISMgpDASJt6wA4+AaA1XUMiAiIk2BwkAQ/Hr1wSoaMyByYmgh47ClCfH3a05hIBicZeBxVU8rrOJrGVA3gUhzZrXaqufBiwSLy+XEavXf6gAKA0FQvfrgr7oJcERiuiqCXh4R8Z/o6DgKCnJwOivVQiABZ5omTmclBQU5REfH+e26WnQoCMwy34JDR+wmcFVger0YFuUykeYoIsK3xWxhYS4ejzvEpWk+LBZLnTYgktqsVhsxMfHVrz1/UBgIgqqliH89m6B6zQFXOYQFZ89qEfG/iIgov/7D3BJoYaymJegfR7OysrjlllsYPnw4AwcO5Nprr2XLli1HPT8/P59Zs2YxbNgwhg4dyt13301paWkQS9x4v96kqIp2LhQRkaYgqGHANE1+//vfs3//fhYtWsTrr79OeHg4V1555VHf4G+88UZ27drF4sWLmT9/PitWrGD27NnBLHajmWUF4IjAsIfVfMDu26ta0wtFRCSUghoGcnNz6datG/fddx99+/alW7duXHfddeTm5pKRkVHr/DVr1rBq1SoeeOAB+vTpw/Dhw5kzZw7vv/8++/btC2bRG8UsK6g1kwAObxlQGBARkdAJahhISkpi3rx5dOnSBfCFg0WLFpGcnExaWlqt81evXk1CQgLdux/az3nw4MEYhsHq1auDVu7G8pYVYES2qnW8esyAuglERCSEQjaA8M477+Stt97C4XDw1FNPERVVe/BNdnY2qampNY45HA7i4+PZv39/ve5X3x2cjicpKabO55ZXFBLeoVet5zgtSZQB0eEQU4/rnajqU6dyfKpP/1Od+pfq0/8aWqchCwNXX301v/vd73jppZe4/vrrefHFF+nbt2+Nc8rLy3E4HLWe63A4qKysrNf9QrWFsWmauIvzcVqjaz3HW+abVlOUe4CKFj6qViOL/Uv16X+qU/9Sffpfs9zCuEePHvTr14/77ruPdu3asWTJklrnhIeH43TWXtnL6XQSGRkZjGI2XmUpeN21ZhLAoW4CjRkQEZFQCmoYyM7OZunSpTVW6bJYLHTv3p2srKxa56emppKdnV3jmNPpJD8/v1b3QVPlrVpw6NerDwKGzQEWm8YMiIhISAU1DGRmZnLrrbfy/fffVx9zuVxs3LiRbt261Tp/6NCh5OTksH379upjVQMHhwwZEvgC+4FZvcZA7dkEoJ0LRUQk9IIaBvr168fw4cOZPXs2q1evJiMjgzvuuIOCggKuvPJKPB4POTk5VFT41usfMGAAgwYNYtasWaxfv55Vq1Yxe/ZszjnnHFJSUoJZ9AY7tPpg7dkEACgMiIhIiAU1DFgsFp544gkGDx7MTTfdxAUXXEBhYSEvvvgiHTp0IDMzk9GjR7Ns2TIADMNg/vz5dOjQgSuuuIIbbriBkSNHcu+99waz2I3iLT3yvgRVtHOhiIiEWtBnE7Rq1Yq//e1vR3ysffv2bN68ucaxhIQEHn/88WAULSDMsgIIi/KNDzgCwxEJahkQEZEQ0lZ5AWaWFdbaoOhwhiMC06UwICIioaMwEGDesvyjdhEAGjMgIiIhpzAQYGZpwRGnFVYxHJEaMyAiIiGlMBBApumtUzcBzgpM0xu8gomIiBxGYSCAzIoSMD3H7CYw7BGACa76La8sIiLiLwoDAVS1xsDxxgwA6ioQEZGQURgIoKrVBy1RR159EA5OLUT7E4iISOgoDARQ9b4ExxszAFprQEREQkZhIIAOdRMcZSlitHOhiIiEnsJAAJmlBRhh0RhW+9FPqu4m0JgBEREJDYWBADLLjr3GAKhlQEREQk9hIIC8ZQXHnkmAwoCIiISewkAAmWUFGJFHn0kAgC0MDAuom0BEREJEYSBATO/B1QeP101gGNqfQEREQkphIEDMiiIwvcecSVBFOxeKiEgoKQwEyKFphcfpJqBqfwKFARERCQ2FgQCpCgPH6yYA7VwoIiKhpTAQIN6DSxEfbzYBAHaNGRARkdBRGAiQuqw+WMXQAEIREQkhhYEAMUsLMMJjMCy2457rCwPqJhARkdBQGAgQb1n+cVcfrGI4IsFZjmmagS2UiIjIESgMBIhZVlinmQQAOCLA9ILbGdhCiYiIHIHCQICYZQVY6jJ4kMOWJNZaAyIiEgIKAwFgej2Y5YX16yZAOxeKiEhoKAwEgFleBKZZt2mFHGoZ0MJDIiISCgoDAXBoWmFc3Z6gnQtFRCSEFAYCwDy44FC9xwyom0BEREJAYSAAvFUtA1F1m01waMyAWgZERCT4FAYCwNdNYGBExNbp/ENjBtQyICIiwacwEABmWT5GRCyGxVq3J9jDAQPTWRHQcomIiByJwkAAeEsL6j54EDAMC9jDNWZARERCQmEgAMyygjqvMVBFmxWJiEioKAwEQH1WH6xiOCK0zoCIiISEwoCfmV43ZnlxvboJANDOhSIiEiIKA35mlhUBZp2nFVYxHJHqJhARkZBQGPCzqtUHG9JNoDAgIiKhoDDgZ96yfKAeSxEfZDgiQLsWiohICCgM+FnVUsT1n00QqTEDIiISEgoDfmaWFYBhYITXbfXBao4I8LgxPa6AlEtERORoFAb8zCwrwIhohWGpX9Uadu1cKCIioaEw4GfesoJ6zyQA7U8gIiKhozDgZ2apr2WgvrRzoYiIhIrCgJ+ZZQVY6jl4EPCNGUBhQEREgk9hwI9MjxuzohgjsuHdBJpRICIiwaYw4EdmeSFQ/2mFcKibQPsTiIhIsCkM+JFZ6ltwqL6rD8LhLQMKAyIiElwKA37kPbgUcb03KQKNGRARkZAJehgoKSnh/vvvZ8KECQwcOJCpU6fy8ccfH/X8V155hfT09FpfO3fuDGKp66Z69cGGtAxYrGBzaMyAiIgEnS3YN/zTn/7E5s2bmTNnDu3atWP58uXMnDmT559/npNPPrnW+Zs3b2bMmDE88MADNY63bt06WEWuM9/qgxaMiJgGPd9wRGrMgIiIBF1Qw0BOTg4ffvghCxcuZOTIkQDMmDGDb775htdff/2IYSAjI4OBAweSlJQUzKI2iLesACMyDsNoWIOLb+dCtQyIiEhwBbWbICIigmeffZYhQ4bUOG4YBoWFhUd8TkZGBt27dw9G8RrNPBgGGkzbGIuISAgENQxER0dzyimnEB0dXX1s3bp1rFy5knHjxtU6PzMzk6KiIlasWMGUKVMYM2YMM2fOZMeOHcErdD2YpQ1ccOggwxGJqW2MRUQkyII+ZuBw27ZtY+bMmQwYMICLLrqo1uMZGRkAWCwWHn74YcrKyliwYAEXX3wxS5curVfXQUJC9PFPqoekpNrjAkorCojs0ofEIzxWF1kxMTiz84947Zagpf7dgaL69D/VqX+pPv2voXUasjDw3XffMXPmTNq2bcvChQux2+21zhk7dizffvstcXFx1ceefPJJxo8fzxtvvMGMGTPqfL+8vBK8XtMfRScpKYacnOIax0y3E295CRWWqFqP1ZXTtOMuL23w85uzI9WpNJzq0/9Up/6l+vS/qjq1WIx6fwAOyToD7777LtOnT6dPnz4sWbKkxpv9r/36scjISNq3b8++ffsCW8h6qlp9sCELDlWzawChiIgEX9DDwNKlS7n99ts588wzWbhwYY3xA7/2/PPPM3r0aJxOZ/Wx4uJiduzYQY8ePYJR3DqrXmOgkWMGcDsxvW7/FEpERKQOghoG9u/fz913383w4cO57bbbKCgoICcnh5ycHAoKCvB4POTk5FBRUQHAhAkTKCsr44477mDr1q2sX7+e66+/nlatWnH++ecHs+jHdWj1wfpvUlSlaklinBV+KJGIiEjdBDUMfPjhh5SXl7Ny5UrGjBnD6NGjq7/++Mc/kpmZyejRo1m2bBkAnTt35oUXXiA/P5+LL76Y6dOnExcXx7/+9S8iIyODWfTjMqvCQKNaBrRzoYiIBF9QBxBefvnlXH755cc8Z/PmzTV+79+/Py+88EIAS+UfZmk+WKwYYY2YtXBw50KtNSAiIsGkjYr8xFtWeHD1QaPB19DOhSIiEgoKA37S6NUHOTiAELQ/gYiIBJXCgJ+YZfmNm1YIGI5w37U0ZkBERIJIYcBPvKUFjRo8CGjMgIiIhITCgB+Y7kpwlvmhm0CzCUREJPgUBvzALPPD6oOAYbWD1aaWARERCSqFAT+oXnAoquELDlUxHJGgnQtFRCSIFAb8oHop4ka2DADgiFDLgIiIBJXCgB+YZflA47sJwNcyoDAgIiLBpDDgB97SArDaICyq0dcy7OEaQCgiIkGlMOAHVQsONWb1wSqGI1KLDomISFApDPiBP1YfrKYxAyIiEmQKA35glhX4ZbwA+NYaUDeBiIgEk8KAH/hWH2z8tEKomlpYgen1+uV6IiIix6Mw0EimqwJc5X7rJqhahRB3hV+uJyIicjwKA41kHlxwyF/dBGgbYxERCTKFgUbyHlyK2N8tAxo3ICIiwaIw0EhmqW/BoUbvWHiQoZ0LRUQkyBQGGsnf3QTVYwbUMiAiIkGiMNBI3rICsDrg4Cf6RtOYARERCTKFgUYySwswovyz+iCom0BERIJPYaCRzLJ8/80k4PABhAoDIiISHAoDjeQtK/TfUsTg63IwrNqfQEREgkZhoJH8ui8B+LobHNq5UEREgkdhoBFMZzm4KrD4aVphFcMRqW4CEREJGoWBRqiaVujXbgK0WZGIiASXwkAjeKvCgJ82KapiOCI0ZkBERIJGYaARDrUMtPLrddVNICIiwaQw0AhmaQEAlkj/tgzgiMB0KQyIiEhwKAw0gresAGxhYA/363V9YwYUBkREJDgUBhrBLM336+qDVQxHJDjLMU3Tr9cVERE5EoWBRjDLCvy6+mA1ewSYXnBX+v/aIiIiv6Iw0AhePy84VEVLEouISDApDDSQaZp+X32wyqEwoLUGREQk8BQGGspVDm6n31cfhEM7F2qtARERCQaFgQbyHpxWaPh7WiFqGRARkeBSGGigQC1FDMDBlgHTWeH/a4uIiPyKwkADmaX5AAHqJlDLgIiIBI/CQAN5ywqBwLQMVIUBjRkQEZFgUBhoILMsH+zhGH5efRAAexhgqGVARESCQmGggQK24BBgGBZwhGudARERCQqFgQYySwv8vnXx4bRzoYiIBIvCQAMFavXBKoYjAtRNICIiQaAw0AC+1QfzMSJbBewehiMS06WphSIiEngKAw3grSgFjxtLABYcquaI0ABCEREJCoWBBvCUHADACMAaA1UMe4TGDIiISFAoDDSAu9i34FDgxwwoDIiISOApDDRAVcuAJaCzCXzdBKZpBuweIiIiEIIwUFJSwv3338+ECRMYOHAgU6dO5eOPPz7q+fn5+cyaNYthw4YxdOhQ7r77bkpLS4NY4toOtQwEbgAhjkjwesDjCtw9RERECEEY+NOf/sRnn33GnDlzePvttznttNOYOXMm33zzzRHPv/HGG9m1axeLFy9m/vz5rFixgtmzZwe51DV5SvLBEYFhCwvYPbQ/gYiIBEtQw0BOTg4ffvghd911FyNHjqRTp07MmDGDYcOG8frrr9c6f82aNaxatYoHHniAPn36MHz4cObMmcP777/Pvn37gln0GjwlBwI7k4DD9yfQ9EIREQmsoIaBiIgInn32WYYMGVLjuGEYFBYW1jp/9erVJCQk0L179+pjgwcPxjAMVq9eHfDyHo27OD+gMwnAt84AqGVAREQCzxbMm0VHR3PKKafUOLZu3TpWrlzJX/7yl1rnZ2dnk5qaWuOYw+EgPj6e/fv31+veCQnR9S/wUewqOUBEx94kJcX47Zq/Vl7emnIgNhIiA3ifpiSQ9dkSqT79T3XqX6pP/2tonQY1DPzatm3bmDlzJgMGDOCiiy6q9Xh5eTkOh6PWcYfDQWVlZb3ulZdXgtfb+JH5pmniLsnHaYkiJ6e40dc7Gs/BBoGC7DxKowN3n6YiKSkmoPXZ0qg+/U916l+qT/+rqlOLxaj3B+CQTS387rvvuPTSS0lKSmLhwoXY7fZa54SHh+N0OmsddzqdREZGBqOYtVX6Vh8M5BoDcPiYAa01ICIigRWSMPDuu+8yffp0+vTpw5IlS4iLizvieampqWRnZ9c45nQ6yc/Pr9V9ECzesoPTCoM2ZkBhQEREAivoYWDp0qXcfvvtnHnmmSxcuJDo6KM3ZQwdOpScnBy2b99efaxq4OCvByEGy4GsLACMAM8mwK6phSIiEhxBDQP79+/n7rvvZvjw4dx2220UFBSQk5NDTk4OBQUFeDwecnJyqKjwTacbMGAAgwYNYtasWaxfv55Vq1Yxe/ZszjnnHFJSUoJZ9EN/w27flMZ8d+DWGAAwLBawh6tlQEREAi6oYeDDDz+kvLyclStXMmbMGEaPHl399cc//pHMzExGjx7NsmXLAN+Uw/nz59OhQweuuOIKbrjhBkaOHMm9994bzGLX0C7GC8DaPYFfGdBwRIBLYUBERAIrqLMJLr/8ci6//PJjnrN58+YavyckJPD4448Hslj1Etf7ZN7cVMyWrQWcNiKw99LOhSIiEgzaqKieLK1SiB0wga17CikqrT3Twa8cCgMiIhJ4CgMNcHK/NpjAuq25Ab1P1c6FIiIigaQw0ABd2saSEBvOmoycgN7HcESqZUBERAJOYaABDMNgUFoSG3fkU17pDtx9HBGglgEREQkwhYEGGpSWiNvjZcMvBwJ3E40ZEBGRIFAYaKDu7VsRHWEPaFeB4YgEjwvTE7jWBxEREYWBBrJaLJzUPZEftuXh9ngDco+q/QlMrTUgIiIBpDDQCAPTEimvdLN5V0FArq/NikREJBgUBhqhT+fWOOyWwHUVOLQ/gYiIBJ7CQCM47Fb6dUlg7ZYcvKbp9+tr50IREQkGhYFGGpiWSEGJkx2ZxX6/tqGWARERCQKFgUbq3y0Ri2EEpKugqmVAYwZERCSQFAYaKTrCTnrHONZuCcC4geqWAYUBEREJHIUBPxiUlkRmXhmZeaV+va5hVxgQEZHAUxjwg4E9EgH83lVgWG1gtWvMgIiIBFS9wkBZWRlZWVkAuN1uFi9ezJw5c1i9enVACtdctI4Np3NqDGu3+H8XQ9/+BGoZEBGRwKlzGNiwYQPjx49nyZIlADz44IM89NBDvPnmm1xxxRV8/vnnAStkczAwLYnt+4rIL67074W1c6GIiARYncPAo48+Stu2bZk6dSpOp5M333yTiy++mDVr1jBlyhSeeuqpQJazyRt0sKtgnZ8HEhqOCHUTiIhIQNU5DPzwww9cf/31dO3aldWrV1NeXs55550HwNlnn83mzZsDVsjmoG1iFCnxEazxc1eBoZYBEREJsDqHAa/XS1RUFABffvklsbGx9O/fHwCn04nD4QhMCZsJwzAYmJbEzzvzKatw+e+6GjMgIiIBVucwkJ6ezrJly8jJyWH58uWMHj0awzBwOp28+OKLpKWlBbKczcKgtCQ8XpP12/L8dk3DEaFdC0VEJKDqHAZuvPFGli5dyimnnEJhYSG///3vATjjjDP4/vvvuf766wNWyOaia9tYYqMc/u0qsEeom0BERALKVtcTTz75ZJYuXcqPP/7IwIEDadOmDQBXXHEFI0aMID09PWCFbC4shsHAHoms3JiFy+3BbrM2+pqGIwJcFZheL4ZFy0KIiIj/1evdpUOHDkyePLk6COTm5jJkyBB69OgRkMI1R4PSkqh0eti4I98v16ven0BdBSIiEiB1DgPl5eXMnj2bf//73wD873//Y9y4cfz2t7/l7LPPrl6MqKXr2TGecIfVb3sVaOdCEREJtDqHgblz5/LOO+9Uzyh45JFHSEtL47HHHsPj8TB37tyAFbI5sdss9O+WwNotuXi9ZuMvqM2KREQkwOocBj766CNmzZrFeeedx9atW9m5cyfXXnstp59+Otdffz1fffVVIMvZrAxKS6K4zMXWvYWNvlZVN4HCgIiIBEqdw0BeXl719MGvvvoKm83G6NGjAUhMTKSsTM3YVfp1TcBqMfzSVVDVTaC1BkREJFDqHAbatGnDzp07Afj444/p168f0dHRAKxevZrU1NTAlLAZigiz0atzPGsycjDNxnUVaMyAiIgEWp3DwG9+8xseeeQRrr76ar777jt++9vfAjBnzhwWLlzIueeeG6gyNkuD0pLIKahgb05p4y6kMQMiIhJgdQ4DM2fO5Oqrr8ZisXDnnXdy/vnnA/DTTz9x1VVX8Yc//CFghWyOBnZPxADWZDSuq0BjBkREJNDqvOgQwIwZM2ode+WVV/xWmBNJq+gwuraLZc2WHH4zukvDL2S1g8UK6iYQEZEAqVcYyMvL47nnnuPbb7+luLiY+Ph4Bg8ezFVXXUVSUlKgythsDUpL4rVPt5FbWE5iq4gGXcMwDO1cKCIiAVXnboJ9+/Zx7rnnsmTJEqKioujXrx8Oh4MlS5Zw3nnnkZmZGchyNkuDevgC0tqMRu5V4ND+BCIiEjh1bhl45JFHsNlsLFu2jI4dO1Yf37VrF9OnT2fevHk8/PDDASlkc5XSOpK2iVGs3ZLDpKEdGnwd7VwoIiKBVOeWga+//pobbrihRhAA6NixoxYdOoZBaYls3l1ASbmrwdcw7BFaZ0BERAKmzmHA4/EQHx9/xMfi4uIoLW3kFLoT1MAeSZgmrGvEtsaGI0LrDIiISMDUOQz07NmTt99++4iPvf3229q58Cg6p8YQHxPWuNUINYBQREQCqM5jBq677jquuuoqpk+fzpQpU0hKSiInJ4f33nuPb7/9lscffzyQ5Wy2DMNgUI8kvly/j0qXhzC7tf7XUMuAiIgEUJ3DwMiRI3nooYf4+9//zl/+8pfq44mJiTzwwANMmjQpIAU8EQxMS+TjNXv4afsBBqfXfwqm4YgAZwWm6cUw6tyYIyIiUif1emc555xz+PLLL3n//fd56aWXeP/99/nyyy9p1aoVM2fODFQZm720DnFEhdsa3FXgW4XQBFelfwsmIiJCPRcdAl+zd7du3Woc27VrFx9//LHfCnWisVkt9O+WyA9bc/F4vVgt9fx0f9hmRdW7GIqIiPiJ2pyDZFBaIqUVbjJ2FdT7uYd2Lqzwc6lEREQUBoKmb5cE7DYLaxowxbC6NUCDCEVEJAAUBoIkzGGlT+fWrN2Sg2ma9Xqudi4UEZFAUhgIooFpiRwoqmRnVnH9nnjYmAERERF/O+YAwt/97nd1ukhWVpZfCnOiO6l7IoYBazJy6ZwaW+fnqWVAREQC6ZgtAxaLpU5fbdq0YciQIfW++cKFC7nkkkuOec4rr7xCenp6ra+dO3fW+36hFhPpIK19HGsz6jfF8NAAQoUBERHxv2O2DCxZsiRgN37xxReZN28eAwcOPOZ5mzdvZsyYMTzwwAM1jrdu3TpgZQukgWlJvPLxFrIOlJHSOrJuT7KFgWFoAKGIiARE0McMZGVlMWPGDB555BG6dOly3PMzMjLo2bMnSUlJNb6s1vov69sUDOqRCMDaeswqMAwD7NrGWEREAiPoYWDDhg1ERUXx7rvvMmDAgOOen5GRQffu3YNQsuBIjIugY3I0axrQVaBuAhERCYR6r0DYWBMmTGDChAl1OjczM5OioiJWrFjBs88+S1FREQMGDODWW2+lc+fOgS1oAA1MS+Ldr36hsKSSVtFhdXqO4YgEhQEREQmAoIeB+sjIyAB8AxkffvhhysrKWLBgARdffDFLly4lKanum/4kJET7tWxJSTENfu7E4Z1456tf2LK/hDNPTqzTc1xR0WA6G3Xfpu5E/ttCQfXpf6pT/1J9+l9D67RJh4GxY8fy7bffEhcXV33sySefZPz48bzxxhvMmDGjztfKyyvB663fYj9Hk5QUQ05OPdcKOEyUzSApLpwv1uxmSPeEOj3HZTgwS/Mbdd+mrLF1KjWpPv1Pdepfqk//q6pTi8Wo9wfgJr/o0OFBACAyMpL27duzb9++0BTIDwzDYFBaEpt25FNW4a7bcxyRGjMgIiIB0aTDwPPPP8/o0aNxOp3Vx4qLi9mxYwc9evQIYckab1BaEh6vyfrtdZtV4BtAqKmFIiLif00qDHg8HnJycqio8O3ON2HCBMrKyrjjjjvYunUr69ev5/rrr6dVq1acf/75IS5t43Rr14rYKAdrMuoeBnBW1HtfAxERkeNpUmEgMzOT0aNHs2zZMgA6d+7MCy+8QH5+PhdffDHTp08nLi6Of/3rX0RG1nHBnibKYhgM7JHIj9vzcLk9x3+CIwJMD3icxz9XRESkHkI6gPDBBx+s8Xv79u3ZvHlzjWP9+/fnhRdeCGKpgmdQWhKfr9vHhh35nNT92LMKDt+fwLDVbTqiiIhIXTSploGWpleneCLCrHVagMjQzoUiIhIgCgMhZLNa6N8tkXVbcvF4vcc8tyoMaOEhERHxN4WBEBuUlkRJuYutewqPfaK2MRYRkQBRGAixfl1bY7Na+P44XQXqJhARkUBRGAixcIeNPp3jWZuRc8xpg4a9KgyoZUBERPxLYaAJGJSWRF5RJbuySo56jsYMiIhIoCgMNAEDeiRiGBy7q0AtAyIiEiAKA01AbKSDHu3jWHuMMGBYLGAP15gBERHxO4WBJmJQWhJ7c0vJOnD0N3ttViQiIoGgMNBEDOrhW4FwzZZjtA44IjRmQERE/E5hoIlIjIugY0r0sVcj1M6FIiISAAoDTcigtCS27S2ioKTyiI+rm0BERAJBYaAJGZSWBMDaLUfe1tiwh2O6FAZERMS/FAaakHaJUSTHRxy1q8BwRGrMgIiI+J3CQBNiGAaD0pL4eWc+ZRWu2idozICIiASAwkATMygtCY/X5IdtebUeMxwR4HFjeo4QFERERBpIYaCJ6do2llbRjiN2FRjauVBERAJAYaCJsRgGA3sk8eP2PJwuT43HDu1PoK4CERHxH4WBJmhQWiJOl5cNOw7UOK6WARERCQSFgSaoZ8d4IsJstbsKHOGAwoCIiPiXwkATZLNaGNA9gR+25uHxequPq2VAREQCQWGgiRrUI4mSchcZuwurj2nMgIiIBILCQBPVr2sCdpulxrbGahkQEZFAUBhoosIcVvp0bs3aLTmYpuk7qDEDIiISAAoDTdjAtETyiirZmVUMgGGxgc2hVQhFRMSvFAaasJO6J2IY1JhVoP0JRETE3xQGmrCYSAfpHeJYk3FoF0PDHq6WARER8SuFgSZuYFoS+3JL2X/gYABwRGK6KkJbKBEROaEoDDRxg3okAYe6CgztXCgiIn6mMNDEJbQKp1NqTI0woDEDIiLiTwoDzcCgtCS27ysiv7gSwxGpqYUiIuJXCgPNwKA0X1fB2i05oG4CERHxM4WBZqBtQiQprSNZk5Hjm1rodmJ63aEuloiInCAUBpoBwzAYlJbI5l0FuAyH76BTMwpERMQ/FAaaiUFpSXi8JrvzfS0CGjcgIiL+ojDQTHRpE0tctIMt2S4AjRsQERG/URhoJiyGwcC0JDL2+7oH1DIgIiL+ojDQjAxKS6LYbfP9ojAgIiJ+ojDQjKR3iAN7BKBuAhER8R+FgWbEZrXQrXMKAJ5KhQEREfEPhYFmpm96OwBycw6EuCQiInKiUBhoZvp0S8VtWsjOzg91UURE5AShMNDMhDmsuCxhFOYXYJpmqIsjIiInAIWBZsgSFonhrmDH/uJQF0VERE4ACgPNUFhkNBEWV/W2xiIiIo2hMNAMWcMjaR3m5duNWXi83lAXR0REmjmFgWbIcEQSH+4lt7CCbzdmhbo4IiLSzCkMNEeOcMINJ+2Tonj/m514NZBQREQaIaRhYOHChVxyySXHPCc/P59Zs2YxbNgwhg4dyt13301paWmQStg0GY5ITGcFU07uTGZeGWs2a+yAiIg0XMjCwIsvvsi8efOOe96NN97Irl27WLx4MfPnz2fFihXMnj07CCVsugxHBLgqGJKeSEp8BO99s0PTDEVEpMGCHgaysrKYMWMGjzzyCF26dDnmuWvWrGHVqlU88MAD9OnTh+HDhzNnzhzef/999u3bF6QSNz2GIwIwsXgqmTyiE7uySvhxe16oiyUiIs1U0MPAhg0biIqK4t1332XAgAHHPHf16tUkJCTQvXv36mODBw/GMAxWr14d6KI2XY5IwLeN8cl9U0mIDeO9FTvVOiAiIg1iC/YNJ0yYwIQJE+p0bnZ2NqmpqTWOORwO4uPj2b9/f73um5AQXa/zjycpKcav16uPktzWZAPxUQaO5FZcMDGNp9/6kawiJ/26J4asXI0Vyjo9Eak+/U916l+qT/9raJ0GPQzUR3l5OQ6Ho9Zxh8NBZWVlva6Vl1eC1+ufT85JSTHk5IRu9T93hQFAXlYuNqM1J3VtTWyUg38v38itFw8MWbkaI9R1eqJRffqf6tS/VJ/+V1WnFotR7w/ATXpqYXh4OE6ns9Zxp9NJZGRkCErUNPjGDABO3zbGDruV04d1YOOOfLbtKwxhyUREpDlq0mEgNTWV7OzsGsecTif5+fm1ug9aFLsvDJjO8upD405qR1S4jfdX7AxVqUREpJlq0mFg6NCh5OTksH379upjVQMHhwwZEqpihVxVy8DhYSAizMakIR1YtzWX3dkloSqaiIg0Q00qDHg8HnJycqioqABgwIABDBo0iFmzZrF+/XpWrVrF7NmzOeecc0hJSQlxaUPHOGw2weEmDmlPuMPK+9/sCEGpRESkuWpSYSAzM5PRo0ezbNkyAAzDYP78+XTo0IErrriCG264gZEjR3LvvfeGtqChZnOAYYFfhYGocDvjB7Xju03ZZOa17FUaRUSk7kI6m+DBBx+s8Xv79u3ZvHlzjWMJCQk8/vjjwSxWk2cYBjgiMA8OIDzcaUM78tHqPSxbuZOrp/QOQelERKS5aVItA1J3vv0JymsdbxXlYOyAtqzckEVuYe3HRUREfk1hoJkyjtIyAHDG8I4ALP92VzCLJCIizZTCQDNlOCJqjRmo0jo2nFH9Uvnyh0wKSuq3OJOIiLQ8CgPNlBEVjyd3J56cHUd8/MwRnfB4vXywSq0DIiJybAoDzVTYsAsxwqMpX/YInvy9tR5PiY9keK8UPlu7j5JyVwhKKCIizYXCQDNliW5N5JTbwWKl/P2/4y3KqXXOlJM7Ueny8L/vdoeghCIi0lwoDDRjllYpREy5FdPjouz9h/GWFdR4vF1SNIPSkvj4+z2UVbhDU0gREWnyFAaaOWvrDkSeeQtmeRHl7/8ds6LmUsRnjexEWaWbT9fuCVEJRUSkqVMYOAFYk7sRcfr/4S3Komz5ozXWH+icGkvfLq358LvdVLo8ISyliIg0VQoDJwhbu95ETLweb+4Oyj98HNN9aOvns0Z2prjMxRfr9oWwhCIi0lQpDJxAbJ0HEj7uGjz7fqb8owWYXt84gbQOcaR1iOO/q3bhcntDXEoREWlqFAZOMPYeIwkbfRmeXeuo+Ow5TNP35n/WyE7kF1ey4qfMEJdQRESaGoWBE5Cj9wQcw36Le+tKKr9agmma9Oncms6pMSxbuROPV60DIiJyiMLACSrspLNwDJiMa9OnOL97HcMwOGtkZ3IKKli1MTvUxRMRkSYkpFsYS2A5hl2A6SzHue59cERw0oAptEuK4v2VOxneJwWLYYS6iCIi0gSoZeAEZhgGYaMvw9Z9BM5Vr+Pe9ClTTu7EvtxS1mbUXrFQRERaJoWBE5xhWAgfdw3WjidR+dUSBtm2kxwfwdIVOzBNM9TFExGRJkBhoAUwLDYiTr0Oa9ueVH7+HBenl7Erq4Qftx8IddFERKQJUBhoIQybg4jTbsSS2Jlu215mUKtc3vtGrQMiIqIw0KIYjggiz7wFS2wq0+wf4crcSsbuglAXS0REQkxhoIUxwqOJmHIr1qg4ZsR+wueff6fWARGRFk5hoAWyRMYRddZt2BxhnFX6Jj+uWR/qIomISAgpDLRQlpgkWp37J7BYSVm9gIqsHaEukoiIhIjCQAtmi29D6ZibqPRaKXvvITy5O0JdJBERCQGFgRauR68efJZ0KcUuK6VLH8aTvT3URRIRkSBTGBAmnzqYp0rPoMRrp+z9v+PJ2hrqIomISBApDAiJcREMH9qbv+eeitseRdmyR3Dvzwh1sUREJEgUBgSAySM6YYluzXPOKRiRcZQvm4t738+hLpaIiASBwoAAEOawcuH47mzKNlnfdTqW6ATKlz+Ke+/GUBdNREQCTGFAqg3rlUyP9q149ZtsmDQLS2wy5f+dh3vPT6EumoiIBJDCgFQzDINLT02jpMzF0jUHiDj7DixxqZR/8BjuXVqYSETkRKUwIDV0So1hzIC2fPz9HrJKLUROuQNLfDvKP3wc9861oS6eiIgEgMKA1DL1lK447FZe/ngLhEUROeV2LAkdKP/ffFy/fB/q4omIiJ8pDEgtsVEOzhnVmZ+2H2D9tjyMsCgip9yGJbEzFR8twLX9u1AXUURE/EhhQI5owuD2tEmI5JWPt+D2eDEckUROvhVrclcqPn4K19aVoS6iiIj4icKAHJHNauHiiT3Iyi/nf6t3A2A4IoiYPAtrag8qPl2Ia8uKEJdSRET8QWFAjqpf1wQGdEtg6dc7KCypBMCwhxNxxi1Y2/Sk4tNncW3+MsSlFBGRxlIYkGO6eGIPXG4vb3x+aAMjwx5GxBk3YW3Xm4rPn8e19ZsQllBERBpLYUCOKaV1JJOGduCrHzP5JbOo+rhhCyPi9P/DmtKdiq//jVlREsJSiohIYygMyHGdPbIzsVEOXvpfBqZpVh83bA7CxlwOzjIq17wTwhKKiEhjKAzIcUWE2fjt2G5s21fEyg1ZNR6ztu6Avec4XBs+xpO/L0QlFBGRxlAYkDoZ2S+VLm1ieO2zrVQ43TUecww5D+xhVK58OUSlExGRxlAYkDqxHNy3oKDEyfvf7Kz5WEQsYYPOwbP7R+1hICLSDCkMSJ11a9eKk/uk8sGq3WQXlNd4zN7nVIxWqVSufBnT6z7KFUREpClSGJB6+e24blgtBv/5ZGuN44bVRviIi/EWZOLa8EmISiciIg2hMCD1Eh8TxlkjO7EmI4eNOw7UeMzacQDWdn2o/P5tTTUUEWlGFAak3k4b2oGkuHBe/mgLHq+3+rhhGISdfCm4Kqhc/VYISygiIvUR9DDg9Xp5/PHHGTNmDAMGDOCqq65i586dRz3/lVdeIT09vdbXsZ4jgWW3WbloQg/25pby2dqa0wmtrdth7zUe16ZP8RzYG6ISiohIfQQ9DDz55JO8/PLLzJkzh1dffRWr1crVV19NZWXlEc/fvHkzY8aM4auvvqrx1b59+yCXXA43sEcivTvH8/aX2ykpd9V4zDHkXLCHU/nNSzUWKRIRkaYpqGHA6XTy/PPPM3PmTMaOHUvPnj2ZN28eubm5LF++/IjPycjIoGfPniQlJdX4slqtwSy6/IphGFwysQfllR4WL9uE23Oou8ASHkPY4HPx7N2AZ9cPISyliIjURVDDwKZNmygrK2PEiBHVx6Kjo+nduzerV68+4nMyMjLo3r17sIoo9dAuKZqLJnZn7ZZc/vH6+hqLEdn7TMAS14aKlS9jejTVUESkKQtqGMjK8i1lm5KSUuN4cnIymZmZtc7PzMykqKiIFStWMGXKFMaMGcPMmTPZsWNHMIordTBpSAemT+7Jxh0HmPvKuuouA8NiI2zEJZiFWbg2fBTiUorIicasLMWzfwtmZWmoi3JCsAXzZuXlvoVqHA5HjeMOhwOn01nr/IyMDAAsFgsPP/wwZWVlLFiwgIsvvpilS5eSlJRU53snJEQ3ouS1JSXF+PV6zdnUiem0SY7h4SXf88ir6/h/155MQqsISBpFZsanVK59l9QRp2GNanXM66hO/Uv16X+qU/+qb316yoopzVhF6c/fUP7Lj3BwgTNbXAphqV1xpHYlLLULYaldj/vvzYmqoa/RoIaB8PBwwDd24PBA4HQ6iYyMrHX+2LFj+fbbb4mLi6s+9uSTTzJ+/HjeeOMNZsyYUed75+WV4PX6ZzBbUlIMOTnFfrnWiaJ7agw3XziAx99Yz63/+IJZF59ESnwkxuAL8P7yF/Z9sITwMVcc9fmqU/9Sffqf6tS/6lqf3vIi3DvW4N7+HZ59m8D0YsQk4eh3GpaUbngLMvHm7qRs3zZKf/6m+nlGVGusiZ2wJHY6+L0zRmQchmEE8s8Kqao6tViMen8ADmoYaNOmDQDZ2dlERx8qaHZ29lHHBRweBAAiIyNp3749+/Zph7ympleneG6/ZCDz/vMDD/x7DbdcOICOKW2x95mIa8NH2HtPwJrQIdTFFJEmzltWgPuX73H/shpP5s9gmhixKTgGTMbWdQiWhE5HfFM3K0vx5O3Cm7sTT+5OvLk7ce9cB/g+CBoRsb5wkFAVEjpjxCSCx4nprABXBebBL1zlmM6qnw8ed5b/6pwK3/MwMcKiMMKjMcKiD/38q98Jj8ZwRGJYmt4A+KCGgZ49exIdHc2qVavo2rUrACUlJWzcuJFLL7201vnPP/88zz//PJ988kl1S0JxcTE7duzg3HPPDWbRpY66tInlT9MG8cgr63jopbX832/702PQObi2rKBy5ctETL7thE7mItIw3pIDuHd872sB2L8FMLHEtcEx8GxsXYZiad3+uP92GGFR2Nr2gra9qo+Zrkq8ebvwVAWEvB0492wE01P1LKrCwnHZHBj2cLBHYNjDMRzhGFFxvvtUlmLm7fZ9ryyBY02rdkQeDAqHAoS96zBsnQfWrRwBENQw4HA4mDZtGvPmzSMxMZH27dszd+5cUlJSOO200/B4PBw4cICYmBjCw8OZMGEC8+fP54477uD666+nrKyMRx55hFatWnH++ecHs+hSD20Sorhr2mDmvrqOua+u47pz+9Jr8HlUrvg37p1rsXceFOoiikgT4C3Oxf3Laly/rMab5dvvxNK6PY7B52LrOgRrfLtG38Owh2FN7YE1tUf1MdPtxJu/F0/uTsySPLCH+97c7eHgCMc4+GZffdwRDrZwDEvdxtybphec5b5gUFGCWVly8Pthv1f9XFGCt2A/lpjEkIYBwwzyqjAej4d58+bx5ptvUl5ezuDBg7nnnnvo0KEDe/bsYeLEiTzwwANMnToVgPXr1/Poo4/y008/YZomo0aN4vbbb6/3okMaMxB8RWVO5v3nB3ZnlXD1lDT6b3oS0+Mm6oL7MKz2GueqTv1L9el/qlP/MD0u3FtXYmZ8TmXmwQCQ0BFb16HYuwzBEtcmxCVsvhozZiDoYSBUFAZCo7zSzRNvrOfnXQX8cZhBz63/JGz4RTgGnFnjPNWpf6k+/U912jhmZSnOTZ/h+ul/mGUF2JM6YnQZ7gsArVKOfwE5rmYzgFBanogwGzdfOICn39nAU6tyubtjDxLXvIstbRSWiNhQF09EAsxbkofzxw9x/fw5uCqwtuuDY9w1pJ40gtxc7W7aVCgMSMDZbVauO68vLyz/mYUbevOnuG1UfvcGEadMD3XRRCRAPLk7ca7/L+5t3wJg6zYMR/8zsSZ2AtBA4iZGYUCCwmqxMH1yL/4TbufzDRmM+/lzrD3H40juHOqiiYifmKaJZ+8GnD8sx7N3A9jDsfed5FsTIDoh1MWTY1AYkKCxGAYXTejOh2G/ofSn7WS+9xydpt1LuEMvQ5HmzPS6cW/9Fuf6/+I9sBsjMg7HsAtw9BqHERYV6uJJHehfYQkqwzA4fXQvfio9nU473+Wdl97g7IunhrpYIics0+PGm/ML7v2b8WRm4M35BRwRWKITMKJaY4lujRGdgCXq4Pfo1hiOiLpd21mO6+fPcP74P8zSA1ji2xI+9mps3UfUmjEkTZvCgIREn0nnkPvSKoYXf8kjL3Zk2ln9cFW6iAizER5mIzLMRrjDis0a1L20Qsp0VeLevgpP7g4c/c7AElv3vTeaIveOtXjyduHof7pvzrYEhemuxJO9Hc++n/Hsz8CTtQ08vr1fLHFtsXY8CdyVeEsP4N23CXdZfu0FchwRWKISMKKPHBYwDFwbP8W58VNwlWNtk45jzOVYO/THMFrO/7MnEoUBCQnDYiV+/OWEv/8w6WWrmbO4/IjnOWwWwsNsRDisRITZDn0d/D08zEZEmJWocDuD0pKIjmh+n0Y8OTtw/fw5rq0rwVXu+4d2yzeEj7sae+fBoS5evZmmF+f37+Bc8w4Arp8/J3z0Zdg6hW5BlROZ6SzDs38rnv2bcWdu9n3y93oAA0tCR+y9xmJtk441Ne2IM3hMrwezrABvyQHMkjzf99I8zJIDvlUBs7f7VtT7NcPA1mUojv5nYE3uGvg/VAJKYUBCxtauN7ZOA5m89ydOm3oW+8sclHnslDs9lDvdlFe6qag89HN5pYfySjdFZWVUVLopq/RQUemuXkj03a9/4bpz+9G1bdOfsmg6y3Bt+QbXz1/gzdsJVodv0ZVeY7FExlH+8VNUfPgEnr6TCBt+EYa1efyvaroqqfjsWdy/rMaWNgp72mgqv36R8g/+ga3zYMJG/s73yVIazFtRjCczA0/mZjz7N+PN2+X7ZG9YsSR3wdHvdN+bf0r3OvXXGxbrwU/8CUCPI55juiurw4FZegCzsgRb58FYYpP9/NdJqGjRoQbQ4iP+4y3cT+lrf6neihTDihF+2IYfh2/2Uf09xrfhR3gURlg0lUY4e3LLeObdjRSWVnLppDTGDmjb5KYumaaJJ2sLrp8/x73tO/A4fZ/ceo7F3n1EjX+4TY+bym9fxfXT/7AkdSFi4nX16jYIxWvUW5xL+Yf/wHtgD2HDL8Le73QMw8D0unGu/wDn9++AxULY0POx955Y56VdG12uskLwuDCiExr1mgjV//emswzPvs24923Es3cj3vy9vgesdqwp3bGmph188++GYQsLevkaSv+O+p9WIKwDhYGmy3NgL1GVmRTl5Fav1V29lvdhP1cHhloMjLAozG4jWbynO+t2lDC6XxumnZaGwx763cG85UW4t3ztawUoyPRNt+o+AnvPcVgSj7z7WhXXL99T8flzgFGvboNgv0bd+zOo+PAJTI+biIl/xNaxf61zvEXZVHy9BM/uH7EkdiZ8zJVYkzoHpDymaeLJ3Ixrw0e4d6zxbXsb0cr35pnSDUtyN6xJXTBsjuNf7KBg1anpceHJ2opn70bcezf6mv1NL1gdWNukYW3bE1tqOpakLs2mxehI9O+o/ykM1IHCQNN2vDo1TdO3XWhlCWZF6cHvxYdt9JGJe/sqjKh41sVN4vkfw+iYEsP15/UjKa5uI6P9yTS9ePZu9LUC7FgDXg+WlO44eo7F1nVovQbUeYtyKP94Ad6cX7DXsdsgmK9R58+fU/nVvzBiEok4/f+wxrU96rmmaeLe/h2VK17ErCjC3udUwoZMrfPo9eMxXRW+7pcNH+PN3wNhUdjTx2CJTsSTvQ1P1lbM4hzfyYYVS2JHrMndfCEhuRtGTOJRw1mg6tQ0vXjzduPZuwH33o14MjN8A/4MC5akLtja9cbaro/vk/8JNEJf/476n8JAHSgMNG3+qFNP1lYqvvwn3gO7KU3oxfzdfSkkht+f3Yf+3YKz4Im3NB/X5i9xbf4CszjX92bUYxT2nmOxtm74Dmz17TYIxmvU9HqoXPkKrp/+h7VdHyJOva7Oc8rNylIqv3sD18ZPMaLiCRv1u0YNlvQW7se54RNcGV+CsxxLQkccfU7F1n14raZzb3kR3qxteLK3+j6B5/wCbt9oeyMiFmtKdyzJvhYEa1Ln6uf7q05N08QszvG98e/dgGfvpuoBepb4tljb9sbWrg/WtukYjshG36+p0r+j/qcwUAcKA02b3/6h9Xpw/fQ/Kle/hWl6+cocxNu53TlrdHfOGtUZS4DGEXiyt+Fc/wHuX1aD6cXathf2nmOxdR5Ur6bo46lrt0GgX6NmZSnlHy3As3eDr7VixMUYlvp3yXiyt1HxxQt4D+zG1mkgYaOm1XmlOtPrxbNnPc4NH+PZ/SMYVmxdh+LoMxFLSvc6jw8wvR68B/b4gkH2NjxZ2zCLsnwPGlYsCR2wpnQjJjmVklInYGAYcPA/vi+Dg9+P9DtgWMD04s3dgXvvRl9QBIyoeKztqt78e2GJiq9r1TV7+nfU/xQG6kBhoGnzd516Sw5Q+c1LuH9ZTaEtgX8dGExkpz78/uzeRIX7p6nV9Hpx7/ge548f+PZid0Rg7zkWR6/xAd2FrS7dBoF8jXoK9lH+wT8wi3MJG305jp5jG3U90+vG9eP/qPz+LcAgbMhU7H1PPWq4MCtKcGV8iXPDJ5jFORiRcdh7ja+eieEP3vIivAeDgSd7G57s7eCubPyFHRHY2vaqDgBGq9QmN9A1WPTvqP8pDNSBwkDTFqg6de/6gYqv/41ZnMN3zq58YR3F9POG0Sk1psHXNJ3luDZ/gfOnj3xvRjFJOPqdhj1ttN/6vo9bBo+Lym//c9Rug4DV5+71lH/8FIbFRvhpN2BLTfPbtb3Fub4Bhrt+wJLQifAxV9SYv+7J3Ylr48e4tqwEjxNrahr2Pqdi6zIIwxLYgXSm6SUxPpzc3GJ8c1nNgwv1VH2n+rtZdazq8cMeMyJiG9SCciLSv6P+pzBQBwoDTVsg69R0V+Jc+x6V65ZR4bXyfsVg0safxaj+9evD9xbn4tzwEa5Nn/tWXUtNw97vdKwdTyK7sJKNOw6wK6uYjikx9O2aQHIQBi4erdvA3/VpmiauHz+g8ttXsbRuT8Rp/4clJtFv1z/8Pu5fVvsGGJYVYu8zEWtKd1wbP8GzPwOsDuw9RvqOJ3Tw+/2PRf/f+5fq0/8UBupAYaBpC0adevL3UfrFCxhZGexwJ7K9w9lMPnMMdtux57vXGA8A2LoOo7L7eDYVt2LjzgNs3JFPfrGvCTkizEp5pQeA5PgI+nVJoE/X1vTqGE+YIzCfCI/UbZCcGu+3+jQ9Liq+/CfujK+wdR5M+PjfB3x5YdNZ7htguOFjwMSITcbReyL29NEh2/hG/9/7l+rT/xQG6kBhoGkL2hxu08SZsYLir17C7i5jna0//c6dTuuEuJrneT24d6w5NB7AHkF+6nBW05e1ez3szS0FICrcRq/OrendKZ7eneNJiosgK7+cn7bn8dMvB/h5Vz5Olxeb1aBH+zj6dm1N3y4JtE+K8mtf8a+7DdpdeBsFrsaPRPeWFVD+v/l4s7biGHQOjsHnBHXtec+B3ZjlxVjb9gz5mvf6/96/VJ/+pzBQBwoDTVuw69SsLGXPh0uI3beSEiJxDvgtnYePB1eFbzzAj//DLMmlzB7Pd/RjeXZ7yk0bdpuFtA5x9O4cT+9OremQEn3MGQout4eMPYVs2H6AH3/JY2+OL0TERTvo06U1/bom0Ltza7/tqeD6ZTUVny8CVyVG2MGVHMNjDv4cgxEeDWHRWMKjD67iGHNwxccYDEdUjVUBPbk7KP/gccyKEsLHX4O96zC/lLG50v/3/qX69D+FgTpQGGjaQlWnWVt+oujTF0gll8KI9kRV5mDzVrLdncyn5b35yd2ezm18b/69OrWme7tY7LaGN/fnF1dWtxps3HGA0go3BtClbSx9u7Smb9cEurSJwdqIpXq9RTnY93xLad6RV3Q81kqOhEVWBwhv7i6M8GjfQkKJnRpcnhOF/r/3L9Wn/ykM1IHCQNMWyjotr6hk5Vuv0qXgW3a4k/gxbBCtO/ekV+d4enaMI9JPUxF/zes1+SWziB+357HhlwNszyzCNH1dDwPTkhjeK4WeneIaFAyOVp+maYK78uDqjaW+74cv/Vy1qmNlKUZYlG9jochW/vhzmz39f+9fqk//UxioA4WBpi3UdWqaJtv3FREfE0br2MAOjjuaknIXG3cc4IetuazdkkuF00NMpJ0h6ckM65VMjw5xdV40KdT1eSJSnfqX6tP/GhMGmu8uFyJ+ZBgG3dqF9hNwdISdYb1SGNYrBafLw4/bD7BqUxZf/5jJp2v3EhftYGjPFIb1TqZrm9gWu1iNiPifwoBIE+SwWxmcnsTg9CQqnG5+2JrHqk1ZfLp2D/9bvZvEVuEM7ZXMsJ4pdEyJVjAQkUZRGBBp4sIdNob3TmF47xTKKlys3ZLLt5uy+ODb3SxfuYuU1pEM75XM0F4ptEsMzRx8EWneFAZEmpHIcDuj+rVhVL82FJc5+T4jh1Ubs1j69Q7e/XoH7ZOiGNorhYnDO2H1eAO20JGInFgUBkSaqZhIB+NOase4k9pRUFLJ6p+zWfVzNm99sZ23vtgOQLjDSqsoB62iww5+dxB3+M9RYcRGO4iOsAdsR0cRafoUBkROAHHRYZw6pAOnDulAXmEF+wrK2Z1ZREFJJYUlTgpLnezKKqZwu5MKp6fW860Wg9goB62ifGEhNspBVLgN0wSvaeLxmnhNE6/3sK/q42B6f3XOwe8RYTZ6tI8jvWMcHVOiG7V+gogEjsKAyAkmoVU4PbsnHXXaVqXTQ0HpoZBQWFJJYanTFxxKneQVVbA9s4iyChcWi4HFOPhl8X1ZLQYWg0OPHTxe/bNx6Jy9OaWs3ZILQJjDSo92rUjvGEdahzg6p8Yed18IEQkOhQGRFibMYSXFEUlKfOP3LqiL/OJKtuwpYPOuAjJ2F/DG574uDLvNQre2saR1iCO9Qxxd27UizK4xDiKhoDAgIgEVHxNWvX4CQHGZky17CqvDwdIVO3jX9HVVdG4TQ3qHeNI6xNGjfSsiwvRPlEgw6P80EQmqmEgHg9KSGJSWBEBZhZutewvZvDufjN0FfLBqF8tW7sQwoGNKDB2SookIsxEZbiMizEZEmJXIMBuRYTYiDh6LDPN9t1nV7SDSEAoDIhJSkeE2+ndLoH+3BMA3pmH7vkI27/a1HGzYcYCySjeVRxj4+GsOm+VXwcH3ldQqnC5tYunaNpb4mDAt0iTyKwoDItKkhDms9Orcml6dW9c47vWalDvdlFW4Ka/0fZVV1v7d991DeYWLsgo3uYUVrM3IwXNwb5JWUQ66tImlS9tYuraJpXObGKICtBmVSHOhMCAizYLFYhAVbm/QG7fL7WV3dgm/ZBaxfV8Rv2QWsW5rbvXjKa0j6dompjokdEyObtRW1SLNjcKAiJzw7DYLXdv6ugkmDvYdK6tw8cv+Yn45GA427sjnmw1ZgG8wY4fk6OrWgy5tYuu9C5xIc6IwICItUmS4nT6dW9PnYHeEaZrkF1f6Wg8yi/hlXxErftrPp2v2AhATaad7u1akd4gjvWM8HZKjsVg09kBODAoDIiL4trFuHRtO69hwBqcnA75xCpkHyti+r5DdOWX8sCW7ehGliDCrb3XFDnGkdYyjU0qMZjNIs6UwICJyFBaLQbvEKNolRpGUFENOTjEHiirI2F3A5t2+hZTWb8sDIMxupXt7X8tBWoc4urTRCovSfCgMiIjUQ+vYcEb0SWVEn1QACksqfcHg4FTIN7+oucJiesd43wqLbWNxaIVFaaIUBkREGqFVdO0VFjN2H1xEaVcB7371CyZgsxq0S4ymbWIU7ZKiqlscWrcKD+qOkaZpap0FqUVhQETEj2IiHQxOT2Jwum+FxdIKF1t2F5Kxu4DdOSVs2nmAbzbsrz4/zGGlbcLBcFAVEpKiiYt21PtN2zRNSspdHCiqJK+ogryiCg4UVXCgqJIDB38vKnWRHB9Bt7axdG3Xiq5tYmmfHKUdJVs4hQERkQCKCrdzUo9ETuqRWH2stMLF3pxS9uWWsje3lL05JazflstXP2ZWnxMRZqsOCG0PtiK0SYjC6fIc9kbve9PPL6og7+AbvtPtrXF/u81C69hwEmLD6Ns1gZhIO5m5ZazfnsfXP/lCicNuoXNqrC8gtI2la9tWxMeEBaeCpElQGBARCbKocDtpBwcaHq64zMm+3FL2VAWFnBJW/5xNaYX7iNcxgNhoBwmx4bRPjmZA94SDb/zhtI4No3VsODER9iO2MJimSW5hBdv2FbJ9r2865Yff7a5eqbF1bBhd2/paDrq1i6VTSozGPJzAFAZERJqImEgH6R0dpHeMrz5mmiZFpU725JayP6+MiDDrwTf7cOJjwho8ndEwDJLiIkiKi2BEb99gSJfbw66sErbvK/KFhH1FrP45G/AtxNQ+OZpubWPplBpDuMOGARiG71rGwWv6fj/sZ4xfneP7Oa/URWlJBWF2Kw67lTC7BYfdqumZIaIwICLShBmGQavoMFpFh1UvkBQodpuVbu1a0a1dKybRAYDCUifbDwaD7fuK+Pqn/XxycCGmQLBaDBwHg0GYrWZQ8AWHwx+zYLdVfVl9362+3x22Q4/Zahy3HvYcC1aLoQGVKAyIiMgxtIpyMLBHEgN7+AZEer0mOQXluD1eTBO8pq9b4fCfvaaJaQJm1c9Vx30tHSYQExNOTm4pTpeHSrcHp9NDpdvr+93lweny4HR5q3+udHspLXdVn1N1nttjNurvs1oMoiPtxEY6iDn4/de/x0Q6iImyExPhICLMekKGB4UBERGpM4vFIKV1ZKOvU7WIU2N5TROPx4vL7cXp9n2v/vL8+ncPLlfN4xVOD8VlTorLXBSXOdleUERRmZOKo2yZbbMavnAQaa/+HhVmx2o1fF8WCzargdViYLNaany3Wg//2YLt4HerxaB9UjSR4aF7Sw76nb1eL/Pnz+e1116jqKiIwYMHc88999CpU6cjnp+fn8+cOXP48ssvMU2TM844gzvvvJOoqKggl1xERJoai2FgsVmx26w0PqIc4nJ7DgYEF0VlTorLnBSVuqqDQ9HB71kHyiivdOP2+kJJQ1sqBqUlMXNqPz/+BfUT9DDw5JNP8vLLL/Pggw+SkpLC3Llzufrqq3n//fcJC6s9leXGG2+koqKCxYsXU1JSwl133cXs2bOZO3dusIsuIiIthN1mpXWsldax4fV6nmmaB1srTNweE4/Xi8dr4vZUffeFBo/Xd47H6wsQHZJDuytmUMOA0+nk+eef59Zbb2Xs2LEAzJs3j9GjR7N8+XLOPffcGuevWbOGVatW8f7779O9e3cA5syZw/Tp05k1axZt27YNZvFFRESOyTAMrIaB1QIOe6hLU3dBncOxadMmysrKGDFiRPWx6OhoevfuzerVq2udv3r1ahISEqqDAMDgwYMxDOOI54uIiEj9BbVlICsrC4CUlJQax5OTk8nMzKx1fnZ2NqmpqTWOORwO4uPj2b9/f63zjyUhwb9NMElJMX69nqhO/U316X+qU/9SffpfQ+s0qGGgvLwc8L2hH87hcOB0Oo94/q/PrTq/srKyXvfOyyvB623cFJQq/hoFK4eoTv1L9el/qlP/Un36X1WdWixGvT8AB7WbIDzcNxDj12/8TqeTyMja40DDw8OPGBKOdr6IiIjUX1DDQJs2bQBf8//hsrOza3UdAKSmptY61+l0kp+fX6v7QERERBomqGGgZ8+eREdHs2rVqupjJSUlbNy4kWHDhtU6f+jQoeTk5LB9+/bqY1UDB4cMGRL4AouIiLQAQR0z4HA4mDZtGvPmzSMxMZH27dszd+5cUlJSOO200/B4PBw4cICYmBjCw8MZMGAAgwYNYtasWfz1r3+loqKC2bNnc8455xyxJUFERETqL+jbQ914441ccMEFzJ49m0suuQTTNHnuuedwOBxkZmYyevRoli1bBvjma86fP58OHTpwxRVXcMMNNzBy5EjuvffeYBdbRETkhGWYVTtInOA0m6BpU536l+rT/1Sn/qX69L9mM5tAREREmh6FARERkRZOYUBERKSFUxgQERFp4RQGREREWjiFARERkRZOYUBERKSFC+oKhKFksRhN+nqiOvU31af/qU79S/XpfxaL0aB6bTGLDomIiMiRqZtARESkhVMYEBERaeEUBkRERFo4hQEREZEWTmFARESkhVMYEBERaeEUBkRERFo4hQEREZEWTmFARESkhVMYEBERaeEUBurB6/Xy+OOPM2bMGAYMGMBVV13Fzp07Q12sZmv79u2kp6fX+nrttddCXbRmaeHChVxyySU1jm3atInLLruMk046iXHjxrFo0aIQla75OVJ93nLLLbVer6ecckqIStj0lZSUcP/99zNhwgQGDhzI1KlT+fjjj6sf1+uz/o5Xpw1+jZpSZ48//rg5YsQI87PPPjM3bdpkXnPNNebEiRPNioqKUBetWVq2bJk5aNAgMzs7u8ZXeXl5qIvW7Pz73/8209PTzYsvvrj6WF5enjls2DDzz3/+s7l161bzzTffNPv372+++uqrISxp83Ck+jRN05w8ebI5f/78Gq/XvLy8EJWy6Zs5c6Y5adIk8+uvvzZ37NhhPvXUU2bPnj3NFStW6PXZQMeqU9Ns+Gu0xexa2FhOp5Pnn3+eW2+9lbFjxwIwb948Ro8ezfLlyzn33HNDW8BmKCMjg27dupGUlBTqojRbWVlZ3HPPPXz77bd06dKlxmP/+c9/sNvt3HvvvdhsNrp168bOnTt55plnuPDCC0NU4qbtWPXpdDrZsWMH/fr102u2DnJycvjwww9ZuHAhI0eOBGDGjBl88803vP766/To0UOvz3o6Xp0OHjy4wa9RdRPU0aZNmygrK2PEiBHVx6Kjo+nduzerV68OYcmar82bN9OtW7dQF6NZ27BhA1FRUbz77rsMGDCgxmOrV69myJAh2GyHMv/w4cPZvXs3WVlZwS5qs3Cs+ty2bRtut5vu3buHqHTNS0REBM8++yxDhgypcdwwDAoLC/X6bIDj1WljXqMKA3VU9eJMSUmpcTw5OZnMzMxQFKnZy8jIIDs7m4svvpiRI0dy6aWX8tVXX4W6WM3KhAkTmDt3Lh06dKj1WFZWFqmpqTWOJScnA+g1exTHqs/Nmzdjs9lYuHAhEyZMYNKkScyZM4fi4uIQlLTpi46O5pRTTiE6Orr62Lp161i5ciXjxo3T67MBjlenjXmNKgzUUXl5OQAOh6PGcYfDgdPpDEWRmrWysjL27NlDcXExN998M8888wx9+/blmmuuYcWKFaEu3gmhoqLiiK9XgMrKylAUqVnbsmULAO3bt+fpp5/m9ttv57PPPuOPf/wjXq83xKVr+rZt28bMmTMZMGAAF110kV6ffvDrOm3Ma1RjBuooPDwc8PUbHv4CdjqdREZGhqpYzVZkZCTff/89dru9uj779u3Ltm3beO6556r7w6ThwsPDawXVqt/1mq2/WbNm8Yc//IHY2FgA0tLSSExM5OKLL2bdunUMGjQoxCVsur777jtmzpxJ27ZtWbhwIXa7Xa/PRjpSnTbmNaqWgTpq06YNANnZ2TWOZ2dn1+o6kLqJioqq9ckgLS2Nffv2hahEJ5bU1NQjvl6rHpP6sVgs1f/IVklPTwfUrH0s7777LtOnT6dPnz4sWbKEuLg4QK/PxjhanTbmNaowUEc9e/YkOjqaVatWVR8rKSlh48aNDBs2LIQla57Wrl3LwIEDWb9+fY3jP/30Ez169AhRqU4sQ4cO5fvvv8ftdlcfW7lyJZ07d9Zo+Aa4/vrr+eMf/1jjWNXrV4MKj2zp0qXcfvvtnHnmmSxcuLBGX7denw1zrDptzGtUYaCOHA4H06ZNY968eXz00Uf8/PPP3HzzzaSkpHDaaaeFunjNTt++fWnfvj13330333//Pdu2bWPOnDmsXbu21otZGub888+nvLycu+66i61bt/L222/zwgsv8Ic//CHURWuWJk+ezCeffMIzzzzDrl27+Oyzz7jrrrs4/fTTqz99ySH79+/n7rvvZvjw4dx2220UFBSQk5NDTk4OBQUFen02wPHqtDGvUY0ZqIcbb7wRj8fD7NmzKS8vZ/DgwTz33HO1mrrl+Ox2O8899xxz587lxhtvpKioiD59+vD888/Tu3fvUBfvhJCQkMCiRYu47777OO+880hKSmLWrFlMnTo11EVrlqZMmYLX6+W5557jySefJCYmhilTpnDzzTeHumhN0ocffkh5eTkrV65kzJgxNR4bNGgQL7/8sl6f9VSXOm3oa9QwTdMMVMFFRESk6VM3gYiISAunMCAiItLCKQyIiIi0cAoDIiIiLZzCgIiISAunMCAiItLCaZ0BkRbozjvv5K233jrmOZs3bw5SaXwuu+wy3G43L7/8clDvKyIKAyItVuvWrXniiSdCXQwRaQIUBkRaKLvdzpAhQ0JdDBFpAjRmQESO6rLLLuPWW2/lmWeeYdSoUQwaNIgZM2awe/fuGuft2LGDG2+8kdGjRzNgwACmTZvGd999V+Oc0tJS7r//fsaOHcuAAQM499xz+e9//1vrni+88AITJkygX79+nHfeeXz99dfVj5mmyfz585k0aRJ9+/Zl7NixzJkzh7KyssBUgEgLoTAg0oK53e4jfnm93upzvvjiC1599VXuvPNOZs+ezaZNm7jssssoLS0FYOvWrUydOpUdO3Zwxx138PDDDwNw5ZVX8s033wDg9Xr5/e9/z+uvv87ll1/O/Pnz6d27NzfddBOff/559b1++OEH3nnnHW677Tbmzp1LRUUF119/PQcOHABg4cKFLF68mOnTp/Pss88yffp0/vOf/3D//fcHq8pETkjqJhBpobKysujTp88RH7vqqqu44447AN8n+tdee41OnToB0KNHD6ZOncqbb77JZZddxvz587HZbPz73/+u3kt9woQJnHXWWTz88MO89dZbfPnll3z//ffMmzePyZMnAzBmzBj27dvHV199xdixYwGwWq0sWrSI1q1bAxAWFsa1117LunXrmDBhAqtXr2bAgAFceumlAJx88snExMRUBxMRaRiFAZEWKiEhgYULFx7xscP3kz/ppJOqgwBAnz596NChA9999x2XXXYZq1at4pRTTqkOAuAbj3DWWWcxf/58iouLWb16NRaLhUmTJtW4zwsvvFDj927dulUHAYCOHTsCUFRUBMCoUaN48MEHmTZtGqeeeiqjRo3i/PPPb1gFiEg1hQGRFspms9GvX7/jnpeSklLrWEJCAoWFhQAUFhbWCA9VEhMTASguLiY/P59WrVpht9uPea+IiIgav1ssvp7Mqm6LK6+8kujoaN544w0efvhhPB4PnTp14tZbb+W000477t8iIkemMQMickz5+fm1juXk5JCQkABAq1atyMnJqXVOdnY2AHFxccTExFBUVITb7a5xzubNm1m3bl2dy2IYBhdccAGvvPIKK1euZN68eURGRnLzzTdX309E6k9hQESOae3ateTm5lb//uOPP7J3715OPvlkAIYOHcoXX3xR3ZQPvoGJy5Yto3fv3kRGRjJkyBA8Hg+ffPJJjWv/9a9/Ze7cuXUuy8UXX8zf/vY3AGJjY5k8eTIzZszA7XaTlZXVmD9TpEVTN4FIC+VyuVi9evVRH09LSwOgsrKSq6++muuuu47S0lIee+wxunfvzjnnnAPAzJkz+eKLL5g2bRrXXnstYWFhLFmyhN27d1ePSRg3bhwDBw7kz3/+M1lZWXTq1In//ve/rFu3jkWLFtW5zEOHDmXRokW0atWKIUOGkJeXx/z58+nSpQu9evVqRG2ItGwKAyIt1IEDB/jd73531MefffZZwDeAcNy4ccyePRvTNBk/fjx33HEHDocD8M0ueOmll3j00Ue5++67Aejfvz///Oc/GTp0KOCbJfDcc88xd+5cnn76aUpLS+nRowdPP/10dQtDXdx0001ERETwzjvv8NxzzxEZGcmoUaO47bbbsNn0z5lIQxmmaZqhLoSINE3aL0CkZdCYARERkRZOYUBERKSFUzeBiIhIC6eWARERkRZOYUBERKSFUxgQERFp4RQGREREWjiFARERkRbu/wPQBwxQt4eYGAAAAABJRU5ErkJggg==\n", |
|
|
2374 |
"text/plain": [ |
|
|
2375 |
"<Figure size 576x576 with 1 Axes>" |
|
|
2376 |
] |
|
|
2377 |
}, |
|
|
2378 |
"metadata": {}, |
|
|
2379 |
"output_type": "display_data" |
|
|
2380 |
} |
|
|
2381 |
], |
|
|
2382 |
"source": [ |
|
|
2383 |
"plt.figure(figsize=(8,8))\n", |
|
|
2384 |
"plt.plot(acc_train, label='Training Accuracy')\n", |
|
|
2385 |
"plt.plot(acc_val, label='Validation Accuracy')\n", |
|
|
2386 |
"plt.legend()\n", |
|
|
2387 |
"plt.title('Model accuracy')\n", |
|
|
2388 |
"plt.xlabel('Epochs')\n", |
|
|
2389 |
"plt.ylabel('Accuracy')\n", |
|
|
2390 |
"plt.savefig('results/accuracy_1120.png')\n", |
|
|
2391 |
"plt.show()\n", |
|
|
2392 |
"\n", |
|
|
2393 |
"plt.figure(figsize=(8,8))\n", |
|
|
2394 |
"plt.plot(loss_train, label='Training Loss')\n", |
|
|
2395 |
"plt.plot(loss_val, label='Validation Loss')\n", |
|
|
2396 |
"plt.legend()\n", |
|
|
2397 |
"plt.title('Model Loss')\n", |
|
|
2398 |
"plt.xlabel('Epochs')\n", |
|
|
2399 |
"plt.ylabel('Loss')\n", |
|
|
2400 |
"plt.savefig('results/loss_1120.png')\n", |
|
|
2401 |
"plt.show()" |
|
|
2402 |
] |
|
|
2403 |
}, |
|
|
2404 |
{ |
|
|
2405 |
"cell_type": "markdown", |
|
|
2406 |
"id": "68aaf823", |
|
|
2407 |
"metadata": {}, |
|
|
2408 |
"source": [ |
|
|
2409 |
"Confusion matrix" |
|
|
2410 |
] |
|
|
2411 |
}, |
|
|
2412 |
{ |
|
|
2413 |
"cell_type": "code", |
|
|
2414 |
"execution_count": 74, |
|
|
2415 |
"id": "06a6efbc", |
|
|
2416 |
"metadata": {}, |
|
|
2417 |
"outputs": [ |
|
|
2418 |
{ |
|
|
2419 |
"data": { |
|
|
2420 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG1CAYAAAARLUsBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABVPklEQVR4nO3dd1gUV/s38O/CgpSFWFBQkS72KDYSe4kaa8TYe6+AUYNRY0liSYwaFWyoWKKINfYSf2qMGsXeCwIiliiKSgcpu+8fvu6TFXQRdmeWne/nuea6Hs7snL1vdzG355w5I1OpVCoQERERSYiJ2AEQERERCY0FEBEREUkOCyAiIiKSHBZAREREJDksgIiIiEhyWAARERGR5MjFDkBXsuLviR2CaCzLNRY7BCIiElh25mNB30+X/501s3PTWV8FxREgIiIikhyjGQEiIiIiPVLmiB2BTrEAIiIiIu1USrEj0ClOgREREZHkcASIiIiItFMa1wgQCyAiIiLSSsUpMCIiIqKijSNAREREpB2nwIiIiEhyOAVGREREVLRxBIiIiIi040aIREREJDmcAiMiIiIq2jgCRERERNrxLjAiIiKSGm6ESERERFTEcQSIiIiItDOyKTCOABEREZF2KqXujo8QFxeH8ePHw9vbG15eXhg+fDgiIyPV52/fvo1+/fqhVq1aaNasGUJCQvLVLwsgIiIiMkgqlQrDhg3D06dPERISgu3bt8PCwgIDBw5EamoqXr58iYEDB8LZ2Rk7duzA2LFjERgYiK1bt2rtmwVQPmVlZSFw5Xq06jIA9Vp2xmC/SbgVEaU+n/H6NRYHr0Pb7oNR7wsfdB04BgeP/C1ixMIYMrg3bt88heTEKJw6sQefedcROyTBSDl3gPkzf+nmL9nclTm6O/IpPj4e7u7umD17NqpXrw53d3eMHj0a8fHxuHv3LrZu3QozMzP88MMPcHd3h4+PDwYNGoSVK1dq7ZsFUD7NDVyJ0G27MaRfNyyaMw0WFsUw2O87/Ps0DgAwc94SbP5jH/p174zAn6ejds3qCJjxCw4dPSFy5PrTt29XLFv6CzaF7UD3HsORkJCIA/tD4eJSQezQ9E7KuQPMn/lLN38p5y7GFFjp0qWxcOFCuLq6AnhTEIWEhKBMmTLw9PTEhQsXULduXcjl/1vS7O3tjYcPHyIuLu6DfctUKpWqYH8ShiUr/p7e+k5OSUXj9j0xbtQgDOjZBcCbEZ9GbXtgWP8e6PZVWzTp0As/TvoGX3dso75u1LfT8SohEZtXL9ZbbABgWa6xXvt/n6i74Tj051/w9ZsMAJDL5bh14wT2HziCceOnixKTUKScO8D8mb908zek3LMzHwv6fq9v/6WzvopVaf7R10yaNAk7d+6Eubk5li9fjkaNGqFjx45o2LAhJk2apH5ddHQ02rVrhy1btqBWrVrv7U/Qu8AyMzNx6NAhXLhwAU+ePMHr169hZWUFBwcH1K9fH61bt9ao4gyFpYUFwlYtRDkHe3Wb3FQOmQzIzMxCalo6unduhwb1a2tc5+rkiBu3I4QOVxAeHq5wcamAffsOq9uys7Nx4OBRtGnz8V/sokTKuQPMn/lLN38p5w5Ap3eBJSUlISkpKVe7ra0tbG1t87xmyJAh6NOnDzZt2oQxY8YgNDQUGRkZMDc313jd259fv379wRgEqzYePHiAIUOGID4+HlWrVkWZMmVQsmRJZGZmIjIyErt370ZQUBBWrVoFR0dHocLKF7ncFFU8PQAASqUS/z59hqUhGwGZDB3atECF8mUxPcBP45qcnBycDL8AVyfjHBb1rOgGAIiKvq/RHhPzAO5uzjAxMYHSyG6ZfEvKuQPMn/lLN38p5w5Ap88CW79+PZYsWZKr3dfXF35+fnlcAVSsWBEAMHv2bFy9ehUbNmyAhYUFMjMzNV739mcrK6sPxiBYAfTjjz/C1dUVO3fuhEKhyHU+JSUF48aNw8yZMxEcHCxUWB9txbowLAvZCADwHdoPrs55F2tLQzYiJvYhJsydIWR4grGxffMZJienaLQnJ6fA1NQU1tZWuc4ZCynnDjB/5i/d/KWcu64NGDAAPj4+udrfHf159uwZzp49iw4dOkAmkwEATExM4OHhgbi4ODg4OODZs2e5rgEABweHD8YgWAF08eJFbN26Nc/iBwAUCgUmTJiA3r17CxVSgbRs0gD1vGrg3KVrWLF2E7KysuE3vL/Ga0I2bsXK9ZsxoFcXNGv0mUiR6tfbL+K7S8jethvzv4KknDvA/Jm/dPOXcu4AdDoF9qGprv968uQJvv32W5QtWxZ169YF8Oau7Fu3bqFp06awt7dHaGgosrOz1UtowsPD4eLigtKlS3+wb8HuArO1tdW6Ivvx48dah6zEVsnDFfW8PsWYIX3Rp9tXWBu2HVnZ2QDe/FL8GrgSC5evRc8uHfDtmKEiR6s/SYnJAAAbG82CVqGwRk5ODlJT08QISxBSzh1g/sxfuvlLOXcAUKlydHbkV40aNeDt7Y3p06fjwoULuHv3Lr777jskJCRg4MCB+Prrr5Geno4pU6YgKioKu3btwrp16zBixAitfQtWAHXt2hWTJk3C5s2bce/ePaSlpSE7OxtpaWm4f/8+tm7diu+//x5dunQRKqR8i3/xEjv3H8715a7s6Y7MzCwkJiZBqVRi8sz5+H3LTgzr3wNTJ4xR/6vAGEVGxQAA3FydNNpdXZ0QcTdajJAEI+XcAebP/KWbv5RzF4uJiQmCgoJQp04dfPPNN+jWrRsSExMRGhqKChUqoFSpUggJCcGDBw/g4+ODwMBATJgwIV+1hGBTYH5+fpDJZPj111+Rnp6e67y1tTX69OmDsWPHChVSviWlpGLanIUAAJ/2rdXtp89dQskSxVGyRHHMC1qFfX8eQ4DfMPWt8sYsMvIeHjx4jE6dvsT/HXmz15FcLke7ti1x4OBRkaPTLynnDjB/5i/d/KWcOwCdLoL+GJ988glmzpz53vM1atTA5s2bP7pfwQogmUwGPz8/jBgxAnfu3EFcXBzS09NhYWEBBwcHVK5cOdetbIbCzbkCWjVriHlBq5CVlQ3Hcg448vc/2HvoKGZOGYc7kfewcdtufF7PC7WqV8HVG7fV15qYmqBGlUoiRq8/v85bisDFs5CQkIjTp89j9KiBsLMricWBq8QOTe+knDvA/Jm/dPOXcu7G9jBUboSYT+kZGVi+JhSHjp7A8xcv4e7ihOEDeqJ188ZYGrIRy9eE5nmdpaUFzh/ZqdfYxNoIEQDGfTMCfr5DYGdXElev3kTAxJ8QfvaiaPEIScq5A8yf+Us3f0PJXeiNEDMu7tJZXxZ1Ouusr4JiAWQExCyAiIhIHCyACsfwtl0mIiIiw/MRDzEtClgAERERkXYiLYLWFz4NnoiIiCSHI0BERESknZHdBcYCiIiIiLTjFBgRERFR0cYRICIiItKOU2BEREQkOUZWAHEKjIiIiCSHI0BERESklUrFjRCJiIhIajgFRkRERFS0cQSIiIiItDOyfYBYABEREZF2nAIjIiIiKto4AkRERETacQqMiIiIJIdTYERERERFG0eAiIiISDtOgREREZHkcAqMiIiIqGgzmhEgy3KNxQ5BNOn/nhQ7BFFJ+bMnIhKMkY0AGU0BRERERHpkZGuAOAVGREREksMRICIiItKOU2BEREQkOZwCIyIiIiraOAJERERE2nEKjIiIiCSHU2BERERERRtHgIiIiEg7ToERERGR5BhZAcQpMCIiIpIcjgARERGRdiqV2BHoFAsgIiIi0o5TYERERERFG0eAiIiISDsjGwFiAURERETacSNEIiIioqKNI0BERESkHafAiIiISHKM7DZ4ToEV0pDBvXH75ikkJ0bh1Ik9+My7jtgh6UVWVhYCV65Hqy4DUK9lZwz2m4RbEVHq8xmvX2Nx8Dq07T4Y9b7wQdeBY3DwyN8iRqx/Uvns34f5M3+p5i/l3I0JC6BC6Nu3K5Yt/QWbwnage4/hSEhIxIH9oXBxqSB2aDo3N3AlQrftxpB+3bBozjRYWBTDYL/v8O/TOADAzHlLsPmPfejXvTMCf56O2jWrI2DGLzh09ITIkeuHlD77vDB/5i/V/KWcO5RK3R0GQKZSGceYlty8vODvGXU3HIf+/Au+fpPfxCCX49aNE9h/4AjGjZ8uWBzp/57Ua//JKalo3L4nxo0ahAE9uwB4M+LTqG0PDOvfA92+aosmHXrhx0nf4OuObdTXjfp2Ol4lJGLz6sV6jc+yXGO99p8XQ/nsxcL8mb9U8zek3LMzHwv6fukh3+qsL8sh83XWV0FxDVABeXi4wsWlAvbtO6xuy87OxoGDR9GmTXMRI9M9SwsLhK1aiHIO9uo2uakcMhmQmZmF1LR0dO/cDg3q19a4ztXJETduRwgdrt5J6bPPC/Nn/lLNX8q5GyMWQAXkWdENABAVfV+jPSbmAdzdnGFiYgKlgQzzFZZcbooqnh4AAKVSiX+fPsPSkI2ATIYObVqgQvmymB7gp3FNTk4OToZfgKuT8Q0LS+mzzwvzZ/6ANPOXcu4ARNsHKCUlBYGBgThy5AhevXoFV1dXjBkzBi1btgQAjB8/Hvv379e4xt7eHidOfHgJBgugArKxVQAAkpNTNNqTk1NgamoKa2urXOeMwYp1YVgWshEA4Du0H1ydHfN83dKQjYiJfYgJc2cIGZ4gpPrZv8X8mT8gzfylnDsAqJTirJiZPHkyIiIiMGvWLJQvXx4HDx6Er68v1qxZg88//xwRERHw9/dH9+7d1deYmppq7ZcFUAHJZDIAwLtLqN62G+u/Alo2aYB6XjVw7tI1rFi7CVlZ2fAb3l/jNSEbt2Ll+s0Y0KsLmjX6TKRI9Ueqn/1bzJ/5A9LMX8q5i+X58+c4fPgwgoOD0aBBAwDAyJEjcebMGWzfvh116tTB/fv3UaNGDZQuXfqj+ha0AOrdu7f6i6JNaGionqMpnKTEZACAjY0Cz57Fq9sVCmvk5OQgNTVNrND0qpKHKwCgntenSEtLx9qw7Rg5uDfM5HKoVCrMC1qF37fsRM8uHfDtmKEiR6sfUv3s32L+zB+QZv5Szh2AKHdvWVpaYtWqVahdW3ONqUwmQ2JiIqKjo5GdnQ0PD4+P7lvQ2+CbNm2KS5cuISEhAU5OTh88DF1kVAwAwM1VM1ZXVydE3I0WIyS9iX/xEjv3H871y13Z0x2ZmVlITEyCUqnE5Jnz8fuWnRjWvwemThiT72K3qJHSZ58X5s/8AWnmL+XcAbxZA6SjIykpCY8ePcp1JCUlabylQqFAkyZNoFAo1G1XrlxBeHg4mjVrhoiICMjlcgQHB6NFixZo1aoVZs2aheTkZK3pCDoCNGLECCgUCixYsADBwcFwdMx7/UhREBl5Dw8ePEanTl/i/468WWgll8vRrm1LHDh4VOTodCspJRXT5iwEAPi0b61uP33uEkqWKI6SJYpjXtAq7PvzGAL8hqlvlTdWUvrs88L8mb9U85dy7rq2fv16LFmyJFe7r68v/Pz88rjijejoaPj6+qJmzZro0aMHFi1aBABwdHTEihUrEBsbi7lz5+LOnTv4/fffYWLy/nEewdcA9enTBydPnsSiRYswf774+wAUxq/zliJw8SwkJCTi9OnzGD1qIOzsSmJx4CqxQ9MpN+cKaNWsIeYFrUJWVjYcyzngyN//YO+ho5g5ZRzuRN7Dxm278Xk9L9SqXgVXb9xWX2tiaoIaVSqJGL1+SOWzfx/mz/ylmr+Uc4cOF0EPGDAAPj4+udptbW3fe8358+fh6+uLcuXKITg4GGZmZpgwYQJGjBihvs7T0xN2dnbo2bMnrly5kmvq7L9EWQT9008/4ebNm2K8tU6tCF4PS0sL+PkOwVj/Ybh69Sbate+DmJgHYoemc3OmfYvla0KxesMWPH/xEu4uTvht1hS0bt4YS0M2QqVS4cz5yzhz/rLGdZaWFjh/ZKdIUeuPlD77vDB/5i/V/KWcuy7XANna2n6w2HnXnj17MGXKFNSvXx+BgYHqKTETE5Nc/VSq9OYf3U+ePPlgn9wJ2gjoeydoQyfGTtBERGITeifotMUjddaX1dgV+X7t3r17ERAQgI4dO2LOnDkwMzNTnxszZgyUSiWWL1+ubgsPD8eAAQOwZ88edTGUFz4LjIiIiAzS06dPMW3aNHh7eyMgIAAJCQl4/vw5nj9/joSEBLRr1w7Hjh3DypUr8eDBAxw/fhxTpkxBmzZtPlj8ANwHiIiIiPJDhAmjw4cPIz09HeHh4WjcWHO0v3bt2ggLC4NSqcTq1auxdOlS2NjYoH379hg3bpzWvjkFZgQ4BcYpMCKSHsGnwH4bprO+rMaLv2icU2BEREQkOZwCIyIiIu1EehaYvrAAIiIiIu1Eehq8vnAKjIiIiCSHI0BERESkHafAiIiISGpUIjwNXp84BUZERESSwxEgIiIi0o5TYERERCQ5vAuMiIiIqGjjCBARERFpxykwIiIikhzeBUZERERUtHEEiIiIiLTjFBgRERFJDu8CIyIiIiraOAJERERE2nEKjIiIiKTG2J4FxgLICJRy/kLsEESVFrlX7BBEZVWxo9ghEBEVOSyAiIiISDtOgREREZHkGFkBxLvAiIiISHI4AkRERETaGdk+QCyAiIiISDtOgREREREVbRwBIiIiIq1URjYCxAKIiIiItDOyAohTYERERCQ5HAEiIiIi7fgoDCIiIpIcToERERERFW0cASIiIiLtjGwEiAUQERERaaVSGVcBxCkwIiIikhyOABEREZF2nAIjIiIiyTGyAohTYERERCQ5HAEiIiIirfgsMCIiIpIeIyuAOAVWSEMG98btm6eQnBiFUyf24DPvOmKHJIq27Vri8dNrYoehN1lZ2QhcuwWt+/qhfseBGBIwE7ciY/J87cadB+EzLEDgCIUn9e8+85du/lLO3ZiwACqEvn27YtnSX7ApbAe69xiOhIREHNgfCheXCmKHJqj63rWxKuQ3yGQysUPRm7krfsem3X9iSI9OWDRjPCwsimFIwEz8G/dc43VHT53HglWhIkUpHKl/95m/dPOXcu5Q6vAwADKVkexsJDcvL/h7Rt0Nx6E//4Kv3+Q3McjluHXjBPYfOIJx46cLFoeVWTHB3uu/zM3NMWrMQEydNg5pqekwMzdDOfsagscRf2u7XvtPTk1Dk27D8c3gXhjQtT0AION1Jhp3HYahPb/CiD5dkJqWjhUb/8D6Hftho7BCmZIlsHPVPL3G9ZZVxY6CvM9/Gcp3XyzMX7r5G1Lu2ZmPBX2/hD4tdNZX8dBjOuuroAQdATp79iwCAgIwfPhwbNq0CTk5ORrnExMT0adPHyFDKjAPD1e4uFTAvn2H1W3Z2dk4cPAo2rRpLmJkwmnVuinGTxiFad//guAVv4sdjt5YWhTDpsCZ6NymqbpNLjeFDDJkZmUDAP449Bf2HzuFXyaNQbPPjHs4XOrffeYv3fylnLsxEqwAOnbsGAYNGoTnz58jKysLM2fORN++fZGUlKR+TVZWFi5duiRUSIXiWdENABAVfV+jPSbmAdzdnGFiYvyzi5cuXsOn1ZpgxfL1RrdF+n/JTU1RxcMVn9gooFQq8ejJM0xfEAzIgA4tGwEAmn1eBwfWL0a75g1Fjlb/pP7dZ/7SzV/KuQN4swhaV4cBEOzTWrZsGcaOHYt169Zh7dq1CAsLw8OHDzFo0CCkpaUJFYbO2NgqAADJySka7cnJKTA1NYW1tZUYYQnqyZM4JCYmix2GoIJD/0DbAWOx98hJDO7eCa4VygEAKpS1h0Uxc5GjE4bUv/vMX7r5Szl3AEa3BkiwAig6Ohrt2rVT/1yrVi2sX78ejx49gr+/f67pMEP3dsHvuyMfb9uVSgP5hEmnWjSshzXzp2FU368RHPoHgtZtFTskwUn9u8/8pZu/lHM3RoIVQCVKlMDjx5oLttzd3bFkyRKcPXsW33//fZGaRkn6/yMfNjYKjXaFwho5OTlITS16o1qkXSU3Z9T7tCpG9++K3p3bYN22fcjKzhY7LEFJ/bvP/KWbv5RzB95shKirwxAIVgB98cUXmDFjBk6cOKEx5VWvXj3Mnj0bu3fvxsSJE4UKp9Aio97sAePm6qTR7urqhIi70WKERHoS/zIBO/88jtS0dI32yu4uyMzKQmJSynuuNE5S/+4zf+nmL+XcAYg2BZaSkoI5c+agRYsW8PLyQpcuXXD06FH1+du3b6Nfv36oVasWmjVrhpCQkHz1K1gBNHbsWHh6emLEiBG5Fjp36tQJv/76K65cuSJUOIUWGXkPDx48RqdOX6rb5HI52rVtiWPHTokYGelaUkoqpi8IxuGTZzXaz1y6jpLFbVGyuK1IkYlD6t995i/d/KWcu5gmT56M48ePY9asWdi1axdat24NX19fnDlzBi9fvsTAgQPh7OyMHTt2YOzYsQgMDMTWrdqXJwj2KAxra2sEBQUhPj4elpaWuc537NgR9evXx+HDh/O42jD9Om8pAhfPQkJCIk6fPo/RowbCzq4kFgeuEjs00iE3p/Jo1ag+5q/ciKysbDiWLYOj/5zH3iMn8dOEEcZ/50cepP7dZ/7SzV/KuYsxdfX8+XMcPnwYwcHBaNCgAQBg5MiROHPmDLZv346KFSvCzMwMP/zwA+RyOdzd3REbG4uVK1eie/fuH+xb8GeB2dnZvfecvb09+vXrJ2A0hbMieD0sLS3g5zsEY/2H4erVm2jXvg9iYh6IHRrp2OyJo7F84w6EbNmN5y8T4O5UHgumfoPWTbzFDk0UUv/uM3/p5i/l3MW4e8vS0hKrVq1C7dq1NdplMhkSExNx4cIF1K1bF3L5/8oZb29vLF++HHFxcbC3t39v39wJ2giItRO0odD3TtCGToydoIlIfELvBP2iY1PtL8ons9C9GvsAvmVrawtb2w8vK7hy5Qp69uyJqVOnYsuWLWjYsCEmTZqkPv/2rvMtW7agVq1a7+2HT4MnIiIiQa1fvx5LlizJ1e7r6ws/P7/3XhcdHQ1fX1/UrFkTPXr0wPr162FurrkH29ufX79+/cEYWAARERGRdjqcAhswYAB8fHxytX9o9Of8+fPw9fVFuXLlEBwcDDMzM1hYWCAzM1PjdW9/trL68MaULICIiIhIK5UOC6D8THX91549ezBlyhTUr18fgYGBUCje7MXk4OCAZ8+eabz27c8ODg4f7FN6t68QERFRkbF3715MnDgRbdu2RXBwsLr4Ad7sJXjx4kVk/2dD2vDwcLi4uKB06dIf7JcFEBEREWknwkaIT58+xbRp0+Dt7Y2AgAAkJCTg+fPneP78ORISEvD1118jPT0dU6ZMQVRUFHbt2oV169ZhxIgRWvvmFBgRERFppcspsPw6fPgw0tPTER4ejsaNG2ucq127NsLCwhASEoLZs2fDx8cHpUuXxoQJE9ClSxetffM2eCPA2+B5GzwRSY/Qt8E/b6W72+BL/9/fOuuroDgCRERERFqJMQKkTyyAiIiISCtjK4C4CJqIiIgkhyNAREREpJ1KJnYEOsUCiIiIiLTiFBgRERFREffeEaDt2z/u1uKuXbsWOhgiIiIyTCqlRKbApk6dmu9OZDIZCyAiIiIjZmxTYO8tgI4ePSpkHERERESCeW8BVL68dHdWJiIiIk0qqd4FFhcXh2XLluGff/7Bs2fPEBYWhn379qFatWro0KGDPmMkIiIikRnbFFi+7gKLiYnBV199hcOHD6NmzZrIysoCALx48QIBAQE4fPiwXoMkIiIi0qV8jQDNnTsXZcuWxYYNG2BhYYH9+/cDAH799VdkZGRg9erVaN26tV4DJSIiIvFI5i6w/zp79ixmz54NhUKBnJwcjXNdu3bFN998o4/YKJ/Ssl6LHYKopP409PR/T4odgmgsyzUWOwQiyVCpxI5At/I1BWZiYgKZLO/KLz09HSYm3E+RiIiIio58VS716tVDcHAwkpOT1W0ymQw5OTkIDQ1F3bp19RYgERERiU+llOnsMAT5mgILCAhAz5490bp1a9SvXx8ymQyrVq1CVFQUHj9+jE2bNuk7TiIiIhKRoRQuupKvESB3d3fs2LEDDRs2xMWLF2Fqaorw8HC4ublhy5YtqFy5sr7jJCIiItKZfO8D5OTkhPnz5+szFiIiIjJQxrYIOt8FEACcOHECZ86cQWJiIuzs7ODt7Y2GDRvqKzYiIiIyEMY2BZavAujFixcYM2YMrly5ArlcjuLFiyMhIQGrVq3C559/jqVLl8LS0lLfsRIRERHpRL7WAM2dOxcxMTFYsmQJrl+/jlOnTuHq1auYP38+rl69innz5uk7TiIiIhKRSiXT2WEI8lUA/fXXX5gwYQK++OIL9X5ApqamaN++Pb755hscOHBAr0ESERGRuFRK3R2GIN8bIZYsWTLPc87OzupngxEREREVBfkqgHx8fLBy5UqkpaVptGdlZWHDhg3o1KmTXoIjIiIiw6BUyXR2GIL3LoKeOHGi+v/n5OTg1q1baNmyJZo1awY7OzskJibi1KlTePXqFTw8PAQJloiIiMRhKGt3dEWmUuV9Z3+LFi3y34lMhqNHj+osqIKQm5cX9f2JxMKHoRJJU3bmY0HfL6JyW531VenOQZ31VVDvHQE6duyYkHEQERGRATO2fYB08hj3xMREXXRDREREBkql0t1hCPK1EeLr16+xdu1anDt3DpmZmXg7a6ZUKpGeno7o6Ghcv35dr4ESERER6Uq+CqB58+Zh48aNqFixIl69eoVixYqhZMmSuHv3LrKysuDv76/vOImIiEhEkpwCO3z4MPr374+9e/eiX79+qFGjBrZt24Y///wTZcuWRXZ2tr7jJCIiIhEZ223w+SqAXr58iaZNmwIAKleujGvXrgEAHBwcMGzYMO4ETUREREVKvqbAbGxskJGRAeDNzs9PnjxBSkoKFAqF+mciIiIyXsa2D1C+RoDq1q2LDRs2ICUlBU5OTrC2tlbv+3PlyhUoFAq9BmnIhgzujds3TyE5MQqnTuzBZ951xA5JUFLOX0q5Z2VlIXDlerTqMgD1WnbGYL9JuBURpT6f8fo1FgevQ9vug1HvCx90HTgGB4/8LWLE+ielzz8vUs5fqrkb211g+SqAfH19cePGDQwbNgwmJibo06cPvv/+e3Tq1AlBQUFo06aNvuM0SH37dsWypb9gU9gOdO8xHAkJiTiwPxQuLhXEDk0QUs5farnPDVyJ0G27MaRfNyyaMw0WFsUw2O87/Ps0DgAwc94SbP5jH/p174zAn6ejds3qCJjxCw4dPSFy5Pohtc//XVLOX8q5G5v37gT9rufPnyMiIgKNGjWCSqVCcHAwLl26hE8//RTDhw+Hubm5vmP9IDF2go66G45Df/4FX7/Jb2KQy3HrxgnsP3AE48ZPFzweoUk5f0PKXd87QSenpKJx+54YN2oQBvTsAuDNiE+jtj0wrH8PdPuqLZp06IUfJ32Drzv+7x9Do76djlcJidi8erHeYhNrJ2hD+vzFIOX8DSl3oXeCvuKsu+d+1ordo7O+Cipfa4AAoHTp0ihdujSAN4++GDly5Ee/WXp6Ou7evQtPT09YWlri1q1b2LBhA+Li4uDu7o6BAweifPmi8UgLDw9XuLhUwL59h9Vt2dnZOHDwKNq0aS5iZMKQcv5Sy93SwgJhqxainIO9uk1uKodMBmRmZiE1LR3dO7dDg/q1Na5zdXLEjdsRQoerd1L7/N8l5fylnDtgfGuA3lsAbd++/aM66tq16wfPR0VFYeDAgYiPj4eDgwPmzJmD0aNHo3z58vDw8MDx48exe/dubNq0qUg8XNWzohsAICr6vkZ7TMwDuLs5w8TEBEqlUoTIhCHl/KWWu1xuiiqeb34nlUol/n36DEtDNgIyGTq0aYEK5ctieoCfxjU5OTk4GX4Brk7GNy0gtc//XVLOX8q5G6P3FkBTp07NdycymUxrATRv3jzUrl0bo0ePRkhICEaNGoX27dtj9uzZkMlkyM7OxsSJE/HLL79g9erV+c9AJDa2bxZ+JyenaLQnJ6fA1NQU1tZWuc4ZEynnL+XcV6wLw7KQjQAA36H94OrsmOfrloZsREzsQ0yYO0PI8AQh5c8fkHb+Us4dMJzFy7ry3gJI1093P3fuHHbs2AE3Nzd899132Lt3L/r06QOZ7M2Qmlwux8iRI9GjRw+dvq++vI373SVUb9uN/V8BUs5fyrm3bNIA9bxq4Nyla1ixdhOysrLhN7y/xmtCNm7FyvWbMaBXFzRr9JlIkeqPlD9/QNr5Szl3AAazgaGuvLcA0vVanGLFiuH169cAADs7O/j4+MDCwkLjNcnJyUXmlvqkxGQAgI2NAs+exavbFQpr5OTkIDU1TazQBCHl/KWceyUPVwBAPa9PkZaWjrVh2zFycG+YyeVQqVSYF7QKv2/ZiZ5dOuDbMUNFjlY/pPz5A9LOX8q5GyOdPA0+Pxo0aIDZs2cjNjYWAPDzzz/D3d1dff7SpUuYMWMGmjcvGgvJIqNiAABurk4a7a6uToi4Gy1GSIKScv5Syz3+xUvs3H8411/ulT3dkZmZhcTEJCiVSkyeOR+/b9mJYf17YOqEMep/FRsbqX3+75Jy/lLOHXizCFpXhyEQrAD67rvvkJycjMDAwFzn9u3bh969e8POzg4BAQFChVQokZH38ODBY3Tq9KW6TS6Xo13bljh27JSIkQlDyvlLLfeklFRMm7MQh49r5nb63CWULFEcJUsUx7ygVdj35zEE+A3D2BEDxQlUIFL7/N8l5fylnDtgfM8Cy/dt8IVlb2+P3bt3Iz4+Ptc5b29vbN26FTVq1ChS/2r8dd5SBC6ehYSERJw+fR6jRw2EnV1JLA5cJXZogpBy/lLK3c25Alo1a4h5QauQlZUNx3IOOPL3P9h76ChmThmHO5H3sHHbbnxezwu1qlfB1Ru31deamJqgRpVKIkavH1L6/PMi5fylnLuxyfdGiIZOjI0QAWDcNyPg5zsEdnYlcfXqTQRM/AnhZy+KEosYpJy/oeSu740QASA9IwPL14Ti0NETeP7iJdxdnDB8QE+0bt4YS0M2Yvma0Dyvs7S0wPkjO/UWl1gbIQKG8/mLRcr5G0ruQm+EGF6ui876+uzfP3TWV0F9VAGUmZmJa9euIS4uDo0aNUJ6ejocHBz0GV++iVUAEYlNiALIUIlZABGJTegC6HTZr3XWV4MnO3TWV0HlewosLCwMixYtQmJiImQyGbZv347ffvsNALBkyRJYWlrqLUgiIiISl6EsXtaVfC2C3rVrF3788Ue0adMGwcHB6j0QfHx8cOnSJSxZskSvQRIREREFBwejV69eGm3jx49HpUqVNI4mTZpo7StfI0CrV69Gr169MGPGDOTk5KjbO3TogKdPnyIsLKzI3L1FREREH0/sbR5DQ0OxcOFCeHl5abRHRETA398f3bt3V7eZmppq7S9fBVBsbCwmTpyY57lq1arh+fPn+emGiIiIiigVxJkCi4uLw4wZM3D27Fm4urpqnMvMzMT9+/dRo0YN9QPb8ytfU2B2dnaIiMj7qc6RkZGws7P7qDclIiIiyo+bN2/C2toae/bsQc2aNTXORUdHIzs7u0APUc/XCFD79u2xbNky2Nvbo0WLFgDePPvkypUrCA4ORufOnT/6jYmIiKjoUOpw05ykpCQkJSXlare1tYWtra1GW4sWLdS1x7siIiIgl8sRHByMkydPwtTUFE2bNsXYsWNhY2PzwRjyVQD5+/sjMjISEydOVG9U2KdPH2RkZKBevXrw9/fPTzdERERURCl1OAW2fv36PG+g8vX1hZ+fX777iYyMBAA4OjpixYoViI2Nxdy5c3Hnzh38/vvvMDF5/0RXvgogc3NzBAcH4/Tp0zhz5gwSEhJgY2MDb29vNGnSpEjt3kxERETiGjBgAHx8fHK1vzv6o82ECRMwYsQI9XWenp6ws7NDz549ceXKFdSuXfu9137UozAaNGiABg0afFRwREREVPTpchF0XlNdBWFiYpKrn0qV3jx+58mTJx+8Nl8FUH72+fH19c1PV0RERFQEiX0bfF7GjBkDpVKJ5cuXq9uuXbsGAFoXRhe6ALK2toadnR0LICIiIhJUu3btMH78eKxcuRJffvkl7t27h59++glt2rRRjwS9T74KoJs3b+ZqS0lJwdmzZzF79mzMnj27YJETERFRkSDWPkAf0r59eyiVSqxevRpLly6FjY0N2rdvj3Hjxmm9ttBPg9+0aRN27tyJbdu2FaabQuPDUEmq+DBUImkS+mGoh+x76qyvL+M266yvgsrXRogf4uLigrt37+oiFiIiIiJBfNRdYO96/fo1Nm/e/NHbTxMREVHRYoiLoAsjXwVQ06ZNc+31k5OTg4SEBGRlZeH777/XS3BERERkGAxxDVBh5KsAet/ePwqFAi1atMDnn3+u06CIiIiI9ClfBVDLli1Rr149fPLJJ/qOh4iIiAyQ0rgGgPK3CPq7777D8ePH9RwKERERGSolZDo7DEG+CqCSJUvC1NRU37EQERERCSJfU2AjRozAzJkzcffuXVSsWBF2dna5XsN1QERERMarUJsGGqB8bYRYuXLlvC+WyaBSqSCTyXD79m2dB/cxuBEikfRcd64pdgiiikuyFjsEUX3x6rTYIYhK6I0Q/3DorbO+ujzdpLO+CipfI0C///67vuMgIiIiEsx7C6CWLVsiMDAQ1apVQ/369YWMiYiIiAyMUmYYi5d15b0F0OPHj/H69WshYyEiIiIDZWxrgAr9LDAiIiKiouaDa4DeffwFERERSZOkngXm6+sLMzMzrZ3IZDL89ddfOguKiIiIDIux7QT9wQKoWrVqKFWqlFCxEBEREQnigwXQyJEjUbt2baFiISIiIgNlKI+w0JV87QNERERE0sa7wIiIiIiKuPeOAPn4+OT5zC8iIiKSHsksgv7555+FjIOIiIgMmLHdBs8pMCIiIpIcLoImIiIirYxtETQLICIiItLK2NYAcQqMiIiIJIcjQERERKSVsS2CZgFEREREWhlbAcQpMCIiIpIcFkCFNGRwb9y+eQrJiVE4dWIPPvOuI3ZIgpJy/lLOHZBm/ooW3vC8vF398yddvkCVyAPvPYxNqTZ10Sj6d402m5puaBa3LdfhPqOfSFHqnxS/+wCgkunuMAQsgAqhb9+uWLb0F2wK24HuPYYjISERB/aHwsWlgtihCULK+Us5d0Ca+Vt6VUG5BQGQyf73t3fK8XOI6TZO43g44gcoX2fi1ZZDIkare7Z1PVFlqZ9G/gBgXdUZOakZuNRuisbxaPVBkSLVLyl+999S6vAwBDKVSmUUt/bLzcsL/p5Rd8Nx6M+/4Os3+U0Mcjlu3TiB/QeOYNz46YLHIzQp5y/l3AHDyf+6c029v4fMXI4SAzqj9Df9oErLgMxMjohaX7/39Y7LpsHczRExX/lB9TpTr7HFJVnrtX/gTf6Ow9rB9bueyEl7DRNzOU66/W90x2PmQNjWqYhL7b7Xeyzv+uLVacHf01C++wCQnflY0PdbVqGvzvoa/XCjzvoqKI4AFZCHhytcXCpg377D6rbs7GwcOHgUbdo0FzEyYUg5fynnDkgvf+sm9WA3ohuezQ3Byw17PvzaRrVh0+pzxM0K1nvxI5RSLb3g5O+D6J824HFI7lEd66rOSLn1QITIhCe17/67jG0ESPQCqGPHjnjy5InYYXw0z4puAICo6Psa7TExD+Du5gwTE9H/aPVKyvlLOXdAevlnXL+LqOaD8er3PVq3wi0TMAgpJy8i9dQlYYITQNLlaJytNwaPVx8E8pgwsK7shGLlSqHu0Xlo8jAM3uFBsO/eVIRI9U9q3/13qXR4GAJBboPfvn37e8/FxsZi3759KFGiBACga9euQoRUaDa2CgBAcnKKRntycgpMTU1hbW2V65wxkXL+Us4dkF7+2XEv8vU6q/o1YFHVHbH9J+s5ImFlPn353nPm9iVgbmcLK7eyuDc7FNmJqSjj0whVgnwBlQpx204IGKn+Se27b+wEKYBmz56NjIwMAEBeS44WLFgAAJDJZEWmAHq7EPDdfN62K5WGMsinH1LOX8q5A8z/fYr3bIuMiPtIO3NV7FAEk52Uiqs9ZiH1ViwynyUAAF6duA5z+xJw+bab0RVAUv/u81EYBfDHH3+gatWq8Pb2xt9//407d+6oD0tLS/zf//0f7ty5g9u3bwsRjk4kJSYDAGxsFBrtCoU1cnJykJqaJkZYgpFy/lLOHWD+eZKbQtG0LpIOGNd/8LVRpmfi1fGr6uLnrZd/XYGliwNMrSzECUxPpP7d5xqgAnB1dcWWLVvw6aef4quvvsKBA0V/f4zIqBgAgJurk0a7q6sTIu5GixGSoKScv5RzB5h/Xiy9qsDUVoHkw/+IHYqgLN3Kolz/VpCZa04mmFqYIyftNXLSMkSKTD/43Tcugq3YksvlGD9+PIKCgjB//nxMmDABycnJQr29zkVG3sODB4/RqdOX6ja5XI52bVvi2LFTIkYmDCnnL+XcAeafF8tPPZGTnIrMqIdihyKoYmVLwnPecJRqWVuj3a69NxLPFp0R/fyS+nff2EaABH8WWL169bBr1y78+OOP6NChA7KysoQOQWd+nbcUgYtnISEhEadPn8foUQNhZ1cSiwNXiR2aIKScv5RzB5j/u4p5OiMzRtg9WQxBwpnbSAi/Dc95wyAvbo3MuFco178VFFWccLnTNLHD0wspf/cN5e4tXRHlYai2trZYsGABdu3ahT/++APFihUTI4xCWxG8HpaWFvDzHYKx/sNw9epNtGvfBzEx0tgTQ8r5Szl3gPm/S16yOHKSU8UOQ3hKJW4M+BVuU3rBdWIPyEvYIOX6PVztPhPJV++JHZ1e8LtvPLgTNBEVWULsBG3IhNgJ2pCJsRO0IRF6J+hfnXW3E/TEWPF3ghZlBIiIiIiKFkNZu6MrLICIiIhIK6OYLvoP4963m4iIiCgPHAEiIiIirZRGNgbEAoiIiIi0MrY1QJwCIyIiIslhAURERERaqXR4FFRwcDB69eql0Xb79m3069cPtWrVQrNmzRASEpKvvlgAERERkVZiPwojNDQUCxcu1Gh7+fIlBg4cCGdnZ+zYsQNjx45FYGAgtm7dqrU/rgEiIiIigxUXF4cZM2bg7NmzcHV11Ti3detWmJmZ4YcffoBcLoe7uztiY2OxcuVKdO/e/YP9cgSIiIiItFLKdHd8jJs3b8La2hp79uxBzZqau79fuHABdevWhVz+v/Ecb29vPHz4EHFxcR/slyNAREREpJUub4NPSkpCUlJSrnZbW1vY2tpqtLVo0QItWrTIs5+4uDh4eHhotJUpUwYA8OTJE9jb2783BhZAREREJKj169djyZIludp9fX3h5+eX734yMjJgbm6u0fb259evX3/wWhZAREREpJUut0EcMGAAfHx8crW/O/qjjYWFBTIzMzXa3v5sZWX1wWtZABEREZFWutwIMa+proJwcHDAs2fPNNre/uzg4PDBa7kImoiIiIqkevXq4eLFi8jOzla3hYeHw8XFBaVLl/7gtSyAiIiISCslVDo7dOXrr79Geno6pkyZgqioKOzatQvr1q3DiBEjtF7LKTAiIiLSyhAfhVqqVCmEhIRg9uzZ8PHxQenSpTFhwgR06dJF67UsgIiIiKhI+OWXX3K11ahRA5s3b/7ovlgAERERkVbG9jR4FkBERESklS7X7hgCLoImIiIiyeEIEFERZ2VWTOwQRBOXZC12CKJSmGWJHQJJiHGN/7AAIiIionwwtjVAnAIjIiIiyeEIEBEREWmlMrJJMBZAREREpBWnwIiIiIiKOI4AERERkVbGtg8QCyAiIiLSyrjKH06BERERkQRxBIiIiIi04hQYERERSQ7vAiMiIiIq4jgCRERERFpxI0QiIiKSHE6BERERERVxHAEiIiIirTgFRkRERJLDKTAiIiKiIo4jQERERKSVUsUpMCIiIpIY4yp/OAVGREREEsQCqJCGDO6N2zdPITkxCqdO7MFn3nXEDklQUs5fyrn/V9t2LfH46TWxwxBEqTZ10Sj6d402m5puaBa3LdfhPqOfSFHqzyet6sHrTliu9hKdGqHqkcWoHbUV1U8uQ5lB7UWITjhS/d1XQqWzwxCwACqEvn27YtnSX7ApbAe69xiOhIREHNgfCheXCmKHJggp5y/l3P+rvndtrAr5DTKZTOxQ9M62rieqLPXLlat1VWfkpGbgUrspGsej1QdFilQ/rOtUglvgOOCdj7pEx4ZwWzIeSccvIbL/TLza+w+cZg5Dqa7NxQlUz6T8u6/S4f8MgUylMo5VTXLz8oK/Z9TdcBz68y/4+k1+E4Ncjls3TmD/gSMYN3664PEITcr5G1LuVmbFBH0/ADA3N8eoMQMxddo4pKWmw8zcDOXsawgexx6F/v/lLTOXw3FYO7h+1xM5aa9hYi7HSbf/je54zBwI2zoVcand93qP5V0Ksyy9v4fMXA77IR1R7tveUKZnQGYmx+VKvdTna4SvROKR83gwdZW6zTVoHKBSIcZ/kV5j++zZeb32nxdD+t3Pznws6Pv1cu6ss77CYnfprK+CEmwEaPv27cjMzNRoO3PmDIYMGYJ27drB398fd+7cESqcQvPwcIWLSwXs23dY3ZadnY0DB4+iTRvj/JfPf0k5fynn/lar1k0xfsIoTPv+FwSv+F37BUVYqZZecPL3QfRPG/A4JPeojnVVZ6TceiBCZML4pHkdOIz5Go9mr8Oztfs1zll96o5ijmXwPPSwRnuM30K9Fz9ikPrvvlKHhyEQrACaNm0akpOT1T//888/GDx4MACgWbNmePXqFbp164YLFy4IFVKheFZ0AwBERd/XaI+JeQB3N2eYmBj37KKU85dy7m9dungNn1ZrghXL18NIBpHfK+lyNM7WG4PHqw8CeeRqXdkJxcqVQt2j89DkYRi8w4Ng372pCJHqR+rVSFxvMALP1uzPdRuQZRUXAIDM1BSVts9C7Xvb8Om51Sjdv63wgQpA6r/7xrYGSLDb4N/9S3LZsmXo378/Jk+erG6bNWsWfvvtN2zatEmosArMxlYBAEhOTtFoT05OgampKaytrXKdMyZSzl/Kub/15Emc2CEIJvPpy/eeM7cvAXM7W1i5lcW92aHITkxFGZ9GqBLkC6hUiNt2QsBI9SPrA/mblbKFKjsHHmun4Nn6Q/j3ty0o3vYzOM8ZgexXSXi19x8BI9U//u4bF9H2Abp//z6+/15zzrx3797w8fERKaKP83Yh5LuF3dt2pdJQBvn0Q8r5Szl30pSdlIqrPWYh9VYsMp8lAABenbgOc/sScPm2m1EUQB8ik8shk5vieehhPF2yHQCQfPo6ilUog3LjehpdAST1331DWbysK4KN18lkMo27J5ycnJCamqrxmoSEBNjY2AgVUqEkJb6ZzrOxUWi0KxTWyMnJQWpqmhhhCUbK+Us5d9KkTM/Eq+NX1cXPWy//ugJLFweYWlmIE5hAclIzAABJxy9rtCedvAoLt3KQmRnXXrtS/93nGqACUqlUaNOmDXr27Invv/8e1tbWWLBgAbKzswEAN27cwMyZM9GoUSOhQiqUyKgYAICbq5NGu6urEyLuRosRkqCknL+UcydNlm5lUa5/K8jMNf9Db2phjpy018hJyxApMmG8vv8EAHIVOjK5KSADVEY2IsLffeMiWAF08OBBzJw5Ew0aNEBCQgJiY2Nx9epVZGW9uY2zf//+UCqVmDBhglAhFUpk5D08ePAYnTp9qW6Ty+Vo17Yljh07JWJkwpBy/lLOnTQVK1sSnvOGo1TL2hrtdu29kXj2tkhRCSf57E0oM16jRIcGGu2ftKyL1KtRQI6RFUAS/91XqVQ6OwyBYOOTrq6ucHV1xZdf/u+Lk56eDktLSwDAmjVrUL16dcjlRWfI9Nd5SxG4eBYSEhJx+vR5jB41EHZ2JbE4cJX2i42AlPOXcu70PwlnbiMh/DY85w2DvLg1MuNeoVz/VlBUccLlTtPEDk/vlCnpeBK0A+XG90BOcjqSw2+gZKdGsPmsGiL7zxQ7PL2Q8u++ody9pSuiVhtvix8AqFWrlniBFNCK4PWwtLSAn+8QjPUfhqtXb6Jd+z6IiTHePUH+S8r5Szl3+g+lEjcG/Aq3Kb3gOrEH5CVskHL9Hq52n4nkq/fEjk4QTxZvRU5yKsoMag+HkZ2REfMvoofPzbUuyFjwd994cCdooiJOjJ2gDYUQO0EbMiF2gjZkYuwEbUiE3gm6o1MHnfW198E+nfVVUEVnvomIiIhEY2y3wbMAIiIiIq2MbQ2Qce/bTURERJQHjgARERGRVkayZFiNBRARERFpZVy7OnEKjIiIiCSII0BERESkFe8CIyIiIsnhXWBERERERRxHgIiIiEgr3gVGREREksMpMCIiIiKB3Lt3D5UqVcp1bNu2rVD9cgSIiIiItBLrLrCIiAgoFAocOnRIo93GxqZQ/bIAIiIiIq2UIq0Bunv3Ltzd3VG6dGmd9sspMCIiIjJYERERcHd313m/HAEiIiIirXQ5/pOUlISkpKRc7ba2trC1tdVou3v3LpydndGzZ088ePAALi4uGD16NBo1alSoGFgAERERkVa6vAts/fr1WLJkSa52X19f+Pn5qX9OS0vDo0ePULJkSUyYMAHW1tbYs2cPhg4dijVr1qBBgwYFjoEFEBEREQlqwIAB8PHxydX+7uiPlZUVLl68CDMzM5ibmwMAqlevjujoaKxevZoFEBEREemXLkeA8prqeh9ra+tcbZ6envjrr78KFQMXQRMREZFWKpVKZ0d+Xb58GV5eXrh27ZpG+40bN1CxYsVC5cMRIKIiLi3rtdghiOaLV6fFDoFElP7vSbFDID2rXr06HB0dMW3aNEyfPh3FixdHWFgYLl++jK1btxaqbxZAREREpJUYj8IwMzPD6tWrsWDBAvj7+yMpKQnVqlXDmjVrULVq1UL1zQKIiIiItBJrJ2h7e3v8+uuvOu+Xa4CIiIhIcjgCRERERFp9zOLlooAFEBEREWklxhogfeIUGBEREUkOR4CIiIhIK06BERERkeRwCoyIiIioiOMIEBEREWkl1j5A+sICiIiIiLRSGtkaIE6BERERkeRwBIiIiIi04hQYERERSQ6nwIiIiIiKOI4AERERkVacAiMiIiLJ4RQYERERURHHESAiIiLSilNgREREJDmcAiMNQwb3xu2bp5CcGIVTJ/bgM+86YockKCnnL+XcAebP/KWRf1ZWFgJXrkerLgNQr2VnDPabhFsRUerzGa9fY3HwOrTtPhj1vvBB14FjcPDI3yJGTPnFAqgQ+vbtimVLf8GmsB3o3mM4EhIScWB/KFxcKogdmiCknL+UcweYP/OXTv5zA1cidNtuDOnXDYvmTIOFRTEM9vsO/z6NAwDMnLcEm//Yh37dOyPw5+moXbM6Amb8gkNHT4gcue6pdPg/QyBTqYxjTEtuXl7w94y6G45Df/4FX7/Jb2KQy3HrxgnsP3AE48ZPFzweoUk5fynnDjB/5m8Y+af/e1Kv/SenpKJx+54YN2oQBvTsAuDNiE+jtj0wrH8PdPuqLZp06IUfJ32Drzu2UV836tvpeJWQiM2rF+s1PjM7N732/y7XUjV11lfMi6s666uguAaogDw8XOHiUgH79h1Wt2VnZ+PAwaNo06a5iJEJQ8r5Szl3gPkzf+nkb2lhgbBVC1HOwV7dJjeVQyYDMjOzkJqWju6d26FB/doa17k6OeLG7Qihw6WPJGgBdPnyZYSHh2PUqFEAgDNnziAkJASPHj2Cs7MzBg8eDG9vbyFDKjDPim8q76jo+xrtMTEP4O7mDBMTEyiVShEiE4aU85dy7gDzZ/7SyV8uN0UVTw8AgFKpxL9Pn2FpyEZAJkOHNi1QoXxZTA/w07gmJycHJ8MvwNXJ+KYDlQYydaUrgq0BOnToEPr06YNLly4BAP766y8MHjwYJiYmaNmyJZRKJQYNGoSjR48KFVKh2NgqAADJySka7cnJKTA1NYW1tZUYYQlGyvlLOXeA+TN/aea/Yl0Yvuw2CHsPHcWQPt3g6uyY5+uWhmxETOxDDO7TVeAI9U+lUunsMASCjQAtWbIE/v7+GDlyJABg+fLlGDVqFPz9/dWvWb58OYKCgtCyZUuhwiowmUwGALk+yLftxvIvoPeRcv5Szh1g/sxfmvm3bNIA9bxq4Nyla1ixdhOysrLhN7y/xmtCNm7FyvWbMaBXFzRr9JlIkVJ+CTYC9ODBA7Rv317986NHj9C6dWuN13To0AH37t0TKqRCSUpMBgDY2Cg02hUKa+Tk5CA1NU2MsAQj5fylnDvA/Jm/NPOv5OGKel6fYsyQvujT7SusDduOrOxsAG+KwV8DV2Lh8rXo2aUDvh0zVORo9UMJlc4OQyBYAVShQgX8/ff/9kaoUaMGbt++rfGaK1euwMHBQaiQCiUyKgYA4ObqpNHu6uqEiLvRYoQkKCnnL+XcAebP/KWTf/yLl9i5/3Cuoq6ypzsyM7OQmJgEpVKJyTPn4/ctOzGsfw9MnTBGPRpmbIxtCkywAmjYsGH4+eefMXfuXNy4cQPDhw/H0qVLERoaivPnz2PNmjX48ccf0bdvX6FCKpTIyHt48OAxOnX6Ut0ml8vRrm1LHDt2SsTIhCHl/KWcO8D8mb908k9KScW0OQtx+LhmXqfPXULJEsVRskRxzAtahX1/HkOA3zCMHTFQnECpQARbA9S5c2fIZDIEBgZi7dq1kMlkUKlUmDlzJgDA2toaQ4cORf/+/bX0ZDh+nbcUgYtnISEhEadPn8foUQNhZ1cSiwNXiR2aIKScv5RzB5g/85dG/m7OFdCqWUPMC1qFrKxsOJZzwJG//8HeQ0cxc8o43Im8h43bduPzel6oVb0Krt7436yGiakJalSpJGL0umdsj8IQZSPEe/fu4f79+0hJSYGZmRkcHBxQtWpVFCtWrMB9irERIgCM+2YE/HyHwM6uJK5evYmAiT8h/OxFUWIRg5Tzl3LuAPNn/uLnr++NEAEgPSMDy9eE4tDRE3j+4iXcXZwwfEBPtG7eGEtDNmL5mtA8r7O0tMD5Izv1GpvQGyE6FK+is76eJtzW/iI9407QRERUJAlRABkyFkCFw52giYiISCsjGS9RYwFEREREWhnK7eu6wgKIiIiItDK2ESDBboMnIiIiMhQcASIiIiKtjO02eBZAREREpBWnwIiIiIiKOI4AERERkVa8C4yIiIgkh1NgREREREUcR4CIiIhIK94FRkRERJKjMrI1QJwCIyIiIsnhCBARERFpxSkwIiIikhzeBUZERERUxLEAIiIiIq1UOvzfx1AqlQgMDETjxo1Rs2ZNDB48GLGxsYXOhwUQERERaaVSqXR2fIylS5ciLCwMs2bNwpYtW2BqaoohQ4bg9evXhcqHBRAREREZpMzMTKxZswa+vr5o2rQpKleujIULFyI+Ph4HDx4sVN8sgIiIiEgrMUaAbt++jbS0NHz22WfqNoVCgapVq+LChQuFyod3gREREZFWurwHLCkpCUlJSbnabW1tYWtrq/45Li4OAGBvb6/xujJlyuDJkyeFisFoCqDszMdih0BERGS0dPnf2aCgICxZsiRXu6+vL/z8/NQ/p6enAwDMzc01Xmdubo7MzMxCxWA0BRAREREVDQMGDICPj0+u9v+O/gCAhYUFgDdrgf5bBGVmZsLKyqpQMbAAIiIiIkG9O9X1PmXLlgUAPHv2DAqFQt3+7NkzeHh4FCoGLoImIiIig1S5cmUoFAqcO3dO3ZaSkoJbt26hfv36heqbI0BERERkkMzNzdG3b18sXLgQdnZ2cHR0xIIFC2Bvb4/WrVsXqm8WQERERGSw/P39kZOTg+nTpyM9PR116tTB6tWrcy2M/lgylbE93YyIiIhIC64BIiIiIslhAURERESSwwKIiIiIJIcFUCEolUoEBgaicePGqFmzJgYPHozY2FixwxJFcHAwevXqJXYYgklJScGcOXPQokULeHl5oUuXLjh69KjYYQkmLi4O48ePh7e3N7y8vDB8+HBERkaKHZYoYmJi4OXlhW3btokdimDu3buHSpUq5Tqk9Gewa9cutGvXDjVq1ED79u0L/WBOEh4LoEJYunQpwsLCMGvWLGzZsgWmpqYYMmQIXr9+LXZoggoNDcXChQvFDkNQkydPxvHjxzFr1izs2rULrVu3hq+vL86cOSN2aHqnUqkwbNgwPH36FCEhIdi+fTssLCwwcOBApKamih2eoLKysvDtt98iLS1N7FAEFRERAYVCgVOnTmkcHTt2FDs0QezevRtTpkxBjx49sG/fPnTo0AHjx4/HxYsXxQ6NPgILoALKzMzEmjVr4Ovri6ZNm6Jy5cpYuHAh4uPjJfMvgbi4OIwcORLz58+Hq6ur2OEI5vnz5zh8+DCmTJmCBg0awNnZGSNHjkT9+vWxfft2scPTu/j4eLi7u2P27NmoXr063N3dMXr0aMTHx+Pu3btihyeooKAgWFtbix2G4O7evQt3d3eULl1a43j72AJjplKpsHjxYvTt2xcDBgyAs7MzRo0ahQYNGiA8PFzs8OgjsAAqoNu3byMtLQ2fffaZuk2hUKBq1aq4cOGCiJEJ5+bNm7C2tsaePXtQs2ZNscMRjKWlJVatWoW6detqtMtkMiQmJooUlXBKly6NhQsXqove+Ph4hISEoEyZMvD09BQ5OuGcP38eW7Zswdy5c8UORXARERFwd3cXOwxR3Lt3D48fP0aHDh002kNCQjBmzBiRoqKC4EaIBRQXFwcAsLe312gvU6YMnjx5IkZIgmvRogVatGghdhiCUygUaNKkiUbblStXEB4ejqlTp4oUlTgmTZqEnTt3wtzcHMuXL5fMaEhSUhImTpyIqVOnqp9VJCV3796Fs7MzevbsiQcPHsDFxQWjR49Go0aNxA5N7+7fvw/gzSzA8OHDcf36dTg6OmLUqFGS/PuwKOMIUAGlp6cDQK6dKM3NzZGZmSlGSCSS6Oho+Pr6ombNmujRo4fY4QhqyJAh2L59Ozp06IAxY8bgxo0bYockiB9++AG1atWSzJqX/0pLS8OjR4+QnJyMcePGYeXKlahevTqGDh2K06dPix2e3qWkpAAAJk6ciDZt2mDNmjVo1KgRRo8ejX/++Ufk6OhjcASogN7OdWdmZmoUQZmZmbCyshIrLBLY+fPn4evri3LlyiE4OBhmZmZihySoihUrAgBmz56Nq1evYsOGDUY/JbRr1y5cuHABe/fuFTsUUVhZWeHixYswMzNT/91XvXp1REdHY/Xq1WjQoIHIEerX29/xQYMG4euvvwYAVKlSBTdu3MCaNWvQsGFDMcOjj8ARoAJ6O+z97NkzjfZnz57lmhYj47Rnzx4MGjQI1apVw4YNG1C8eHGxQxLEs2fPsHfvXvz3KTomJibw8PBQTw0bsx07duDFixdo1qwZvLy84OXlBQD46aef0L59e5GjE4a1tXWu0W9PT0/8+++/IkUkHAcHBwDItd6tYsWKePTokRghUQGxACqgypUrQ6FQ4Ny5c+q2lJQU3Lp1C/Xr1xcxMhLC3r17MXHiRLRt2xbBwcFQKBRihySYJ0+e4Ntvv9W45TcrKwu3bt2SxMLY+fPn48CBA9i1a5f6AABfX1+sXLlS3OAEcPnyZXh5eeHatWsa7Tdu3FCPCBqzqlWrwtraGtevX9dov3v3LpycnESKigqCU2AFZG5ujr59+2LhwoWws7ODo6MjFixYAHt7e7Ru3Vrs8EiPnj59imnTpsHb2xsBAQFISEhQnzMzMzP6kaAaNWrA29sb06dPx08//QRbW1usWLECCQkJGDhwoNjh6d37RnhLliyJ8uXLCxyN8KpXrw5HR0dMmzYN06dPR/HixREWFobLly9j69atYoendxYWFhg6dCiWLVuGMmXKoFatWti/fz9OnTqFtWvXih0efQQWQIXg7++PnJwcTJ8+Henp6ahTpw5Wr16da2iYjMvhw4eRnp6O8PBwNG7cWONc7dq1ERYWJlJkwjAxMUFQUBDmz5+Pb775BsnJyahbty5CQ0NRoUIFscMjPTMzM8Pq1auxYMEC+Pv7IykpCdWqVcOaNWtQtWpVscMTxOjRo2FlZYXAwEA8ffoUbm5uCAoKwueffy52aPQRZKr/TuQTERERSQDXABEREZHksAAiIiIiyWEBRERERJLDAoiIiIgkhwUQERERSQ4LICLKF94wSkTGhAUQkQD69euHSpUqaRzVq1dHixYt8MMPP2hspqhrjx49QqVKlbBt2zYAwNmzZ1GpUqWPenDltm3bMGfOHJ3EExQUhEqVKiE7O/u9r6lUqRIWLlz4Uf3269cPvXr1Kmx4BX5/IipauBEikUA8PT0xY8YM9c9vHx+xaNEi3LlzB2FhYZDJZHqPo2rVqggNDUWlSpXyfc3y5ctRu3ZtPUZFRCQsFkBEAlEoFKhbt65G2+eff46MjAwEBgbi6tWrqFWrlt7jsLGxyRUHEZHUcAqMSGTVq1cHAPWTtPv164eJEydiwoQJ8PLyQo8ePQAAmZmZmD9/Ppo1a4bq1aujffv22LlzZ67+tm/fjrZt2+LTTz9Ft27dEBUVpXE+rymw69evY+jQoahTpw68vb3h5+eHhw8fAngzHfT48WPs3btXY9QoKioKI0eORO3ateHl5YURI0bg3r17Gu+VnJyMadOm4bPPPkPt2rXxww8/IDMz86P/jB49eoSJEyeiUaNGqFatGj7//HNMnDgRL1++zPXa4OBgNGzYELVq1cLIkSMRGxurcf7p06eYMGECvL29UbNmTfTt2xdXrlz56JiIqGjjCBCRyGJiYgBA40nSBw4cQLNmzRAUFKQuGPz8/HD27FmMGjUKlStXxrFjxzBp0iSkpaWhT58+AIDNmzdjxowZ6N69OyZNmoRr165h3LhxH3z/O3fuoHfv3qhUqRJmzpwJU1NTLF68GIMGDcLevXsRGhqKb775BpUqVcKoUaMAALGxsejZsyfKlSuHmTNnAgBWrVqFXr16YdeuXShbtixUKhWGDRuGe/fuYezYsbC3t0dYWBjOnj37UX8+GRkZ6N+/P2xtbTFlyhR88sknuHz5MpYtWwYzMzPMnj1b/dpr167hxYsXmDx5MnJycrBo0SIMHDgQhw4dQrFixfDq1Sv07NkTJiYmmDhxImxtbbFx40b0798fmzZtUhejRGT8WAARCei/C38TExNx/vx5LF++HF5eXqhWrZr6nEqlwi+//AKFQgEAOH36NI4fP465c+eic+fOAICmTZtCqVRi0aJF+Prrr1GsWDEsWbIELVq0UBclTZs2VRc077NixQooFAqsX78e1tbWAAA3NzcMGzYM165dg7e3N8zNzVGiRAn11FlQUBBMTU3x+++/o3jx4gCAJk2aoFWrVli+fDl++uknnDp1CpcvX8aSJUvQqlUrAEDz5s3Rvn17ddGXHzExMShTpgzmzJkDNzc3AEDDhg1x48YNnDt3TuO1MpkMa9asgaOjIwCgYsWK8PHxwfbt29GnTx+sW7cO8fHx2LdvH1xcXAAAzZo1Q+fOnbFw4UKEhITkOy4iKtpYABEJ5NKlSxpFDvDmyeoNGjTArFmzNBZAlytXTl38AMCZM2cAAC1atNAoor744gts3boV165dg52dHZ4/f64uNt7q2LHjBwugCxcuoHHjxuriB3hTOBw/fvy914SHh8Pb2xsKhUIdj6WlJRo0aIBTp04BAM6dOwdTU1M0b95cfZ2pqSnatm2LZcuWvbfvd1WpUgWbN2+GSqXCw4cPERsbi8jISNy7dy/XdFqtWrXUxQ/wZsF3hQoVcObMGfTp0wfh4eHw9PSEo6OjOm6ZTIbmzZtj3bp1yMzMhLm5eb5jI6KiiwUQkUAqV66MWbNmAXjzH91ixYqhXLlyGoXHW3Z2dho/v3r1CgBQr169PPuOi4uDXP7m17lkyZIa58qUKfPBuF69eoVSpUrlL4n/XPPnn3/mKugAwMzMDACQkJAAW1tbdVz5jScv69evR3BwMF68eAE7OztUr14dlpaWyMjI0Hjdu39uAFCqVCkkJiaq446Njc0z7rfn7e3tPzo+Iip6WAARCcTKygo1atQo0LU2NjawsLDAxo0b8zzv6Oio/o/88+fPNc69LZ4+1Hderzl58iTc3d1Rrly5PK/x9vbG0KFD39tvyZIlkZiYiKysLHVRlJ943rV3717MmTMHAQEB6NKli7rAGzt2bK6+3v4Z/Nfz58/x6aefquOuU6cOJk+enOd7lShR4qNiI6Kii3eBERUB3t7eyMjIQFZWFmrUqKE+YmNjsWjRIqSnp8PFxQXly5fHgQMHNK49cuTIB/uuW7cuTp48qTGaEhsbi6FDh6oXLJuYaP5VUb9+fURFRaFy5coa8WzYsAH79u0DADRo0ABKpRIHDx7UuPbo0aMflfvFixdhZWWFoUOHqouflJQUXLx4EUqlUuO1ly9f1iiKrly5gsePH8Pb21sdd0xMDJydnTXiPnDgANatW6dRqBGRcWMBRFQENGnSBPXr14evry/Wr1+P06dPY/Xq1Zg6dSqUSqV6lCYgIABnzpzBhAkTcPz4caxatQpBQUEf7Hv06NFISkrC4MGDcfjwYRw4cACjR4+Gh4cH2rRpAwCwtbVFREQEzpw5A6VSCV9fX/z7778YPHgwDh06hL///hv+/v7YvXs3qlatCuBN0dasWTPMmDEDa9euxfHjx+Hv74/o6OiPyr1mzZpIS0vDrFmzcPr0aezatQu9e/dGfHw80tPTc71+2LBhOHr0KHbs2AFfX194eHjAx8cHADBo0CCYmJigf//+2L17N06dOoUffvgBa9asgbu7uyAbURKRYeAUGFERYGJigpUrVyIwMBBr165FfHw8ypQpg169esHX11f9urZt28LExARLly6Fn58fXFxcMG/ePAwbNuy9fVetWhUbN27Eb7/9hokTJ8LS0hINGzZEQEAArKysAAAjRozAjBkzMHr0aOzduxeenp7YtGkTFi1ahClTpkClUsHd3R2LFi1C27Zt1X0HBgbit99+w+rVq5GamopmzZph1KhR+O233/Kde+fOnfHw4UPs2LEDW7duhb29PZo2bYp+/fph6tSpuHPnDipXrgzgzR1drq6umDJlCrKystC8eXNMnjwZFhYWAN6sP9q8eTN+++03zJkzBxkZGXBycsKMGTPQu3fvj/pMiKhok6n4hEMiIiKSGE6BERERkeSwACIiIiLJYQFEREREksMCiIiIiCSHBRARERFJDgsgIiIikhwWQERERCQ5LICIiIhIclgAERERkeT8P5FqRSzuOfFMAAAAAElFTkSuQmCC\n", |
|
|
2421 |
"text/plain": [ |
|
|
2422 |
"<Figure size 720x504 with 2 Axes>" |
|
|
2423 |
] |
|
|
2424 |
}, |
|
|
2425 |
"metadata": {}, |
|
|
2426 |
"output_type": "display_data" |
|
|
2427 |
} |
|
|
2428 |
], |
|
|
2429 |
"source": [ |
|
|
2430 |
"conf_matrix = confusion_matrix(y_test, predictions)\n", |
|
|
2431 |
"df_cm = pd.DataFrame(conf_matrix, index = [i for i in \"0123456\"], columns = [i for i in \"0123456\"])\n", |
|
|
2432 |
"plt.figure(figsize = (10,7))\n", |
|
|
2433 |
"sn.set(font_scale=1.4)\n", |
|
|
2434 |
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16})\n", |
|
|
2435 |
"plt.ylabel('True label')\n", |
|
|
2436 |
"plt.xlabel('Predicted label')\n", |
|
|
2437 |
"plt.savefig('results/conf_matrix_1120.png')\n", |
|
|
2438 |
"plt.show()" |
|
|
2439 |
] |
|
|
2440 |
}, |
|
|
2441 |
{ |
|
|
2442 |
"cell_type": "markdown", |
|
|
2443 |
"id": "d339f401", |
|
|
2444 |
"metadata": {}, |
|
|
2445 |
"source": [ |
|
|
2446 |
"Similar to our machine learning model observation, deep learning model also struggles to distinguish between class 4 and class 5. But the deep learning model performs better than Random forest. In this run we achieved 85.71 % accuracy. For deep learning model, we ran the model 5 times with different seeds. The 5-fold accuracy for 1D CNN is 87.19 % which higher than Random Forest's 5-fold accuracy of 83.71%." |
|
|
2447 |
] |
|
|
2448 |
}, |
|
|
2449 |
{ |
|
|
2450 |
"cell_type": "markdown", |
|
|
2451 |
"id": "1922342c", |
|
|
2452 |
"metadata": {}, |
|
|
2453 |
"source": [ |
|
|
2454 |
"Similar to machine learning approach, we will drop the datapoints of class 4 and retrain the model." |
|
|
2455 |
] |
|
|
2456 |
}, |
|
|
2457 |
{ |
|
|
2458 |
"cell_type": "markdown", |
|
|
2459 |
"id": "baf3440c", |
|
|
2460 |
"metadata": {}, |
|
|
2461 |
"source": [ |
|
|
2462 |
"Dropping the class 4 and relabeling the data." |
|
|
2463 |
] |
|
|
2464 |
}, |
|
|
2465 |
{ |
|
|
2466 |
"cell_type": "code", |
|
|
2467 |
"execution_count": 57, |
|
|
2468 |
"id": "ab0832b0", |
|
|
2469 |
"metadata": {}, |
|
|
2470 |
"outputs": [], |
|
|
2471 |
"source": [ |
|
|
2472 |
"idx = (y_data != 4)\n", |
|
|
2473 |
"x_data = x_data[idx]\n", |
|
|
2474 |
"y_data = np.array([i for i in range(6) for j in range(160)])" |
|
|
2475 |
] |
|
|
2476 |
}, |
|
|
2477 |
{ |
|
|
2478 |
"cell_type": "markdown", |
|
|
2479 |
"id": "cc20e70d", |
|
|
2480 |
"metadata": {}, |
|
|
2481 |
"source": [ |
|
|
2482 |
"splitting the data in trainset and valset with 4:1 ratio" |
|
|
2483 |
] |
|
|
2484 |
}, |
|
|
2485 |
{ |
|
|
2486 |
"cell_type": "code", |
|
|
2487 |
"execution_count": 58, |
|
|
2488 |
"id": "bee39106", |
|
|
2489 |
"metadata": {}, |
|
|
2490 |
"outputs": [], |
|
|
2491 |
"source": [ |
|
|
2492 |
"train_x = []\n", |
|
|
2493 |
"train_y = []\n", |
|
|
2494 |
"val_x = []\n", |
|
|
2495 |
"val_y = []\n", |
|
|
2496 |
"for i in range(6):\n", |
|
|
2497 |
" current_class_data = x_data[i*160: i*160 + 160]\n", |
|
|
2498 |
" current_class_labels = y_data[i*160: i*160 + 160]\n", |
|
|
2499 |
" idx = np.random.permutation(160)\n", |
|
|
2500 |
" current_class_data = current_class_data[idx]\n", |
|
|
2501 |
" current_class_labels = current_class_labels[idx]\n", |
|
|
2502 |
" train_x.append(current_class_data[0: 128])\n", |
|
|
2503 |
" val_x.append(current_class_data[128: ])\n", |
|
|
2504 |
" train_y.append(current_class_labels[0: 128])\n", |
|
|
2505 |
" val_y.append(current_class_labels[128: ])\n", |
|
|
2506 |
"train_x = np.array(train_x).reshape(-1, 16, 5000)\n", |
|
|
2507 |
"val_x = np.array(val_x).reshape(-1, 16, 5000)\n", |
|
|
2508 |
"train_y = np.array(train_y).reshape(-1)\n", |
|
|
2509 |
"val_y = np.array(val_y).reshape(-1)" |
|
|
2510 |
] |
|
|
2511 |
}, |
|
|
2512 |
{ |
|
|
2513 |
"cell_type": "markdown", |
|
|
2514 |
"id": "9082662c", |
|
|
2515 |
"metadata": {}, |
|
|
2516 |
"source": [ |
|
|
2517 |
"Creating dataloader with a batch size of 32" |
|
|
2518 |
] |
|
|
2519 |
}, |
|
|
2520 |
{ |
|
|
2521 |
"cell_type": "code", |
|
|
2522 |
"execution_count": 59, |
|
|
2523 |
"id": "a80d86d1", |
|
|
2524 |
"metadata": {}, |
|
|
2525 |
"outputs": [], |
|
|
2526 |
"source": [ |
|
|
2527 |
"trainset = Dataset(train_x, train_y)\n", |
|
|
2528 |
"valset = Dataset(val_x, val_y)\n", |
|
|
2529 |
"batch_size = 32\n", |
|
|
2530 |
"train_loader = data.DataLoader(dataset = trainset, batch_size = batch_size, shuffle = True)\n", |
|
|
2531 |
"val_loader = data.DataLoader(dataset = valset, batch_size = batch_size, shuffle = False)" |
|
|
2532 |
] |
|
|
2533 |
}, |
|
|
2534 |
{ |
|
|
2535 |
"cell_type": "markdown", |
|
|
2536 |
"id": "95778159", |
|
|
2537 |
"metadata": {}, |
|
|
2538 |
"source": [ |
|
|
2539 |
"Instantiating a model with 6 class classification instead of 7 classes\n", |
|
|
2540 |
"\n", |
|
|
2541 |
"Everything else is kept same as previous method" |
|
|
2542 |
] |
|
|
2543 |
}, |
|
|
2544 |
{ |
|
|
2545 |
"cell_type": "code", |
|
|
2546 |
"execution_count": 62, |
|
|
2547 |
"id": "cd08cc8a", |
|
|
2548 |
"metadata": {}, |
|
|
2549 |
"outputs": [], |
|
|
2550 |
"source": [ |
|
|
2551 |
"model = CNN1D(6).to(device).double()\n", |
|
|
2552 |
"criterion = nn.CrossEntropyLoss()\n", |
|
|
2553 |
"learning_rate = 0.0005\n", |
|
|
2554 |
"optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n", |
|
|
2555 |
"scheduler = lr_scheduler.MultiStepLR(optimizer, milestones = [5, 10, 15], gamma = 0.5)" |
|
|
2556 |
] |
|
|
2557 |
}, |
|
|
2558 |
{ |
|
|
2559 |
"cell_type": "code", |
|
|
2560 |
"execution_count": 63, |
|
|
2561 |
"id": "7059fe48", |
|
|
2562 |
"metadata": { |
|
|
2563 |
"scrolled": true |
|
|
2564 |
}, |
|
|
2565 |
"outputs": [ |
|
|
2566 |
{ |
|
|
2567 |
"name": "stdout", |
|
|
2568 |
"output_type": "stream", |
|
|
2569 |
"text": [ |
|
|
2570 |
"Saving model parameters...\n", |
|
|
2571 |
"Validation accuracy: 16.145833333333336\n", |
|
|
2572 |
"EPOCH: 0\n", |
|
|
2573 |
"TRAIN_LOSS: 1.7120778190124424\n", |
|
|
2574 |
"TRAIN_ACC: 24.348958333333336\n", |
|
|
2575 |
"VAL_LOSS: 1.8208114770767274\n", |
|
|
2576 |
"VAL_ACC: 16.145833333333336\n", |
|
|
2577 |
"+++++++++++++++++++++++++\n", |
|
|
2578 |
"Saving model parameters...\n", |
|
|
2579 |
"Validation accuracy: 17.708333333333336\n", |
|
|
2580 |
"EPOCH: 1\n", |
|
|
2581 |
"TRAIN_LOSS: 1.2432448573343677\n", |
|
|
2582 |
"TRAIN_ACC: 43.75\n", |
|
|
2583 |
"VAL_LOSS: 2.070298265265168\n", |
|
|
2584 |
"VAL_ACC: 17.708333333333336\n", |
|
|
2585 |
"+++++++++++++++++++++++++\n", |
|
|
2586 |
"Saving model parameters...\n", |
|
|
2587 |
"Validation accuracy: 64.0625\n", |
|
|
2588 |
"EPOCH: 2\n", |
|
|
2589 |
"TRAIN_LOSS: 0.862180467987805\n", |
|
|
2590 |
"TRAIN_ACC: 60.15625\n", |
|
|
2591 |
"VAL_LOSS: 0.7999574121586982\n", |
|
|
2592 |
"VAL_ACC: 64.0625\n", |
|
|
2593 |
"+++++++++++++++++++++++++\n", |
|
|
2594 |
"Saving model parameters...\n", |
|
|
2595 |
"Validation accuracy: 68.22916666666666\n", |
|
|
2596 |
"EPOCH: 3\n", |
|
|
2597 |
"TRAIN_LOSS: 0.5317976962973608\n", |
|
|
2598 |
"TRAIN_ACC: 74.86979166666666\n", |
|
|
2599 |
"VAL_LOSS: 0.8260267876279621\n", |
|
|
2600 |
"VAL_ACC: 68.22916666666666\n", |
|
|
2601 |
"+++++++++++++++++++++++++\n", |
|
|
2602 |
"Saving model parameters...\n", |
|
|
2603 |
"Validation accuracy: 70.3125\n", |
|
|
2604 |
"EPOCH: 4\n", |
|
|
2605 |
"TRAIN_LOSS: 0.41538525361436696\n", |
|
|
2606 |
"TRAIN_ACC: 79.94791666666666\n", |
|
|
2607 |
"VAL_LOSS: 1.0909890414880024\n", |
|
|
2608 |
"VAL_ACC: 70.3125\n", |
|
|
2609 |
"+++++++++++++++++++++++++\n", |
|
|
2610 |
"Saving model parameters...\n", |
|
|
2611 |
"Validation accuracy: 93.22916666666666\n", |
|
|
2612 |
"EPOCH: 5\n", |
|
|
2613 |
"TRAIN_LOSS: 0.34236927405923695\n", |
|
|
2614 |
"TRAIN_ACC: 85.28645833333334\n", |
|
|
2615 |
"VAL_LOSS: 0.18196438377552834\n", |
|
|
2616 |
"VAL_ACC: 93.22916666666666\n", |
|
|
2617 |
"+++++++++++++++++++++++++\n", |
|
|
2618 |
"EPOCH: 6\n", |
|
|
2619 |
"TRAIN_LOSS: 0.2613583101821511\n", |
|
|
2620 |
"TRAIN_ACC: 90.10416666666666\n", |
|
|
2621 |
"VAL_LOSS: 0.312903058247695\n", |
|
|
2622 |
"VAL_ACC: 87.5\n", |
|
|
2623 |
"+++++++++++++++++++++++++\n", |
|
|
2624 |
"Saving model parameters...\n", |
|
|
2625 |
"Validation accuracy: 95.83333333333334\n", |
|
|
2626 |
"EPOCH: 7\n", |
|
|
2627 |
"TRAIN_LOSS: 0.22559085157496236\n", |
|
|
2628 |
"TRAIN_ACC: 92.1875\n", |
|
|
2629 |
"VAL_LOSS: 0.13725516255777045\n", |
|
|
2630 |
"VAL_ACC: 95.83333333333334\n", |
|
|
2631 |
"+++++++++++++++++++++++++\n", |
|
|
2632 |
"EPOCH: 8\n", |
|
|
2633 |
"TRAIN_LOSS: 0.150724490814005\n", |
|
|
2634 |
"TRAIN_ACC: 95.703125\n", |
|
|
2635 |
"VAL_LOSS: 0.3134047628262818\n", |
|
|
2636 |
"VAL_ACC: 90.10416666666666\n", |
|
|
2637 |
"+++++++++++++++++++++++++\n", |
|
|
2638 |
"Saving model parameters...\n", |
|
|
2639 |
"Validation accuracy: 97.39583333333334\n", |
|
|
2640 |
"EPOCH: 9\n", |
|
|
2641 |
"TRAIN_LOSS: 0.07536232614971876\n", |
|
|
2642 |
"TRAIN_ACC: 98.4375\n", |
|
|
2643 |
"VAL_LOSS: 0.0587293743471326\n", |
|
|
2644 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2645 |
"+++++++++++++++++++++++++\n", |
|
|
2646 |
"EPOCH: 10\n", |
|
|
2647 |
"TRAIN_LOSS: 0.05108502611816284\n", |
|
|
2648 |
"TRAIN_ACC: 98.17708333333334\n", |
|
|
2649 |
"VAL_LOSS: 0.08893993011180183\n", |
|
|
2650 |
"VAL_ACC: 96.875\n", |
|
|
2651 |
"+++++++++++++++++++++++++\n", |
|
|
2652 |
"EPOCH: 11\n", |
|
|
2653 |
"TRAIN_LOSS: 0.04419679407217\n", |
|
|
2654 |
"TRAIN_ACC: 98.69791666666666\n", |
|
|
2655 |
"VAL_LOSS: 0.1615966180809585\n", |
|
|
2656 |
"VAL_ACC: 93.75\n", |
|
|
2657 |
"+++++++++++++++++++++++++\n", |
|
|
2658 |
"EPOCH: 12\n", |
|
|
2659 |
"TRAIN_LOSS: 0.03508306542209167\n", |
|
|
2660 |
"TRAIN_ACC: 99.47916666666666\n", |
|
|
2661 |
"VAL_LOSS: 0.07458088126528988\n", |
|
|
2662 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2663 |
"+++++++++++++++++++++++++\n", |
|
|
2664 |
"EPOCH: 13\n", |
|
|
2665 |
"TRAIN_LOSS: 0.052970457640368875\n", |
|
|
2666 |
"TRAIN_ACC: 98.30729166666666\n", |
|
|
2667 |
"VAL_LOSS: 0.06202405857290739\n", |
|
|
2668 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2669 |
"+++++++++++++++++++++++++\n", |
|
|
2670 |
"EPOCH: 14\n", |
|
|
2671 |
"TRAIN_LOSS: 0.03049522390430777\n", |
|
|
2672 |
"TRAIN_ACC: 99.34895833333334\n", |
|
|
2673 |
"VAL_LOSS: 0.07495223920817574\n", |
|
|
2674 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2675 |
"+++++++++++++++++++++++++\n", |
|
|
2676 |
"EPOCH: 15\n", |
|
|
2677 |
"TRAIN_LOSS: 0.02338834956512754\n", |
|
|
2678 |
"TRAIN_ACC: 99.609375\n", |
|
|
2679 |
"VAL_LOSS: 0.07892061123923545\n", |
|
|
2680 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2681 |
"+++++++++++++++++++++++++\n", |
|
|
2682 |
"EPOCH: 16\n", |
|
|
2683 |
"TRAIN_LOSS: 0.02537162298826139\n", |
|
|
2684 |
"TRAIN_ACC: 99.21875\n", |
|
|
2685 |
"VAL_LOSS: 0.10550537489725292\n", |
|
|
2686 |
"VAL_ACC: 95.83333333333334\n", |
|
|
2687 |
"+++++++++++++++++++++++++\n", |
|
|
2688 |
"Saving model parameters...\n", |
|
|
2689 |
"Validation accuracy: 97.91666666666666\n", |
|
|
2690 |
"EPOCH: 17\n", |
|
|
2691 |
"TRAIN_LOSS: 0.018167226940349265\n", |
|
|
2692 |
"TRAIN_ACC: 99.73958333333334\n", |
|
|
2693 |
"VAL_LOSS: 0.05184430998640027\n", |
|
|
2694 |
"VAL_ACC: 97.91666666666666\n", |
|
|
2695 |
"+++++++++++++++++++++++++\n", |
|
|
2696 |
"EPOCH: 18\n", |
|
|
2697 |
"TRAIN_LOSS: 0.037912755496430146\n", |
|
|
2698 |
"TRAIN_ACC: 99.08854166666666\n", |
|
|
2699 |
"VAL_LOSS: 0.07136000453098569\n", |
|
|
2700 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2701 |
"+++++++++++++++++++++++++\n", |
|
|
2702 |
"EPOCH: 19\n", |
|
|
2703 |
"TRAIN_LOSS: 0.02027789411130135\n", |
|
|
2704 |
"TRAIN_ACC: 99.34895833333334\n", |
|
|
2705 |
"VAL_LOSS: 0.08440344343072871\n", |
|
|
2706 |
"VAL_ACC: 96.875\n", |
|
|
2707 |
"+++++++++++++++++++++++++\n", |
|
|
2708 |
"EPOCH: 20\n", |
|
|
2709 |
"TRAIN_LOSS: 0.02222129396562734\n", |
|
|
2710 |
"TRAIN_ACC: 99.609375\n", |
|
|
2711 |
"VAL_LOSS: 0.06071426688347714\n", |
|
|
2712 |
"VAL_ACC: 96.875\n", |
|
|
2713 |
"+++++++++++++++++++++++++\n", |
|
|
2714 |
"EPOCH: 21\n", |
|
|
2715 |
"TRAIN_LOSS: 0.01922107369422802\n", |
|
|
2716 |
"TRAIN_ACC: 99.609375\n", |
|
|
2717 |
"VAL_LOSS: 0.07194785487493208\n", |
|
|
2718 |
"VAL_ACC: 96.875\n", |
|
|
2719 |
"+++++++++++++++++++++++++\n", |
|
|
2720 |
"EPOCH: 22\n", |
|
|
2721 |
"TRAIN_LOSS: 0.016236359711816462\n", |
|
|
2722 |
"TRAIN_ACC: 99.73958333333334\n", |
|
|
2723 |
"VAL_LOSS: 0.06835617347438974\n", |
|
|
2724 |
"VAL_ACC: 97.39583333333334\n", |
|
|
2725 |
"+++++++++++++++++++++++++\n", |
|
|
2726 |
"EPOCH: 23\n", |
|
|
2727 |
"TRAIN_LOSS: 0.012952785619817248\n", |
|
|
2728 |
"TRAIN_ACC: 99.73958333333334\n", |
|
|
2729 |
"VAL_LOSS: 0.08068110199090141\n", |
|
|
2730 |
"VAL_ACC: 96.35416666666666\n", |
|
|
2731 |
"+++++++++++++++++++++++++\n", |
|
|
2732 |
"EPOCH: 24\n", |
|
|
2733 |
"TRAIN_LOSS: 0.011619973899356961\n", |
|
|
2734 |
"TRAIN_ACC: 99.86979166666666\n", |
|
|
2735 |
"VAL_LOSS: 0.06062085840402282\n", |
|
|
2736 |
"VAL_ACC: 96.35416666666666\n", |
|
|
2737 |
"+++++++++++++++++++++++++\n" |
|
|
2738 |
] |
|
|
2739 |
} |
|
|
2740 |
], |
|
|
2741 |
"source": [ |
|
|
2742 |
"num_epochs = 25\n", |
|
|
2743 |
"loss_train, loss_val, acc_train, acc_val = train(model, num_epochs, criterion, \\\n", |
|
|
2744 |
" train_loader, val_loader, optimizer, scheduler, True)" |
|
|
2745 |
] |
|
|
2746 |
}, |
|
|
2747 |
{ |
|
|
2748 |
"cell_type": "markdown", |
|
|
2749 |
"id": "684bdc4f", |
|
|
2750 |
"metadata": {}, |
|
|
2751 |
"source": [ |
|
|
2752 |
"Training graphs and confusion matrix" |
|
|
2753 |
] |
|
|
2754 |
}, |
|
|
2755 |
{ |
|
|
2756 |
"cell_type": "code", |
|
|
2757 |
"execution_count": 64, |
|
|
2758 |
"id": "ff9fae77", |
|
|
2759 |
"metadata": {}, |
|
|
2760 |
"outputs": [ |
|
|
2761 |
{ |
|
|
2762 |
"name": "stdout", |
|
|
2763 |
"output_type": "stream", |
|
|
2764 |
"text": [ |
|
|
2765 |
"Accuracy: 0.9791666666666666\n" |
|
|
2766 |
] |
|
|
2767 |
} |
|
|
2768 |
], |
|
|
2769 |
"source": [ |
|
|
2770 |
"val_loader = data.DataLoader(dataset = valset, batch_size = 1, shuffle = False)\n", |
|
|
2771 |
"\n", |
|
|
2772 |
"dir_name = \"results/\"\n", |
|
|
2773 |
"test = os.listdir(dir_name)\n", |
|
|
2774 |
"for item in test:\n", |
|
|
2775 |
" if item.endswith(\".pth\"):\n", |
|
|
2776 |
" PATH = os.path.join(dir_name, item)\n", |
|
|
2777 |
"\n", |
|
|
2778 |
"weights = torch.load(PATH)\n", |
|
|
2779 |
"model.load_state_dict(weights)\n", |
|
|
2780 |
"\n", |
|
|
2781 |
"observations = evaluate(model, val_loader)\n", |
|
|
2782 |
"predictions, y_test = observations[:, 0], observations[:, 1]\n", |
|
|
2783 |
"accuracy = accuracy_score(predictions, y_test)\n", |
|
|
2784 |
"print('Accuracy: ', accuracy)" |
|
|
2785 |
] |
|
|
2786 |
}, |
|
|
2787 |
{ |
|
|
2788 |
"cell_type": "code", |
|
|
2789 |
"execution_count": 65, |
|
|
2790 |
"id": "dddc2e0f", |
|
|
2791 |
"metadata": {}, |
|
|
2792 |
"outputs": [ |
|
|
2793 |
{ |
|
|
2794 |
"data": { |
|
|
2795 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAH9CAYAAACOQN/ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB35klEQVR4nO3dd3xT9f7H8VfSJN2lpXSwN8jeAjJlqQhXAUVBUBzXiQMHer0O7gX9XSeKiIiA3Ks4UBQVwYkoDlBwILKkrAKlLS3dbdIk5/dHaSCyOtImhffz8eABPTk559PT0Lzz/X7P92syDMNARERE5AizvwsQERGRwKJwICIiIl4UDkRERMSLwoGIiIh4UTgQERERLwoHIiIi4kXhQCQATJw4kdatWzNq1KiT7vOf//yH1q1bM3HiRJ+cs3Xr1sycObNcz5k4cSLjxo3zyflFJHApHIgECLPZzObNm9m9e/dxjxmGwYoVK6q/KBE5KykciASINm3aEBYWxsqVK4977KeffiIzM5MWLVr4oTIROdsoHIgEiODgYAYNGnTCcLB8+XL69etHVFSU13aXy8Ubb7zByJEj6dSpEwMGDOCJJ56gqKjIa79Vq1YxevRoOnbsyIgRI/jpp5+OO4fD4eDpp59m4MCBtG/fnosvvpj333+/3N/H1q1bmTx5Mr169aJdu3b069eP6dOnU1hY6NnHMAxee+01Lr74Yjp27MjgwYN58cUXcblcnn1+//13brjhBrp160bPnj25/fbbSU5OBmDfvn20bt2ad955x+vcM2fOpHXr1p6vH3jgAa655hpmzJhBt27dGDx4MHa7nczMTP71r39x/vnn0759e84991xuu+02z/FLffvtt1x11VV06dKFPn368I9//IPMzEycTid9+/blzjvvPO77v/zyy5k8eXK5r5tIILH4uwAROWr48OHceuut7Ny5k2bNmgHgdDr59NNPefTRR3nttde89n/kkUd4//33ufbaazn33HPZsmULc+bMYcuWLbz66quYTCa+/vprbr31VoYMGcLtt9/Onj17Tvjmdfvtt7Nu3TpuueUWzjnnHFatWsUDDzxAQUEBV111VZnqT0tL46qrrqJdu3bMmDGD4OBgvv76a1577TViY2O59dZbgZI38Xnz5jFhwgSmTp3Ktm3bmDVrFoWFhdx7771s3bqV8ePH07p1a6ZPn05QUBDPP/881157LR999FG5rumGDRsoLi7mueeeIzc3F5vNxoQJE8jIyODOO+8kISGBrVu3MmvWLB5++GEWLVoEwDfffMNNN91Enz59ePLJJ8nPz+eZZ55h586dvP3224waNYpFixaRk5PjCW1JSUls3LiRl156qVw1igQahQORAFLaOrBy5Upuu+02oOTTq8Ph4Pzzz/cKBzt27ODdd9/l9ttv97zZDxgwgISEBB544AFWrVrF4MGDmTNnDq1bt+aFF17AZDIBEBMTw9SpUz3H+v7771m9ejVPPPEEl156qedYbreb5557jjFjxhASEnLa+rdt20bLli2ZPXu25w2zX79+rFu3jh9//JFbb72V3NxcFi5cyJVXXslDDz3kOVd+fj5r167F7XYzd+5cIiIi+O9//0t4eDgAzZo14+9//zsbN26kfv36Zb6mxcXFTJ8+nebNmwOQmpqKzWbjscceo3fv3gD07t2bffv28eabb3qe98ILL9C8eXPmzZuH2Wz2XLd///vf7Nq1i8suu4xXXnmFFStWcOWVVwKwdOlS4uLi6N+/f5nrEwlE6lYQCSA2m40hQ4bwySefeLYtX76cwYMHExoa6rXvjz/+CMDIkSO9to8cOZKgoCB+/PFHioqK+O233xgyZIgnGEBJC0XpGx7ADz/8AMCgQYNwOp2eP0OGDCEnJ4eNGzeWqf5+/frx1ltvER4ezq5du1i9ejVz584lMzMTh8MBwK+//kpxcTEXXHCB13OnTJnC22+/jdlsZv369fTr188TDABatmzJ6tWr6dmzZ5lqKWW1WmnatKnn64SEBBYvXkzv3r05ePAga9euZfHixfzyyy+4XC5cLhdFRUX8/vvvDB061Os6DRgwgC+//JKmTZvSuHFjevTowbJly4CSLp4PP/yQv/3tb1gs+twlNZtewSIBZvjw4bz33nskJSVRv359vvzyS5577rnj9svOzgagTp06XtstFgsxMTHk5OSQnZ2NYRjUrl3bax+r1eq17fDhwwD06NHjhDWlpqaWqXa3283zzz/P66+/Tl5eHnXr1qVjx44EBwdTugBs6bn+WvexDh8+TGxsbJnOeTq1a9f2eoOHksD17LPPsn//fqKjo2nbtq2nZcQwDM91O1WNAJdddhlTp05lz5497Ny5k/T0dMaMGeOTukX8SeFAJMD07t2bmJgYVq5cSfPmzbHZbJx33nnH7VerVi0ADh065PUJu7i4mMOHDxMTE0NMTAxms5n09HSv57rdbk+4AIiMjCQkJITXX3/9hDU1aNCgTLXPmzeP+fPnM2PGDIYMGUJkZCRQ8iZaqrS7ITMz0+u5aWlpJCUl0aVLFyIjIz0h4lhr1qyhefPmnlaQYwcwAuTn55+2xvXr13PfffcxceJErr/+ehISEgB48skn2bBhAwARERGYTKbjanS5XKxZs4YOHToQGxvLBRdcwIwZM1ixYgU7d+6kS5cunu4LkZpM3QoiAcZisTBs2DA+/fRTVq5cyYUXXojVaj1uv3PPPRfguAF6H3/8MS6Xi27dumGz2ejevTuffPKJ1xvp119/TXFxsefrnj17UlRURHFxMR06dPD82bNnD88995zXnQansmHDBpo1a8aoUaM8weDgwYNs377d03LQsWNHrFYrn3/+uddzFy9ezC233IJhGHTv3p01a9Z43XWxZ88ebrjhBtatW0dERAQAKSkpnscNw/B0tZzKL7/8gtvt5pZbbvEEA6fTyXfffQeUBKfw8HDatGnDF1984akbYN26ddx0000kJSUBEBISwogRI1i5ciXffPMNo0ePLtN1Egl0ajkQCUAXX3wxb7/9Nrt27eLVV1894T4tWrRg1KhRzJkzh6KiIs4991y2bt3KnDlz6NGjBwMHDgRK+vKvvvpqbrzxRsaPH09qaiqzZ8/2Chz9+/fn3HPPZfLkydx00020bNmSzZs3M3v2bLp06UK9evXKVHenTp1Ys2YNc+bMoUuXLuzZs4d58+bhcDgoKCgASpr5r776al599VWsVivnnXceW7ZsYcGCBdx0002EhoZy6623csUVV3DdddcxadIknE4nL774Ii1atOCCCy4gLCyMbt26sXjxYho2bEhcXBzvvvvucS0kJ9KxY0cApk+fzpgxY8jOzuaNN95g27ZtABQWFmKz2bjjjju45ZZbuO2227jsssvIysri+eefp1evXnTv3t1zvMsvv5w33niD0NBQhg8fXqbrJBLoTMaxsVhE/GLixIk4nU7PaHm3282AAQMwm82sXr3a04w+btw4LBaL564Fl8vFvHnzWLp0KQcPHiQ+Pp7hw4czefJkr7sL1q1bx8yZM9m8eTMJCQncfffdzJgxg8suu4wpU6YAJW+Ks2bNYuXKlRw6dIj4+HguuOACJk+e7Om2+Gudf+VwOPjPf/7DZ599Rm5uLnXr1mX48OFYLBbmzJnDmjVriImJwTAMFi1axJtvvsmBAweoX78+48aN45prrvF8r7/99hvPPvssv/32G6GhofTp04f77rvP82k/OTmZ6dOn8+OPP3o+wbdq1YqHH37Y80b/wAMP8P333/PNN9941bl48WJeffVVUlNTqVOnDueeey5Dhw7ltttuY86cOQwePBgoaWF58cUX2bJlC9HR0QwZMoQpU6YcN99E//796d27N0888UQFXwEigUXhQESkErZu3coll1zCG2+8Qbdu3fxdjohPqFtBRKQCSudu+PDDD+nSpYuCgZxRNCBRRKQCcnJyWLhwIZGRkTz11FP+LkfEp9StICIiIl7UciAiIiJeFA5ERETEy1k7IPHw4Xzcbt/0qMTGRpCRkeeTY0kJXVPf0zX1LV1P39M19a1jr6fZbCImJvw0zzjqrA0Hbrfhs3BQejzxLV1T39M19S1dT9/TNfWtil5PdSuIiIiIF4UDERER8aJwICIiIl4UDkRERMSLwoGIiIh4UTgQERERLwoHIiIi4kXhQERERLwoHIiIiIgXhQMRERHxonAgIiIiXhQORERExItfw8HLL7/MuHHjvLZt2bKFiRMn0rlzZwYOHMiCBQu8Hne73cyaNYt+/frRqVMnrrvuOvbs2VOdZYuIiJzR/BYOFi9ezMyZM722ZWZmMmnSJBo3bszSpUu58847mTVrFkuWLPHs8+KLL/Lmm28yY8YM3n77bYKCgrj++uux2+3V/S2IiIickap9yebU1FQeffRR1q1bR9OmTb0eW7JkCVarlWnTpmGxWGjevDl79uxh3rx5jB07FofDwcKFC7n33nsZMGAAADNnzqRv376sXLmSSy+9tLq/HRERkTNOtbcc/PHHH4SHh/Phhx/SqVMnr8fWr19P9+7dsViOZpaePXuSnJxMamoqW7ZsoaCggF69enkej4iIoG3btqxfv77avgcREZEzWbW3HAwaNIhBgwad8LHU1FRatGjhtS0+Ph6AlJQU0tLSAEhISDhun5SUlCqoVkREpPwMw8DpMnA4XTiK3RQf+dvhLPm3vXSb002x04292EWx042juGRbbFQIg7s18Fv91R4OTqWoqAibzea1rfRru91OYWGh17Zj93E4HOU6V2xsRCUqPV5cXKRPjye6plVB17RiXG6D/MJicgsc5OY7yC1wsCs9nzq1QomtFUJUuA2TyVRl53cUu0jJyOdAej4H0vM4cCifA4fyOJCej81qpkndKJrWq0XTelE0qVuLhNphmM1VV48v2Itd5BU4yDlyPfMKitl2IKdSxzTcHHkzLnnztRc7S96Qi13YHS7sxaWPlfztKHYf3e4s2afY6ar09+Y2Sn5mhlGx51stZprVq8WVF7apdC0V/T8fUOEgJCTkuDf50q/DwsIICQnxbDs2IDgcDsLCwsp1royMPNzuCv7k/iIuLpL09FyfHEtK6Jr6nr+u6eFcO0n7s9mZksOh7CLaNomha8s4osJtp39yFXC7DTJyisgrLCa/qLjk70In+YUl/84rKvm69PH8wmIKipyc6reFJchMTKSNmMgQakcGE+P5E0LtqGCiI4KpFW475Ru20+UmPauQ1MOFpGUWkHq4kIOZBaQdLiAzx+51/sgwKwkxYbRpFI3d6WbXgRzWbTro2SfYFkSDuHAaxkfS8Mjf9ePCCQ32/a98p8tNftHR65d/zDUsvb6e7Ue25RcW43C6fV7LiZhMYLMEYbOasVnMWD3/DsJqMRMVZsVqCcZmMWOzBmEJMlPZnGcyUXKeI8csOa+ZYGvJOW0WM1ar9+O2I49ZLWbMRwqo7P/XY//Pm82mcn0oDqhwkJiY6Ok6KFX6dWJiIsaRGJaWlkZERITXPn/tjhCR6ucodrEnNZek/TnsPJBN0oEcDueW3ElkCTIRGWZj/dY0Xvt0G60bRtP9nHi6toojOiK4SuvKKyxm064MNiZlsGlnJnmFxSfcLzQ4iPAQK+GhViJCLMRFhxARaiU8xEpEaMmf8FAL4aFWYqLD2JV8mMxcO4dL/+QUsWN/Nll5dpwu7zhhNpmIjrQdDQ2RwbjcBqmHC0jLLORQdhHuYz5qhgVbSKgdSssG0STUDiMhJtTzd1iI9bja7cUu9qfnsy89j+TUPJLT81i3OZXVdqdnn7joEBrGRx4NDvHh1IkOxWwy4TYMCo59kz8mOB0NTaVv/kf3K3Kc/JN2kNlEeKiV8BALEaFW6tQKoUlipNd1jDhyvcNDLNSpE8HhzPzy/ni9eN50j7zhBplNVdqqc6YKqHDQo0cPFi9ejNPp9AxKXLt2LU2aNCEuLo5atWoRERHBjz/+SLNmzQDIy8tj8+bNjB8/3p+li5x1DMMgLauQnftzSDoSBPal5eE60iJXp1YIrRpG06xeFM3r1aJhfASWIBP70vNZvzWN9dvSeP2z7Sz+bDstGtSie+t4urWOo3ZUiE9qS07LY2NSBht3ZpC0PxvDgIhQKx2a1aZVw2iiwm2eN/3SNydLUNnHaMfFRVI77Pg3aQC3YZBXUMzhXDuZuUVk5dq9QkRyWh4bdxzCZDKRUDuUxomRnNs2noSYME8AiAi1lutNLdgaRLN6UTSrF+V1HTJzSs6XnJ5X8ndaHr9sT/dqZbCYTadsHTEBYUfe4MNDrdQKt1EvNqzkzf0E4an0DT/EFlSu7yEuLpKwIL2RB4KACgdjxoxh/vz5PPjgg9x4441s2rSJRYsW8eijjwIlYwsmTJjAzJkzqVOnDg0aNOCZZ54hISGBYcOG+bl6kTNbQZGTXSlHWwR2HsjxfAIPtgXRrG4UF/ZsdOQNqha1TtJt0DA+gobxEYzq34z9h/LZsC2N9VvTefPLP3nzyz9pVi/KExTiokPLXF+Rw8nm3YfZmJTB7zszPC0WjRMiGdG7CR2bx9K0blS19MWbTSaiwm1EhdtonHjiPt/SltCq/FRrMpmIrRVCbK0QOres49nu1cqQlofbMDxv6BGhFq83/PBQK2HBloAfwyC+FVDhIDY2lgULFvDYY48xatQo4uLiuOeeexg9erRnnzvuuAOXy8UjjzxCYWEh3bp1Y/78+ccNUhSR8it2ukg7XNLvnZpZQOrhAlIzC0k9XEBW3tHxQPXqhNO5ZR2aH2kVqFcnvEJvHvXrhFO/TlP+1qcpBzMLSoLCtnSWfLWDJV/toHFiJN1bx9G9dTwJtY8fV3Qws6CkdSDpENuTs3C6DEJsQbRrWpuOzWLp0Dy2yrssKsqfTd0namUQOZbJMCo6nrJm04DEwKZrWiIlI5+3V+3AUew6rgn32Obbo4+dvGm89JpWZOBbaX9307pRNK0becI+b19Kzypkw7Z01m9LY+eREewN4iLofk4cDeMj2LL7MBt3ZpB2uOQOprqxYXRqXocOzWNp2aBWuboHKkqvUd/TNfWtM2ZAoogc9eOWVF5duRVrkJm6sWEcOJTvGRXuOkWwDbEFHRMiLEf6fi3k2Z3sO5h7koFvYbRsGO0VBE428K06xEWHcmHPRlzYsxGZOUWeoPDBml0YlNzq1aZxDEO7N6Rj89hydT+IyOkpHIgEmGKnmyWrdvDlz/toUb8WN1/SzmuQnmEYFDlcnlvGjh1RfnSEeTH5RSXb0rOLKLI7qRMTdmTgW4JXACjvwLfqVjsqhKE9GjK0R0Oy8uwczCigab0ogq1B/i7N71yZ+zAKsjDXSsAUHovJrIV2xTcUDkQCyKHsQl5a9ge7UnIY1qMhlw1sflwTuclkIjTYQmiwhTqU/RPzmdBkGx0RHLBjCKqTuyAL+4/v4tz+7dGNQRbMUfGYoxIw1UrAXCsR85G/TWHRAR0AJfAoHIgEiI1Jh3jlo824DYPbRrWnW+t4f5ckAcZwOSne9Bn2nz8EVzHWjhdhadQRd3Yq7uxUjOyDuHNSce/7HVxH5zfAYsMcleAJC+ZaRwOEKSRSwUGOo3Ag4mcut5tla3bx8Q97aBQfwS2j2pMQUzIy33AUUrDyGYCSX+xRCZijEz2/6E3Wys8JUF2Kd/+Mfd0ScJ14AqKaxhEdh6nVACxNe2AKqvpfpc69v1L0w5sY2akENepESK9xmKMTSx6s5z3NruF2Y+Rn4s4+6AkO7pxUXJnJOHf/AsYxExdZQ4+EhmNbG0pea6YQ304zH0gMpwN3bvrRUFUasAqzMcc3x9KoI5YG7THZyjf77plC4UDEj7Lz7Lz84R9s3ZtF/051GT+kFbZj+tIdf3yJO3UHQYmtcO37A2fBd17PN4VFe36Zm6KO/cUej8kSOLf3Ovf8QtEXL2KuVRdzwpkwm6mB+9Auile9jCnsbaztBmNtMxBziO/XrnBlHcD+w1u4kjdirpVIyEV3Y2nY8ZTPMZnNmCLrYI6sAw3ae1fudmLkZhx5Mzx4NDik7cS580e8FgQIDj8uMHhaHmyBPwjUcDsxcg7hzjkmJB35vo28TDjm3hxTSCSmWgmYouJx7v65pMvGFERQYgssjToR1LAT5ph6Z00ri25l9IEzoS830JwN13Tb3sPM/eAPCu1OJl7Qmj4d6no9bhQXkf/GvZjjmxF20d1HttlLmo2P+cVuHPnlbhQeu2iNCVN4zNFWhph61D3vQjJyKr+oTHk5926k8LNZmGMbEnbxfWfMJ7E6dcI5+PMPODZ9hmvfJgiyYm3ZG2v7YQTVrvxqeoajAPuGDyje9AVYbAR3uwRruyFV2kphuIpx56QfeU15v6Ea+Zle+5pCo0q6JXzYihUREUxenr3iB3C7cOcdOhoAcg+VrMZUyhb2l6BzTNgJDvfsZrhduNKScO39DefejbgzkwEwRcRiadQJS6OOBNVrg8kS2ONfKnMro8KBD5wNb2TV7Uy+pm7D4JN1e1n6dRLxMWHcdml7GsQf/5/W8dsK7OuWEHbJQwSV4dO24Sg47tNR6adC7PnY4htjHXIn5ojaVfFtnZBz3yYKP30Oc3R9wkZM9foFXNMd+xp1Hd5P8abPKd7+PbgcBNVvi639MIIadcRkKt8dBIbhpnjbGhw/LcUozMXauh+2HmMwh9Wqim+j7HU57bhz0rzHNxzTFB8wLMEn7iKplVDh8RXuvAycyb+XhIX9f4DTAUFWguq1Kel+aNgJc1RcFXwzlaNwUAEKB4HtTL2m+UXFzP9oM78lZdDjnHgmXXTOCVfKM5x28t+8D3Ptkk/bleVM3kjRl3PAGkrohXcTFNuw0sc87Tn3b6bwk5mYoxMJu/j+M67/+kSvUaMoD8fW1RT/sQojPxNTVAK29kOwtupbpmZ418E/Kfp+Me5DuzEntCDkvAkExTWpou/Ad4ziIgwfjCWpExvBoYy8Cj/fhAmCw6u06d9wFeNK2YZz7284kzdiZKcCYI6uS1CjTlgadiQosVW1jEM5HYWDClA4CGxn4jXdlZLDS8s2cTjXzpWDWzKoa/2T/hJz/P4p9h/eJPRvD2JJbOWT80e5Mzjw5gwMRyGhQydj+UtftC85D2ylcOWzmKPiCR0xFXPomTdN76leo4bbiXPXBhy/f4Y7LQmsoVjP6Y+t3ZATfsJ05x/Gvm4Jzh0/YAqLJrjnWCwtep81/dulauL/e3f2QZx7N+Lc+xuulG3gdoIpCMyVm4fDHFOX8NH/qtQxNEOiSAAzDIPVv+znzS//pFa4jX9M6HbKOe0NpwPHrytKmix9FAwAghOaEHbJwxR+8iyFK2cS0n8S1tb9fHb8Us6D20taDCLrnLHB4HRMZgvW5j2xNu+JKy0Jx++fU7zpC4o3fYalcVes7YcSVLc1uIpxbPwEx6/LwXBj6zISW+eLa9RdKGc7c61EbB0SsXUYhlFchGv/FlxpOzDc7tM/+ZTHTfBRhRWjcCByEs49v2CKjKvU4LIih5P/frKNdZtT6dg8lhtGtCUi9NRTEhdv/QajMBvb4JsrfN6TMUfUJuxvD1L4+YsUfb0Ad+4hbN0u9dknVFfqjpIWg/CYszYY/FVQfHNCBzfH3esKiv/4kuItq3Hu3oA5thGGoxAjNx1Lk24E97oCc5TmtqjJTNYQLE26YGnSxd+lVJrCgcgJuPMPU/jZbEwRtQm//LEK3RZ4ONfOs2//yoGMfEb3b8bw3o0xn+ZN2HAV4/jtY4ISWxFU95yKln9KJlsYoRdNoeib/+L4+QPcuYcI6X9tpftIXWk7KVjxDKbQWoSOuB9zWLRvCj5DmMNjCD73Mmxd/0bxjh8o/uMLTMFhhPSfiqV+W3+XJ+JF4UDkBIq3rAbDhZGbjuPnDwk+97JyPT8zp4in3vyFrHwH91zRmbZNynaHQPG2bzHyD2MbcH2V9jebzBZCBlyHI6oOjvXvU5ifSejQyRW+m8CVvpuCFU9hCokgbMT9mMNjfFzxmcNksWE7ZwC2cwb4uxSRk9IqHSJ/YbiKKd7yVcnI41Z9cPy2Elfm/jI/PyO7iCfe+JmcgvIFA8PlxPHrcszxzQmq366i5ZeZyWQiuOslhAz8O66U7RR8+DjuvIxyH8d1aE9JMLCFlQSDarxVUkSqhsKByF84k37EKMzB1n4owb2uxGQLxb5mEYZx+gFGh7IKeeKNn8kvdHLPFV1oUb/s96YX//kdRl4GwV3/Vq2j1K2t+hA6/B7ceZkULJuO69CeMj/XlZlM4cdPYbIEEzbigZIZ+USkxlM4EDmGYRg4Nn2OOboeQfXbYQ6JJLjXFbhS/6R46zenfG7a4QL+88bPFNqd3Duu8ynvSDjuvG4Xjl+WY67ThKDTTI1bFSz12xJ2yT/BZKbgw8dx7t142ue4Du+ncPmTYLGWtBgE4CQwIlIxCgcix3CnJeE+tBtr+yGeT++WVn0Jqtsa+7oluAtOPBPcwcwCnnjjFxzFbu4b14UmieUbpe/csRYjN53grpf47d72oNoNCLv0Ycy1Eij89DkcW1afdF9X1gEKlz8B5iDCLr7f77ddiYhvKRyIHMOx6XOwhWJteZ5nm8lkIrjfNeB0YF/75nHPScnI54k3fsbpcjN1XBcaJZRv8R3D7cb+y4eYYxsS1LhzZb+FSjGHxxA28h8ENWiHfc0i7D++e1x3ijv7YEmLAZTcrli6MqCInDEUDkSOcOcfxrlzPdbW/Y+bhCYouh62zhfj3LEW575Nnu370/N44o1fMAyYOr7rCddIOB3nznUY2anYulTvWIOTMdlCCb3gLqznDMTx63KKVs3zTI3rzkmjYPkT4HYRevH9BEXX83O1IlIVFA5EjijevKpklrp2g0/4uK3zxZhqJVK05r8YTgfJaXk8+eYvmExw//gu1K9T/tsADcON4+ePMMfUx9K0W2W/BZ8xmYMI7ncNtnMvw5m0lsIVT+M6tJuCj/4DzmJCL55KUO36/i5TRKqIwoEIJVMWF29ZjaVx55POUmey2Ajpdw1Gbjrpa97lqTd/wRJk5oHxXakbW7H5AZy71uPOOoCt69/KvXpfVTOZTAR3HkHIoJtwpSZR8N40DKed0Ivvq5aFm0TEfzQJkgjg3PkjRlEu1vZDT7mfpV4bihqei2375zSwjmbSuMHEx4RV6JwlrQYfYq6ViKVpjwodozpYW/TGFBaD4+cPCO55BUF1Gvu7JBGpYoH1UUWEkuVf3UX51Xc+w8Dx++eYY+oRVK/NKffdeSCHJ7e2wI6NmxJ/JS664gvkOHf/gjtzX0mrgTmw/yta6p1D2Ij7a8TywSJSeYH9G0nOSkWr57P/1fsxnI5qOZ8rdQfujD1Y2w095YDAHfuzeebtXzCHRmDreQXmQ0mnnfvgZAzDwPHzh5iiErA071nR0kVEqoTCgQQc16HdFGem4Pjlo2o5X/Gmz8EW5nX74l9tT87imbd/JSrMxv3juxLd6fzTzn1wKq69v+HO2ENwlxGYKrnuu4iIrykcSEAxnHaM3AxM1hAcv60o15oGFeHOy8S5az3Wc/pjsgafcJ+tew7z7JJfiYkIZur4rtSOCjnt3AenYhgG9p8/wBRZB0vL3r74NkREfErhQAKKOzsVMIgdPBGsIdi//W+Z1jSoqOLNqwDjpLcvbt6dyXPv/EadWqHcP74LMZFHA8TJ5j44Hde+33Gn78LWeQQms8YEi0jgUTiQgOLOSgEgpGFbQnpdievgdoq3ramScx29fbEL5sjj1wX4fWcGz7+7kfiYUKaO60KtiONbFv4698Fpz2kY2H/+EFN4bayt+vrk+xAR8TWFAwko7qwUMJmw1E48uqbB2rcr1K9/Os6kdRj2vONuX8zOs7Pg483MXPIbibXDuG9cF6LCbSc8xrFzHzh+/vC053Qd2II7dUdJqAhSq4GIBCaFAwko7qwUTJFxmC22Y/r17djXvuXT83hWX4xpQFDdcwBwutysXLeHf8xby9o/UrmoZyMeuKorkWEnDgalLPXaYGnVB8dvK087RsLx8weYwqKxtu7ns+9FRMTXFA4koLizUjBH1/V8XdKvPwLnjh/K1a9/Oq6D23Fn7PWsvvjbjkM8PH8d73yVROuG0cy4oSeXn9+C0OCyfboP7nUlJlso9jWLTjpGwnlgK66UbSWtBpZTBw4REX9SOJCAYRhu3FkHvcIBlPbrJ1D07f98NvdB8abPITicjNqdmLnkN55/dyMmk4kpYztx5+WdSKhdvlkPzSGRBPe6Alfqnyed+8Dxy4eYQqOwnjPAF9+CiEiVUTiQgGHkZYLLcVw4MFlshPS9BiMnzSdzH7jzMnDu/pmk0I488t9f2bE/iysGteDf159Lh2axFT6uZ4zECeY+cB78E9f+zdg6XaRWAxEJeAoHEjBK71T4azgAsNRvi6Vln0rPfeA2DJK++hC32+D13XU5r30ij9/YmwvObYQlqHL/HUwmEyH9Jp1w7gPHzx9gConE2mZQpc4hIlIdFA4kYJwqHAAE97qiUnMf7NiXzf8tWkvk/h/YGdSMyVcP5Nrhbah1kjsRKsIcXRdblxFecx+40nbi2rcJa8cLTzrRkohIIFE4kIDhzkrBFByBOSTyhI+bQ6MqNPfB4Vw78z76g8df30Djws2Emx10GH4ZTRKjfFW6l7/OfWD/+QMIDsfWVq0GIlIzKBxIwPjrnQonUp65D4qdLpZ/v5sH561l/dZ0Lu7ViEvidmGu3dBz+2JVMAVZPXMfFK2ai2vvb9g6XIDJFlpl5xQR8SWFAwkYZQkHZZ374I9dmTw0fx3vfbOTtk1imPH3nlzSygmH93luX6xKJXMf9MW5+2ewhWJrP6RKzyci4ksKBxIQDHs+RmH2acMBnH7ug+S0PGYt3YglyMw9V3bm9jEdiY8O9dy+aG1RPYsdBfe6AlNUPMHdLsVkK9+tkSIi/qRwIAHBnX0QOPlgxL862dwHRQ4ncz/YRFiwhanju9KuSe2S4+cewrnnZ2xtBlbbrYTmkEjCr/gPtg4XVMv5RER8ReFAAsLp7lT4q5PNffD6Z9s5mFHAjSPbet2FULL6oglrNQ8KNJn0X0xEah795pKA4M5KAbMFU2SdMj/nr3MffPd7Ct9vOsjIPk1oc6TFAMBw2nFs/RpLk66YIyo+yZGIyNlC4UACgjsrBXOtBEzmoHI9r3Tug5yvFvL6Z1s5p1E0f+vT1Guf4j9/AHv+casviojIiSkcSEAoy50KJ2IOjcLSYyyWjCR6Byfx95HtMJuP3olgGAbFm77AHNuIoMRWvixZROSMpXAgfme4nbiz0yoUDgDe3h3PjuIE/ha2gVpBRV6PuVK24j68D1v7oVV++6KIyJlC4UD8zshJB8NVoXCwdvNBvtmYwsGWowlyO46b+6B40+eYQiKxNO/pq3JFRM54Cgfid65y3qlQKjWzgP9+so0W9WsxdHCP4+Y+cOek49zzC9ZzBmglRBGRclA4EL/z3MZYK7HMzyl2unjpg01YzCZu+ls7LEHm4+Y+cGz+En/cvigiUtMpHIjfubNSMIXHlGvtgSWrktibmsf1F7cltlYI4D33gf3Hdyne+g2Wpt0xR9Q+zdFERORYFn8XIFLeOxU2bEvjy5/3MaxHQzq39J4XoXTug+JNnwHo9kURkQpQy4H4lWEYR+Y4KFs4SM8qZOGKrTRJjOSygc1PuE9wrysgOBxzncYEJbTwZbkiImcFtRyIXxmFOeAoKFPLgdPlZu4HfwAGN1/aHkvQibOtOTSK8EseBotVty+KiFSAwoH4VXnWVFj6dRK7UnK49dL2xEefenyCObrsgxtFRMSbuhXEr8oaDn7dcYhPf0zm/K716X5OfHWUJiJy1lI4EL9yZ6WAJRhTeMxJ98nMKWLB8s00io/gykEaQyAiUtUUDsSv3FkHMEfXPenYAJfbzdwP/8DpLhlnYLWUb2EmEREpP4UD8avT3ca4bM0uduzL5poLWpNYO6waKxMROXspHIjfGE47Rl7GScPBpl0ZrPhhD/061qVXOw0wFBGpLgoH4jfurIPAiQcjZuYU8cpHm6lXJ5zxQ7XUsohIdVI4EL852Z0KbrfBM4s3YHe4uPnS9gRbNc5ARKQ6KRyI37izUsBkwhzlfWvi8h92s3HHIa4a1or6dcL9VJ2IyNlL4UD8xp2Vgikyzms55T0Hc/nou93071Kfvh3Kt4SziIj4hsKB+I072/tOhWKnmwUfbyYizMrNoztq6mMRET9ROBC/MAw37qyDXuHgo+93sS89n2suPIfIMNspni0iIlVJ4UD8wsjLAFexJxzsSslhxQ976dM+kc4t6pzm2SIiUpUUDsQvjr1ToaQ7YQtR4VbGDWnp58pEREThQPzi2HDwwbe7OHAon0kXtSEsxOrnykREROFA/MKdlYIpOIJdmW5WrttD34516dg81t9liYgICgfiJ+6sFKiVyMKPtxAdEcyVg9SdICISKBQOxC/cWSnsLYogJaOAa4efQ1iIxd8liYjIEfqNLNXOsOdjFObwc0YQ/TvVo31TdSeIiAQStRxItbMf2g9AQXAsVwxq4edqRETkrxQOpNqt/3EjAAMGdCM0WI1XIiKBRuFAqtX25CzS9+7CRRCtzlGrgYhIIFI4kGpjL3axcMUWGobkERSdgMmspZhFRAKRwoFUm6VfJ5F2uJBmEYVYYur5uxwRETkJhQOpFtv2HuaL9fsY0qUu1oIMrwWXREQksCgcSJUrcjhZuGILcdEhjO4SCYZL4UBEJIApHEiVe3d1EulZRVw3vA1BBakACgciIgFM4UCq1JY9h1n1836GdG9A60YxRxdcqpXo58pERORkFA6kyhTanby6YgvxMaGMGdAcOLLgUngMJluon6sTEZGTCbhw4HA4eOaZZxg4cCBdunRh/Pjx/Pzzz57Ht2zZwsSJE+ncuTMDBw5kwYIFfqxWTuWd1UlkZBdx/cVtCLaW3LbozkpRl4KISIALuHDw4osvsnTpUqZPn877779Ps2bNuOGGG0hNTSUzM5NJkybRuHFjli5dyp133smsWbNYsmSJv8uWv/hjdyarf9nP0B4NadkgGgDDMErCQS2FAxGRQBZwc9d++eWX/O1vf6Nfv34APPDAA7zzzjts2LCBvXv3YrVamTZtGhaLhebNm7Nnzx7mzZvH2LFj/Vy5lCq0O1m0YgsJtcMY3b+ZZ7tRmA2OQrUciIgEuIBrOahduzZfffUV+/btw+Vy8c4772Cz2Wjbti3r16+ne/fuWCxHM03Pnj1JTk4mNTXVj1XLsd5etYPMXDvXX9wGm/XoLIiewYgKByIiAS3gWg4efvhh7rrrLgYPHkxQUBBms5nnnnuOJk2akJqaSosW3vPxx8fHA5CSkkJCQoI/SpZjbNqZwTe/HeDCno1oUb+W12MKByIiNUPAhYM///yTiIgIXnzxRRISEnjnnXeYOnUqr732GkVFRdhsNq/9S7+22+3lOk9sbITPagaIi4v06fFqopx8B4s+2UbDhAj+PqqjV6sBwCF7Bg5rCPFNGmEymU57PF1T39M19S1dT9/TNfWtil7PgAoHBw4cYOrUqcyfP59evXoB0KFDB3bs2MGsWbMICQnB4XB4Paf067CwsHKdKyMjD7fb8EndcXGRpKfn+uRYNZVhGMxZtonsPDu3j+5AdlbBcfsUpOzBVCuRQ4fyTns8XVPf0zX1LV1P39M19a1jr6fZbCrXh+KAGnOwceNGiouL6dChg9f2Tp06sXv3bhITE0lLS/N6rPTrxERNquNP3/1+kA3b0hnVvxmNE0+cVHUbo4hIzRBQ4aD0DX7btm1e27dv307Tpk3p0aMHGzZswOl0eh5bu3YtTZo0IS4urlprlaPSDhew+IvttG4YzYXnNjrhPobTjpGnBZdERGqCgAoHHTt2pFu3bjz44IOsXbuW3bt389xzz/H9999z4403MmbMGAoLC3nwwQfZsWMHy5YtY9GiRdx0003+Lv2s5XK7eWX5ZswmEzeMaIvZfOKxBO6sg4AGI4qI1AQBNebAbDbz0ksv8dxzz/GPf/yDrKwsWrduzauvvkrXrl0BWLBgAY899hijRo0iLi6Oe+65h9GjR/u58rPXx9/vIWl/Djf+rS2xtUJOup/uVBARqTkCKhwA1KpVi0cffZRHH330hI936NCBt956q5qrkhNJOpDNh9/tplfbBHq1PfWYD3dWCphMmKPiq6k6ERGpqIDqVpCao8jh5JWPNhMTaWPCsFan3d+dlYIpMg6TxXbafUVExL8UDqRC3vryT9IPF3LDiLaEhVhPu787W3cqiIjUFAoHUm4btqXzzW8pXNSrMa0bxZx2f8Nw4846qHAgIlJDKBxIuWTl2fnvJ1tpnBDJpf2aluk5Rl4GuIoVDkREagiFAykzt2Gw8OMtOIpd3Pi3tliCyvby0Z0KIiI1i8KBlNmqDfvYtCuTsYNaUDc2vMzPUzgQEalZFA6kTPan57HkqyQ6No/l/C71y/Vcd1YKpuAIzCFaUEVEpCZQOJDTKna6mffRZkKDg7h2eJsyrah4LK2pICJSsygcyGm9/81OktPyuPaiNtQKL/88BQoHIiI1i8KBnNKW3Zl8+uNeBnauR+eWdcr9fMOej1GYo3AgIlKDKBzISeUXFTP/4y3E1w7jikEtK3QMDUYUEal5FA7khAzD4H+fbCMn38GNI9sSbAuq0HEUDkREah6FAzmhH/44yE9b07ikb1Oa1o2q8HHcWSlgtmCKLH+XhIiI+IfCgRznUFYhr3+2nZYNajG8V+NKHcudlYK5VgImc8VaHkREpPopHIgXt9vgleWbAfj7iLaYzeW7bfG44+lOBRGRGkfhQLysWLuHP/dlM2FYK+pEh1bqWIbbiTsnXeFARKSGUTgQj90Hc/jg212c2yae3u0SK308d04aGC6FAxGRGkbhQDy+3LCPYGsQEy9oXe5ZEE9EdyqIiNRMCgfisT05i9aNogkPsfrkeJ5wUKvyrRAiIlJ9FA4EgMycItKzimjdKMZnx3RnpWAKj8Fkq9zYBRERqV4KBwKUtBoAtG4Y7bNj6k4FEZGaSeFAgJJwEGILomF8hE+OZxjGkTkOFA5ERGoahQMBYFtyFi0bRFd6XoNSRmE2OArVciAiUgMpHAg5+Q5SMgpo3SjaZ8fUnQoiIjWXwoF4xhu08vF4A1A4EBGpiRQOhG3JWdgsZpokRvrsmO6sFLAEYwr33d0PIiJSPRQOhO3JWTSvXwtLkO9eDqV3KvhiMiUREaleCgdnufyiYval5fn0FkbQbYwiIjWZwsFZ7s992Rj4dryB4bRj5GUoHIiI1FAKB2e57XuzsASZaFYvymfHdGcdBDQYUUSkplI4OMttS86iad0obNYgnx1TdyqIiNRsCgdnsSKHkz0Hc33apQBHwoHJhDkq3qfHFRGR6qFwcBbbsT8bt2H4dPIjOLLgUmQcJovNp8cVEZHqoXBwFtuenIXZZKJ5vVo+Pa47W3cqiIjUZAoHZ7Hte7NonBhBaLDFZ8c0DDfurIMKByIiNZjCwVnKUexiZ0oOrRv6dgZDIy8DXMUKByIiNZjCwVlqV0oOTpdRNYMR0Z0KIiI1mcLBWWpbchYmoGVDH483UDgQEanxFA7OUtuTs6gfF0F4iNVnx3RlJFO8/VtMwRGYQ3y3iJOIiFQv341EkxrD6XKzY382/TrW88nxjKI87Ovfo3jLV5hs4QT3vdonxxUREf9QODgL7TmYi6PYXenFlgy3i+LNq7BvWAaOQqxtBxPc7VJMIRE+qVNERPxD4eAstD05C4CWlQgHzv2bsX+/GPfh/QTVb0tw7/EE1W7gmwJFRMSvFA7OQtuSs6gbG0at8PLPYOjOSce+9i2cuzdgiowjZOjtWJp0xWQyVUGlIiLiDwoHZxm32+DPfVmc2yahXM8ziu04fl2OY+NKMJmxdR+NreOFmiJZROQMpHBwlklOy6PQ7irz/AaGYeBMWot93RKM/MNYWvQi+NyxmCNqV22hIiLiNwoHZ5nS8QZlGYzoOrQb+3eLcaX+iblOY0IG34olsWXVFigiIn6ncHCW2ZacRZ1aIdSOCjnpPu7CHBw/vUvx1jWYQiII7n8t1lb9MJk1LYaIyNlA4eAsYhgG25Oz6NQ89sSPu50Ub/oS+8/LoNiBtcMwgrtdgskWVr2FioiIXykcnEUOZBSQV1hMq0bRxz1muN0UfTEH5+6fCWrYgeDe4wiK9s0kSSIiUrMoHJxFtu89DJx4vIF93ds4d/9McK9xWDsM062JIiJnMYWDs8i25CyiI2zERYd6bXf88SXFv3+Ktf1QbB0v8FN1IiISKDTC7CxROt6gdaMYr1YB597fsH//OkGNOhPca5wfKxQRkUChcHCWSMsqJCvP4TW/gStjL4VfvoS5diNCB9+suxFERARQODhrbN+bBeAJB+78wxR+MhOTLYzQC+/CZD35rY0iInJ2UTg4S2xPziIi1Eq92DCM4iIKP3kOw1FI6IV3YQ6P8Xd5IiISQBQOzhLbkrNK7lIwDAq/fAl35l5CB99KUGwjf5cmIiIBRuHgLJCZU8Sh7CJaNYzGvvZNXHt/I7jPRCyNOvq7NBERCUAKB2eBbUfWU+hQ/CvFmz7H2uECbG0H+bcoEREJWJrn4CywPTmLrmEHCP/jSyxNuhLc8wp/lyQiIgFMLQdngay9fzI+ZDXmOk0IOf8m3bIoIiKnpHeJM1x22kHGuFfgsoYTesGdmKzB/i5JREQCnMLBGcxwFOL4/HmCTU7ye9+MOSza3yWJiEgNoHBwhjLcLgq/fAlb/kFeKxxIg5at/V2SiIjUEGUKBy6Xq6rrEB8yDAP794txJW/kc1N/3IltsQQpB4qISNmU6R1jwIABPPnkkyQlJVV1PeIDxb9/RvHmVdD2AlZmND7hEs0iIiInU6ZwcMkll7B8+XJGjBjB2LFjWbJkCXl5eVVdm1RA8e4N2Ne+haVpd5LiB2OA12JLIiIip1OmcHDfffexevVq5s6dS2JiItOnT6dv377cd999rF27tqprlDJype+i6MuXMcc1JeT8v7NtXzaWIDPN6kX5uzQREalByjwJktlsZsCAAQwYMIDs7Gw+//xz3nvvPa699lrq1avHFVdcwdixY4mOjq7CcuVk3HmZFH7yHKbQyJJbFi3BbE/Oolm9KKyWIH+XJyIiNUi5R6nl5+fz+eefs3LlSjZu3Eh0dDRdu3blf//7H0OHDmXNmjVVUaechjNpHUZhdskqi2G1KLQ72XMwT10KIiJSbmVqOTAMg2+//ZZly5axatUq7HY7vXv35umnn2bw4MFYrVYcDgfXX389jz76KKtWrarquuUv3IU5EGTFHNMAgKT92bgNQ4MRRUSk3MoUDvr160dGRgZ169bl+uuvZ8yYMdStW9drH5vNRs+ePXn99derpFA5NaMoD1NIBCaTCShZbMlsMtG8vsYbiIhI+ZQpHHTr1o3LL7+cPn36eN58TmTMmDGMHTvWZ8VJ2RlFuZhCIjxfb0/OokndSEJsWltLRETKp0xjDp5//nlatWrFihUrPNt2797Niy++yKFDhzzb6tatS3x8vO+rlNMy7HmYQiIBcBS72JWSo/EGIiJSIWUKB1u3bmXkyJE8++yznm3p6eksWLCA0aNHs3v37qqqT8rIKMrDFFzScrDzQA5Ol6FwICIiFVKmcPDUU0/RtGlTli5d6tnWo0cPVq9eTf369XnqqaeqrEApm5JuhZKWg+3JWZiAVg1q+bcoERGpkcoUDjZu3Mgtt9xy3BwGUVFR3HDDDaxfv74qapMyMtwusBd4xhxsS86iYXwEYSFWP1cmIiI1UZnCgdlsJjs7+4SPFRUVaWEmPzPs+YCBKSQCp8tN0v5sdSmIiEiFlSkc9OzZkzlz5pCamuq1PT09nblz59KzZ88qKU7KxrCXrHNhColk98FcHE43rRtF+7coERGpscp0n9u9997L5ZdfztChQ+nUqROxsbFkZmayceNGQkJCmDVrVlXXKadgFJWGgwi2J2cB0FItByIiUkFlajlo1KgRy5cvZ+LEiRQXF7NlyxYKCgq48sorWbZsGU2bNq3qOuUUjKJcoCQcbNubRd3YMKLCbH6uSkREaqoyz5ATFxfHfffdV5W1SAWVthwYtgj+3LeHXu0S/VyRiIjUZGUOB4WFhWzZsgWHw4FhGEDJmgsFBQVs2LCB+++/v8qKlFMrDQf7c0wUOVy0aqhbGEVEpOLKFA5++OEH7rrrLnJyck74eEREhMKBHxlFuRBkY9uBfABaN4zxc0UiIlKTlXn65OjoaJ5//nmGDh3KsGHDmDt3LuPGjcNkMjFv3jyfFrVs2TKGDx9Ohw4duPjii1m5cqXnsS1btjBx4kQ6d+7MwIEDWbBggU/PXROVLrq0LTmL+OhQYiKD/V2SiIjUYGUKB9u2beO2225j2LBhDBo0iIMHDzJgwAAeeeQRLr30UubMmeOzgj744AMefPBBrrjiCpYvX86IESO4++672bBhA5mZmUyaNInGjRuzdOlS7rzzTmbNmsWSJUt8dv6aqHTRpT/3aX4DERGpvDJ1K7jdbs+CSk2bNmX79u2exy644AL++c9/+qQYwzB4/vnnmTBhAtdccw0At9xyC+vXr2ft2rX89NNPWK1Wpk2bhsVioXnz5uzZs4d58+ad1atBGkV5OMyh5BUWKxyIiEillflWxm3btgHQpEkTCgsL2bVrFwBOp5P8/HyfFLNz507279/PiBEjvLYvWLCA2267jfXr19O9e3cslqOZpmfPniQnJx83QdPZxLDnke0quXWxlSY/EhGRSipTy8HIkSOZOXMmbreba6+9ls6dO/Pvf/+b8ePHM3fuXFq0aOGTYkpXd3Q4HNx44438/vvvNGjQgFtuuYVBgwaRmpp63LlKWzRSUlJISEgo87liYyN8UnOpuLhInx6vPPLt+WTbbMREBtO2RRwmk8lvtfiSP6/pmUrX1Ld0PX1P19S3Kno9yxQObrjhBrKysti0aRMADz/8MNdffz233347kZGRPhtzkJdXckve1KlTue2225gyZQqfffYZt956KwsWLKCoqAibzXtyn9Kv7XZ7uc6VkZGH2234pO64uEjS03N9cqzyMtwu3EV57C+EJomRHDqU55c6fM2f1/RMpWvqW7qevqdr6lvHXk+z2VSuD8VlCgd//PEH9957L2ZzSS9Eu3bt+OKLL9i5cyfNmjUjIsI3n8Kt1pJVBK+99lrGjBkDQJs2bdi0aRMLFy4kJCQEh8Ph9ZzSr8PCwnxSQ01TsugSpBYE0by+5jcQEZHKK9OYgxtuuIH33nvPa1tERAQdO3b0WTAASEwsmdmvVatWXttbtmzJvn37SExMJC0tzeux0q9Ln3u2KZ0AKc8Ipnm9KD9XIyIiZ4IyhQObzUZ0dHQVlwJt27YlPDyc33//3Wv79u3badSoET169GDDhg04nU7PY2vXrqVJkybExcVVeX2BqHRdhQIjmMaJ6qsTEZHKK1O3wj333MPjjz9ORkYGLVu2POEbccOGDStdTEhICDfccANz5swhPj6ezp078/HHH/Ptt9/y6quv0qpVK+bPn8+DDz7IjTfeyKZNm1i0aBGPPvpopc9dU5W2HIRH1ybEVubZsEVERE6qTO8m//znP3G5XDz66KMnHQm/ZcsWnxR06623EhYWxqxZszh48CDNmjXjhRdeoHfv3kDJbY2PPfYYo0aNIi4ujnvuuYfRo0f75Nw1kftIy0FCQh0/VyIiImeKMoWD6dOnV+vtcZMmTWLSpEknfKxDhw689dZb1VZLoMvNzCQYqFe/7LdxioiInEqZwsHZ/Mk80GVnZlLLsNCskVoORETEN8oUDn766afT7tOjR49KFyPlV5iThdUIpkHts/NWThER8b0yhYOJEyeetlvBV2MOpHyc+bm4LGGYz5BZEUVExP/KFA5effXV47bl5eWxbt06PvnkE2bPnu3zwuT0ihxOgpz5mGppfgMREfGdMoWD0jsF/mro0KGEh4czf/58BQQ/2J2SS7jJTnCEZkYUERHfKdMkSKfSq1cvvv/+e1/UIuWUdCCbcJOdiOgYf5ciIiJnkEqHg/Xr1xMcHOyLWqScdu0/TJjZgU0tByIi4kNl6laYOnXqcdtcLhcpKSn88ssvjBs3zueFyakZhkFKSjoEgykk3N/liIjIGaRM4WD9+vXHbTOZTERERHDzzTdz0003+bwwObWM7KKSqZODwRSiNRVERMR3yhQOVq1aVdV1SDklHcgh3GQHFA5ERMS3yjzmYOvWrSxcuNDr6wcffJCkpKQqKUxOLelANrUsDgBMIb5bNltERKRM4WDdunWMHTuWDz74wLPN4XCwbt06Lr/8cjZt2lRlBcqJ7TqQQ6Pokn+bghUORETEd8oUDmbOnEmfPn1YunSpZ1vHjh359NNP6dmzJ0899VSVFSjHK3a62ZOaS71IA1DLgYiI+FaZwsG2bdu46qqrsFi8hyhYLBauvPJKtRxUs71puThdBnGhLrAEY7LY/F2SiIicQcoUDsLCwjhw4MAJHzt06BBWq9WnRcmp7dyfA0C0pVitBiIi4nNlCgf9+/fnhRde4Pfff/favmXLFmbPnk3//v2rpDg5saQD2dSOCsbqKtCdCiIi4nNlupXx3nvvZcOGDYwdO5a6desSGxtLZmYmBw4coGHDhtx3331VXaccY+eBHJrVq4VRlKeWAxER8bkyhYPY2Fg+/PBD3nvvPTZs2MDhw4epV68ekyZNYvTo0YSHa4a+6pKdZ+dQdhGDuzXASMrFXCve3yWJiMgZpkzhACAkJIQ+ffowfvx4ADIzM9m5c6eCQTXbeaBkvEHzerUwNuepW0FERHyuTGMOMjMzufLKK7nhhhs8237//XcmTJjAddddR15eXpUVKN52puQQZDbRMC4EHIXqVhAREZ8rUzh46qmnOHDgAA8//LBnW79+/Vi4cCE7d+7kueeeq6r65C+S9mfTMD4Cq6sQ0ARIIiLie2UKB2vWrOHee+/1uivBbDZz3nnncccdd/D5559XWYFylNttsCslt6RLoaiktUbdCiIi4mtlCgf5+fmEhYWd8LGYmBiysrJ8WZOcxP5D+diLXTSrH3VMOFDLgYiI+FaZwkG7du145513TvjYu+++S5s2bXxalJxY0oFsAJrXi8IoygXUciAiIr5XprsVbr75Zm688UZGjhzJsGHDPPMcfPnll2zdupV58+ZVdZ1CycyIEaFW4qJDKU5Ry4GIiFSNMoWDvn37MnfuXF544QXmzJmDYRiYTCbatGnD3Llz6dy5cxWXKVDSctC8XhQmk+mYlgOFAxER8a0yz3PQv39/+vfvj91uJysri8jISHbu3Mlbb73FXXfdxS+//FKVdZ71CoqKSckooFfbBAAMez5YQzAFaV0LERHxrTKHg2N99913vPnmm2zatAnDMOjatauv65K/2JlSMvlRs/q1ADCKctVqICIiVaLM4WDXrl289dZbLFu2jJycHOrWrcvNN9/MqFGjaNSoUVXWKJTMjGgCmiZGARxZV0GDEUVExPdOGQ5cLhdffPEFb775JuvWrcNqtTJgwAC++OILnn76abUYVKOdB3KoVyecsJCSH5lRlIspWFNXi4iI7500HMyaNYt33nmH9PR02rVrx0MPPcTIkSMJCgqiW7du1VnjWc8wDJL2Z9O1VdzRbUV5mGsl+rEqERE5U500HMyZM4fWrVsza9YsunTp4tleUFBQLYXJUWmHC8kvctL8yHgDQMs1i4hIlTnpJEiXX345+/fvZ+LEiVxzzTW8//77FBYWVmdtckTp5EfN6h0Zb+ByQnGhxhyIiEiVOGk4mD59Ot9++y3Tp0/H5XLxj3/8gz59+vDII49gMpkwmUzVWedZLelADiG2IOrFlowxMOyaAElERKrOKadPDgkJYdSoUbz++ut8+umnXHXVVaxbtw7DMLjnnnt45pln2Lp1a3XVetbauT+HpnWjMJtLApkmQBIRkapUprUVABo3bsw999zD119/zdy5c2nTpg2vvvoqo0aN4uKLL67KGs9q9mIXyWl5ni4FQCsyiohIlSr3JEhms5mBAwcycOBAMjMzef/993nvvfeqojYB9hzMxW0YNK/nPRgR1HIgIiJVo8wtBydSu3Ztrr/+ej7++GNf1SN/sfPAkZkRvVoOtCKjiIhUnUqFA6l6SQeyiYsOISrc5tnmaTkIVsuBiIj4nsJBgNt5IMerSwGOtBxYQzAFVWhpDBERkVNSOAhgmTlFHM61e3UpgNZVEBGRqqVwEMCOjjf4S8uBXbMjiohI1VE4CGBJB7KxBJlplOAdBNRyICIiVUnhIIAlHcihcWIEliDvH5NWZBQRkaqkcBCgnC43ew7mHjcYEdRyICIiVUvhIEDtS8+j2Ok+fjCiqxiKizTmQEREqozCQYBK2l8yGPH42xg1dbKIiFQthYMAtfNANrUibNSOCvbarqmTRUSkqikcBKikI5Mf/XVpbK3IKCIiVU3hIADlFjhIO1x43HgDKJnjANStICIiVUfhIACVTn7U/EThQN0KIiJSxRQOAlDSgRxMJmiSeKJwoG4FERGpWgoHAWjXgWwaxkUQbAs67jGjKA+soZjMWnRJRESqhsJBgHEbBjtTcmhW//jJj6B0AiS1GoiISNVROAgwKRkFFNpdJxxvAEemTtZgRBERqUIKBwFm5/5sgBPeqQBqORARkaqncBBgkg7kEB5iIaF22AkfL2k5UDgQEZGqo3AQYHYeyKZp3SjMf5n8qJQWXRIRkaqmcBBACu1O9qfnn7xLwekAp10tByIiUqUUDgLI7pQcDKD5ye5UsOcDmh1RRESqlsJBANmZUjIzYtO6J79TATQBkoiIVC2FgwCStD+HxNphRIRaT/i4Z+rkYIUDERGpOgoHAcIwDHYeyD7p/AZw7LoK6lYQEZGqo3AQIA5lF5FTUHzSmRFB3QoiIlI9FA4CRNKBI5MfnWS8ARzbchBeLTWJiMjZSeEgQOzcn4PNYqZB/Mnf+I2iXLBp0SUREalaCgcBIulADk3qRhFkPvmPRBMgiYhIdVA4CADFThd7U3NPORgRwLBrXQUREal6CgcBYG9qHi63QbN6Jx+MCFqRUUREqofCQQDY5Zn86NRv/FqRUUREqoPCQQBITssjItRKTGTwKfczinI1AZKIiFQ5hYMAkJyWR8P4CEwnWYkRShddcqhbQUREqpzCgZ+53G72H8qnYfypWwSOznGglgMREalaCgd+djCzkGKnuwzhoHR2RLUciIhI1VI48LPktJI3fbUciIhIoFA48LPktDyCzCbq1Tn1lMhaV0FERKqLwoGfJaflUa9OOJagU/8oDLtWZBQRkeqhcOBnyal5p+1SgGO6FYK16JKIiFQthQM/ysl3kJ3vKGM4yIXgcEzmoGqoTEREzmYKB36UnFbSGtCojC0HmgBJRESqg8KBH5WGg4YJpx9HoKmTRUSkuigc+NHetFxiIoOJCLWedl+FAxERqS4BHQ527dpFly5deOeddzzbtmzZwsSJE+ncuTMDBw5kwYIFfqywckqnTS4LrcgoIiLVJWDDQXFxMffeey8FBQWebZmZmUyaNInGjRuzdOlS7rzzTmbNmsWSJUv8WGnFFDvdHMwoKEc4UMuBiIhUD4u/CziZF154gfBw79v2lixZgtVqZdq0aVgsFpo3b86ePXuYN28eY8eO9VOlFXPgUD4ut1G2OxWcdnA5FA5ERKRaBGTLwU8//cTbb7/NE0884bV9/fr1dO/eHYvlaKbp2bMnycnJpKamVneZlbK3jNMmw7FTJ6tbQUREql7AhYOcnBymTp3KQw89RN26db0eS01NJTEx0WtbfHw8ACkpKdVWoy8kp+Vhs5hJiAk77b5aV0FERKpTwHUrTJs2jc6dOzNy5MjjHisqKsJms3ltK/3abreX6zyxsb59o42LK9+n+tTDRTStV4uEhKjT7luQ66IAqJ2YQEg5z1OTlfeayunpmvqWrqfv6Zr6VkWvZ0CFg2XLlrF+/Xo++uijEz4eEhKCw+Hw2lb6dVjY6T+BHysjIw+326hYoX8RFxdJenpumfc3DIOd+7Pofk58mZ5XnJoGQFahmaBynKcmK+81ldPTNfUtXU/f0zX1rWOvp9lsKteH4oAKB0uXLiUjI4OBAwd6bf/3v//NokWLqFevHmlpaV6PlX791+6GQJaZYye/yFmuOxVA3QoiIlI9AiocPP300xQVFXltGzZsGJMnT2bEiBF8/PHHLF68GKfT6RmUuHbtWpo0aUJcXJw/Sq6Qo9Mml625p2S5ZpMWXRIRkWoRUAMSExISaNy4sdcfgNq1a1O/fn3GjBlDYWEhDz74IDt27GDZsmUsWrSIm266yc+Vl0/ykTsV6seV7c3eKMqD4DAtuiQiItUioMLB6cTGxrJgwQL27t3LqFGjmDVrFvfccw+jR4/2d2nlkpyWR3x0KKHBZWu4KZkdUV0KIiJSPQKqW+FEtm3b5vV1hw4deOutt/xUjW/sLce0yQCGPU9zHIiISLWpUS0HZ4Iih5P0w4U0TChHONByzSIiUo0UDqrZvvR8DMo2M2KpknUV1HIgIiLVQ+GgmpXeqVDm2xgNQ2MORESkWikcVLPk1FzCgi3ERoWU7QlOB7iKFQ5ERKTaKBxUs+QjgxFNJlOZ9jfsmgBJRESql8JBNXIbBvvS88s53qBkTgSNORARkeqicFCN0g8XYi92lXswIigciIhI9VE4qEZ7Swcjlus2xtKWA02dLCIi1UPhoBolp+ViNpmoX6fsb/RqORARkeqmcFCNklPzqBsbhtVS9jUSSsKBCZNNLQciIlI9FA6qUXJ6+aZNhiPrKgSHYzLrRyUiItVD7zjVJK+wmMwcewXCQR7oNkYREalGCgfVJLkCgxFBKzKKiEj1UzioJkenTS7fwELDnodZgxFFRKQaKRxUk+S0XKLCbdQKt5XreSWLLqnlQEREqo/CQTVJTq3AYETPoktqORARkeqjcFANnC43BzLyaVTOcIDTDi4nBKvlQEREqo/CQTU4mFGA02VU6DZGALO6FUREpBopHFSDo4MRyxsO8gHNjigiItVL4aAa7E3LxRJkJjE2rFzPO7qugloORESk+igcVIPktDzqx4UTVM5ZDhUORETEHxQOqphhGCSnlf9OBdCiSyIi4h8KB1UsO99BbkFxxcKBPQ9MJrCVrztCRESkMhQOqtje1JJP/+W+jZEjEyAFR2jRJRERqVZ616liyWkl4wYq1q2gdRVERKT6KRxUseS0PGKjQggLsZb7uaUtByIiItVJ4aCKVXQwIqjlQERE/EPhoAo5il0czCygUTmXaS5VsuiS7lQQEZHqpXBQhfYfyscwKjjewDC0IqOIiPiFwkEVqui0yQAUF4HbqXAgIiLVTuGgCiWn5hFsC6JOdGi5n6sJkERExF8UDqrQ3rRcGsZHYDaZyv1cw14aDtRyICIi1UvhoIoYhsG+9MrdqQBqORARkeqncFBFDmUXUWh3VSIcqOVARET8Q+GgilRqMCLHtBxoEiQREalmCgdVZG9qLiYTNIirRMuByQTBWnRJRESql8JBFUlOyyMhJoxga1CFnu9ZdMmkH5GIiFQvvfNUkcpMmwylUydrMKKIiFQ/hYMqUFDk5FB2USXDgWZHFBER/1A4qAL70ksGI1Z0TQVQOBAREf9ROKgCR+9UqHi3gGFXOBAREf9QOKgCyWm5RIRaiY6wVej5JYsuacyBiIj4h8JBFSgdjGiqwLTJwJFFl1xqORAREb9QOPAxl9vNvvT8St+pAJoASURE/EPhwMdSMwspdrorfacCaF0FERHxD4UDH6vstMmgdRVERMS/FA58LDktjyCziXp1wit8DK3IKCIi/qRw4GN703KpVyccS1DFL61aDkRExJ8UDnysstMmw5GWA5MZbKE+qkpERKTsFA58KKfAQXaeo/Lh4MgESFp0SURE/EHvPj7ki8GIoKmTRUTEvxQOfCg51VfhQLMjioiI/ygc+FByWi4xkcFEhlVs2uRSRlGeJkASERG/UTjwIV8MRgR1K4iIiH8pHPhIsdNNSkZB5bsUDONIOFC3goiI+IfCgY8cOJSPy21UvuWguBAMLbokIiL+o3DgI768UwE0AZKIiPiPwoGPJKflYbOYSYgJq9Rxjk6drHAgIiL+oXDgI8lpuTSIj8BsNlXqOFqRUURE/E3hwAcMw/DpnQqgcCAiIv6jcOADh7KKyC9y+igcqFtBRET8S+HAB3alZAOVH4wIR1oOTEFg1aJLIiLiHwoHPrDrQEk4aBDnqwmQwjGZKjd2QUREpKIUDnxg1/4c4qNDCQ22VPpYWldBRET8TeHAB3YdyPZJlwIcXa5ZRETEXxQOKsnucJGSke+7cFCUq0WXRETErxQOKin1cAGG4ZvBiIDWVRAREb+rfCf5Wa5enXBuHt2RDs1rV/pYRxddUsuBiIj4j1oOKskSZObiPk2xBPngUjoKwHCr5UBERPxK4SCAaNElEREJBOpWCCCaHVHEtwoL88nLy8Llcvr82GlpZtxut8+PezbTNa2YoCALERHRhIaG++yYCgcBxLBrXQURXykszCc39zDR0XFYrTafTyxmsZhxOvVG5ku6puVnGAbFxQ6ystIBfBYQ1K0QQNStIOI7eXlZREfHYbMFa8ZROWOZTCZstmCio+PIy8vy2XEVDgLI0W4FtRyIVJbL5cRqtfm7DJFqYbXafNp9pnAQQI4uuhTi71JEzghqMZCzha9f6woHAaRkXYUI/UITERG/UjgIIEZRvroURETE73S3QgApbTkQESn12GPTWLly+Sn3eeedD6lbt16Fjr1vXzIvvbSgTPtPnnwj8fEJPPLI9HKfqzwKCwu55JILMZtNvP/+SkJDQ6v0fHI8hYMAYhTlYY4p/39wETlz3Xnnvdx882TP15dcciGTJ9/F0KEXerZFR8dU+Nhut6vM+z/++FOYzUEVOld5fPXVF4SHh5Ofn88XX3zKyJGXVvk5xZvCQQBRy4GI/FVERAQREd6/F8LDI4iNreOTY5dHVFStSp+zLJYv/4AePXpSVFTE+++/q3DgBwoHAcIw3Bh2jTkQqUrf/Z7CtxtTfHIskwkMo3zP6duxLn061PXJ+Y/188/rueOOm7n11jtZvHgRsbF1WLhwMX/88TsLFrzM1q1bKC52UK9efSZMmMRFF40AvLsVSo/x1FPPM2fO8xw4sJ9GjRpz3XU30q/fQMC7W2HFio9YuHAe119/E4sWzScj4xAtWrTi1lvvoGPHzgAUFRUxe/ZMvvrqC4qLnQwaNAS73Y7FYuGf/5x2wu8lOXkvGzf+yqWXXobNZuWhh+5n8+ZNtG3b3mu/pUuX8N57S0hJSSEhIYHx46/2hIjCwkJeeWUOq1Z9QV5eLi1atOKWW+6gU6fOnu/zrbfep0GDhgDs25fMlVeOYtasuXTt2p3HHptGfn4+RUVFbNq0kSuuGM+11/6dxYv/x4oVH3LwYApWq4327TswZcpUGjZsdNrzXnvteJo1a8HDD//b8z389tuvTJ78d5Ys+aBC3UJVSQMSA4Wj8MiiS2o5EJGK+frrVbz00kIeeuhfHD6cyd13T6ZVq3NYuPB1Fi5cTNu27XniiRkcOnTopMeYM+d57rrrPubN+y916sQxffqjFBTkn3DfQ4fSWbZsKQ8/PJ3Zs1/B6XQyY8ajnimQZ8x4lHXrfmDatMeYO3eBp5vgVJYv/wCbLZi+ffvRu3dfwsLCWbZsqdc+b7zxGnPmPM/YseN57bW3GTduIk8//X98881qAB599B+sWfMN99//EIsWvUnLlq25997bSUtLLfO1/Oabr+jUqTMLFrzGxRf/jXfeeZPFi//LbbfdxZtvvsf//d/T7N+/jxdeeNbznFOdd8SIS/jmm68oKCjw7L9y5Ud07do94IIBqOUgYGgCJJGq16eD7z65B+JUv+PGTaBRo8YA7N+/j+uuu5Fx4yZiNpd8Drz66utYuXI5e/fupk6dE3dL3HDDzXTr1gOA66+/mRtumMjOnUm0b9/xuH2dTid3330/rVufA8CECdfw0EP3k5mZicNhZ/XqL3nyyefo0aMXAA899C9+//23k9bvcrn45JOP6d37PMLCSqYB7tdvAF9++RmTJ08hKioKwzB4++3FjBkzlksuGQ1A/foNsNvtmM0m9u7dzffff8tTTz1H7959ALjrrnsJDg4mNze3zNcyPDycq6++znNref36DXnooWn07dsfgMTEugwaNJTPPlsJcNrzDh16ES++OIuvv17FRReNwG4v4quvvuCeex4oc03VKeDCQV5eHrNmzeKLL77g8OHDNG3alNtuu43BgwcDsGXLFh5//HF+//13oqOjmThxItdff72fq648z9TJwWo5EJGKadCgkeff9es3YPjwkbz77lvs3JnEvn3J7NjxJ1DyJnwyDRs29vy7dExCcXHxSfcvDSNQMhYCwOksZvv2rQC0b9/B83hwcDBt2rQ96bG+//5bMjIOMXjwBZ5tQ4YM49NPV/DJJ8sZO3Y82dnZZGQcol27Dl7PvfzyK4GSwYyA1+NBQUFMnnwXUNIFUxb16zfwmnOmb9/+bNr0O/PmzWHfvmT27t3Drl1J1K4dC0BS0o5Tnhegf/+BrFy5nIsuGsHXX3+FyWRiwIDzy1RPdQu4boV//OMfrF69mhkzZrBs2TKGDRvG5MmT+eGHH8jMzGTSpEk0btyYpUuXcueddzJr1iyWLFni77IrTSsyikhlhYQcnV11166djBs3hu++W0ODBg256qpreO65F097DJvt+CmnjVMMrrBarSfcPygo6LTP/avlyz8E4F//+icDBvRkwICePPDAPQCergWr9dSfaU9Uz7FONMmc03n8tMPBwd4z1f7vfwu5446bycnJplu3Hkyd+iDjxk0s83kBRoy4hF9+2UBq6kE++WQFgwcPO+48gSKgWg7S09P57LPPePnllznvvPMAuPnmm/nhhx949913admyJVarlWnTpmGxWGjevDl79uxh3rx5jB071s/VV87RRZfUrSAilffBB0uJjo7m+edf8mz79ttvjvyrnCMpK6B585aYTCY2b95E7959gZI34W3btnq6LY51+HAm3323hgsuGM5VV13t9djy5R+wZMmb/Pzzerp27U6dOnFs2bKZAQMGefaZPv0RLBYLEyZMAmDLls307NkbALfbzfjxY5gw4RqaNGkGQH7+0XEU+/Yln/b7ef31/3LNNddxzTVHW6oXL/6vJ/w0btz0lOcdMeJSunXrQWJiPVauXM7PP//Eiy/OP+15/SWgWg5CQ0N55ZVX6N69u9d2k8lEdnY269evp3v37lgsRzNNz549SU5OJjW17ANNApFWZBQRX4qPT+DQoXS+//5bDh5M4euvV/HMM/8BwOE4eTeBr9SrV59Bg4bw3HNPs379j+zevYsnnphBWlrqCT+9r1z5MU6nk6uuuoZmzVp4/Zk48VpstmDef/9dACZOnMTSpW+zcuVy9u/fxwcfvMcXX3xK//7n07BhIwYOHMTMmU+xfv2PJCfv5dlnnyQ7O5tzz+1Ns2bNCQsL57XXFrJvXzK//LKB+fPnnvb7iY9P4Kef1rFzZxJ79+5m3rw5fP31VxQXOwBOe14oeS+7+OKRvPbaqzRo0Ih27dqf6pR+FVAtBxEREfTv399r26+//sratWt56KGHePvtt2nRooXX4/Hx8QCe21nKKjbWt2/CcXGV+8SfYbZjD7IQVy9OayscUdlrKsc7m65pWpoZi6VqP/9U9fFPxmw2eZ07KMh85O+j26+8cjzJyXuYMeNRnM5iGjRoxC23TOaVV+aydesfDBgwAJPJhMlU8pwTHSMoyOQ5vsViPrJ/yfdtNpc8ZrGYj9nf7LX/gw8+zDPPPMVDD03FMGDYsAtp374DNpv1uGu3YsWHdOvWnVatWh73/cbF1eGii4bz8ccfkZ2dydixV1Jc7ODVV1/h0KF0GjRoyCOP/JsBAwYA8PDD03jhheeYNu1B7HY755zTllmz5lCvXslg1H/9awZz5rzAxIljady4CXfddQ+TJ9/8l+/T+xpPmzadp5/+D3//+zWEhYXRvn0H7r//QZ544nEOHtxPgwYNT3tegJEj/8b8+XMZOfISn79+zGbzcf/HK/p/3mSUp0OomiUlJXHNNddQv359Xn/9dYYPH85FF13E3Xff7dknOTmZIUOG8L///Y+ePXuW+dgZGXm43b751uPiIklPL/so2BMp+nohzuSNREx4zic11XS+uKbi7Wy7pgcP7iExsfHpd6ygQLxbIZDY7XbWrv2Obt3O9Zpsady40VxwwXAmTbrhuOecDdd006bfuf32G3nvvRXExFRsZsuT+etr/tj/82azqVwfigOq5eBYP/30E5MnT6ZevXq8/PLLWK1WQkJCcDgcXvuVfh0WFuaPMn3GsOepS0FEzhg2m43nnnuaTp26MGnSDQQFBbF8+Qekph7k/POH+Lu8ard372527NjB4sX/ZejQC30eDHwtoMYclPrwww+59tpradeuHa+99hrR0dEAJCYmkpaW5rVv6deJiYnVXaZPGUV5GowoImcMk8nEk0/OJDs7i5tvvpbrrruKTZs28uyzs2ncuIm/y6t2ycnJPP74NEJDQ7nttjv9Xc5pBVzLwUcffcTUqVMZOXIkjz/+uNftIT169GDx4sU4nU7PoMS1a9fSpEkT4uLi/FWyTxhFuZhrN/B3GSIiPtOyZWtmzjz97ZNngz59+vHFF9/6u4wyC6iWg4MHD/Lwww/Ts2dP7rvvPrKyskhPTyc9PZ2srCzGjBlDYWEhDz74IDt27GDZsmUsWrSIm266yd+lV5pRlKcJkEREJCAEVMvBZ599RmFhIWvXrqVfv35ej3Xt2pU333yTBQsW8NhjjzFq1Cji4uK45557GD16tJ8q9o2SRZc05kBERAJDQIWDq6++mquvvvqU+3To0IG33nqrmiqqJvYCMAyNORARkYAQUN0KZytNgCQiIoFE4SAAaEVGEREJJAoHfmYYBq70nYBaDkREJDAoHPiJ4bTj2PwVBe/+E/sPb2IKj8EcFe/vskQkwNx++01cc824kz7+0ksvMGLEkFMuqwywYsVH9O3b3bMC4WWXjWTevDkn3X/evDlcdtnIMtdpGAYrVy7n8OFMoGRp5L59u5dpUaPKWrlyOX37dueJJ2ZU+bnOFgoH1cydl4n9x3fIW3w39m//C2YrIQP/TviVT2IKDvd3eSISYEaOvJSkpD9JStpx3GNut5vPPlvJBRdcXKYlg4/1yiv/86xg6AsbNvzEY49No6ioCIAOHTrxwQefULduPZ+d42Q+/vhDGjduwueff0JeXl6Vn+9soHBQTVypOyj8Yg75b96L47cVWOq1IXTkPwgbPQ1rqz6Ygsr3H1tEzg4DBgwiMjKKTz9dcdxj69f/SHp6GiNHXlru48bExPh02vm/LtNjtVqJja1DUFCQz85xIvv37+O3337h5psn43K5+OST5VV6vrOFwkEVMtxOinesJf/9f1PwwQyc+37H2mEY4Vc+SejQyVjqttYKjCJySsHBwQwdegFffPEpbrf3okQrVy6nQ4dONGnSlNTUgzz66IOMGDGUAQN6cumlF/Hii8/jcrlOeNy/dit88MF7XHHFpQwa1Id//OMe8vK8F+nauXMHU6fexYUXns/Agb24/PK/sXjxf4GSLoQpU24D4PLL/8aCBS8f161gtxcxf/5cxo69hEGDzmPChMv56KNlnuP//PN6evXqyg8/fMfEiWMZPLgP1147njVrVp/y+ixf/gEhIaH06tWHHj16sWzZe8ftk5WVxeOP/4sRI4YwbNgApky5jZ07kzyPb9++lSlTbmPo0P6MGDGUxx//F7m5Jd//Y49N45Zbrvc63l+7XPr27c78+XO57LKRjBw5jKSkHWX6eZzsvH/+uZ2+fbuzYcNPXuf9z3+mc8cdN5/yevhKQM1zcKYwivJwbFlN8eYvMfIPY6qVQHCfCVhb9cVkDfF3eSJnreLt31G87RufHMtkMh33afl0rK37Y23Vp9znGjnyUt577x1+/fVnunbtDkBBQT7ffPMV99zzAAD33383MTExzJw5m7CwcL77bg2zZj1D27btTrvQ0RdffMqzzz7BHXfcTY8evfj661XMmzeHhISSNWuKioqYMuU2unU7l7lzF3oWUXrppRfo1q0HHTp04t///g+PPPIAr7zyXxo3bsrWrZu9zjFt2j/ZsmUzd999P02bNuP779fwzDP/oaioiMsvv9Kz35w5z3PXXfcRHR3D3LkvMH36oyxbtoKwsOO7XUtaCj6mb9/+WK1WhgwZxr///TC//voznTt3BcDpdDJlyq2YTCYee+wpYmJimDdvDlOm3MaSJcvIyMjgtttupE+ffsydu5DCwkL+85/pPP74NP7v/54p889o6dIlPP30LAzDoFmz5lx77VWn/HkcOLD/lOdt3boNK1cup1u3HkBJuPrqqy+YMmVqmWuqDLUc+JArcz9F37xK3uIpOH56F3N0PUIvnEL42P/D1m6IgoGIVEjLlq1p3bqNV9fCqlWfY7FYGDRoKHZ7ERdcMJz773+Ili1bU79+A8aOHUedOnFen5BP5p133mLgwMGMGXMFjRo1ZuLEa+nd+2iIKSws5PLLx3HPPffTpElTGjZsxA03lHyCTUragdVqJTKy5Fbs6Ojjuyt2797FmjVfM2XKffTvP5CGDRtxxRVXccklo3nttVe9QtYNN9xMt249aN68BddffzMFBfkn/R5+/PEH0tPTGDx4GAB9+w4gODiY999/17PPhg0/8eef23n44el06tSFRo2aMHXqQwwZMoysrCw+/PB9IiIi+Oc/p9G8eQvat+/AAw88TLNmLY5rqTmVYcMupF279rRv3wGHw37an8fpzjtixCV8/fUqCgsLAfj6668AGDhwcJlrqgy1HPhAQdIvFKx5H9f+PyDIirVlH6zthxJUu76/SxORY1hb9anQJ/cTsVjMOJ1lf/OorBEjLuHll2dz9933ExwczMqVHzN06IWEhJR86Bg9+nJWr/6SN998jf3795GUtINDh9JP2q1wrJ07d3D++d5vOu3bd/S8kcXExDBq1GV88cVn/PnnNvbtS2bHjj8ByvQGmpRUsm+nTl29tnfu3JWlS5eQmZnh2dawYWPPvyMiSm7vPtmdGMuXf0BERCQ9e/YGICwsjPPO68c333zF4cOZxMTUJilpB6GhYTRt2szzvKioKG6//W7P996qVWuvAZ3t23egffsOp/2+jtWgQSPPv4ODQ0778zjdeYcOvZDZs2eyevWXXHTRCFas+IhBg4Z5ft5VTeGgkty5hzj41gxM4THYzr0M2zkDNV+BiPjc0KEX8uKLz/Hdd2s455w2bNz4q+cNrrCwkNtuu4GioiIGDRrKRReNpF279tx66w1lPLqJv/aQlK58C5CRcYgbb5xETExt+vbtz7nn9qZNm7aMGjW8Ut+T211yUqvV5tlms9mO2+9E3TeHDx/mu+/W4HQ6GTKkr9e+breb5cs/YOLEa7Faracc22WxWHG5nCd9/ETPLb0d9FjHvmmX5edxuvNGREQwcOAgPv10BT169OTnn9czZ84tJ93f1xQOKskUEUuDvz9LlhGFyazLKSJVo+TNYjCrVn1GcvIeWrZsxTnntAFKmte3b9/G+++vIC6uZL6UnJxsMjMzyjQuomXLVmza9BswwbNty5ajYwY+//wTsrOzeOut9z2fdEtvrSw9/qnegJs3bwnAb7/9zIABgzzbf/31Z+rUiSMqKqosl8DLp59+jNPp5LHHnqRhw0Zej91//z18+OH7XHXVNTRp0oSCgnz27t1No0ZNgJLxGpdf/jceffQxGjduwqefrsDpdHoC0Y8/rmXGjEdZvPhdLBYLBQX5Xsffv//UczeU5edxuvNGRkZy8cWXMGXKbSxf/gGNGjUud2tGZWjMQSWZTCZs8Y0VDESkyo0YcQlr137P559/yogRl3q2l74BffbZSg4eTOG3337lgQfuwel0nnZyJIAJEyaxZs3XvPHG/0hO3suSJW963SUQH5+I3W7nyy8/4+DBFH78cS2PPvogAMXFDgDPOIPt27cdN9dAkyZN6ddvADNnPsU336wmOXkvb7+9mI8+ep/x40+92N7JfPzxh5xzTlsGDBhEs2YtvP6MHTuOlJQDrFv3Pd2796RNm7ZMn/4omzb9zu7du5gxYxphYeG0b9+RMWOuIDc3lyeffIxdu3ayceOvzJr1DB07diYyMpIOHTqxc2cSK1Z8RErKAd555y1+/HHdKWsry8/jdOcF6NKlG4mJdXnttVcZPrzsE1L5gt7RRERqiM6duxIXF09Kyn6GDbvIs71t2/bcfvsU3n77DRYsmEdcXByDBw8jPj6BzZs3nfa4553Xl0cfncHChfOYP38u7dt35IorruLLLz8D4PzzB7Nt29XMmTOL/Pw86tatx4gRl/Dtt9+wefMmxoy5gpYtW9O3b3+mTXuQSy4ZTf/+53udY9q0x5g37yWeeeY/5ORk06hRY+6770Euvvhv5b4Of/yxiV27dvLPf0474eMjRlzCwoXzeP/9pfTu3Zf/+79neOGFZ7n33tsxDINOnbry7LOzCQsLIywsjJkzZzN37myuv34iERERDBgwiFtumQyUdOf8+ec2XnzxORwOB+ed15frrruRpUvfPml9Zfl51KlT55TnhZIPnxddNIJXX32FCy6oXBdOeZmM8t6Lc4bIyMjz9HdVVlxcJOnpuaffUcpM19T3zrZrevDgHhITG59+xwqq7gGJZwNd0+M99dTjZGZm8n//9/Rp9/3ra/7Y//Nms4nY2LKPh1PLgYiISID56ad17Nmzi5UrP+bZZ1+o9vMrHIiIiASYjz/+kO++W8PEiZM8EzpVJ4UDERGRADNt2mN+Pb/uVhAREREvCgciIiLiReFARM5YZ+nNWHIW8vVrXeFARM5IQUEWzwQ9Ime64mIHQUG+G0aocCAiZ6SIiGiystJxOOxqQZAzlmEYOBx2srLSiYiI9tlxdbeCiJyRQkPDAcjOPnTKBW4qymw2l2tJXzk9XdOKCQqyEBkZ43nN+4LCgYicsUJDw336C/NYZ9uMk9VB1zRwqFtBREREvCgciIiIiBeFAxEREfGicCAiIiJeztoBiWazKaCPJ7qmVUHX1Ld0PX1P19S3Sq9nea+rydANwCIiInIMdSuIiIiIF4UDERER8aJwICIiIl4UDkRERMSLwoGIiIh4UTgQERERLwoHIiIi4kXhQERERLwoHIiIiIgXhQMRERHxonBQCW63m1mzZtGvXz86derEddddx549e/xdVo21c+dOWrdufdyfd955x9+l1Ugvv/wy48aN89q2ZcsWJk6cSOfOnRk4cCALFizwU3U1z4mu5913333c67V///5+qrBmyMvL4/HHH2fQoEF06dKF0aNH8+WXX3oe12u0fE53PSv8GjWkwmbNmmX06tXLWL16tbFlyxbjhhtuMAYPHmwUFRX5u7QaacWKFUbXrl2NtLQ0rz+FhYX+Lq3Gef31143WrVsbV155pWdbRkaGce655xr//Oc/jR07dhjvvfee0bFjR+Ptt9/2Y6U1w4mup2EYxvDhw43Zs2d7vV4zMjL8VGXNMHnyZGPo0KHGd999Z+zevdt46aWXjHPOOcf4/vvv9RqtgFNdT8Oo+Gv0rF2VsbIcDgcLFy7k3nvvZcCAAQDMnDmTvn37snLlSi699FL/FlgDbd++nebNmxMXF+fvUmqs1NRUHn30UdatW0fTpk29HluyZAlWq5Vp06ZhsVho3rw5e/bsYd68eYwdO9ZPFQe2U11Ph8PB7t276dChg16zZZSens5nn33Gyy+/zHnnnQfAzTffzA8//MC7775Ly5Yt9Roth9Ndz27dulX4NapuhQrasmULBQUF9OrVy7MtIiKCtm3bsn79ej9WVnNt27aN5s2b+7uMGu2PP/4gPDycDz/8kE6dOnk9tn79erp3747FcvQzQc+ePUlOTiY1NbW6S60RTnU9k5KScDqdtGjRwk/V1TyhoaG88sordO/e3Wu7yWQiOztbr9FyOt31rMxrVOGggkpfqAkJCV7b4+PjSUlJ8UdJNd727dtJS0vjyiuv5LzzzmP8+PF8++23/i6rRhk0aBDPPPMMDRs2PO6x1NRUEhMTvbbFx8cD6DV7Eqe6ntu2bcNisfDyyy8zaNAghg4dyowZM8jNzfVDpTVDREQE/fv3JyIiwrPt119/Ze3atQwcOFCv0XI63fWszGtU4aCCCgsLAbDZbF7bbTYbDofDHyXVaAUFBezbt4/c3FymTJnCvHnzaN++PTfccAPff/+9v8s7IxQVFZ3w9Qpgt9v9UVKN9ueffwLQoEED5s6dy9SpU1m9ejW33HILbrfbz9XVDElJSUyePJlOnTpxxRVX6DVaSX+9npV5jWrMQQWFhIQAJf2Ox76YHQ4HYWFh/iqrxgoLC2PDhg1YrVbP9Wzfvj1JSUnMnz/f058mFRcSEnJccC39Wq/Z8rvnnnu46aabiIqKAqBVq1bUqVOHK6+8kl9//ZWuXbv6ucLA9tNPPzF58mTq1avHyy+/jNVq1Wu0Ek50PSvzGlXLQQXVrVsXgLS0NK/taWlpx3U1SNmEh4cf96mhVatWHDhwwE8VnVkSExNP+HotfUzKx2w2e37plmrdujWgJvDT+fDDD7n22mtp164dr732GtHR0YBeoxV1sutZmdeowkEFnXPOOURERPDjjz96tuXl5bF582bOPfdcP1ZWM/3yyy906dKFjRs3em3ftGkTLVu29FNVZ5YePXqwYcMGnE6nZ9vatWtp0qSJRttXwG233cYtt9zita309atBiif30UcfMXXqVC666CJefvllr/5yvUbL71TXszKvUYWDCrLZbEyYMIGZM2fyxRdfsHXrVqZMmUJCQgLDhg3zd3k1Tvv27WnQoAEPP/wwGzZsICkpiRkzZvDLL78c9+KWihkzZgyFhYU8+OCD7Nixg2XLlrFo0SJuuukmf5dWIw0fPpxVq1Yxb9489u7dy+rVq3nwwQe54IILPJ/OxNvBgwd5+OGH6dmzJ/fddx9ZWVmkp6eTnp5OVlaWXqPldLrrWZnXqMYcVMIdd9yBy+XikUceobCwkG7dujF//vzjmsbl9KxWK/Pnz+eZZ57hjjvuICcnh3bt2rFw4ULatm3r7/LOCLGxsSxYsIDHHnuMUaNGERcXxz333MPo0aP9XVqNdPHFF+N2u5k/fz4vvvgikZGRXHzxxUyZMsXfpQWszz77jMLCQtauXUu/fv28HuvatStvvvmmXqPlUJbrWdHXqMkwDKOqChcREZGaR90KIiIi4kXhQERERLwoHIiIiIgXhQMRERHxonAgIiIiXhQORERExIvmORARHnjgAd5///1T7rNt27ZqqqbExIkTcTqdvPnmm9V6XhFROBCRI2rXrs0LL7zg7zJEJAAoHIgIUDJLZffu3f1dhogEAI05EJEymzhxIvfeey/z5s2jT58+dO3alZtvvpnk5GSv/Xbv3s0dd9xB37596dSpExMmTOCnn37y2ic/P5/HH3+cAQMG0KlTJy699FI++eST4865aNEiBg0aRIcOHRg1ahTfffed5zHDMJg9ezZDhw6lffv2DBgwgBkzZlBQUFA1F0DkLKFwICIeTqfzhH/cbrdnn2+++Ya3336bBx54gEceeYQtW7YwceJE8vPzAdixYwejR49m9+7d3H///Tz55JMATJo0iR9++AEAt9vN3//+d959912uvvpqZs+eTdu2bbnrrrv4+uuvPef67bff+OCDD7jvvvt45plnKCoq4rbbbiMzMxOAl19+mVdffZVrr72WV155hWuvvZYlS5bw+OOPV9clEzkjqVtBRABITU2lXbt2J3zsuuuu4/777wdKPvG/8847NG7cGICWLVsyevRo3nvvPSZOnMjs2bOxWCy8/vrrnrXkBw0axIgRI3jyySd5//33WbNmDRs2bGDmzJkMHz4cgH79+nHgwAG+/fZbBgwYAEBQUBALFiygdu3aAAQHB3PjjTfy66+/MmjQINavX0+nTp0YP348AL179yYyMtITVESkYhQORAQoWbXx5ZdfPuFjcXFxnn937tzZEwwA2rVrR8OGDfnpp5+YOHEiP/74I/379/cEAygZzzBixAhmz55Nbm4u69evx2w2M3ToUK/zLFq0yOvr5s2be4IBQKNGjQDIyckBoE+fPvznP/9hwoQJDBkyhD59+jBmzJiKXQAR8VA4EBEALBYLHTp0OO1+CQkJx22LjY0lOzsbgOzsbK8wUapOnToA5ObmcvjwYWrVqoXVaj3luUJDQ72+NptLekJLuzkmTZpEREQES5cu5cknn8TlctG4cWPuvfdehg0bdtrvRUROTGMORKRcDh8+fNy29PR0YmNjAahVqxbp6enH7ZOWlgZAdHQ0kZGR5OTk4HQ6vfbZtm0bv/76a5lrMZlMXH755bz11lusXbuWmTNnEhYWxpQpUzznE5HyUzgQkXL55ZdfOHTokOfr33//nf3799O7d28AevTowTfffONp+oeSgY4rVqygbdu2hIWF0b17d1wuF6tWrfI69r/+9S+eeeaZMtdy5ZVXMn36dACioqIYPnw4N998M06nk9TU1Mp8myJnNXUriAgAxcXFrF+//qSPt2rVCgC73c7111/PrbfeSn5+Ps899xwtWrTgkksuAWDy5Ml88803TJgwgRtvvJHg4GBee+01kpOTPWMaBg4cSJcuXfjnP/9JamoqjRs35pNPPuHXX39lwYIFZa65R48eLFiwgFq1atG9e3cyMjKYPXs2TZs2pU2bNpW4GiJnN4UDEQEgMzOTq6666qSPv/LKK0DJgMSBAwfyyCOPYBgG559/Pvfffz82mw0ouXvhjTfe4Nlnn+Xhhx8GoGPHjvz3v/+lR48eQMldCPPnz+eZZ55h7ty55Ofn07JlS+bOnetpgSiLu+66i9DQUD744APmz59PWFgYffr04b777sNi0a83kYoyGYZh+LsIEakZtN6ByNlBYw5ERETEi8KBiIiIeFG3goiIiHhRy4GIiIh4UTgQERERLwoHIiIi4kXhQERERLwoHIiIiIiX/wcAHY0K9lSTCAAAAABJRU5ErkJggg==\n", |
|
|
2796 |
"text/plain": [ |
|
|
2797 |
"<Figure size 576x576 with 1 Axes>" |
|
|
2798 |
] |
|
|
2799 |
}, |
|
|
2800 |
"metadata": {}, |
|
|
2801 |
"output_type": "display_data" |
|
|
2802 |
}, |
|
|
2803 |
{ |
|
|
2804 |
"data": { |
|
|
2805 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAH9CAYAAACHq3+jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABxqklEQVR4nO3dd3hUVeL/8fedmkw6IQVIoYQiVToiiGJdlRV1dS1YUNdlFf3adXVF97fYRVxFFEVxxbZrb+C66rqiiDSxgWBAOiQhhBRSpt3fH5MEYgKkTEnI5/U8eZLcuXPvmcOQ+5lzzj3HME3TRERERNotS6QLICIiIpGlMCAiItLOKQyIiIi0cwoDIiIi7ZzCgIiISDunMCAiItLOKQyItEEXXXQRvXv35swzzzzgPvfffz+9e/fmoosuCso5e/fuzcyZM5v0nIsuuojzzz//gI9v3bqV3r1789prr7W0eCLSAgoDIm2UxWJh9erVbNy4sd5jpmmyYMGC8BdKRNokhQGRNuqII47A5XKxcOHCeo8tW7aM3bt3k5OTE4GSiUhbozAg0kY5nU7Gjx/fYBh4//33GTt2LPHx8XW2+3w+Xn75ZSZMmMCgQYMYN24cDzzwAJWVlXX2+/TTTznrrLMYOHAgp59+OsuWLat3DrfbzcMPP8yxxx5L//79Oe2003jrrbeC+yKrVVVVMXv2bE455RQGDBjAiSeeyJw5c/D5fLX7bNmyhalTpzJq1CgGDhzImWeeyfvvv1/7uGmazJo1ixNPPJH+/fszbtw4pk+fTnl5eUjKLNKW2CJdABFpvlNPPZWrrrqKDRs20L17dwC8Xi///ve/ueuuu5g/f36d/adNm8Zbb73F5MmTGTFiBGvWrGH27NmsWbOGefPmYRgG//vf/7jqqqs44YQTuOaaa9i0aRNTp06td+5rrrmGr7/+mj/96U/06dOHTz/9lNtuu43y8nIuvPDCoL1G0zSZMmUK33zzDVOmTOGII45g6dKl/P3vf2fjxo3cd999+P1+rrzyShITE5k+fTpOp5PXX3+dG2+8kfT0dIYNG8acOXOYN28eN954I926dWPt2rU88sgjVFZWMn369KCVV6QtUhgQacNqPv0vXLiQq6++GoAvvvgCt9vNcccdVycM5Obm8vrrr3PNNdfUXtzHjRtHWloat912G59++inHH388s2fPpnfv3jz++OMYhgFAUlISt9xyS+2xFi9ezGeffcYDDzzAxIkTa4/l9/t59NFHOfvss4mKigrKa/z8889ZvHhxvXNFR0fz+OOPc8kll9CxY0c2bNjAww8/zAknnADAqFGjSEtLq30Ny5cvZ9CgQVxwwQUAHHXUUcTFxbF3796glFOkLVM3gUgb5nA4OOGEE/jwww9rt73//vscf/zxREdH19l36dKlAEyYMKHO9gkTJmC1Wlm6dCmVlZV8++23nHDCCbUXUQi0QFgs+/5cfPXVVwCMHz8er9db+3XCCSdQUlLCd999F7TXuHTpUiwWC6eeemqd7TXBYOnSpSQnJ9O7d2/uvPNO/vznP7NgwQLKysq4/fbbGTp0KABHH300X375JZMmTeL555/n559/5uyzz+biiy8OWllF2iq1DIi0caeeeipvvvkm69evp0uXLnzyySc8+uij9fYrLi4GoGPHjnW222w2kpKSKCkpobi4GNM06dChQ5197HZ7nW1FRUUADB8+vMEy5eXlteQl1St3fHw8DoejzvaUlBQASkpKMAyDefPmMWfOHP7zn//w5ptvYrVaGTt2LH/9619JT0/n0ksvJTY2ljfeeIMHH3wQn89HdnY2N910EyeddFLQyivSFikMiLRxRx11FElJSSxcuJAePXrgcDgYPXp0vf0SEhIA2LVrFzExMbXbPR4PRUVFJCUlkZSUhMVioaCgoM5z/X5/bZgAiIuLIyoqihdffLHBMmVkZATjpdWWu6SkBLfbXScQ5OfnA4EuDIDk5GRuv/12br/9djZs2MDHH3/M7Nmzueuuu5gzZw6GYXDOOedwzjnnUFJSwhdffMHTTz/N9ddfz3//+19SU1ODVmaRtkbdBCJtnM1m46STTuLf//43Cxcu5JRTTsFut9fbb8SIEQC89957dbZ/8MEH+Hw+hg4disPhYNiwYXz44Yd1Rur/73//w+Px1P4+cuRIKisr8Xg8DBgwoPZr06ZNPProo1RUVATt9Y0YMQK/319v3oR33nkHgKFDh/LNN98wevTo2u6J7t27c+WVVzJy5Ei2bdsGwHnnncff/vY3AOLj4zn11FOZMmUKXq83qC0ZIm2RWgZEDgOnnXYa//znP/nll1+YN29eg/vk5ORw5plnMnv2bCorKxkxYgQ//fQTs2fPZvjw4Rx77LEAXH/99Vx88cVceeWVXHDBBeTl5TFr1qw6AeOYY45hxIgRTJ06lT/+8Y/07NmT1atXM2vWLAYPHkznzp2bVP7Fixc3OJBv/PjxHHPMMYwcOZK7776bvLw8jjjiCJYtW8azzz7L6aefTp8+faiqqiI6OpqbbrqJq666itTUVL799lu++OILrrrqKiDQpfHss8+SkJDAsGHDKCwsZNasWXTr1o0jjjiiSeUVOdwoDIgcBoYPH05qaioWi4Vhw4YdcL977rmH7Oxs3njjDZ5//nlSU1OZNGkSU6dOxWq1AjBkyBCeffZZZs6cyfXXX09aWhp33nlnndvvLBYLTz/9NI899hjz5s1j165dpKamcv755zd4G+KhLFiwoMEZEzMyMsjKymLOnDk89thjvPzyyxQWFtKlSxeuu+46Lr/8ciAw58K8efOYMWMGDz30EMXFxbX7XHHFFQBcd911REdH88477zB37lxcLhdHH300N998Mzab/hRK+2aYpmlGuhAiIiISORozICIi0s4pDIiIiLRzCgMiIiLtnMKAiIhIO6cwICIi0s61m/tpior24vcH58aJ5ORYCgvLgnIsCVCdBpfqM/hUp8Gl+gy+mjq1WAySkmIO/YT9tJsw4PebQQsDNceT4FKdBpfqM/hUp8Gl+gy+5tapuglERETaOYUBERGRdk5hQEREpJ1TGBAREWnnFAZERETauXZzN4GISKhUVOylrGwPPp830kVpM/LzLfj9/kgXo02yWm3ExiYSHd202wcPRmFARKQFKir2UlpaRGJiCna7A8MwIl2kNsFms+D1Kgw0lWmaeDxu9uwpAAhaIFA3gYhIC5SV7SExMQWHw6kgICFnGAYOh5PExBTKyvYE7bgKAyIiLeDzebHbHZEuhrQzdrsjqN1SCgMiIi2kFgEJt2C/5xQGRERE2jmFARERkXZOdxOIiLRz99xzNwsXvn/QfV577V06dercrGNv3bqFJ598tlH7T516JampaUyb9rcmn6uxxowZxq23/oUJEyaG7BxtjcKAiEg793//dxNTpkyt/f2MM05h6tTrOPHEU2q3JSYmNfvYfr+v0fvfe+9DWCzWZp1Lmk9hQESknYuNjSU2NrbOtpiYWJKTOwbl2E0RH5/Q4nNK0ykMiIjIIa1cuZxrr53CVVf9Hy+99DzJyR157rmX+PHH73n22Tn89NMaPB43nTt3YdKkS/nNb04H6nYT1BzjoYf+zpNPPsa2bVvJysrmssuuZOzYY4G63QQLFrzHc889zeWX/5Hnn59LYeEucnJ6cdVV1zJw4JEAVFZWMmvWTP7734/xeLyMH38CVVVV2Gw27rjj7ma/3oUL3+ef/3yZLVs2ER+fwAknnMwVV0zB6XQC8NVXXzB37hw2btxAdHQ0o0YdzbXX3lAbZl5+eT5vv/06BQX5JCd35NRTJ3DppVdgsbTOoXoKAxHg27UJf0k+9u7DI10UEQmBL7/fwRff7YjY+ccM7MTRAzqF5Nj/+9+nPPnkc1RWVlBUtJsbbpjKmWeewy233IHH4+Hll1/ggQemM3z4KDp2bLhlYfbsv3PjjbcQF5fIU089zt/+dhdvv70Al6v+bHq7dhXw9ttvcOedf8Nms/Hww/cxffpdvPrqW1gsFqZPv4u1a9dw9933kJzckXnz5vLZZ59wyimnNfs1/utfLzN79mNcddX/cdRRR7Nhw3oeeeR+tm3byr33PkRRURG3334z11xzA6NHjyE/P4+//e0uHn98JnfccTeLFn3G/Pnz+H//714yM7vy44/fMX36XaSnd+LUUyc0u1yhpDAQAVWLX8JftF1hQETanPPPn0RWVjYA27Zt5bLLruT88y+q/cR78cWXsXDh+2zevPGAYeCKK6YwbNgIvF4/l18+hSuuuIgNG9bTv//Aevt6vV5uuOFWevfuA8CkSZfwl7/cyu7du3G7q/jss0948MFHGT58FAB/+ctf+f77b5v9+kzT5MUX/8HEiWdz7rnnA5CZmYVp+vnLX27ll1824PV68Hg8pKamkp7eifT0TjzwwCP4fIGxETt2bMfhsJOWlk56euCrY8dU0tLSml2uUFMYCDN/6S58O9eBYWCafgyjdTYZiUjzHT0gdJ/MIy0jI6v25y5dMjj11Am8/vqrbNiwnq1bt5Cb+zNA7YWxIZmZ2bU/14wp8Hg8B9y/JnxAYCwDgNfrYd26nwDo339A7eNOp5MjjujblJdUR1HRbnbvLmTQoMF1th955FAA1q//mRNOOJkTTjiZ2267keTkjgwbNoLRo8dy3HHHA3DSSafywQfvcsEFv6Nr1+4MHz6S4447nvT01vue0JUozDzrvw78YJrgrohsYUREmigqKqr2519+2cD555/Nl18uIiMjkwsvvIRHH33ikMdwOOpP32ya5gH3t9vtDe5vtVoP+dxgMU1/dVkCZb/77nt4+eXXufDCiyktLeGee+7i5puvwzRNEhMTmTfvZWbPnstxxx3P6tU/cPXVf2D+/HkhL2dzKQyEmTd3Se3PZlV5BEsiItIy77zzBomJifz9708yadKlHHXU0ezatav60dBfoHv06IlhGKxe/UPtNq/Xy9q1PzX7mB06JNOhQzLffvtNne3ffLMSgG7duvPdd6v4+99nkJXVlXPPvYAHH3yUP/95Gl9/vZjCwl0sXPg+b731GgMHHsnll/+ROXPmMWHCRD744L1mlyvU1E0QRr7dW/Hv3oK1Sz98237ErNoLpES6WCIizZKamsauXQUsXvwF3bv3YO3aNTz66MMAuN0HbvYPls6duzB+/Ak8+ujD2O0OOnZM4aWX/kF+ft4h5+7/5Zf1LFmyuM62mJgYBgwYxKRJlzB79mN07pzB6NFjWL8+l7///WHGjj2WrKxsvF4vb731Gna7nQkTJuLxePj443/TuXMXkpI64Ha7eeKJx3C5YjjyyCHk5+ezcuUKBgyoPyaitVAYCCNv7hIwLNj7HlcdBsoiXSQRkWb73e/OY9OmjUyffhcej4fMzEyuvPIqnnvuaVav/oGjjx4b8jLccssdPProw/zlL7dgmiYnnngK/foNwGY7+OXtX/96hX/965U623JyevH88y9z7rkX4HA4q+8q+HudWwMBunfvwT33PMTzzz/DW2+9hsViYfDgoTzyyCysVitnnHEWe/eW8Y9/PMtDD91LXFwcxxwznj/96ZqQ1UNLGWY4OltagcLCMvz+4LzUlJQ4CgpKm/Qc0zTZ+8pNWJI64xx5HuWv30HU8X/C3mNkUMrU1jWnTuXAVJ/Bd6A63blzE+np2Q08Qw7GZrPg9fpbdIyqqiqWLPmSoUNH1Jnc6Pzzz+Lkk0+tvXgfrn793qt5j1osBsnJTZvsSS0DYeLLy8UsK8Q+7CyMqMC9tIFuAhERaQ6Hw8Gjjz7MoEGDufTSK7Barbz//jvk5e3kuONOiHTx2hSFgTDx5n4FVge2rkOget5thQERkeYzDIMHH5zJ7NmPMWXKZHw+H7169eGRR2aRnd010sVrU8IeBsrKynjsscf4+OOPKSoqolu3blx99dUcf/zxDe5fVFTE9OnTWbRoEaZpcsopp3DbbbcRE1N/pqrWyvR78W5Yhi37SAxHdGCjzaEwICLSQj179mbmzEPfzigHF/ZbC//85z/z2WefMX36dN5++21OOukkpk6dyldffdXg/tdeey2bN29m3rx5zJo1i8WLFzNt2rQwl7plfFt/xKwsxZ5zVO02wxmDWakwICIikRfWMFBQUMBHH33E7bffzujRo8nOzmbKlCmMGDGC119/vd7+K1euZOnSpdx3333069ePkSNHMn36dD744AO2b98ezqK3iCd3CThjsGbumyXLcMaAW2FAREQiL6xhIDo6mmeeeYZhw4bV2W4YBsXFxfX2X758OcnJyeTk5NRuGzp0KIZhsHz58pCXNxhMTxXejSuxdxuOYd3XK2M4Y9RNICIirUJYw0BsbCzHHHNMnVtAVq1axZIlSzj22GPr7Z+fn096enqdbQ6Hg6SkJHbu3Bnq4gaFd9M34K3CljOqznbDGatuAhERaRUiejfB+vXrmTp1KoMGDeL3v/99vccrKioanMPa4XBQVVXVpHM19Z7LQ0lJiWvUfjs/XYY1Lpn0gUPrLEpUkJBAeeEvjT5Oe6C6CC7VZ/A1VKf5+RZsNs3s3hyqt5axWCz13pPN/X8fsTCwbNkypk6dSufOnZkzZ06DC1FERUXhdrvrbXe73bhcriadLxKTDvkrSylfvwr7gJPYtatuK0Cl6cBXXqaJYappkpzgUn0G34Hq1O/3t3jynPYoGJMOtXd+v7/Oe7Ilkw5FJJa9++67TJ48mX79+jF//nwSExMb3C89PZ38/Pw629xuN0VFRfW6D1oj74ZlYPqw/6qLAALdBPjcmN76YUdERCScwh4G3nvvPW655RZ+85vfMGfOnDrjB35t+PDhFBQUsGHDhtptNQMHfz0IsTXy5i7BktgZS3JWvccMp2YhFJHW4Zpr/sgll5x/wMeffPJxTj/9BDyegy8+tGDBe4wZMwyv1wvA7343gaefnn3A/Z9+eja/+92ERpfTNE0WLnyfoqLdAKxcuZwxY4axdeuWRh+jqX79mg5XYQ0DO3fu5M4772TkyJHcfPPN7Nmzh4KCAgoKCtizZw8+n4+CggIqKysBGDRoEEOGDOHGG2/ku+++Y+nSpUybNo0zzjiDtLS0cBa9yfylu/DtXIctZ1SDq2ftCwNaxlhEImvChImsX/8z69fn1nvM7/fz0UcLOfnk0xrszj2YZ555gUmTLg1SKWHFimXcc8/dtdeIAQMG8c47H9KpU+egnaO9CmsY+Oijj6ioqGDJkiWMHTuWMWPG1H796U9/YseOHYwZM4YFCxYAgVsOZ82aRWZmJpdccgnXXHMNo0eP5u677w5nsZvFs/5rgAa7CGD/MKCVC0UkssaNG09cXDz//veCeo8tX76UgoJ8JkyY2OTjJiUlNXl818H8el09u91OcnJHrFZr0M7RXoV1AOHFF1/MxRdffNB91q5dW+f35ORkHnvssVAWKyS8uUuwpPbAEp/a4ONarEhEWgun08mJJ57Mxx//mylTpmKx7PucuHDh+wwYMIiuXbuRl7eT2bMfY8WKZZSWlpCU1IETTzyFKVOmNnhB/t3vJnDSSb/hyiuvAuCdd97k5ZdfoKCggFGjjqJjx5Q6+2/YkMtTT83iu+++pbKygpSUVCZOPJsLL7yElSuXc/31VwNwzjm/ZfLkPzB48FCuvXYKr776FhkZmVRVVTJ//vN89NFCdu0qoHPnLvz+9xfWBpmVK5dz7bVTeOihvzN79t/Zvn0bWVnZXHbZlYwde2yz66+kpJhnn53DokX/Y8+eIrp27c7kyVfUHtPn8zFnzhN8/PG/KSraTXp6J8499wLOPPN3ABQV7WbGjAf45pvlVFRU0qtXb6688iqGDAlfd7gWKgoB3+6t+HdvwTl60gH3qWkZQGFA5LDjWfclnrWfR+z89t7HYO91dJOeM2HCRN588zVWrVpZexEqL9/L55//lxtvvA2AW2+9gaSkJGbOnIXLFcOXXy7iscdm0Ldvv0OuEvjxx//mkUce4Nprb2D48FEsWvRfnnrqCdLSAoPBKysruf76qxk6dARPPfVc7QqETz75OEOHDmfAgEH8v/93P9Om3cYzz/yD7Oxu/PTT6jrnuPvuO1izZjU33HAr3bp1Z/HiRcyYcT+VlZWcc855tfvNnv13rrvuZhITk3jqqcf529/u4u23F+ByNX3NG5/Px3XXXU1VVSV//vM00tLSWLjwA26//Wbuu+9hxowZxxtv/Iv//vcT/vrXe0lJSeXLLz9nxoz7yc7uypAhw3jwwXvx+bw8/vjTOBwOXnjhOW677cZml6k5dJNnCHhzl4BhwdZ9+AH30QBCEWlNevbsTe/eR9TpKvj00/9gs9kYP/5EqqoqOfnkU7n11r/Qs2dvunTJ4Nxzz6djxxQ2bFh/yOO/9tqrHHvs8Zx99u/Jysrmkksu46ij9gWWiooKzjnnfG688Va6du1GZmYWV1wxBYD163Ox2+3ExQXuoU9MrN/9sHHjLyxa9D+uv/5mjjnmWDIzs/j97y/kjDPOYv78eXW6GK64YgpDhw6nR48cLr98CuXlexv1GhqydOkS1q37iWnTpjN8+Eiysrryxz9ezVFHjeEf/3gWgB07thMdHUV6eifS0ztx9tm/Z+bMJ+jatVvt47GxcXTu3IWMjEz+7/9u5J57Hgxr94daBoLMNE08uV9h7dIXiyvhwDvao8GwKAyIHIbsvY5u8ifz1uD0089gzpxZ3HDDrTidThYu/IATTzyFqKgoAM466xw+++wTXnllPtu2bWX9+lx27SrA5/Md8tgbNuRy3HF1V6ft339g7UU4KSmJM8/8HR9//BE//7yWrVu3kJv7MxAYxHgo69cH9h00aEid7UceOYQ33vgXu3cX1m7LzMyu/bnmjrZD3SlxsPNGR0fTu3efeuedO/cpIFBvn3/+X8466zR69uzNiBGjOOGEk+nQIRmAyZP/wN/+diefffYpAwcOYsSIUZx88qk4nVHNKlNzqGUgyHx5uZhlhXVWKGyIYRhan0BEWpUTTzwFr9fLl18uYvv2bXz33SpOP30iEPjk/qc/XcY//vEscXHx/OY3E3jyyWdJTW3snV0Gvxr/h8227/NoYeEuLr74PN577206dkzhrLPOZd68l1r8mmomm7Pb981m29DMtr8enNg09e8YM00/dnvg9WVmZvHPf77NI488zrBhI/jqqy+5/PJJta0w48Ydx9tvf8gdd9xFp05deO21V7n44t+zYUP9uztCRS0DQebN/QqsDmxdhxx6Z2cMZqXuJhCR1iE2NpZjjz2eTz/9iC1bNtGzZy/69DkCgKVLv2LdurW89dYCUlICA6NLSorZvbuwURfSnj178cMP3wL7xlKtWbOvz/8///mQ4uI9vPrqW7W3MNbc6lhz/IZu067Ro0dPAL79diXjxo2v3b5q1Uo6dkwhPj6+MVXQZD169KSiopy1a3+q0zqwatVKunXrAcCrr75IcnJHTjzxFIYPH8VVV13LDTdM5cMPP+DYY8fz1FNP8JvfnMbxx5/E8cefRFVVFb/97Ul88cXndO+ec6BTB5XCQBCZfi/eDcuwZR+J4Yg+5P6G04Xp1jwDItJ6nH76Gdx007Vs3LiRs846p3Z7TQD46KOFHH/8SeTl5TFnziy8Xm+jmtgnTbqU2267gZdffoGxY49l6dLFLFr0We0dBamp6VRVVfHJJx9x5JFD2Lx5E4899ggAHk9gptaacQLr1q0lLq7uxb1r126MHTuOmTMfwjAstQMI33vvLa666v9aWi0sW7akzvoyNeccMWIUvXr14W9/u5PrrruZ1NRUFi78gK+++pJ7730YgOLiYubPn0d0dDQ5Ob3YtGkj69b9xJlnnoPTGcWaNT/y/fffct11N5Gc3JElSxZTXl5O//4DW1zuxlIYCCLf1h8xK0sP2UVQI7ByoeaPF5HW48gjh5CSksqOHds46aTf1G7v27c/11xzPf/858s8++zTpKSkcPzxJ5Gamsbq1T8c8rijR4/hrrum89xzTzN37lMMGDCQ3//+Qj755CMAjjvueNauvZjZsx9j794yOnXqzOmnn8EXX3zO6tU/cPbZv6dnz96MGXMMd999O2eccRbHHHNcnXPcffc9PP30k8yYcT8lJcVkZWVz8823c9ppv21xvdx883X1tl177Q2ce+4FzJw5i9mzH+Puu2+nvLyCnJye3H//I4wZcwwAl1/+R/x+PzNnPsTu3YV06JDMb397FpdccjkA06c/wOOPz+TPf76JsrJSsrKyufPO/xfWWwsNs2UdJW1GOBYqqvh0Dt4t3xE76e8Y1kPnrIpP5+DLyyX2/IeCUq62TAvrBJfqM/gOVKc7d24iPT27gWfIwWihopb79XuvzS1UdDgyPVV4N67E3m14o4IAoAGEIiLSKigMBIl30zfgrcJ2gOmHG2I4Y8BdgdmI22ZERERCRWEgSDy5X2HEdMDaqVejnxOYeMgEDSIUEZEIUhgIArOyDN+WH7D1GFlvtOnBaBZCERFpDRQGgsCzYSmYvgOuUHggCgMih4d2Mg5bWpFgv+cUBoLAm7sES2JnLMlZTXqewoBI22e12mrvgxcJF4/HjbWRg9UbQ2Gghfxlhfh2rsOWM+qgs2M1SMsYi7R5sbGJ7NlTgNtdpRYCCTnTNHG7q9izp4DY2MSgHVeTDrWQJ3cJQJO7CCAw6RCAWaUpiUXaqujoQKgvLt6Fz+eNcGnaDovF0qgFiKQ+q9VGXFxS7XsvGBQGWsibuwRLag8s8alNfq7hDEytqZYBkbYtOjomqH+Y2wNNjNW6qJugBXy7t+LfvaXR0w//mmGxgT0Ks0q3FoqISOQoDLSAN3cJGBZs3Yc3+xiBWQjVTSAiIpGjMNBMpmniyf0Ka5e+WFwJzT6O4YzBrFQ3gYiIRI7CQDP583Ixywqb3UVQw3DGgMYMiIhIBCkMNJMn9yuw2rF1HdKi4xjOGEy3woCIiESOwkAzmD4v3g3LsGUPxnBEt+hY6iYQEZFIUxhohopfvsOsLG1xFwHsW8ZYk5WIiEikKAw0Q9mPi8AZgzVzQMsP5owBvxe8ms5UREQiQ2GgiUxPFXvXLsXebRhGEOaF1voEIiISaQoDTeTdvArTU4ktCF0EoDAgIiKRp+mIm8iITiC231jo1Cs4x4vS+gQiIhJZCgNNZOvch5RBw4M2p7bh0PoEIiISWeomiLB9LQMKAyIiEhkKAxFWM2ZAsxCKiEikKAxEms0JFqtaBkREJGIUBiLMMIzaiYdEREQiQWGgFVAYEBGRSFIYaA0UBkREJIIUBloBLVYkIiKRpDDQCmgZYxERiSSFgVZALQMiIhJJCgOtgOGMBU8Fpt8b6aKIiEg7pDDQCuxbrKg8wiUREZH2SGGgFTCcgfUJUBgQEZEIUBhoBQynVi4UEZHIURhoBYyomm4CDSIUEZHwUxhoBfaNGVAYEBGR8FMYaA0UBkREJIIUBloBwxEYQKgwICIikaAw0AoYFis4ohUGREQkIhQGmmj99mLmvvMDpmkG9biGMxazUncTiIhI+CkMNNHGHaW88/l6ive6g3pcw+nCdGueARERCT+FgSbKTA3MCbA5L7if4g1nrLoJREQkIhQGmigjJRAGtuSXBvW4hjMG1E0gIiIRoDDQRK4oG+nJLjYFvWUgRi0DIiISEQoDzdCtcwJb8oLfMmBWlQd9YKKIiMihKAw0Q/cuCeQXVVBRFbwlhw1nDJg+8FQG7ZgiIiKNoTDQDN07J2AC2wqC16yvKYlFRCRSFAaaoVvnBAA2B3MQoRYrEhGRCFEYaIaOiVHERNmCenuh4VAYEBGRyFAYaAbDMMhKiwvq7YVaxlhERCJFYaCZstJi2VqwF5/fH5TjGc7A/AUKAyIiEm4KA82UlRqHx+tn5+6KoBxv3wBCTTwkIiLhpTDQTJlp1TMRBmm+AcPmAKsNqrQ+gYiIhJfCQDOld3Bhs1rYnB/EQYTOWLUMiIhI2CkMNJPNaqFLSkxQZyI0nDGYlRozICIi4aUw0AJZqbFszi8L2hTCWp9AREQiQWGgBbLS4igt97CnzB2U4xnOGEy3woCIiISXwkALZKYGBhFuDlZXgboJREQkAhQGWqA2DARpEKG6CUREJBIUBlog2mkjNTE6eLcXOmPAW4XpC95qiCIiIoeiMNBCmWmxQW0ZAM1CKCIi4aUw0EJZqbHkF1VQUdXyT/MKAyIiEgkKAy2UmRYHwNaClrcOGFFan0BERMJPYaCFsqvDQDCWMzYcrsAPCgMiIhJGCgMtlBjrIDbaHpTljNUyICIikaAw0EKGYZCVFhuclgGtXCgiIhGgMBAEWalxbC3Yi8/vb9mBHNGAoZYBEREJK4WBIMhMi8Xr87OzsGXLDxuGBZwuhQEREQkrhYEgyAriTISahVBERMJNYSAI0pNd2KyWoKxRoDAgIiLhpjAQBFaLhYyUmKANItRiRSIiEk4KA0GSlRbLlvwyTNNs0XG0jLGIiISbwkCQZKbGUVbhoai0qkXHMZwxoJYBEREJI4WBIMlKC84gwpqWAdNs4W2KIiIijaQwECQZKYEw0NLljA1nLJgmuCuCUSwREZFDUhgIkminjdSk6CC0DATWJzCrWjZngYiISGNFNAzMmTOH888//6D7vPrqq/Tu3bve16ZNm8JUysbLSo1lSwvvKDCcWp9ARETCyxapE7/00kvMnDmTwYMHH3S/tWvXMnbsWO6777462zt06BDK4jVLVlocy9cWUFHlJdrZzKqN0voEIiISXmEPA3l5edx11118/fXXdOvW7ZD7r1u3jsGDB5OSkhKG0rVMzSDCLfll9MpMbNYx9i1WpJYBEREJj7B3E/z444/ExMTw7rvvMmjQoEPuv27dOnJycsJQspbLTI0DAmGguRQGREQk3MLeMjB+/HjGjx/fqH137NhBSUkJixcv5plnnqGkpIRBgwZx00030bVr19AWtBkSYx3EuewtmpbYcNQMIFQYEBGR8IjYmIHGWLduHQAWi4UHH3yQ8vJyZs+ezXnnncd7773XpK6D5OTYoJYtJSWuwe09MhLZsbv8gI83xl67k2iLh+QWHKMtakmdSX2qz+BTnQaX6jP4mlunrToMjBs3jq+//prExMTabU888QTHHXccb7zxBlOmTGn0sQoLy/D7WzZVcI2UlDgKChr+9J+eFM3H63exY2cxNmsze2EcMewtKsJ/gHMcjg5Wp9J0qs/gU50Gl+oz+Grq1GIxmvwBuNXPM7B/EABwuVxkZGSwffv2yBToELJSY/H6THYWNn+eAMPpAq1PICIiYdKqw8Bzzz3HmDFjcLvdtdtKS0vZuHEjPXv2jGDJDiwzLdBEszm/BeMGtIyxiIiEUasKAz6fj4KCAiorK4HAYMPy8nJuvfVWcnNz+e6777j66qtJSEjg7LPPjnBpG5beIRq7zdKi5YwNZ6yWMRYRkbBpVWFgx44djBkzhgULFgDQtWtXnn/+eYqKijjvvPOYPHkyiYmJvPDCC7hcrgiXtmFWi4WMlJgW316oSYdERCRcIjqA8P7776/ze0ZGBmvXrq2zbeDAgTz//PNhLFXLZabGsWJtPqZpYhhG0w/gdGltAhERCZtW1TJwuMhKi2VvpZei0qpmPd9wxoLPjel1H3pnERGRFlIYCIGs6pkImztuQLMQiohIOCkMhEBGagwGzb+jwIhSGBARkfBRGAiBKIeN1A6uZi9nbDgUBkREJHwUBkIkKzVWLQMiItImKAyESFZaLAV7Kimv9Db5uTVjBlAYEBGRMFAYCJF9yxk3vXXAcAbmlNZcAyIiEg4KAyGSlRa4oG9uzuRD9igwLJprQEREwkJhIEQSYhzEu+zNGkRoGIbWJxARkbBRGAgRwzDITItr/oJFzhjMSnUTiIhI6CkMhFBWaizbd+3F6/M3+bmGMwbTrW4CEREJPYWBEMpMi8XrM9lR2PSLuroJREQkXBQGQmjftMTNuaNA3QQiIhIeCgMhlN7BhcNmadZyxmoZEBGRcFEYCCGLxaBLSmyzWwZwV2D6mz7eQEREpCkUBkIsKy2WLfllmKbZpOcFZiE0QYMIRUQkxBQGQiwrLY69lV52l1Q16XlaxlhERMJFYSDEslJrZiJsWleBFisSEZFwURgIsYyUWAxo8kyE+9YnUBgQEZHQUhgIMafDSloHF5uaOojQ6QIUBkREJPQUBsKgZhBhU2jlQhERCReFgTDITI1lV3El5ZWeRj/HUMuAiIiEicJAGGSlBWYibErrgGGxgT1KyxiLiEjIKQyEQe0dBU0eRBijbgIREQk5hYEwSIh1Eh/jaPrthc4YzEp1E4iISGgpDIRJVmpsM24vjAGNGRARkRBTGAiTzLRYtu3ai9fX+LUGDGcMplthQEREQkthIEyyUuPw+U2272r8xV3dBCIiEg4KA2GSlRYYRNikOwqqlzFu6iJHIiIiTaEwECZpSS4cdkvT7ihwxoLfC1536AomIiLtnsJAmFgsBpkpsWxpwh0FmnhIRETCQWEgjDLT4ticV9boZn8tYywiIuGgMBBGWamxlFd5KSyubNT+RpTWJxARkdBTGAijzOpBhJsbOYhQLQMiIhIOCgNhlJESi2HA5kYuZ6wwICIi4aAwEEZOu5X0Dq5G315YEwY0C6GIiISSwkCYZabGNv72QpsTLFa1DIiISEgpDIRZVlochSWV7K30HHJfwzA0C6GIiIScwkCY1Sxn3NhFi7Q+gYiIhJrCQJhlpsUBjb+jgOopiUVEREJFYSDMEmIcJMQ42NKEOwrUTSAiIqGkMBABmWmxbGp0N0GsJh0SEZGQUhiIgK7p8WzftZdKt/eQ+xpOF2ZVeRhKJSIi7ZXCQAT0zEjAb5ps2F5yyH0NZyx4KjD9hw4OIiIizaEwEAE9OidgALlbiw+5775ZCNU6ICIioaEwEAGuKBtdUmL4eVsjwkCUZiEUEZHQUhiIkJyMRNZvK8bvP/hyxoZD6xOIiEhoKQxESM+MBCrdPrYWHPxOgZqWAYUBEREJFYWBCOnZJQGAnw8xbkArF4qISKgpDERIckIUibEOcg8xbsBwBqYvVhgQEZFQURiIEMMwyMlIJHfrnoPv6HABCgMiIhI6CgMR1LNLAoUlVewuqTzgPobFAo5ohQEREQkZhYEIyskIjBtoTFeBWakpiUVEJDQUBiIoMzUWh93SqEGEpluTDomISGgoDESQzWqhR+cEfj7EuAFDyxiLiEgIKQxEWE6XBLbkl1FRdeC1BwxnDKibQEREQkRhIMJ6ZiRgmrBhx4EXLVLLgIiIhJLCQIR1b8SiRYEwUI5pHnzqYhERkeZQGIiwwKJFsQedb8BwxoDpA8+Bb0EUERFpLoWBVqBnRgK520vw+f0NPq4piUVEJJQUBlqBnhkJVLl9bM0/wMVeixWJiEgIKQy0AoeafEjrE4iISCgpDLQCyfFRJMU5DzjfgOHU+gQiIhI6CgOtgGEY5HRJUMuAiIhEhMJAK5GTkcDuAyxatG8AoSYeEhGR4FMYaCV6Vo8baGidAsPmAKsdqrQ+gYiIBJ/CQCuRmRqL02494ORDgYmH1DIgIiLBZ2vKzuXl5ZSWlpKWlobX62X+/Pls27aNU045hWHDhoWqjO2C1WKhe+f4gwwijMGs1JgBEREJvka3DPz4448cd9xxzJ8/H4D777+fBx54gDfffJNLLrmE//3vfyErZHvRMyOBLQUNL1qk9QlERCRUGh0GHnnkETp37sxZZ52F2+3mzTff5LzzzmPlypWcdtppPPnkk6EsZ7uQU7No0fb6ixYZzhhMt8KAiIgEX6PDwLfffsvVV19N9+7dWb58ORUVFZx55pkATJgwgbVr14askO1Fj84JGAYNdxW00m4C79Yf8e3ZHuliiIhICzQ6DPj9fmJiAre4LVq0iPj4eAYOHAiA2+3G4XCEpoTtSLTTRkZKbIPzDbTGbgLTU0XFR3/HveLdSBdFRERaoNFhoHfv3ixYsICCggIWLlzImDFjMAwDt9vNSy+9RK9evUJZznajZ0YC6xtYtMhwxoC3CtNXfzxBpHi3fAteN2Z5UaSLIiIiLdDoMHDttdfy3nvvccwxx1BcXMwf/vAHAE455RRWrFjB1VdfHbJCtic5B1i0yIhqfbMQejcsA8Bf3vDtkCIi0jY0+tbCo446ivfee4/vv/+ewYMH06lTJwAuueQSRo0aRe/evUNWyPakZ5dEIDBuIDs9rna74dhvfQJXQiSKVofprcK7+dvAz+V7IlsYERFpkSZNOpSZmcmpp55aGwR27drFsGHD6NmzZ0gK1x4lJwQWLfr1uIHW1jLg3fwdeN1YM/qDpxLTUxXpIomISDM1OgxUVFQwbdo0XnzxRQD+85//cOyxx/K73/2OCRMmkJeXF7JCtjc9MxLqTUtcsz4BrWQWQu+GpRjR8di7jwDUOiAi0pY1OgzMmDGDd955p/aOgocffphevXrx6KOP4vP5mDFjRsgK2d7kdEmgqLSKwuJ9ixbtW6wo8usT1HQR2LoOxYjtAIBfYUBEpM1q9JiBjz/+mBtvvJEzzzyT3NxcNm3axKOPPsrJJ5+M2+3mvvvuC2U525WeGYkA/LxtD8kJ6UDrWrmwpovA1n04RnRgXINZoUGEIiJtVaNbBgoLC2tvH/ziiy+w2WyMGTMGgI4dO1JeHvlPrIeLjNQYnI5fLVrkiAaMVjFmwLthGUZUHNZOvTGiA4MZTd1RICLSZjU6DHTq1IlNmzYB8MknnzBgwABiYwOD2pYvX056enpoStgOWS0WenSOrzNuwDAs4HRFfBbCQBfBKmzdhmJYrIGBjYZVYwZERNqwRoeB3/72tzz88MNcfvnlLFu2jN/97ncATJ8+nTlz5jBx4sRQlbFdyumSwNZfLVrUGtYn2NdFEBg4aBgWDFeCxgyIiLRhjR4zMHXqVGw2GytWrOC2227j7LPPBuCHH37gsssu449//GPICtke9cxIxDRh/fZi+ndLBlrHlMT7dxHUMFwJ6iYQEWnDGh0GAKZMmVJv26uvvhq0wsg+3TvHYxiQu/VXYSCC3QSm141387fYc47CsFhrt1tcifhLd0WsXCIi0jJNCgOFhYXMnTuXr7/+mtLSUpKSkhg6dCiXXXYZKSkpTT75nDlz+Oyzz3jllVcOuE9RURHTp09n0aJFmKbJKaecwm233VZ7i+PhKtppIzMltu64AWcs/pKCiJXJu+U78FZh6z68znYjOgEzLzdCpRIRkZZq9JiB7du3M3HiRObPn09MTAwDBgzA4XAwf/58zjzzTHbs2NGkE7/00kvMnDnzkPtde+21bN68mXnz5jFr1iwWL17MtGnTmnSutqpnRiIb9lu0yHC6IILdBLVdBJ371NluuBIwK0sx/a1nESUREWm8RrcMPPzww9hsNhYsWEBWVlbt9s2bNzN58mRmzpzJgw8+eMjj5OXlcdddd/H111/TrVu3g+67cuVKli5dygcffEBOTg4QGLA4efJkbrzxRjp37tzY4rdJORkJfLJyK1vz95KdHlc7gNA0/YG7C8LI9LrxblqFPWdUnS4CAMOVGNinvKR2EiIREWk7Gn1F+fLLL7nmmmvqBAGArKwsrr76ar744otGHefHH38kJiaGd999l0GDBh103+XLl5OcnFwbBACGDh2KYRgsX768sUVvs3pmBO7hX7d1DxDoJsA0wV0R9rJ4t3zfYBcBBMYMgKYkFhFpqxrdMuDz+UhKSmrwscTERPbubVzz9fjx4xk/fnyj9s3Pz683f4HD4SApKYmdO3c26hhtWYf4KDrEO8ndWsyJwzIxovZNSVy7VkGYeDcsw3DGYu18RL3HjOpVFDULoYhI29ToMNCnTx/efvttjjvuuHqPvf322yFZubCiogKHw1Fvu8PhoKqqaavkJSfHBqtYAKSkxB16pyDo370jP/5SSMeOsZQXdaQSSHSZOMN0fgC/p4pNW1YR23cMKWmJ9R73OruwGYixVBLfgnKFq07bC9Vn8KlOg0v1GXzNrdNGh4GrrrqKyy67jMmTJ3PaaaeRkpJCQUEB77//Pl9//TWPPfZYswpwMFFRUbjd7nrb3W43LperSccqLCzD7zeDUq6UlDgKCkqDcqxDyUyJ4fNV2/hpfQGJVYFend0787HZUsNyfgDPxhWY7kq8nY9s8HWbvsAYgpL8PKqaWS/hrNP2QPUZfKrT4FJ9Bl9NnVosRpM/ADc6DIwePZoHHniAhx56iL/85S+12zt27Mh9993HiSee2KQTN0Z6ejr5+fl1trndboqKitrN9Mc14wZytxYzvHNNN0F47yjwrj9wFwGAYbVhRMVpzICISBvVpCHpZ5xxBosWLeKDDz7g5Zdf5oMPPmDRokUkJCQwderUoBdu+PDhFBQUsGHDhtptNQMHhw0bFvTztUYZKbFEOaz8vK14v5ULwxcGAhMNrcLWbUi9uwj2p1kIRUTariZNOgRgGAY9evSos23z5s188sknLS6Mz+dj9+7dxMXFERUVxaBBgxgyZAg33ngjf/3rX6msrGTatGmcccYZpKWltfh8bYHFYtCjczy5W4sxnN2B8IYB79bvwVNZuxbBgRiuRPwKAyIibVJ4b1Y/hB07djBmzBgWLFgABILHrFmzyMzM5JJLLuGaa65h9OjR3H333ZEtaJjlZCSyNb+MCo8BNkd4w8CGZeCMqTfR0K8Z0QnqJhARaaOa3DIQTPfff3+d3zMyMli7dm2dbcnJySEZnNiW5GQkYAIbthfT1RkbtvUJaica6j4Cw3Lwt4rFlYC3ohjTNDEMIyzlExGR4GhVLQPSsO6dAosW/by1etxAmJYx9m79obqLoP5EQ79muBLB78OsKgt9wUREJKgUBtqAaKeNrNQ4crcVYzhdYesmqO0i6NLwXQT7MzQLoYhIm3XQtt8LL7ywUQfJy8sLSmHkwHIyEvjiux3QPwazJP/QT2ihQBfBN9i7Dz9kFwHsNwtheTF0yAx18UREJIgO2jJgsVga9dWpU6d2c6tfpPTMSKDK42Ov6QhLU7xv64+N7iKAwJgBQLcXioi0QQf9yDd//vxwlUMOIadL4GK7u9JG56rykJ/Ps2FpdRdB30btX9NN4Fc3gYhIm6MxA21Eh/gokuOd5O01wOfG9NafpjlYTJ8H76ZV2LKHNKqLAMCwR4E9SmMGRETaIIWBNiQnI5GtxX4gtBMP+bb+AJ4K7D0a10VQQ7MQioi0TQoDbUjPjAR2VQSmBA5lGPDU3kXQuC6CGhZXopYxFhFpgxQG2pCcLgmUm04gdGHA9HnwbvymSV0ENYzoBI0ZEBFpgxQG2pCMlFh89iggdGGgtougkXcR7E/dBCIibZPCQBtisRh0TO0Y+CVEYcCzYRk4XE3uIoDqOwo8lZieyuAXTEREQkZhoI3J6BxYrbGqrCTox67tIug6BMPa9GUrLJqFUESkTVIYaGO6ZaXgMw2KCouCfuzAREPN6yKAfbMQailjEZG2RWGgjeneJYEK00Hpnj1BP/a+LoJ+zXq+oVkIRUTaJIWBNibKYcNtiaayLLgX3MBEQyuxdR3crC4C0GJFIiJtlcJAW+SMwazci9fnD9ohfdt+BHfzuwgADGcsWKwKAyIibYzCQBvkcMURRRVb8oO3YFGgiyAaa5f+zT6GYRiBuQY08ZCISJuiMNAGueLjcRlV/Lw1OBdd0+fdN9FQM7sIamiuARGRtkdhoA1yxsYTY3GTu3VPUI4X6CIob1EXQQ2LK1HdBCIibYzCQBtkOGOINtys27Ibv2m2+HieDcvAHo01o3l3EdQpm1oGRETaHIWBNsiIigXAW1HOtoKWzUQY6CJYWT3RkL3lZXMlYlaWYvq8LT6WiIiEh8JAG2Q4XAC4jCpWb9zdomP5tq0OWhcB7Hd7YUXwZ0gUEZHQUBhog4yoGACyEg1+bGEYCGYXAYAlumbioT1BOZ6IiISewkAbZDgD3QS90hys27IHj7d58w0EughWVE801PIuAtAshCIibZHCQBtkOAMtA92Srbg9fjZsb96FN9hdBLCvm8CvlgERkTZDYaAtqg4DnWLBYhj8uLFpixaZph9f/nrc339Y3UXQ/ImGfs1wxQOGuglERNqQls0wIxFhOAMDCO3+Crp17sDqjbs565juB32O6a7Au/UHvJtX4dvyfWCAn2HgGDoxaF0EAIbFhhEVi6lZCEVE2gyFgTbIsNjAHoVZVU6/rh14b/FGyis9uKLqXtT9xTvxbv4W7+Zv8e1YC34fOGOwZQzAlj0IW8aA2tsUg1o+zTUgItKmKAy0UYYzBrOqjL49OvDulxv5afMeBuck4dv5M95Nq/Bu/hazeCcAlqTOOAacjDVrENa0HAyLNbRlcyVqzICISBuiMNBGGdUrF3ZLgqOif8G1dCllX24CTwVYbFg798HW7wRsWYOwxKeEt2yuBPxF28N6ThERaT6FgTbKcMbg2/oDvpev57xok7JyF/Y+w7FmDcLWpR+GPSpiZbO4EvGWF2OafgxDY1RFRFo7hYE2ypY1CNPrxpY5gOVl6Tz31V4eHHQ0yQmRCwE1DFcimD7Mqr0YUXGRLo6IiByCwkAb5Rh4Co6BpwCQXVCG+dVSVm/azdiBnSNcMjD2n4VQYUBEpNVTG+5hoEvHGOJjHKxp4nwDoaJZCEVE2haFgcOAYRj07ZrE6o3BWdK4pSw1ixXpjgIRkTZBYeAw0Te7AyXlnhYvaRwMmpJYRKRtURg4TPTtmgTQ4iWNg8GwOwOTIqmbQESkTVAYOEx0iI+iU7KL1a1o3IDCgIhI26AwcBjpm92BtVuK8Pqat6RxMFlciRozICLSRigMHEb6dk3C7fGzflvkP5Eb0Qn41TIgItImKAwcRnpnJTVrSeNQMNQyICLSZigMHEZcUTa6dY5jTWsYROhKBG8Vpqcy0kUREZFDUBg4zPTN7sCGHSWUV3ojWg6La79ZCEVEpFVTGDjM9O2ahGnCT5sj21VQMwuhxg2IiLR+CgOHmR5dEnDarRGfb8DQLIQiIm2GwsBhxma10DsrMeLzDWhKYhGRtkNh4DDUNzuJnbvL2V0SwcF7zhiwWDXxkIhIG6AwcBjq27UDAD9GsKvAMAzNNSAi0kYoDByGuqTEEO+yR3xJY801ICLSNigMHIYCSxp3YPXG3ZgRXNLYovUJRETaBIWBw1TfrpFf0lgtAyIibYPCwGGqZknjiI4bcCViVpVh+iI7AZKIiBycwsBhqkN8FOkdIrukcc3EQ2aFugpERFozhYHDWN+uSRFd0njflMQKAyIirZnCwGGsX9cOEV3SuGYWQr/GDYiItGoKA4ex3llJGAYRW9JYUxKLiLQNCgOHMVeUje6d4iO2pLERHQcY6iYQEWnlFAYOc0d0jdySxobFhhEVqzAgItLKKQwc5vpVL2m8NkJLGhuuRI0ZEBFp5RQGDnM9uiTgsFsidouh4UrQrYUiIq2cwsBhzma10DszKWKTD2kWQhGR1k9hoB3o2zVySxoH1icowTQjM9eBiIgcmsJAO1CzpHEkugoMVyKYPszKsrCfW0REGkdhoB3IqF7SePWm8HcVGJqFUESk1VMYaAf2LWlcFPYljTXxkIhI66cw0E4c0TWJkr3usC9pbFEYEBFp9RQG2om+2TXjBsLbVWBEB7oJ/Lq9UESk1VIYaCeSE6JI6+Bi9abwDiI07E6wR2nMgIhIK6Yw0I7065rE2s17wr6kseYaEBFp3RQG2pG+XTtQ5fGFfUnjwFwDahkQEWmtFAbakT5ZiRhG+Ocb0PoEIiKtm8JAO+KKstOtU3zY5xswotUyICLSmikMtDN9u3bgl+2lYV3S2HAlgrcK010RtnOKiEjjKQy0M/26JuE3zbAuaWzRLIQiIq2awkA7071z+Jc0rpmFUOMGRERaJ4WBdsZus9ArMzGs4wZqpyTWxEMiIq2SwkA71De7AzsKw7ek8b5ugj1hOZ+IiDSNwkA71K9bmJc0dsaAxaYxAyIirZTCQDvUJcxLGhuGgeFK0JgBEZFWSmGgHbIYBkeEeUljQ7MQioi0WgoD7VTf7OoljXeFZ0ljiytRYUBEpJVSGGin+natHjfwS5i6CqITNIBQRKSVUhhop5ITokjv4GLxDzvDsoqh4UrErCrD9IVv5kMREWkchYF27Oxx3dmcX8Zr/10f8nMZNbcXaq4BEZFWJ+xhwO/389hjjzF27FgGDRrEZZddxqZNmw64/6uvvkrv3r3rfR3sOdI4Q3uncsLQDP6zfAsr1uaH9FyWmomH1FUgItLqhD0MPPHEE7zyyitMnz6df/7zn1itVi6//HKqqqoa3H/t2rWMHTuWL774os5XRkZGmEt+eDp3fA7dOsXz3IKfyC8qD9l59k1JrJYBEZHWJqxhwO1289xzzzF16lTGjRtHnz59mDlzJrt27WLhwoUNPmfdunX06dOHlJSUOl9WqzWcRT9s2awW/nRGPywGPPn2j3i8vpCcx9AshCIirVZYw8CaNWsoLy9n1KhRtdtiY2Pp27cvy5cvb/A569atIycnJ1xFbJc6JkZz+Wl92ZRXyquf5IbkHEZ0PGDo9kIRkVYorGEgLy8PgLS0tDrbU1NT2bFjR739d+zYQUlJCYsXL+a0005j7NixTJ06lY0bN4ajuO3KkT07csrILP77zTa+Xp0X9OMbFitGdJxaBkREWiFbOE9WUVEBgMPhqLPd4XDgdrvr7b9u3ToALBYLDz74IOXl5cyePZvzzjuP9957j5SUlEafOzk5tgUlry8lJS6ox2sN/nj2IDbllfHCv3/iyCPSyEgN7musiuuAzVt2wLo7HOs0klSfwac6DS7VZ/A1t07DGgaioqKAwNiB/QOB2+3G5XLV23/cuHF8/fXXJCYm1m574oknOO6443jjjTeYMmVKo89dWFiG3x+cqXdTUuIoKCgNyrFam8tP7cPd85Zxz3Nf85eLh+GwB29shs8Zh7d4d4N1dzjXaSSoPoNPdRpcqs/gq6lTi8Vo8gfgsHYTdOrUCYD8/Lq3seXn59frOqixfxAAcLlcZGRksH379pCUsb3rEB/FHyb0ZWvBXl76z7qgHluzEIqItE5hDQN9+vQhNjaWpUuX1m4rKytj9erVjBgxot7+zz33HGPGjKnThVBaWsrGjRvp2bNnWMrcHg3onszpo7NZ9N0Ovvy+/liO5gqsT1CCaYZ+xkMREWm8sIYBh8PBpEmTmDlzJh9//DE//fQT119/PWlpaZx00kn4fD4KCgqorKwEYPz48ZSXl3PrrbeSm5vLd999x9VXX01CQgJnn312OIve7pwxpht9shKZ/9FathWUBeWYhisBTB9mZXCOJyIiwRH2SYeuvfZazjnnHKZNm8b555+PaZrMnTsXh8PBjh07GDNmDAsWLACga9euPP/88xQVFXHeeecxefJkEhMTeeGFFxocYyDBY7VYuPK3/Yhy2Jj99g9Uulu+poChWQhFRFolwwzXgvYRpgGEzbNm424efnUVo/qlc8XpR2AYRrOP5d25jop37yX6NzdiyxxQ57H2VKfhoPoMPtVpcKk+g6/NDCCUtueIrh04Y0w3vvpxJ4u+a9n4Aa1PICLSOikMyCGdPror/bom8eJH69ic1/wkXzMlsdYnEBFpXRQG5JAsFoM/TOhHbLSNJ9/+gYqq5o0fMGxOsEerZUBEpJVRGJBGiY9xMOWM/hTsqWTewp9o7lATi0tzDYiItDYKA9JovTITOWtcd5b/lM+nK7c16xiGKwGzoiTIJRMRkZZQGJAmOWVkFgN7JPPPT3/mlx1Nv6gbrkT8ahkQEWlVFAakSSyGwRWn9yU+xsGTb/9AeaWnSc83XImY5Xua3c0gIiLBpzAgTRYbbedPZ/SnqLSKZz9Y06QLu8WVAF43eCpDWEIREWkKhQFplh5dEjjn2B588/Mu3vnil0YHAs1CKCLS+igMSLOdODyTo/un8+6XG5n7/ho8Xt8hn2NEa64BEZHWxhbpAkjbZRgGl512BKlJ0by16Bfyi8qZetYAEmKdB36OWgZERFodtQxIixiGwYSju3HVxP5sKSjj//1jOZt2HniWQkv1LISmWgZERFoNhQEJimF9UvnzhUMxDLjvpRUs/ym/4R2dMWC16fZCEZFWRGFAgiY7PY47Lx5GZkoss9/+gXcbGFhoGAZGtGYhFBFpTRQGJKgSYp3ccsFgjuqXzttf/MKcd3+kylN3YKFmIRQRaV00gFCCzm6zcsXpR5CREsPrn60nr6iCa88eSFJcYGChxZWIvzgvwqUUEZEaahmQkDAMg9+Myuaasweyc3c5/+8fy9iwPdAaoCmJRURaF4UBCakje3bkjklDsVstPPDySpas3onhSoCqvZi+pk1lLCIioaEwICGXkRrLXy4ZRrf0OJ5+dzWrtgZCgG4vFBFpHRQGJCziXQ5uOn8wYwd24oufywGoLNkd4VKJiAgoDEgY2awWLv1NH44a1guANxauZFdxRYRLJSIiCgMSVoZhMGpYbwDMimKm/2M5uVvVXSAiEkkKAxJ2RnQ8YHDqoESinDYefGUln63YEuliiYi0WwoDEnaGxYoRHUcse/nLxcPo0TmBGS+v5D/LFQhERCJBYUAiwnAl4C8vJjbazg2/H8So/um88vHPvPX5hnpTGIuISGgpDEhEGK7E2lsL7TYrt108nDEDO/He4o3M/2gdfr8CgYhIuGg6YokIIzoRf+G+bgGr1cLk3/QhLtrOwq83s7fCwx8m9MVmVV4VEQk1hQGJCIsrAW9FCabfj2EJXPANw+Cc43KIczn4139zKa/ycvWZ/YlyHPptuv9xIslfUYIlOj7SxRARaZLI//WUdslwJYLpx6wsrffYKSOzmHxqH1Zv3M3Dr66irOLg0xb7S/LZ+9J1uNd8FprCNpJ36w/snf9/eLeviWg5RESaSmFAIsJwJQCBuQYaMnZgZ64+cwCb88q478UV7C6pbHA/0/RT+dlczIoS3MvfxPRUhazMB2OaJlXL3gRMPOu+iEgZRESaS2FAIsJwJQJgHmT1wiG9Urjh3EEUlVZx34sr2FG4t94+nh/+g2/nOuxHHIdZUYJnzachKvHB+bZ8j79gA4YrEe8vKzG97oiUQ0SkORQGJCIsNS0Dh1isqE92ErdeMASP1899L65k486S2sf8e3ZStfR1rFmDcI65GGuXfri/XRj21gHTNKla8TZGXEeijrkUPBV4t3wf1jKIiLSEwoBERE3LgP8gLQM1stPj+POkoTjtVh54+RvWbCrC9Pup+N9csDmIGnsphmHgGDox0DqwOrytAzWtAo7BE7BmDMCIisO7fklYyyAi0hIKAxIRhs0BjuhGL2Oc1sHF7RcNpWN8FDP/tYpfPn0Df14uUaMvxBKTBIAtvWd168CCsLUO7N8qYO95NIbFiq37cLybvsV0axEmEWkbFAYkYizRCQcdM/BrSXFObr1wCEemekhcv5A9SX2x5RxVZx/n0ImYlaVhax3Yv1XAsAZugbTljAKfG++mb8JSBhGRllIYkIjZfxbCxopxWrg47it8FgcPb+jHwq8315m+2JreE2tG/7C0Dvy6VaC2DGk5GDEd8Kz/OqTnFxEJFoUBiRjDldioMQP7c3+7EHPXL8Qdeyl9j+jK65+t51//za0TCJxDzqhuHfgkyCWuq6FWAQDDsGDrMQLf1h8wK8tCWgYRkWBQGJCIMVwJmOXFjV6YyLd7C+4Vb2HrPpyonqP4w4S+HD8kg38v3cJzC9bg9fmB/VsHQndnwYFaBWrYe4wCvw/PxhUhOb+ISDApDEjEWFwJ4HODp+EJhfZn+r1UfjYXw+HCefRFgecbBhec2JMzxnTjy+93csuTi3l70QZ2l1TWjh1w/xia1oEDtQrUsHTMxkhIw5uruwpEpPVTGJCIaczEQzXcqz7Av2sTzjEX15n73zAMzhjTjevPHURmahzvfbmRm59czBOLyinv0Bv3dwswGxE2muJQrQI15bL3GIlv+09N7goREQk3hQGJmMbONeDbtQn3inex9RiFvfvwBvcZ0D2Z688dxANTjuLUUdls2F7MnI3dobKM7xa+TvHe4M0IeKhWgRq2HiMBE++GZUE7t4hIKGjVQokYoxGzEJq+6u6BqFiijp50yGN2TIzm7HE9OGNMN775eRebv1xN6vZF3P5EKv17debYwV3ok5WIYRjNKnNjWgVqWJO6YOmQiWf91zj6n9is84mIhINaBiRiLI3oJnB/8y7+3VsCswxGxTb62DarheF9Uulz+kXEWqq4pPsOVm/czUOvfMPtz3zNR0s3H3I1xIY0tlWgthw5I/Hn5eIvLWjyuUREwkVhQCLH4QKrDf8BWgZ8BRtxf/M+tp5HY+s6uFmnsKblYM0cQN+9y3j4yqFccfoRxEXbefXTXG6Y9SVz319N7rbG3dHQlFaBGvbuIwHwrF/arPKLiISDugkkYgzDwDjALISmz0PlZ89gRMcTNfqCFp3HOXQi5W//Ddb9l9FHns7o/p3Ykl/GZ6u28dUPO1n8w04yUmI4dnAXxg7sjN3WcEauaRVwHjO5Ua0CAJb4FCypPfCuX4LzyNNa9DpEREJFLQMSUYYrEbOifsuAe8U7+Iu2EXXMZAxnTIvOYU3tgTVzIJ5vP6xdLyAzNZaLTurNI1OP5pJTemOxGLz40TpmvPpNg90HzWkVqGHvMRJ/4RZ8Rdtb9DpEREJFYUAiyuJKrNcy4MvfgPvbD7D3Hosta1BQzuMcegZmVRnuX81KGOWwMe7ILtx16XCu/G1fNuwoZfoLy9lRuLdumWrGChx5eqNbBWrYeowADLyanlhEWimFAYkow5VQZ8yA6XUHugdcSTiPOj9o56lpHXB/u7DB1QQNw2BU33RuuWAwFVVe7p2/gjWbigJlqmkViE3G3mtMk89tcSVi7dwHz/qvGz3boohIOCkMSEQZrgSo2ovpDTTNVy1/E/+eHUSNuwzD4QrquZxDJ0LV3oPOSpjTJYG/XDyMhFgnj/xzFYu+3d7kOwgaYusxErN4J/7CTc0svYhI6CgMSETVTDzk3VuEb+fPeL77N/YjjsWW0T/o57Kmdg+0DnzXcOtAjZTEaG6fNJQ+2UnMW7iGHZ+92uxWgRr2bsPAsOLJVVeBiLQ+CgMSUZbqiYe8RXlU/G8uRmwHnCN/H7Lz7Wsd+Pig+7mibFx3zkDO7VNFYuV2FjMEt795ExUBGFGxWDP7413/Nabpb/ZxRERCQWFAIqqmZWDXv+diFucRNe5yDEd0yM5nTe2ONWsQ7u8+PGjrAAQWQhrLciodiby+OZUHXlrJnrLmr4Jo7zESc+9ufHnrm30MEZFQUBiQiKoJA55dW7H3PR5bl74hP6dzyBmNah3wbf0ef/4GEkZO5KqzB7OjsJzpLyxnc15ps85ryx4MVrtWMhSRVkdhQCLKiIoDw8CWmIZz5DlhOWdjWgd+fQfBkT078udJQzBNuO+llXybu6vJ5zUc0diyBuH9ZRmm39fSlyEiEjQKAxJRhsVK1DGXkX7ObRj2qLCdt3bswA//afDxmlaB/e8gyEqL4y8XDyM9ycVjb3zHx8u3NPm8tpxRmBUl+LavaUnxRUSCSmFAIs7eeyyO1KywntOa0i3QOvD9v+u1DhxsXoGkOCe3XTiEI3M68vLHP/PiR2vx+Rs/INCWORDsUZqASERaFYUBabcO1DrQUKtAnec5rFx91gBOGZnFpyu38ffXv6Oiytuocxo2B7auQ/H8shzT1/RVE8NJEySJtB8KA9JuBVoHjqxuHSgHGj/boMUwOPe4HC45pTdrNhZx74sr2FV88LsTathzRoK7At+WH4LyOoLN9Lqp+Gwue1+5Cd/ubZEujoiEgcKAtGv7WgcCdxYcqlXg18Yd2YXrzx3E7pIqpr+wgvXbG16OeX/WLn0xnLF41re+uwr85Xsof/9+vOu+wHRXUPH+/fh2N31shIi0LQoD0q5ZU7oGWge++xDTXd6sNQj6du3AHRcNxWm38ODL37D8p/yD7m9YbNi6D8e76RtMT/PnLQg2X8FGyt/6K/7dW4k64WpiJk4Di5WK9x/EV7g50sUTkRBSGJB2zzlsIrjLqfjPrCa1Cuyvc8cY7rh4GNlpccx++wc++GrjQfvcbT1GgteNd9M3LSx9cHjWf035u/eCYcH12zuwdx+OJTEd14TbwGqj/P0H8O3SugoihyuFAWn3rB27YssejG/b6hatQRDvcnDz+Ucysm8ab/xvA88v/Amvr+E7DaydemG4EiN+V4Fp+qla/iaVnzyJtWM2rjPvwtoxu/ZxS0I6rgl/xrA5Kf/gQXy7NkausCISMgoDIoBj6EQwrDiHTmz2yoQAdpuVKyf0ZcLoriz6bgcz//Ut5ZX17xowDAu2HiPxbvkes2pvC0refKanksr/PIF75bvYe48l+vRbsETH19vPEp+Ka0JgHojy9x/EV/BLBEorIqGkMCACWDtmE3vR37H3HtviYxmGwZnHdOfy045g3ZY93DN/Bfl76t9pYO8xEvxevBtXtvicTeUv3UX5O/fg3bQS51Hn4zzmMgyr/YD71wYCpyvQQpC/IYylFZFQUxgQqWZExQb1eEcP6MRN5x1JyV4397ywnNxtde80sKR0w4hPxRPmtQq8O9cFBgqW7SL6lBtwDDgZwzj0ioyWuBRcp9+G4Yyl/IOH8OXlhqG0IhIOCgMiIdQ7K4nbLxpKtMPGgy9/w9I1ebWPGYaBvcdIfNtX468oCUt53D/9j4r3HwCni5iJ07BlDmjS8y1xHQMtBNFxlC94GN/On0NUUhEJJ4UBkRDrlBzDHRcPpVunOJ5650feX7zvTgNbj5Fgmng3LA1pGUy/j8rFL1P1+TysnfoQM3EalsROzTqWJTY50ELgSqB84Qy8O9cFubQiEm4KAyJhEOdycNN5gxnVN403P9/AcwvW4PX5sXbIwJKUgXd96MKAWbWXig9n4vnhI+z9TyT6NzdgOGNadExLbIfqQJBIxYIZeHesDVJpD0+maeLbs71VzSshsr/mD5sWkSax2yz8YUJfUpOieffLjRQWV3L1WQOw9RiBe/mb+MsKscQmB/Wc/j07qfj3o/hLC3AeMxlHn3FBO7YlJgnXhNuoeP8BKhbOIPqU67F1PiJox2/rTK8b3/bVeDetwrv5W8y9RRiuRJyjL8DWbXijxmmIhItaBkTCyDAMJo7tzhWnH8HPW4u554UVlKQMAgh664B36w/sffv/YVbtJfq0W4IaBGpYXIlEn34rlriOVCyciXfb6qCfoy3xl+8JjMv4998pe2EqFR8+iid3CdbUHjiPnoQRnUDlx7OpWDgDf/HOSBdXpJZhtpOlyQoLy/D7g/NSU1LiKCgoDcqxJKA91unazUXMevN7DMPgrvT/EGU3iDnrry0+rmmaODctovA/z2NJ6kz0yf+HJS4lCCU+MH9FCRXvP4C/JJ/ok6/DltEvpOeLhIbeo6Zp4t+9Fe+mb/BuXoW/+pZLI6YDtuzB2LKPxNq5T+1tm6bfj2f1p1QtewN8HhxHnobjyNMwbI6wv55Ia4//50Otpk4tFoPk5KbdHaUw0Ax6Ewdfe63TvN3lzHztW/pXruCM6OXEnHs/lsT0Zh3LX5yHZ/3XeNcvxV+0FVv2YKLG/xHDHhXkUh/g/BUlVHzwIP7iPKJP/j9sGf3Dct5wqXmPmj4Pvh1rAwFg0yrMskIgcKtoTQCwdMg8aDeAv3wPVUtexZu7BCM+lajRk7BlDQzXS2kR012Ov3wPlvg0DIu12cdpr//nQ0lhoBEUBlq39lynZRUe5r22mIsr5rEp9VgGTLyk0f3J/rJCvOuX4ln/Nf7qqYKt6b1IGjKeyi4jMIzw9gT6K0up+OAh/Hu2E33Stdgy28YFriGmaYLPHRj056nEtXcLRT98hXfrD+CpBKsDa5e+2LoOxpY1CIsrscnn8G5bTdUXL+Av3omt2zCcR50f9HEjzWH6PPhL8vEX78S/Jw+zeGfg5+KdmDW3wdqjsXXugzWjH7Yu/TAS0ps0DqIt/583TT/m3iL8xXn4S/LB78Oa1iMQAlsQkFpKYaARFAZat/Zepx6vn80v3oW/ooT/dv4DJ4/MJjMtFksDf1z95XvwbliOd/3X+PIC9/lbUrph7zECW/cRWGKTI1qfZmUZ5R88hL9oG1HHXIq1U2+MmGQMS3iDiel14y/Jw1+cF7iAeaowvVWYnkrwugPf62yrqr7wB7bhqQLq/s0wXInYsgZhyx6MtcsRGDZny8vp8+L+7kPcK98Fw8A5dCL2ASdiWEI7vtv0+zHLCmsv8oGvvMAFv7SQ/V+7ER2PJSEdS0I6RkI6lug4fHnr8W77EbO0ILBPTAdsGf2wdumHtUvfBqe23l9r/z9v+n3V9ZNX/T7Kx1+Sh1mSj7+0AHze+k+yObGmdsealoM1vSfW1B4tvnOnKRQGGkFhoHVTnYL7x0+p+vIFHiw+nW2+DsS77PTt1oH+3TrQr5OD6PzvAwFgx09gmlg6ZGDrMRJ7j5FY4lPrHCvS9WlW7Q0EgpqFjSw2LPEpGPGpgYtKfCqWhLRAU3Ns84OC6fdiluzCXxL4BOsv3hn4w71nJ+be3Q0/yerAsDvB7sSwRYHdgWGPClzY7c7q71GBfvzq7YbdSYfuvSixpYSstcVfWkDV4pfxbvoGS1IXnGMuxtapd1CObXqr8BVsxJeXiz9/A/7iHfiL88G/3wXNHoUlsVPg3yUhvc53w+E6cLlL8vFu/QHf1h/xbl8D7nIALMnZ+8JBes964yIa+x41TRPc5fhLC/CXFGCW7cJfsgt/aQFmZWlgPIbdiWF1VP/7OcC233e7E2yOwL9r9ffAY4H3gen3By7w+13w/SX5gUBk+vYVxObAEp9W+9414lNrf8Y08eXl4sv7OVDHhZvBNAEDS1JnrGk9sabnYE3LwYhPC9mdJAoDjaAw0LqpTgNN7Hvn/x/+I07ih4RxrF2/A2PrKo5gPX3s27EaJnvtHfBmDiVl0FicKVkHPFZrqE/T5wn8YSzJxyzOq21S9Zfkgde9b0eLFUtcCkZ1OAhchAJ/dI3YjmCAWba79lPrvk+weYFPpeZ+K0M6Y2pDhiUxvfa74Uqsvhg4mx08wlWn3o3fULn4RcyyQmy9jsY58veH/JS9P9M0MUsLqi9O6/Hl5+Iv3FJbT0Z8GtYOXao/5aft+8QfHd/ii5Tp9+PftTEQDrb9GJiy2u8Dqx1rei+sXfphy+iHJTmT1NSE2vo0PZX4S3dhlhbgL92176JfWoC/ZBd4frW2hyM68J5xJYDXg+l1B1p29v/eQMvOITmi61zwLfGp1e/LVIzohEbXj+mpxJe/oU5AwB14DUZUHNa0HCxpPQOtBx2zgzaAVGGgERQGWjfVaUD5whn4C7dgTe2Bd8u34PPii05ie0xfluzN5KsdDnx+cNgs9M5KCrQadOtAp2RXnT9Urbk+TdPELN9T2/xq1oSE6t9/HRQwjLpNsjZHvU+utRe0IK8vsb9w1qnprcK98j3c3y0EmxPniN9h73Nsg0HG9FThK9iAL389/rz1+PLX79evHxVotk7tgTWtB9bUnJDWUf2yVQYGW279Ed+2H/EXbQMCF8SoLj2pKinCLN2FWfmrerU5Ahf7uI5Y4jru93MKlriOjWp6D4z58AS6hLxVtd8DgaF6LIi3CgwjcPGPTwNnTEg+tZumH3/Rjupg8DO+nbmYJdVTk1usWDp2xTHgpMDiZS2gMNAICgOtm+o0wJO7hMpPnwr0TXcfHugCSO1R+weq0u3lp817+PGX3fzwy27ydgeaZDvEO+nXtQP9uydzRHYS3bI6tMn6rA0K1YPXqgp3gOnHmdy59qJvuBIjMmFPJN6jvj3bqfpiPr7ta7CkdCNqzMUYDlfgE2f+enx56/Hv3vep35KQjiUtp/rin4MlqUvYx2ocjL98T6A7YduPWIq34nPEBy7u1Rf5mou+ERV32E/K5K8oCfw77vwZf14u1oz+OIee0aJjKgw0gsJA66Y6DTBNE/+eHYGLXiP+iO/aU8EPG3fz44bdrN5UREWVF8OAbp0SiImyERttJ84V+IqNthMb7dj3s8tObJQdi6V1/NGtqPKyaWcpG3eWsnFnCRt3lNYu/ZyREkOf7CSOyEqid1YirqgDL7ccKpF6j5qmiXf911R99QpmxX4rX9qj9vvEH/gK56f+ltL/+eBTGGgEhYHWTXXacj6/n1+2l/LDL4VsLSyncE8FZeUeyio8VHl8DT7HAFxRNmJdDuKi94WEuGg7cS4HiXEOkmKdJMY5SYx14rQH57apKrePTXl1L/w7q1s5AJLjo+jaKY6u6XGYJvy0uYiftxbj8foxgKz0OI7ISqJPdiI9MxKJdoZ+ZvVIv0dNdzmeNZ+BwxW4jS2xdX3qb6pI1+fhSGGgERQGWjfVaXD9uj7dHh9lFYFgUFrhqQ0JpeXufdurt9Vs9/rq/39xOW0kxjlJinWQuF9ISNrve3yMHet+Fym3x8eW/LLAhX9HCRt3lrK9cC81f3mS4px0TQ9c+Lt2iic7PY54V/0BVR6vnw3bi/lp8x7WbCpiw/ZivD4Ti2HQrVMcfbKT6JOdRE6XhKCFloPVaVtUUeVl2669JMdHkRTX8tsiW+JwqM/WpiVhQAsVibQDDruVDnYrHeIbNxuhaZpUVPnYU1bFnrIqikoD3/eUuimq3rZ9UxHFZW78v/o8YRgQHxMICz6fyfZde2v3iXfZ6dopnqG9U+jaKZ6u6XEkxjbuomSvHjTZOyuJM8Z0o8rjY/22YtZsKuKnzUUsXLKZD77ahM1q0L1TfKBbITuJ7p0TsNva7ifo5jJNk/yiCnK3FbN+WzG520rYVlBWO74+IcZBdk0ISw+EsEgHBIkchQERqccwDFxRNlxRNjp3PPDIbb9pUrrXzZ4yd21gqP1eFliu98ieyXRND1z4k+KcQRsY5rRb6du1A327dgACn3p/3lrMT5uLWLOpiPcWb+TdLzdit1no1MFVPXbCUacbpHZb9diKmGh7gxM9tQVVHh8bd5RUX/wD38sqPABEO61075zAkF5dyU6Lo7Ckko07S9m0s5TvNxTWttIoILRfCgMi0mwWwyAh1klCrJPs9LiIliXaaWNgj2QG9ghM51te6WHtlj38tGkPeUXllJZ7yN9TTGm5h0r3AcZQGBATZa8NCXHVISHW5SA+LoqS0gq8PhOvz4/Pb+Lz+ff97jPx+QM/e31+vNWP+3wm3urtUQ7rvhBSM5hzv59rzuuKsh00lJimSWFxJbnbi1m/tYTc7cVsySurbYFJ7+BiUE4yOV0S6NElgc4dYw54vCq3j835pbXhoLkBwTRN/KaJ12dWv+bqOqmuC29tXQS+7yyuYm9ZJXabBbvNgsNm3fez3VKnq0lCL+xjBvx+P7NmzeK1116jpKSEoUOHctddd5Gdnd3g/kVFRUyfPp1FixZhmiannHIKt912GzExTZviUWMGWjfVaXCpPg/O4/VRVuGltNxNabmH0orq7/uPpSgPjK+oGVdhmoHwY7MaWK0GVosFm9XAZrVgtVqwWQLbbbU/WwK/V+9ntVqorPLWHvNgocRiGIGQ8KtWDFeUjR27ysndXkxxWWA+BqfdSrdOceRkJNCjc+DiHxvdsrstfh0QNu4sZcd+4zxiowN3ofh+FXqCeTGxWgxsNguO6i97dVhw1AYGK3arBbu9epvVuu/n6v33/VwdNuwW7NZA2Nj/eA6bFYfdgs3atgNImxpA+Pjjj/Pyyy9z//33k5aWxowZM/jll1/44IMPcDrrp82LLrqIyspK7r77bsrKyrj99ts58sgjmTFjRpPOqzDQuqlOg0v1GVx+06Rjxzh2F5YF9bger682hOwfSGpDSrm7Ojx4KCt3s7fSS0piVO0n/h6dE8hIjQnLp+j9A8K2gr0YBtgsgcBTE3oOFIbqbg881iHJxa7Cvbg9fjxeH26vH0/1l9vr2+9nPx7P/o8Hfv717979tjWXxTBwVAcKh91aGzocv/put1lw2uqGD6vFgsUAi8XAajGwVH9ZLQYWw6izvfa7sW+/Lh1jcUW1rLG+zYQBt9vNyJEjuemmm7jwwgsBKCsrY8yYMdx9991MnDixzv4rV67k/PPP54MPPiAnJweAr776ismTJ/Ppp5/SuXPnRp9bYaB1U50Gl+oz+FpDnfpNs82Oafi1UNWnaQa6JNxefyBo+AJhwuOr/v1XgaMmbFTVBAtPzXN9ga/qnz1eP1X7BRf3fgElGAb37Mg1Z7dslc82czfBmjVrKC8vZ9SoUbXbYmNj6du3L8uXL68XBpYvX05ycnJtEAAYOnQohmGwfPlyfvvb34ar6CIiEXe4BIFQMgyjugvASkzjbp5pEb9p4vX68Zsmfn9g3IjfpPpn/75tdbabdR73m5CZGtkJo8IaBvLyAnMxp6Wl1dmemprKjh076u2fn59Penp6nW0Oh4OkpCR27twZuoKKiIg0QqBrIfjzWoRbWMNARUVgalGHo+6EIg6HA7fb3eD+v963Zv+qqqomnbupTSaHkpIS2ZHThyPVaXCpPoNPdRpcqs/ga26dhjUMREUF2mzcbnedi7zb7cblqr9edlRUVIMh4UD7H4zGDLRuqtPgUn0Gn+o0uFSfwdeSMQNhvY+iU6dOQKD5f3/5+fn1ug4A0tPT6+3rdrspKiqq130gIiIizRPWMNCnTx9iY2NZunRp7baysjJWr17NiBEj6u0/fPhwCgoK2LBhQ+225cuXAzBs2LDQF1hERKQdCGs3gcPhYNKkScycOZOOHTuSkZHBjBkzSEtL46STTsLn87F7927i4uKIiopi0KBBDBkyhBtvvJG//vWvVFZWMm3aNM4444wGWxJERESk6cI+3dK1117LOeecw7Rp0zj//PMxTZO5c+ficDjYsWMHY8aMYcGCBUDgFpFZs2aRmZnJJZdcwjXXXMPo0aO5++67w11sERGRw5aWMG4GDXwJPtVpcKk+g091Glyqz+BrMwMIRUREpPVRGBAREWnnFAZERETaOYUBERGRdk5hQEREpJ1TGBAREWnnFAZERETaOYUBERGRdk5hQEREpJ0L69oEkWSxGK36eKI6DTbVZ/CpToNL9Rl8FovRrHptN9MRi4iISMPUTSAiItLOKQyIiIi0cwoDIiIi7ZzCgIiISDunMCAiItLOKQyIiIi0cwoDIiIi7ZzCgIiISDunMCAiItLOKQyIiIi0cwoDTeD3+3nssccYO3YsgwYN4rLLLmPTpk2RLlabtWHDBnr37l3v67XXXot00dqkOXPmcP7559fZtmbNGi666CKOPPJIjj32WJ599tkIla7taag+b7jhhnrv12OOOSZCJWz9ysrKuPfeexk/fjyDBw/mrLPO4pNPPql9XO/PpjtUnTb7PWpKoz322GPmqFGjzM8++8xcs2aNecUVV5jHH3+8WVlZGemitUkLFiwwhwwZYubn59f5qqioiHTR2pwXX3zR7N27t3neeefVbissLDRHjBhh3nHHHWZubq755ptvmgMHDjT/+c9/RrCkbUND9Wmapnnqqaeas2bNqvN+LSwsjFApW7+pU6eaJ554ovnll1+aGzduNJ988kmzT58+5uLFi/X+bKaD1alpNv892m5WLWwpt9vNc889x0033cS4ceMAmDlzJmPGjGHhwoVMnDgxsgVsg9atW0ePHj1ISUmJdFHarLy8PO666y6+/vprunXrVuexf/3rX9jtdu6++25sNhs9evRg06ZNPP3005x77rkRKnHrdrD6dLvdbNy4kQEDBug92wgFBQV89NFHzJkzh9GjRwMwZcoUvvrqK15//XV69uyp92cTHapOhw4d2uz3qLoJGmnNmjWUl5czatSo2m2xsbH07duX5cuXR7BkbdfatWvp0aNHpIvRpv3444/ExMTw7rvvMmjQoDqPLV++nGHDhmGz7cv8I0eOZMuWLeTl5YW7qG3Cwepz/fr1eL1ecnJyIlS6tiU6OppnnnmGYcOG1dluGAbFxcV6fzbDoeq0Je9RhYFGqnlzpqWl1dmemprKjh07IlGkNm/dunXk5+dz3nnnMXr0aC644AK++OKLSBerTRk/fjwzZswgMzOz3mN5eXmkp6fX2Zaamgqg9+wBHKw+165di81mY86cOYwfP54TTzyR6dOnU1paGoGStn6xsbEcc8wxxMbG1m5btWoVS5Ys4dhjj9X7sxkOVacteY8qDDRSRUUFAA6Ho852h8OB2+2ORJHatPLycrZu3UppaSnXX389Tz/9NP379+eKK65g8eLFkS7eYaGysrLB9ytAVVVVJIrUpv38888AZGRk8NRTT3HLLbfw2Wef8ac//Qm/3x/h0rV+69evZ+rUqQwaNIjf//73en8Gwa/rtCXvUY0ZaKSoqCgg0G+4/xvY7XbjcrkiVaw2y+VysWLFCux2e2199u/fn/Xr1zN37tza/jBpvqioqHpBteZ3vWeb7sYbb+SPf/wj8fHxAPTq1YuOHTty3nnnsWrVKoYMGRLhErZey5YtY+rUqXTu3Jk5c+Zgt9v1/myhhuq0Je9RtQw0UqdOnQDIz8+vsz0/P79e14E0TkxMTL1PBr169WL79u0RKtHhJT09vcH3a81j0jQWi6X2j2yN3r17A2rWPph3332XyZMn069fP+bPn09iYiKg92dLHKhOW/IeVRhopD59+hAbG8vSpUtrt5WVlbF69WpGjBgRwZK1Td988w2DBw/mu+++q7P9hx9+oGfPnhEq1eFl+PDhrFixAq/XW7ttyZIldO3aVaPhm+Hqq6/mT3/6U51tNe9fDSps2Hvvvcctt9zCb37zG+bMmVOnr1vvz+Y5WJ225D2qMNBIDoeDSZMmMXPmTD7++GN++uknrr/+etLS0jjppJMiXbw2p3///mRkZHDnnXeyYsUK1q9fz/Tp0/nmm2/qvZmlec4++2wqKiq4/fbbyc3N5e233+b555/nj3/8Y6SL1iadeuqpfPrppzz99NNs3ryZzz77jNtvv52TTz659tOX7LNz507uvPNORo4cyc0338yePXsoKCigoKCAPXv26P3ZDIeq05a8RzVmoAmuvfZafD4f06ZNo6KigqFDhzJ37tx6Td1yaHa7nblz5zJjxgyuvfZaSkpK6NevH8899xx9+/aNdPEOC8nJyTz77LPcc889nHnmmaSkpHDjjTdy1llnRbpobdJpp52G3+9n7ty5PPHEE8TFxXHaaadx/fXXR7pordJHH31ERUUFS5YsYezYsXUeGzJkCK+88oren03UmDpt7nvUME3TDFXBRUREpPVTN4GIiEg7pzAgIiLSzikMiIiItHMKAyIiIu2cwoCIiEg7pzAgIiLSzmmeAZF26LbbbuOtt9466D5r164NU2kCLrroIrxeL6+88kpYzysiCgMi7VaHDh14/PHHI10MEWkFFAZE2im73c6wYcMiXQwRaQU0ZkBEDuiiiy7ipptu4umnn+boo49myJAhTJkyhS1bttTZb+PGjVx77bWMGTOGQYMGMWnSJJYtW1Znn71793Lvvfcybtw4Bg0axMSJE/nwww/rnfP5559n/PjxDBgwgDPPPJMvv/yy9jHTNJk1axYnnngi/fv3Z9y4cUyfPp3y8vLQVIBIO6EwINKOeb3eBr/8fn/tPp9//jn//Oc/ue2225g2bRpr1qzhoosuYu/evQDk5uZy1llnsXHjRm699VYefPBBAC699FK++uorAPx+P3/4wx94/fXXufjii5k1axZ9+/bluuuu43//+1/tub799lveeecdbr75ZmbMmEFlZSVXX301u3fvBmDOnDnMmzePyZMn88wzzzB58mT+9a9/ce+994arykQOS+omEGmn8vLy6NevX4OPXXbZZdx6661A4BP9a6+9RnZ2NgA9e/bkrLPO4s033+Siiy5i1qxZ2Gw2Xnzxxdq11MePH8/pp5/Ogw8+yFtvvcWiRYtYsWIFM2fO5NRTTwVg7NixbN++nS+++IJx48YBYLVaefbZZ+nQoQMATqeTK6+8klWrVjF+/HiWL1/OoEGDuOCCCwA46qijiIuLqw0mItI8CgMi7VRycjJz5sxp8LH915M/8sgja4MAQL9+/cjMzGTZsmVcdNFFLF26lGOOOaY2CEBgPMLpp5/OrFmzKC0tZfny5VgsFk488cQ653n++efr/N6jR4/aIACQlZUFQElJCQBHH300999/P5MmTeKEE07g6KOP5uyzz25eBYhILYUBkXbKZrMxYMCAQ+6XlpZWb1tycjLFxcUAFBcX1wkPNTp27AhAaWkpRUVFJCQkYLfbD3qu6OjoOr9bLIGezJpui0svvZTY2FjeeOMNHnzwQXw+H9nZ2dx0002cdNJJh3wtItIwjRkQkYMqKiqqt62goIDk5GQAEhISKCgoqLdPfn4+AImJicTFxVFSUoLX662zz9q1a1m1alWjy2IYBueccw6vvvoqS5YsYebMmbhcLq6//vra84lI0ykMiMhBffPNN+zatav29++//55t27Zx1FFHATB8+HA+//zz2qZ8CAxMXLBgAX379sXlcjFs2DB8Ph+ffvppnWP/9a9/ZcaMGY0uy3nnncff/vY3AOLj4zn11FOZMmUKXq+XvLy8lrxMkXZN3QQi7ZTH42H58uUHfLxXr14AVFVVcfnll3PVVVexd+9eHn30UXJycjjjjDMAmDp1Kp9//jmTJk3iyiuvxOl0Mn/+fLZs2VI7JuHYY49l8ODB3HHHHeTl5ZGdnc2HH37IqlWrePbZZxtd5uHDh/Pss8+SkJDAsGHDKCwsZNasWXTr1o0jjjiiBbUh0r4pDIi0U7t37+bCCy884OPPPPMMEBhAeOyxxzJt2jRM0+S4447j1ltvxeFwAIG7C15++WUeeeQR7rzzTgAGDhzIP/7xD4YPHw4E7hKYO3cuM2bM4KmnnmLv3r307NmTp556qraFoTGuu+46oqOjeeedd5g7dy4ul4ujjz6am2++GZtNf85EmsswTdOMdCFEpHXSegEi7YPGDIiIiLRzCgMiIiLtnLoJRERE2jm1DIiIiLRzCgMiIiLtnMKAiIhIO6cwICIi0s4pDIiIiLRz/x9pTX8NRrEEGAAAAABJRU5ErkJggg==\n", |
|
|
2806 |
"text/plain": [ |
|
|
2807 |
"<Figure size 576x576 with 1 Axes>" |
|
|
2808 |
] |
|
|
2809 |
}, |
|
|
2810 |
"metadata": {}, |
|
|
2811 |
"output_type": "display_data" |
|
|
2812 |
} |
|
|
2813 |
], |
|
|
2814 |
"source": [ |
|
|
2815 |
"plt.figure(figsize=(8,8))\n", |
|
|
2816 |
"plt.plot(acc_train, label='Training Accuracy')\n", |
|
|
2817 |
"plt.plot(acc_val, label='Validation Accuracy')\n", |
|
|
2818 |
"plt.legend()\n", |
|
|
2819 |
"plt.title('Model accuracy')\n", |
|
|
2820 |
"plt.xlabel('Epochs')\n", |
|
|
2821 |
"plt.ylabel('Accuracy')\n", |
|
|
2822 |
"plt.savefig('results/accuracy_1120.png')\n", |
|
|
2823 |
"plt.show()\n", |
|
|
2824 |
"\n", |
|
|
2825 |
"plt.figure(figsize=(8,8))\n", |
|
|
2826 |
"plt.plot(loss_train, label='Training Loss')\n", |
|
|
2827 |
"plt.plot(loss_val, label='Validation Loss')\n", |
|
|
2828 |
"plt.legend()\n", |
|
|
2829 |
"plt.title('Model Loss')\n", |
|
|
2830 |
"plt.xlabel('Epochs')\n", |
|
|
2831 |
"plt.ylabel('Loss')\n", |
|
|
2832 |
"plt.savefig('results/loss_1120.png')\n", |
|
|
2833 |
"plt.show()" |
|
|
2834 |
] |
|
|
2835 |
}, |
|
|
2836 |
{ |
|
|
2837 |
"cell_type": "code", |
|
|
2838 |
"execution_count": 66, |
|
|
2839 |
"id": "cf325b82", |
|
|
2840 |
"metadata": {}, |
|
|
2841 |
"outputs": [ |
|
|
2842 |
{ |
|
|
2843 |
"data": { |
|
|
2844 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG1CAYAAAARLUsBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABRGElEQVR4nO3deXxM1/8/8Nckk8gySVtNJCUkkRBFSixJxRYUtbRF1b7vYRJbpXb91PKpUiGxRQQpESU+lti/qKoS+1JbIkGUElKySSLLzO8PP9OOhLkYc29mXs8+5o+ce++Z97w74e2cc8+VqdVqNYiIiIhMiJnYARAREREZGgsgIiIiMjksgIiIiMjksAAiIiIik8MCiIiIiEwOCyAiIiIyOXKxA9CXwvTrYodQJlhXbCp2CEREpAdFBXcM+n76/HvWwqGq3vp6XRwBIiIiIpNjNCNARERE9BapisWOQK9YABEREZFuapXYEegVp8CIiIjI5HAEiIiIiHRTGdcIEAsgIiIi0knNKTAiIiKiso0jQERERKQbp8CIiIjI5HAKjIiIiKhs4wgQERER6caNEImIiMjkcAqMiIiIqGzjCBARERHpxrvAiIiIyNRwI0QiIiKiMo4jQERERKSbkU2BcQSIiIiIdFOr9Pd6BWlpaRg3bhz8/Pzg4+ODYcOG4dq1a5rjV65cQd++fVG3bl0EBAQgKipKUL8sgIiIiEiS1Go1hg4dinv37iEqKgpxcXGwsrLCgAED8PjxYzx8+BADBgyAq6srNm/ejNGjRyMsLAwbN27U2TenwIiIiEg3ETZCTE9Ph4eHB4KDg+Hu7g4AGDlyJL744gskJSXh+PHjsLCwwLfffgu5XA4PDw+kpqZixYoV6Nat20v75ggQERER6SbCFJijoyNCQ0M1xU96ejqioqJQoUIFVK9eHadOnUKDBg0gl/8znuPn54c///wTaWlpL+2bI0BEREQkeRMnTsSWLVtgaWmJZcuWwdbWFmlpafD09NQ6r0KFCgCAu3fvwsnJ6YX9sQAiIiIi3fR4F1hWVhaysrJKtNvb28Pe3r7UawYPHozevXtj/fr1GDVqFGJiYpCfnw9LS0ut8579/OTJk5fGwCmwN1RYWIiwFdFo3aU/GrbqhEFBE3E5MVlzPP/JEyyKWIN23Qah4Sed0XXAKOze/6uIEUvH4EG9cOXSEWRnJuPI4e342K++2CFJFnMlDPMkHHMlDPP0L3qcAouOjkarVq1KvKKjo1/49tWqVYO3tzdmz56NSpUqYe3atbCyskJBQYHWec9+trGxeenHYQH0huaGrUDMpm0Y3PcrLJwzDVZW5TAo6Bv8de/p3OPMeYux4X870LdbJ4T9dzrq1amNCTO+x54Dh0WOXFx9+nTF0iXfY33sZnTrPgwZGZnYtTMGbm6VxQ5NcpgrYZgn4ZgrYZint6d///44cOBAiVf//v21zrt//z7i4+OhVqs1bWZmZvD09ERaWhqcnZ1x//79EtcAgLOz80tjkKn/3WsZVph+3eDvmZ3zGE079MDYwIHo36MLgKcjPk3adcfQft3x1Rft0KxjT/xn4hh8+VlbzXWBX0/Ho4xMbFi5yOAxW1dsavD3LE1yUgL27P0FyqBJAAC5XI7LFw9j5679GDtuusjRSQtzJQzzJBxzJYzU81RUcMeg7/fkwl699VXuo7a6TwJw/vx5dOvWDTExMWjQoAGApzMv7dq1Q/PmzeHk5ISYmBgcOHBAsxA6NDQUe/bswd69L4+XI0BvwNrKCrGRoejUvrWmTW4uh0wGFBQU4nFuHrp1ag9/33pa17lXccGdu/cMHa5keHq6w82tMnbs2KdpKyoqwq7dB9C2bQsRI5Me5koY5kk45koY5qkktbpYby+hvL294efnh+nTp+PUqVNISkrCN998g4yMDAwYMABffvkl8vLyMHnyZCQnJ2Pr1q1Ys2YNhg8frrNvgy6CLigowJ49e3Dq1CncvXsXT548gY2NDZydneHr64s2bdpo3comdXK5OT6s/nT1uUqlwl/37mNJ1DpAJkPHti1RudIHmD4hSOua4uJi/JZwCu5VTHcItXq1qgCA5JSbWu03btyCR1VXmJmZQWVkW66/LuZKGOZJOOZKGOZJGszMzBAeHo758+djzJgxyM7ORoMGDRATE4PKlZ/+PRoVFYXZs2ejc+fOcHR0xPjx49GlSxedfRus2rh16xYGDx6M9PR01KxZExUqVED58uVRUFCAa9euYdu2bQgPD0dkZCRcXFwMFZbeLF8Ti6VR6wAAyiF94e5a+mdYErUON1L/xPi5MwwZnqTY2SsAANnZOVrt2dk5MDc3h62tTYljpoq5EoZ5Eo65EoZ5KoVIT4N/5513MHPmzBce9/b2xoYNG165X4MVQP/5z3/g7u6OLVu2QKFQlDiek5ODsWPHYubMmYiIiDBUWHrTqpk/Gvp448SZC1i+ej0KC4sQNKyf1jlR6zZiRfQG9O/ZBQFNPhYpUvHJZDIAwPPLz561819V/2CuhGGehGOuhGGeSmFkn9lgBdDp06excePGUosfAFAoFBg/fjx69eplqJD0ysvz6S6VDX0+Qm5uHlbHxmHEoF6wkMuhVqsxLzwSP/28BT26dMTXo4aIHK24sjKzAQB2dgrcv5+uaVcobFFcXIzHj3PFCk1ymCthmCfhmCthmKdSiDQC9LYYbBG0vb29zm2p79y5o/O+fSlJ//shtuzcV+IXoUZ1DxQUFCIzMwsqlQqTZs7HTz9vwdB+3TF1/CjNvyBM1bXkGwCAqu5VtNrd3asgMSlFjJAki7kShnkSjrkShnkyfgYrgLp27YqJEydiw4YNuH79OnJzc1FUVITc3FzcvHkTGzduxJQpUwQtXJKKrJzHmDYnFPsOHdFqP3riDMq/9y7Kv/cu5oVHYsfeg5gQNBSjhw8QJ1CJuXbtOm7duoPPP/9U0yaXy9G+XSscPHjkJVeaHuZKGOZJOOZKGOapFKpi/b0kwGBTYEFBQZDJZPjhhx+Ql5dX4ritrS169+6N0aNHGyqkN1bVtTJaBzTGvPBIFBYWwaWiM/b/+jvi9xzAzMljcfXadazbtA2NGvqgbu0Pcf7iFc21ZuZm8P7QS8ToxfXDvCUIWzQLGRmZOHr0JEYGDoCDQ3ksCosUOzTJYa6EYZ6EY66EYZ6eY2RTYAbfCLGgoABXr15FWloa8vLyYGVlBWdnZ9SoUaPE8zxehRgbIQJAXn4+lq2KwZ4Dh/Hg74fwcKuCYf17oE2LplgStQ7LVsWUep21tRVO7t9i4GilsxEiAIwdMxxBysFwcCiP8+cvYULId0g4flrssCSJuRKGeRKOuRJGynky9EaI+Sc26a0vK9+v9NbX6+JO0CZGSgUQERG9PoMXQAk/660vq4+7662v11V2dh0kIiIi8RjZFBgfhUFEREQmhyNAREREpBs3QiQiIiKTY2QFEKfAiIiIyORwBIiIiIh0UqulsYGhvrAAIiIiIt04BUZERERUtnEEiIiIiHQzsn2AWAARERGRbpwCIyIiIirbOAJEREREunEKjIiIiEwOp8CIiIiIyjaOABEREZFunAIjIiIik8MpMCIiIqKyjSNAREREpJuRjQCxACIiIiLdjGwNEKfAiIiIyORwBIiIiIh04xQYERERmRxOgRERERGVbRwBIiIiIt04BUZEREQmh1NgRERERGWb0YwAVfHsKHYIZcLjsz+JHUKZYOvTT+wQiIikhVNgREREZHKMrADiFBgRERGZHI4AERERkW5qtdgR6BULICIiItKNU2BEREREZRtHgIiIiEg3IxsBYgFEREREunEjRCIiIqKyjSNAREREpBunwIiIiMjkGNlt8JwCIyIiIpPDESAiIiLSjVNgREREZHKMrADiFBgRERGZHI4AERERkW4i7QOUk5ODsLAw7N+/H48ePYK7uztGjRqFVq1aAQDGjRuHnTt3al3j5OSEw4cPv7RfFkBERESkk1olzl1gkyZNQmJiImbNmoVKlSph9+7dUCqVWLVqFRo1aoTExEQEBwejW7dummvMzc119ssCiIiIiCTpwYMH2LdvHyIiIuDv7w8AGDFiBI4dO4a4uDjUr18fN2/ehLe3NxwdHV+pbxZAREREpJsIi6Ctra0RGRmJevXqabXLZDJkZmYiJSUFRUVF8PT0fOW+WQARERGRbnpcA5SVlYWsrKwS7fb29rC3t9f8rFAo0KxZM61zzp07h4SEBEydOhWJiYmQy+WIiIjAb7/9BnNzczRv3hyjR4+GnZ3dS2NgAUREREQGFR0djcWLF5doVyqVCAoKeuF1KSkpUCqVqFOnDrp3746FCxcCAFxcXLB8+XKkpqZi7ty5uHr1Kn766SeYmb34ZneZWm0ce1t/8G5NsUMoE27+Hi52CGWCrU8/sUMgInqpooI7Bn2/3CVKvfVV1HeOoBGgfzt58iSUSiUqVqyI1atX491334VKpUJOTo7WNWfPnkWPHj0QGxtbYurs3zgCRERERLrpcQ3Qywqd0mzfvh2TJ0+Gr68vwsLCoFAoAABmZmYl+vHy8gIA3L1796V9sgAiIiIi3UTaCTo+Ph4hISH47LPPMGfOHFhYWGiOjRo1CiqVCsuWLdO0XbhwAQB0LozmTtBEREQkSffu3cO0adPg5+eHCRMmICMjAw8ePMCDBw+QkZGB9u3b4+DBg1ixYgVu3bqFQ4cOYfLkyWjbtq1mJOhFWADpmZmZGYaP6o/Dx+ORcucUfk2Ix8ChvcQOS3SFhUUIX78dbYdNhW/PMRg8fSEup9zSHFer1VgRtxtthk2Bb4/RGPZtGG7cvidixNIyeFAvXLl0BNmZyThyeDs+9qsvdkiSxDwJx1wJwzz9i1qtv5dA+/btQ15eHhISEtC0aVM0adJE8woMDESHDh0wf/587Ny5E5999hmmTp2K1q1b44cfftDZNxdB69n4iaOgHDMEC+ctx+mT5+HnXx9jvh6O/363EEvDVokdnmiLoGev2IAdv57AmL6dUNnZAet3HsKZK8mIWzAFFSu8j2U/78SqLfswpm8nVHR8H5Fxu3H/YQa2LJoOO1trg8crpUXQffp0RVTkAsyaHYpTp85j1MiB8PdviHoNWuPmzT/FDk8ymCfhmCthpJ4ngy+CXjBUb33ZjIvUW1+viwWQHslkMiSmHsfKiLX4YfY/hcaceVPxWae28K7WVMTonhKjAMp+nIfmA0Mwpk8n9Pv86bNb8p8UoFn/CRjy5afo3bEFWg2ehGFd22FQlzYAgKycXLQdPhWB3TtorjEkKRVAyUkJ2LP3FyiDJgEA5HI5Ll88jJ279mPsuOkiRycdzJNwzJUwUs8TC6A3wykwPbK3t8OmDduwK36/VntK8k04OL4PaxvDj2RIgbWVJWK+D0Gnlo00bXK5OSCToaCwCBcSbyA3/wkCfL01x+0VNqhfyxO/n70kRsiS4enpDje3ytixY5+mraioCLt2H0Dbti1EjExamCfhmCthmKdSqNT6e0kA7wLTo8zMLEwJmV2ivfWnAbhz+y7ycvNEiEp8cnNzfFi1MgBApVLhrwcPsXTDDshkMnRo7ovjF64CACo7aT/HxcXJAYdOXDB4vFJSvVpVAEByyk2t9hs3bsGjqivMzMygEunODClhnoRjroRhnkoh0tPg3xaOAL1lvfp+ieYt/CWx/kcKIjbtRvvA6djx6wkM6tQa7pWckJObB0sLOSwstOtxW2sr5OTlixSpNNjZP93rIjs7R6s9OzsH5ubmsLW1ESMsyWGehGOuhGGejJ9BR4B69eoFmUwm6NyYmJi3HM3b1+WrjpgbOgPxW/di1Yqy/3n0oZVfHTSsXQ0n/khCxKZdKCwqRjlLi1K/F2q1GmYCvy/G6llenl+q96zd5P4F+gLMk3DMlTDMUykkMnWlLwYtgJo3b46FCxeiatWq+Oijjwz51gY3bGQ/zJgVgn27f8GooSFihyMZ1d1cAAANalVHbt4TrNn2fxjTtxMKCotQWFQMC7m55tzc/CdQmOi6qWeyMrMBAHZ2Cty/n65pVyhsUVxcjMePc8UKTVKYJ+GYK2GYp5LURlb0GbQAGj58OBQKBX788UdERETAxcXFkG9vMJOmjUHw+GHYGLsV45TTUFxcLHZIokp/lIkjZy6jtb8PbK2tNO01qrqgoLAI9rY2UKvVuHM/HW4VnTTHb6elw62SU2ldmoxryTcAAFXdqyDlX2sR3N2rIDEpRaSopId5Eo65EoZ5Mn4GXwPUu3dv+Pr6ap7gamyGjOiD4PHDELnsJ4wOnGzyxQ/w9Db46UvW4v+OntVqP3ruCsq/Y4eWfnVQztICB4+f1xzLysnF6UvJ8PN++U6exu7ateu4desOPv/8U02bXC5H+3atcPDgEREjkxbmSTjmShjmqRS8C+zNfffdd7h0yfhub67g5IAp347H5UuJ2Lp5F+o10J7mO3/2kkkWRO4uzvjkYx/Mj96MwqIiuDg5YP/xc9jx6wl8N6ovFDbW6Nm+ORbHxsNMJoNrRSdEbt4DW2srdPmksdjhi+6HeUsQtmgWMjIycfToSYwMHAAHh/JYFCb+PhpSwjwJx1wJwzw9x8juAhOlAKpQoQIqVKggxlu/VQGtmsDKqhxq1vLCzv0bShyvVdUfDx9mGD4wCZg9uj+W/7wTUf/biwePsuBR2Rnzvx6CNv71AADBvb+AmcwM0dsPIDf/Cep6uWN2ULAou0BLzfKIaFhbWyFIORijg4fi/PlLaN+hN27cuKX7YhPCPAnHXAnDPBk37gRtYsR6FEZZI6WdoImISmPonaAff9dbb33ZThf/zmhuhEhERES6GdldYNwIkYiIiEwOR4CIiIhIN4ncvaUvLICIiIhINyO7C4xTYERERGRyOAJEREREunEKjIiIiEyNsT0LjFNgREREZHI4AkRERES6cQqMiIiITI6RFUCcAiMiIiKTwxEgIiIi0s3I9gFiAURERES6cQqMiIiIqGzjCBARERHppDayESAWQERERKSbkRVAnAIjIiIik8MRICIiItLNyB6FwQKIiIiIdOMUGBEREVHZxhEgIiIi0s3IRoBYABEREZFOarVxFUCcAiMiIiKTwxEgIiIi0o1TYERERGRyWABJ04PcTLFDKBNsffqJHUKZkPfXb2KHUCZYV2wqdghERK/FaAogIiIienv4LDAiIiIyPUZWAPEuMCIiIjI5HAEiIiIi3YzrUWAsgIiIiEg3Y1sDxCkwIiIiMjkcASIiIiLdjGwEiAUQERER6WZka4A4BUZEREQmhyNAREREpBMXQRMREZHpUenx9QpycnIwZ84ctGzZEj4+PujSpQsOHDigOX7lyhX07dsXdevWRUBAAKKiogT1ywKIiIiIJGvSpEk4dOgQZs2aha1bt6JNmzZQKpU4duwYHj58iAEDBsDV1RWbN2/G6NGjERYWho0bN+rsl1NgREREpJMYU2APHjzAvn37EBERAX9/fwDAiBEjcOzYMcTFxaFatWqwsLDAt99+C7lcDg8PD6SmpmLFihXo1q3bS/vmCBARERHpJsIUmLW1NSIjI9GgQQOtdplMhszMTJw6dQoNGjSAXP7PeI6fnx/+/PNPpKWlvbRvFkBERESkk1qlv1dWVhZu375d4pWVlaX1ngqFAs2aNYNCodC0nTt3DgkJCQgICEBaWhqcnZ21rqlQoQIA4O7duy/9PJwCIyIiIoOKjo7G4sWLS7QrlUoEBQW98LqUlBQolUrUqVMH3bt3R3R0NCwtLbXOefbzkydPXhoDCyAiIiLSTY8bIfbv3x+dO3cu0W5vb//Ca06ePAmlUomKFSsiIiICFhYWsLKyQkFBgdZ5z362sbF5aQwsgIiIiEgntR4LIHt7+5cWO8/bvn07Jk+eDF9fX4SFhWmmxJydnXH//n2tc5/9/PzU2PO4BoiIiIgkKz4+HiEhIWjXrh0iIiK01gM1bNgQp0+fRlFRkaYtISEBbm5ucHR0fGm/LICIiIhINxHuArt37x6mTZsGPz8/TJgwARkZGXjw4AEePHiAjIwMfPnll8jLy8PkyZORnJyMrVu3Ys2aNRg+fLjOvjkFRkRERDrpcwpMqH379iEvLw8JCQlo2rSp1rF69eohNjYWUVFRmD17Njp37gxHR0eMHz8eXbp00dm3TK1WG8XDPeSWlcQOgYxI3l+/iR1CmWBdsanuk4jorSgquGPQ93vQurne+nL8v1/11tfr4ggQERER6STGCNDbxAKIiIiIdDK2AoiLoN+CwYN64cqlI8jOTMaRw9vxsV99sUOSJOappMLCQoStiEbrLv3RsFUnDAqaiMuJyZrj+U+eYFHEGrTrNggNP+mMrgNGYfd+8YeSpYLfKeGYK2GYJ+PFAkjP+vTpiqVLvsf62M3o1n0YMjIysWtnDNzcKosdmqQwT6WbG7YCMZu2YXDfr7BwzjRYWZXDoKBv8Ne9p8+0mTlvMTb8bwf6duuEsP9OR706tTFhxvfYc+CwyJGLj98p4ZgrYZin56hl+ntJABdB61lyUgL27P0FyqBJAAC5XI7LFw9j5679GDtuusjRSYfU8yTGIujsnMdo2qEHxgYORP8eT+9gyH/yBE3adcfQft3x1Rft0KxjT/xn4hh8+VlbzXWBX0/Ho4xMbFi5yOAxS2kRtNS/U1LCXAkj9TwZehH0vWYBeuvL+fAhvfX1urgGSI88Pd3h5lYZO3bs07QVFRVh1+4DaNu2hYiRSQvzVDprKyvERoaiorOTpk1uLodMBhQUFOJxbh66dWoPf996Wte5V3HBxSuJhg5XUvidEo65EoZ5Mn4vLIDi4uJeqaOuXbvqPOf48eOIi4tDZmYmAgIC0L17d5ibm2uOZ2ZmYuTIkYiJiXml95aK6tWqAgCSU25qtd+4cQseVV1hZmYGlcrIVpG9BuapdHK5OT6s7gkAUKlU+OvefSyJWgfIZOjYtiUqV/oA0ydoPySwuLgYvyWcgnsVEx2S///4nRKOuRKGeSpJrZLG1JW+vLAAmjp1quBOZDKZzgLo4MGDUCqV8PX1hUwmw8yZMxEfH4+IiAjN80AKCwtx5swZwe8rNXb2T7fnzs7O0WrPzs6Bubk5bG1tShwzRcyTbsvXxGJp1DoAgHJIX7i7upR63pKodbiR+ifGz51hyPAkh98p4ZgrYZinkoztLrAXFkAHDhzQ6xstXboUo0eP1mxPfe7cOSiVSgwcOBBr167V+dTWskAme1odP7+s6lm7qf1r4UWYJ91aNfNHQx9vnDhzActXr0dhYRGChvXTOidq3UasiN6A/j27IKDJxyJFKg38TgnHXAnDPBm/FxZAlSrpd1FxSkoKQkNDNT/XrVsX0dHR6NWrF4KDgxEREaHX9xNDVmY2AMDOToH799M17QqFLYqLi/H4ca5YoUkK86Sbl6c7AKChz0fIzc3D6tg4jBjUCxZyOdRqNeaFR+Knn7egR5eO+HrUEJGjFR+/U8IxV8IwTyWpJXL3lr4Ivg0+LS0NM2bMwCeffIKPPvoIly5dwty5c7Fjxw5B17/33nu4c0d7xbqHhwcWL16M48ePY8qUKSUq7bLmWvINAEBV9ypa7e7uVZCYlCJGSJLEPJUu/e+H2LJzX4k/WGtU90BBQSEyM7OgUqkwaeZ8/PTzFgzt1x1Tx4/S/IvUlPE7JRxzJQzzVJJapb+XFAgqgG7cuIEvvvgC+/btQ506dVBYWAgA+PvvvzFhwgTs27dPRw/AJ598ghkzZuDw4cPIzf3nD/iGDRti9uzZ2LZtG0JCQl7zY0jDtWvXcevWHXz++aeaNrlcjvbtWuHgwSMiRiYtzFPpsnIeY9qcUOw7pJ2DoyfOoPx776L8e+9iXngkduw9iAlBQzF6+ABxApUgfqeEY66EYZ6Mn6Db4OfOnYsPPvgAa9euhZWVFXbu3AkA+OGHH5Cfn4+VK1eiTZs2L+1j9OjRuHv3LoYPH47IyEg0adJEc+zzzz+HTCbD9Oni76vwpn6YtwRhi2YhIyMTR4+exMjAAXBwKI9FYZFihyYpzFNJVV0ro3VAY8wLj0RhYRFcKjpj/6+/I37PAcycPBZXr13Huk3b0KihD+rW/hDnL17RXGtmbgbvD71EjF58/E4Jx1wJwzxpM5m7wP7t+PHjmD17NhQKBYqLi7WOde3aFWPGjNHZh62tLcLDw5Geng5ra+sSxz/77DP4+voKGk2SsuUR0bC2tkKQcjBGBw/F+fOX0L5Db9y4cUvs0CSFeSrdnGlfY9mqGKxc+zMe/P0QHm5VsGDWZLRp0RRLotZBrVbj2MmzOHbyrNZ11tZWOLl/i0hRSwO/U8IxV8IwT9rK+CqVEgTtBF2/fn3MmjUL7dq1Q3FxMWrVqoXNmzejVq1a2Lt3L6ZMmYJTp04ZIt4XkspO0GQcxNgJuiyS0k7QRKbG0DtB32rQSm99VTml3zvNX4egNUANGzZEREQEsrOzNW0ymQzFxcWIiYlBgwYN3lqAREREJD61Sqa3lxQImgKbMGECevTogTZt2mg2MoyMjERycjLu3LmD9evXv+04iYiISERSKVz0RdAIkIeHBzZv3ozGjRvj9OnTMDc3R0JCAqpWrYqff/4ZNWrUeNtxEhEREemN4IehVqlSBfPnz3+bsRAREZFEGdsi6Fd6Gvzhw4dx7NgxZGZmwsHBAX5+fmjcuPHbio2IiIgkwtimwAQVQH///TdGjRqFc+fOQS6X491330VGRgYiIyPRqFEjLFmypNRb24mIiIikSNAaoLlz5+LGjRtYvHgx/vjjDxw5cgTnz5/H/Pnzcf78ecybN+9tx0lEREQiUqtlentJgaAC6JdffsH48ePxySefaJ47ZG5ujg4dOmDMmDHYtWvXWw2SiIiIxGWSzwIzMzND+fLlSz3m6uqqeTYYERERUVkgqADq3LkzVqxYofUQUwAoLCzE2rVr8fnnn7+V4IiIiEgaVGqZ3l5S8MJF0P9+MntxcTEuX76MVq1aISAgAA4ODsjMzMSRI0fw6NEjeHp6GiRYIiIiEodU1u7oywufBdayZUvhnchkOHBA3Od68FlgpE98FpgwfBYYkXgM/SywxBrt9NaX19Xdeuvrdb1wBOjgwYOGjIOIiIgkzNj2ARK0BkiXzMxMfXRDREREEqVW6+8lBYI2Qnzy5AlWr16NEydOoKCgAM9mzVQqFfLy8pCSkoI//vjjrQZKREREpC+CCqB58+Zh3bp1qFatGh49eoRy5cqhfPnySEpKQmFhIYKDg992nERERCQik5wC27dvH/r164f4+Hj07dsX3t7e2LRpE/bu3YsPPvgARUVFbztOIiIiEpGx3QYvqAB6+PAhmjdvDgCoUaMGLly4AABwdnbG0KFDuRM0ERERlSmCpsDs7OyQn58P4OnOz3fv3kVOTg4UCoXmZyIiIjJexrYPkKARoAYNGmDt2rXIyclBlSpVYGtrq9n359y5c1AoFG81SCIiIhKXsd0FJqgAUiqVuHjxIoYOHQozMzP07t0bU6ZMweeff47w8HC0bdv2bcdJREREpDeCpsC8vLywe/duJCYmAgDGjBkDa2trnDlzBm3atMGwYcPeapBEREQkLqksXtYXQQUQADg6OsLR0RHA00dfjBgx4q0FRURERNJibGuAXlgAxcXFvVJHXbt2feNgiIiIiAzhhQXQ1KlTBXcik8lYABERERkxqSxe1pcXFkBiP92diIiIpMNk1gBVqlTJkHEQSYp1xaZih1Am5P31m9ghlBn8ThFJi+BF0ERERGS6TGYRNBEREdEzxjYFJmgjRCIiIiJjwhEgIiIi0snIbgJ7tQKooKAAFy5cQFpaGpo0aYK8vDw4Ozu/rdiIiIhIIoxtCkxwARQbG4uFCxciMzMTMpkMcXFxWLBgAQBg8eLFsLa2fmtBEhERkbiMbRG0oDVAW7duxX/+8x+0bdsWERERUP//3ZA6d+6MM2fOYPHixW81SCIiIqKIiAj07NlTq23cuHHw8vLSejVr1kxnX4JGgFauXImePXtixowZKC4u1rR37NgR9+7dQ2xsLCZMmPCKH4OIiIjKCpXI7x8TE4PQ0FD4+PhotScmJiI4OBjdunXTtJmbm+vsT1ABlJqaipCQkFKP1apVCw8ePBDSDREREZVRaogzBZaWloYZM2bg+PHjcHd31zpWUFCAmzdvwtvbW/PAdqEETYE5ODggMTGx1GPXrl2Dg4PDK70pERERkRCXLl2Cra0ttm/fjjp16mgdS0lJQVFRETw9PV+5X0EjQB06dMDSpUvh5OSEli1bAnj6ANRz584hIiICnTp1euU3JiIiorJDpcf74LOyspCVlVWi3d7eHvb29lptLVu21NQez0tMTIRcLkdERAR+++03mJubo3nz5hg9ejTs7OxeGoOgAig4OBjXrl1DSEgIZLKnQ2C9e/dGfn4+GjZsiODgYCHdEBERURml0uMUWHR0dKk3UCmVSgQFBQnu59q1awAAFxcXLF++HKmpqZg7dy6uXr2Kn376CWZmL57oElQAWVpaIiIiAkePHsWxY8eQkZEBOzs7+Pn5oVmzZpqiiIiIiEiX/v37o3PnziXanx/90WX8+PEYPny45rrq1avDwcEBPXr0wLlz51CvXr0XXvtKGyH6+/vD39//lYIjIiKisk+fi6BLm+p6HWZmZiX68fLyAgDcvXv3pdcKKoCE7POjVCqFdEVERERlkNi3wZdm1KhRUKlUWLZsmabtwoULAKBzYfQbF0C2trZwcHBgAUREREQG1b59e4wbNw4rVqzAp59+iuvXr+O7775D27ZtNSNBLyKoALp06VKJtpycHBw/fhyzZ8/G7NmzXy9yIiIiKhPE2gfoZTp06ACVSoWVK1diyZIlsLOzQ4cOHTB27Fid18rUz55r8ZrWr1+PLVu2YNOmTW/SzRuTW1YS9f2JTFHeX7+JHUKZYV2xqdghkJEpKrhj0Pfb49RDb319mrZBb329LkEbIb6Mm5sbkpKS9BELERERkUG80l1gz3vy5Ak2bNjwyttPExERUdkixUXQb0JQAdS8efMSe/0UFxcjIyMDhYWFmDJlylsJjoiIiKRBimuA3oSgAuhFe/8oFAq0bNkSjRo10mtQRERERG+ToAKoVatWaNiwId555523HQ8RERFJkMq4BoCELYL+5ptvcOjQobccChEREUmVCjK9vaRAUAFUvnx5mJubv+1YjMbgQb1w5dIRZGcm48jh7fjYr77YIUkS8yQcc1VSYWEhwlZEo3WX/mjYqhMGBU3E5cRkzfH8J0+wKGIN2nUbhIafdEbXAaOwe/+vIkYsLfxOCcM8GS9BBdDw4cMxc+ZMLFiwAPHx8Th27FiJFz3Vp09XLF3yPdbHbka37sOQkZGJXTtj4OZWWezQJIV5Eo65Kt3csBWI2bQNg/t+hYVzpsHKqhwGBX2Dv+6lAQBmzluMDf/bgb7dOiHsv9NRr05tTJjxPfYcOCxy5OLjd0oY5kmbWo8vKRC0EWKNGjVKv1gmg1qthkwmw5UrV/Qe3KuQykaIyUkJ2LP3FyiDJgEA5HI5Ll88jJ279mPsuOkiRycdzJNwUs6VWBshZuc8RtMOPTA2cCD69+gC4OmIT5N23TG0X3d89UU7NOvYE/+ZOAZfftZWc13g19PxKCMTG1YuMnjMUtoIUcrfKSmRep4MvRHi/5x76a2vLvfW662v1yVoEfRPP/2klzfLy8tDUlISqlevDmtra1y+fBlr165FWloaPDw8MGDAAFSqJI1C5nV4errDza0yduzYp2krKirCrt0H0LZtCxEjkxbmSTjmqnTWVlaIjQxFRWcnTZvcXA6ZDCgoKMTj3Dx069Qe/r71tK5zr+KCi1cSDR2upPA7JQzzZPxeWAC1atUKYWFhqFWrFnx9fd/4jZKTkzFgwACkp6fD2dkZc+bMwciRI1GpUiV4enri0KFD2LZtG9avX6/zCa5SVb1aVQBAcspNrfYbN27Bo6orzMzMoFIZ21ZSr455Eo65Kp1cbo4Pqz/9c0KlUuGve/exJGodIJOhY9uWqFzpA0yfEKR1TXFxMX5LOAX3KqY5ffEMv1PCME8lqWTSWLysLy9cA3Tnzh08efJEb280b9481KtXD1u3bkXDhg0RGBiI9u3bY8eOHVi0aBF2796NJk2a4Pvvv9fbexqanb0CAJCdnaPVnp2dA3Nzc9ja2ogRluQwT8IxV7otXxOLT78aiPg9BzC491dwd3Up9bwlUetwI/VPDOrd1cARSgu/U8IwTyUZ2xqgN3oUxqs4ceIENm/ejKpVq+Kbb75BfHw8evfurdlhWi6XY8SIEejevbuhQtK7Z5/l+WVVz9pN7V8LL8I8Ccdc6daqmT8a+njjxJkLWL56PQoLixA0rJ/WOVHrNmJF9Ab079kFAU0+FilSaeB3Shjmyfi9tAB6/vEXb6JcuXKaESUHBwd07twZVlZWWudkZ2dDoVDo7T0NLSszGwBgZ6fA/fvpmnaFwhbFxcV4/DhXrNAkhXkSjrnSzcvTHQDQ0Ocj5ObmYXVsHEYM6gULuRxqtRrzwiPx089b0KNLR3w9aojI0YqP3ylhmKeSjK3ke2kBpFQqYWFhobMTmUyGX3755aXn+Pv7Y/bs2Zg9ezZcXV3x3//+V+v4mTNnMGPGDLRoUXYXl11LvgEAqOpeBSn/mjd2d6+CxKQUkaKSHuZJOOaqdOl/P8RvCafQJqCJ1lREjeoeKCgoRGZmFsq/9y4mz/oRO/YexNB+3TF6+ADxApYQfqeEYZ5KMqmdoGvVqoVGjRrpfH38se4h5W+++QbZ2dkICwsrcWzHjh3o1asXHBwcMGHChNf/NCK7du06bt26g88//1TTJpfL0b5dKxw8eETEyKSFeRKOuSpdVs5jTJsTin2HtHNw9MQZlH/vXZR/713MC4/Ejr0HMSFoKIuff+F3Shjmyfi9dARoxIgRqFev3stOEczJyQnbtm1Denp6iWN+fn7YuHEjvL299TrtJoYf5i1B2KJZyMjIxNGjJzEycAAcHMpjUVik2KFJCvMkHHNVUlXXymgd0BjzwiNRWFgEl4rO2P/r74jfcwAzJ4/F1WvXsW7TNjRq6IO6tT/E+Yv/7FNmZm4G7w+9RIxefPxOCcM8aZPKIyz0xWCLoJ9xcHAo0ebo6AhHR0dDh/JWLI+IhrW1FYKUgzE6eCjOn7+E9h1648aNW2KHJinMk3DMVenmTPsay1bFYOXan/Hg74fwcKuCBbMmo02LplgStQ5qtRrHTp7FsZNnta6ztrbCyf1bRIpaGvidEoZ50iaVu7f05YU7QdeoUQPr16/X2wjQ2yaVnaCJTIlYO0GXRVLaCZqMg6F3gl5XsY/e+urz1zq99fW6XjgC1Llz51JHa4iIiMj0GNsi6BcWQM/fpUVERESmy9hugxf0NHgiIiIiY2LwRdBERERU9hjbImgWQERERKSTsa0B4hQYERERmRyOABEREZFOxrYImgUQERER6WRsBRCnwIiIiMjkcASIiIiIdFIb2SJoFkBERESkE6fAiIiIiMo4jgARERGRTsY2AsQCiIiIiHQytp2gOQVGREREJocjQERERKSTsT0KgwUQERER6WRsa4A4BUZEREQmhyNAREREpJOxjQCxACIiIiKdeBcYERERURnHESAiIiLSiXeBERERkcnhGiAiIiIyOVwDRERERFTGcQSIiF5bFc+OYodQZjw++5PYIZQJtj79xA6BXkBlZGNALICIiIhIJ2NbA8QpMCIiIjI5LICIiIhIJ7UeX68rIiICPXv21Gq7cuUK+vbti7p16yIgIABRUVGC+mIBRERERDqp9Ph6HTExMQgNDdVqe/jwIQYMGABXV1ds3rwZo0ePRlhYGDZu3KizP64BIiIiIslKS0vDjBkzcPz4cbi7u2sd27hxIywsLPDtt99CLpfDw8MDqampWLFiBbp16/bSfjkCRERERDqpZPp7vYpLly7B1tYW27dvR506dbSOnTp1Cg0aNIBc/s94jp+fH/7880+kpaW9tF+OABEREZFO+rwNPisrC1lZWSXa7e3tYW9vr9XWsmVLtGzZstR+0tLS4OnpqdVWoUIFAMDdu3fh5OT0whhYABEREZFBRUdHY/HixSXalUolgoKCBPeTn58PS0tLrbZnPz958uSl17IAIiIiIp30uQ1i//790blz5xLtz4/+6GJlZYWCggKttmc/29jYvPRaFkBERESkkz43Qixtqut1ODs74/79+1ptz352dnZ+6bVcBE1ERERlUsOGDXH69GkUFRVp2hISEuDm5gZHR8eXXssCiIiIiHRSQa23l758+eWXyMvLw+TJk5GcnIytW7dizZo1GD58uM5rOQVGREREOknxUajvv/8+oqKiMHv2bHTu3BmOjo4YP348unTpovNaFkBERERUJnz//fcl2ry9vbFhw4ZX7osFEBEREelkbE+DZwFEREREOulz7Y4UcBE0ERERmRyOABEREZFOxjX+wwKIiIiIBDC2NUCcAiMiIiKTwxEgIiIi0kltZJNgLICIiIhIJ06BEREREZVxHAEiIiIinbgPEOk0eFAvXLl0BNmZyThyeDs+9qsvdkiSxDwJx1zpZmZmhuGj+uPw8Xik3DmFXxPiMXBoL7HDEl1hYRHC129H22FT4dtzDAZPX4jLKbc0x9VqNVbE7UabYVPg22M0hn0bhhu374kYsbTwd+8faj2+pIAFkJ716dMVS5d8j/Wxm9Gt+zBkZGRi184YuLlVFjs0SWGehGOuhBkbEoiJ08Zg88Yd6N9Tie1b9+C7/07EyOBBYocmqh9Wx2H9zkMY1KUNFn4zDNblLDFkxkL8df9vAMDyjbsQGbcH/b/4BHPHDUZObh6GfrsI2Y/zRI5cfPzdM24ytVotlWLsjcgtK4kdAgAgOSkBe/b+AmXQJACAXC7H5YuHsXPXfowdN13k6KSDeRJOyrlytHlH1Pd/RiaTITH1OFZGrMUPs8M17XPmTcVnndrCu1pTEaN76ubv4bpP0rPsx3loPjAEY/p0Qr/PWwEA8p8UoFn/CRjy5afo3bEFWg2ehGFd22FQlzYAgKycXLQdPhWB3TtorjEkW59+Bn/PF5Hy7x4AFBXcMej7DXf7Sm99RdzcpLe+XhdHgPTI09Mdbm6VsWPHPk1bUVERdu0+gLZtW4gYmbQwT8IxV8LY29th04Zt2BW/X6s9JfkmHBzfh7WNtUiRicvayhIx34egU8tGmja53ByQyVBQWIQLiTeQm/8EAb7emuP2ChvUr+WJ389eEiNkyeDvXkkqPb6kwGAFUFxcHAoKCrTajh07hsGDB6N9+/YIDg7G1atXDRXOW1G9WlUAQHLKTa32GzduwaOqK8zMWG8CzNOrYK6EyczMwpSQ2bh44YpWe+tPA3Dn9l3k5ZrmdI7c3BwfVq0Me4UNVCoVbqelY/ritZDJZOjQ3Bepd+8DACo7OWpd5+LkgNS/7osRsmTwd8/4Gez/4LRp05Cdna35+ffff8egQU/n5gMCAvDo0SN89dVXOHXqlKFC0js7ewUAIDs7R6s9OzsH5ubmsLW1ESMsyWGehGOuXl+vvl+ieQt/LA1bJXYokhCxaTfaB07Hjl9PYFCn1nCv5ISc3DxYWshhYaF9Q7CttRVy8vJFilQa+LtXklqP/0mBwW6Df36p0dKlS9GvXz9MmjRJ0zZr1iwsWLAA69evN1RYeiWTyQCU/KzP2lUqqQz8iYt5Eo65ej1dvuqIuaEzEL91L1atiBE7HElo5VcHDWtXw4k/khCxaRcKi4pRztJC8136N7VaDbNS2k0Jf/dKMrZPLNoY3s2bN/HFF19otfXq1QuXLpXdeeeszKcjXHZ2Cq12hcIWxcXFePw4V4ywJId5Eo65enXDRvZDeMT32L/3V4waGiJ2OJJR3c0FDWpVx8geHdGrfQus2fZ/sLayREFhEQqLirXOzc1/AoWJrpt6hr97xs9gBZBMJtP6l0aVKlXw+PFjrXMyMjJgZ2dnqJD07lryDQBAVfcqWu3u7lWQmJQiRkiSxDwJx1y9mknTxuA/cyYi7uftGNJvDAoLC8UOSVTpjzKx9cAxPH5uOqtGVRcUFBbB3tYGarUad+6nax2/nZYOt0pOhgxVcvi7V5KxTYEZrABSq9Vo27YtevTogSlTpsDW1hY//vgjioqKAAAXL17EzJkz0aRJE0OFpHfXrl3HrVt38Pnnn2ra5HI52rdrhYMHj4gYmbQwT8IxV8INGdEHweOHIXLZTxgdOBnFxcW6LzJy2Y/zMH3JWvzf0bNa7UfPXUH5d+zQ0q8Oylla4ODx85pjWTm5OH0pGX7eXoYOV1L4u1eSsd0FZrA1QLt370ZiYiKSkpKQmJiI1NRU3L59G4WFhZDL5ejXrx8qV66M8ePHGyqkt+KHeUsQtmgWMjIycfToSYwMHAAHh/JYFBYpdmiSwjwJx1zpVsHJAVO+HY/LlxKxdfMu1Gvwkdbx82cvmWRB5O7ijE8+9sH86M0oLCqCi5MD9h8/hx2/nsB3o/pCYWONnu2bY3FsPMxkMrhWdELk5j2wtbZCl08aix2+6Pi7Z9xE3QgxLy8P1tZP55nPnTuH2rVrQy5/vZpMKhshAsDYMcMRpBwMB4fyOH/+EiaEfIeE46fFDktymCfhpJorqWyE2K1XJyxaOueFx2tV9cfDhxmGC6gUYmyECAB5Twqw/Oed2Pv7aTx4lAWPys4Y8uWnaONfDwBQVFyMxevjse2XBOTmP0FdL3dMHNwN7i7OosQrpY0QAen+7gGG3wixr2sXvfW1NvV/euvrdXEnaCJ6bVIpgMoCsQqgskZqBZCUGboA6qPHAmidBAog7uREREREJsdga4CIiIio7FJJ5O4tfWEBRERERDpJ5fZ1feEUGBEREZkcjgARERGRTlLZv0dfWAARERGRTsa2BohTYERERGRyOAJEREREOhnbImgWQERERKSTsa0B4hQYERERmRyOABEREZFORvLkLA0WQERERKQT7wIjIiIiKuM4AkREREQ6GdsiaBZAREREpBNvgyciIiKTwzVARERERGUcR4CIiIhIJ94GT0RERCbH2BZBcwqMiIiITA5HgIiIiEgn3gVGREREJod3gRERERGVcRwBIiIiIp14FxgRERGZHGObAmMBRESv7UFuptghlBm2Pv3EDqFMyPvrN7FDIIm5fv062rVrV6J91qxZ+Oqrr167XxZAREREpJNYd4ElJiZCoVBgz549Wu12dnZv1C8LICIiItJJJdIaoKSkJHh4eMDR0VGv/fIuMCIiIpKsxMREeHh46L1fjgARERGRTvoc/8nKykJWVlaJdnt7e9jb22u1JSUlwdXVFT169MCtW7fg5uaGkSNHokmTJm8UAwsgIiIi0kmfd4FFR0dj8eLFJdqVSiWCgoI0P+fm5uL27dsoX748xo8fD1tbW2zfvh1DhgzBqlWr4O/v/9oxyNRGcmO/3LKS2CEQEdEb4l1gwlk4VDXo+zWu1FJvfe2+slXwCNDjx49hYWEBS0tLTdvgwYOhVquxatWq146BI0BERESkkz5HgEordF7E1ta2RFv16tXxyy+/vFEMXARNREREOqnVar29hDp79ix8fHxw4cIFrfaLFy+iWrVqb/R5WAARERGRJNWuXRsuLi6YNm0aTp8+jZSUFMyaNQtnz55FYGDgG/XNKTAiIiLSSYxHYVhYWGDlypX48ccfERwcjKysLNSqVQurVq1CzZo136hvFkBERESkk1g7QTs5OeGHH37Qe7+cAiMiIiKTwxEgIiIi0slIds3RYAFEREREOomxBuht4hQYERERmRyOABEREZFOnAIjIiIik8MpMCIiIqIyjiNAREREpJNY+wC9LSyAiIiISCeVka0B4hQYERERmRyOABEREZFOnAIjIiIik8MpMCIiIqIyjiNAREREpJOxTYFxBOgtGDyoF65cOoLszGQcObwdH/vVFzskSWKehGOuhGGehGOuSiosLETYimi07tIfDVt1wqCgibicmKw5nv/kCRZFrEG7boPQ8JPO6DpgFHbv/1XEiA1LpVbr7SUFLID0rE+frli65Husj92Mbt2HISMjE7t2xsDNrbLYoUkK8yQccyUM8yQcc1W6uWErELNpGwb3/QoL50yDlVU5DAr6Bn/dSwMAzJy3GBv+twN9u3VC2H+no16d2pgw43vsOXBY5MjpdcjURvJwD7llJbFDAAAkJyVgz95foAyaBACQy+W4fPEwdu7aj7HjposcnXQwT8IxV8IwT8JJOVd5f/0myvtm5zxG0w49MDZwIPr36ALg6YhPk3bdMbRfd3z1RTs069gT/5k4Bl9+1lZzXeDX0/EoIxMbVi4yeMwWDlUN+n7VHPU3SnjtwWm99fW6DLoG6OzZs0hISEBgYCAA4NixY4iKisLt27fh6uqKQYMGwc/Pz5Ah6ZWnpzvc3Cpjx459mraioiLs2n0Abdu2EDEyaWGehGOuhGGehGOuSmdtZYXYyFBUdHbStMnN5ZDJgIKCQjzOzUO3Tu3h71tP6zr3Ki64eCXR0OGKQipTV/pisCmwPXv2oHfv3jhz5gwA4JdffsGgQYNgZmaGVq1aQaVSYeDAgThw4IChQtK76tWeVuPJKTe12m/cuAWPqq4wM+OMI8A8vQrmShjmSTjmqnRyuTk+rO6Jd+ztoFKpcPuve5j231BAJkPHti1RudIHmD4hCB84OWquKS4uxm8Jp+BexbSnDssqg40ALV68GMHBwRgxYgQAYNmyZQgMDERwcLDmnGXLliE8PBytWrUyVFh6ZWevAABkZ+dotWdn58Dc3By2tjYljpki5kk45koY5kk45kq35WtisTRqHQBAOaQv3F1dSj1vSdQ63Ej9E+PnzjBkeKIxtrvADFYA3bp1Cx06dND8fPv2bbRp00brnI4dO2LZsmWGCknvZDIZAOD5ZVXP2lUqlcFjkiLmSTjmShjmSTjmSrdWzfzR0McbJ85cwPLV61FYWISgYf20zolatxErojegf88uCGjysUiRGpZabVzfDYONdVauXBm//vrP7YLe3t64cuWK1jnnzp2Ds7OzoULSu6zMbACAnZ1Cq12hsEVxcTEeP84VIyzJYZ6EY66EYZ6EY6508/J0R0OfjzBqcB/0/uoLrI6NQ2FREYCnheMPYSsQumw1enTpiK9HDRE5WnpdBhsBGjp0KKZMmYI7d+6gQ4cOGDZsGL755hvk5uaievXq+OOPP7B06VKtKbGy5lryDQBAVfcqSPnX/Lq7exUkJqWIFJX0ME/CMVfCME/CMVelS//7IX5LOIU2AU1ga2ujaa9R3QMFBYXIzMxC+ffexeRZP2LH3oMY2q87Rg8fIF7AIlBxCuz1dOrUCTKZDGFhYVi9ejVkMhnUajVmzpwJALC1tcWQIUPQr18/HT1J17Vr13Hr1h18/vmn+L/9T/eFkMvlaN+uFXbtLruLu/WNeRKOuRKGeRKOuSpdVs5jTJsTCgDo3OGf5RlHT5xB+ffeRfn33sW88Ejs2HsQE4KGam6VNyVGsmuOhkFvg//iiy/wxRdf4Pr167h58yZycnJgYWEBZ2dn1KxZE+XKlTNkOG/FD/OWIGzRLGRkZOLo0ZMYGTgADg7lsSgsUuzQJIV5Eo65EoZ5Eo65Kqmqa2W0DmiMeeGRKCwsgktFZ+z/9XfE7zmAmZPH4uq161i3aRsaNfRB3dof4vzFf5ZwmJmbwftDLxGjp9fBjRDfgrFjhiNIORgODuVx/vwlTAj5DgnHxd/0SWqYJ+GYK2GYJ+GkmiuxNkIEgLz8fCxbFYM9Bw7jwd8P4eFWBcP690CbFk2xJGodlq2KKfU6a2srnNy/xcDRGn4jRJfytfXW1+2HF/XW1+tiAURERJIhZgFU1hi6AKr0Xi299XXn0SW99fW6THPHKyIiIjJpBl0DRERERGWTsT0KgwUQERER6WRsO0FzCoyIiIhMDkeAiIiISCcjuWdKgwUQERER6cSdoImIiMjkGNsIENcAERERkcnhCBARERHpxNvgiYiIyORwCoyIiIiojOMIEBEREenEu8CIiIjI5HAKjIiIiKiM4wgQERER6cS7wIiIiMjk8GGoRERERGUcR4CIiIhIJ06BERERkcnhXWBEREREZRwLICIiItJJrcf/XoVKpUJYWBiaNm2KOnXqYNCgQUhNTX3jz8MCiIiIiHRSq9V6e72KJUuWIDY2FrNmzcLPP/8Mc3NzDB48GE+ePHmjz8MCiIiIiCSpoKAAq1atglKpRPPmzVGjRg2EhoYiPT0du3fvfqO+WQARERGRTmKMAF25cgW5ubn4+OOPNW0KhQI1a9bEqVOn3ujz8C4wIiIi0kmf94BlZWUhKyurRLu9vT3s7e01P6elpQEAnJyctM6rUKEC7t69+0YxGE0BVFRwR+wQiIiIjJY+/54NDw/H4sWLS7QrlUoEBQVpfs7LywMAWFpaap1naWmJgoKCN4rBaAogIiIiKhv69++Pzp07l2j/9+gPAFhZWQF4uhbo30VQQUEBbGxs3igGFkBERERkUM9Pdb3IBx98AAC4f/8+FAqFpv3+/fvw9PR8oxi4CJqIiIgkqUaNGlAoFDhx4oSmLScnB5cvX4avr+8b9c0RICIiIpIkS0tL9OnTB6GhoXBwcICLiwt+/PFHODk5oU2bNm/UNwsgIiIikqzg4GAUFxdj+vTpyMvLQ/369bFy5coSC6NflUxtbE83IyIiItKBa4CIiIjI5LAAIiIiIpPDAoiIiIhMDgsgPVOpVAgLC0PTpk1Rp04dDBo0CKmpqWKHJXkRERHo2bOn2GFIUk5ODubMmYOWLVvCx8cHXbp0wYEDB8QOS3LS0tIwbtw4+Pn5wcfHB8OGDcO1a9fEDkuSrl+/Di8vrxKvTZs2iR2a5GzduhXt27eHt7c3OnTo8MYP4CTpYAGkZ0uWLEFsbCxmzZqFn3/+Gebm5hg8eDCePHkidmiSFRMTg9DQULHDkKxJkybh0KFDmDVrFrZu3Yo2bdpAqVTi2LFjYocmGWq1GkOHDsW9e/cQFRWFuLg4WFlZYcCAAXj8+LHY4UlOYmIiFAoFjhw5ovX67LPPxA5NUrZt24bJkyeje/fu2LFjBzp27Ihx48bh9OnTYodGesACSI8KCgqwatUqKJVKNG/eHDVq1EBoaCjS09P5r4ZSpKWlYcSIEZg/fz7c3d3FDkeSHjx4gH379mHy5Mnw9/eHq6srRowYAV9fX8TFxYkdnmSkp6fDw8MDs2fPRu3ateHh4YGRI0ciPT0dSUlJYocnOUlJSfDw8ICjo6PW69ljB+hpUb1o0SL06dMH/fv3h6urKwIDA+Hv74+EhASxwyM9YAGkR1euXEFubi4+/vhjTZtCoUDNmjVx6tQpESOTpkuXLsHW1hbbt29HnTp1xA5HkqytrREZGYkGDRpotctkMmRmZooUlfQ4OjoiNDRUU0inp6cjKioKFSpUQPXq1UWOTnoSExPh4eEhdhiSdv36ddy5cwcdO3bUao+KisKoUaNEior0iRsh6lFaWhoAwMnJSau9QoUKuHv3rhghSVrLli3RsmVLscOQNIVCgWbNmmm1nTt3DgkJCZg6dapIUUnbxIkTsWXLFlhaWmLZsmWwtbUVOyTJSUpKgqurK3r06IFbt27Bzc0NI0eORJMmTcQOTTJu3rwJ4OnI/rBhw/DHH3/AxcUFgYGB/HPLSHAESI/y8vIAoMTulJaWligoKBAjJDIyKSkpUCqVqFOnDrp37y52OJI0ePBgxMXFoWPHjhg1ahQuXrwodkiSkpubi9u3byM7Oxtjx47FihUrULt2bQwZMgRHjx4VOzzJyMnJAQCEhISgbdu2WLVqFZo0aYKRI0fi999/Fzk60geOAOnRs/nzgoICrSKooKAANjY2YoVFRuLkyZNQKpWoWLEiIiIiYGFhIXZIklStWjUAwOzZs3H+/HmsXbsWc+fOFTkq6bCxscHp06dhYWGh+XOqdu3aSElJwcqVK+Hv7y9yhNLw7Pdr4MCB+PLLLwEAH374IS5evIhVq1ahcePGYoZHesARID364IMPAAD379/Xar9//36JaTGiV7F9+3YMHDgQtWrVwtq1a/Huu++KHZKk3L9/H/Hx8fj3k33MzMzg6empmZqmf9ja2pYYqa5evTr++usvkSKSHmdnZwAosYasWrVquH37thghkZ6xANKjGjVqQKFQ4MSJE5q2nJwcXL58Gb6+viJGRmVZfHw8QkJC0K5dO0REREChUIgdkuTcvXsXX3/9tdbtyYWFhbh8+TIX+z7n7Nmz8PHxwYULF7TaL168qBk9I6BmzZqwtbXFH3/8odWelJSEKlWqiBQV6ROnwPTI0tISffr0QWhoKBwcHODi4oIff/wRTk5OaNOmjdjhURl07949TJs2DX5+fpgwYQIyMjI0xywsLDgS9P95e3vDz88P06dPx3fffQd7e3ssX74cGRkZGDBggNjhSUrt2rXh4uKCadOmYfr06Xj33XcRGxuLs2fPYuPGjWKHJxlWVlYYMmQIli5digoVKqBu3brYuXMnjhw5gtWrV4sdHukBCyA9Cw4ORnFxMaZPn468vDzUr18fK1euLDHcTCTEvn37kJeXh4SEBDRt2lTrWL169RAbGytSZNJiZmaG8PBwzJ8/H2PGjEF2djYaNGiAmJgYVK5cWezwJMXCwgIrV67Ejz/+iODgYGRlZaFWrVpYtWoVatasKXZ4kjJy5EjY2NggLCwM9+7dQ9WqVREeHo5GjRqJHRrpgUz970lzIiIiIhPANUBERERkclgAERERkclhAUREREQmhwUQERERmRwWQERERGRyWAARkSC8YZSIjAkLICID6Nu3L7y8vLRetWvXRsuWLfHtt99qbXCob7dv34aXlxc2bdoEADh+/Di8vLxe6cGXmzZtwpw5c/QST3h4OLy8vFBUVPTCc7y8vBAaGvpK/fbt2xc9e/Z80/Be+/2JqGzhRohEBlK9enXMmDFD8/OzRzUsXLgQV69eRWxsLGQy2VuPo2bNmoiJiYGXl5fga5YtW4Z69eq9xaiIiAyLBRCRgSgUCjRo0ECrrVGjRsjPz0dYWBjOnz+PunXrvvU47OzsSsRBRGRqOAVGJLLatWsDgOZJ3H379kVISAjGjx8PHx8fdO/eHQBQUFCA+fPnIyAgALVr10aHDh2wZcuWEv3FxcWhXbt2+Oijj/DVV18hOTlZ63hpU2B//PEHhgwZgvr168PPzw9BQUH4888/ATydDrpz5w7i4+O1Ro2Sk5MxYsQI1KtXDz4+Phg+fDiuX7+u9V7Z2dmYNm0aPv74Y9SrVw/ffvstCgoKXjlHt2/fRkhICJo0aYJatWqhUaNGCAkJwcOHD0ucGxERgcaNG6Nu3boYMWIEUlNTtY7fu3cP48ePh5+fH+rUqYM+ffrg3LlzrxwTEZVtHAEiEtmNGzcAQOsJ07t27UJAQADCw8M1BUNQUBCOHz+OwMBA1KhRAwcPHsTEiRORm5uL3r17AwA2bNiAGTNmoFu3bpg4cSIuXLiAsWPHvvT9r169il69esHLywszZ86Eubk5Fi1ahIEDByI+Ph4xMTEYM2YMvLy8EBgYCABITU1Fjx49ULFiRcycORMAEBkZiZ49e2Lr1q344IMPoFarMXToUFy/fh2jR4+Gk5MTYmNjcfz48VfKT35+Pvr16wd7e3tMnjwZ77zzDs6ePYulS5fCwsICs2fP1px74cIF/P3335g0aRKKi4uxcOFCDBgwAHv27EG5cuXw6NEj9OjRA2ZmZggJCYG9vT3WrVuHfv36Yf369ZpilIiMHwsgIgP698LfzMxMnDx5EsuWLYOPjw9q1aqlOaZWq/H9999DoVAAAI4ePYpDhw5h7ty56NSpEwCgefPmUKlUWLhwIb788kuUK1cOixcvRsuWLTVFSfPmzTUFzYssX74cCoUC0dHRsLW1BQBUrVoVQ4cOxYULF+Dn5wdLS0u89957mqmz8PBwmJub46efftI8kb5Zs2Zo3bo1li1bhu+++w5HjhzB2bNnsXjxYrRu3RoA0KJFC3To0EFT9Alx48YNVKhQAXPmzEHVqlUBAI0bN8bFixdx4sQJrXNlMhlWrVoFFxcXAEC1atXQuXNnxMXFoXfv3lizZg3S09OxY8cOuLm5AQACAgLQqVMnhIaGIioqSnBcRFS2sQAiMpAzZ85oFTnA06eY+/v7Y9asWVoLoCtWrKgpfgDg2LFjAICWLVtqFVGffPIJNm7ciAsXLsDBwQEPHjzQFBvPfPbZZy8tgE6dOoWmTZtqih/gaeFw6NChF16TkJAAPz8/KBQKTTzW1tbw9/fHkSNHAAAnTpyAubk5WrRoobnO3Nwc7dq1w9KlS1/Y9/M+/PBDbNiwAWq1Gn/++SdSU1Nx7do1XL9+vcR0Wt26dTXFD/B0wXflypVx7Ngx9O7dGwkJCahevTpcXFw0cctkMrRo0QJr1qxBQUEBLC0tBcdGRGUXCyAiA6lRowZmzZoF4OlfuuXKlUPFihW1Co9nHBwctH5+9OgRAKBhw4al9p2Wlga5/Omvc/ny5bWOVahQ4aVxPXr0CO+//76wD/Gva/bu3VuioAMACwsLAEBGRgbs7e01cQmNpzTR0dGIiIjA33//DQcHB9SuXRvW1tbIz8/XOu/5vAHA+++/j8zMTE3cqamppcb97LiTk9Mrx0dEZQ8LICIDsbGxgbe392tda2dnBysrK6xbt67U4y4uLpq/5B88eKB17Fnx9LK+Szvnt99+g4eHBypWrFjqNX5+fhgyZMgL+y1fvjwyMzNRWFioKYqExPO8+Ph4zJkzBxMmTECXLl00Bd7o0aNL9PUsB//24MEDfPTRR5q469evj0mTJpX6Xu+9994rxUZEZRfvAiMqA/z8/JCfn4/CwkJ4e3trXqmpqVi4cCHy8vLg5uaGSpUqYdeuXVrX7t+//6V9N2jQAL/99pvWaEpqaiqGDBmiWbBsZqb9R4Wvry+Sk5NRo0YNrXjWrl2LHTt2AAD8/f2hUqmwe/durWsPHDjwSp/99OnTsLGxwZAhQzTFT05ODk6fPg2VSqV17tmzZ7WKonPnzuHOnTvw8/PTxH3jxg24urpqxb1r1y6sWbNGq1AjIuPGAoioDGjWrBl8fX2hVCoRHR2No0ePYuXKlZg6dSpUKpVmlGbChAk4duwYxo8fj0OHDiEyMhLh4eEv7XvkyJHIysrCoEGDsG/fPuzatQsjR46Ep6cn2rZtCwCwt7dHYmIijh07BpVKBaVSib/++guDBg3Cnj178OuvvyI4OBjbtm1DzZo1ATwt2gICAjBjxgysXr0ahw4dQnBwMFJSUl7ps9epUwe5ubmYNWsWjh49iq1bt6JXr15IT09HXl5eifOHDh2KAwcOYPPmzVAqlfD09ETnzp0BAAMHDoSZmRn69euHbdu24ciRI/j222+xatUqeHh4GGQjSiKSBk6BEZUBZmZmWLFiBcLCwrB69Wqkp6ejQoUK6NmzJ5RKpea8du3awczMDEuWLEFQUBDc3Nwwb948DB069IV916xZE+vWrcOCBQsQEhICa2trNG7cGBMmTICNjQ0AYPjw4ZgxYwZGjhyJ+Ph4VK9eHevXr8fChQsxefJkqNVqeHh4YOHChWjXrp2m77CwMCxYsAArV67E48ePERAQgMDAQCxYsEDwZ+/UqRP+/PNPbN68GRs3boSTkxOaN2+Ovn37YurUqbh69Spq1KgB4OkdXe7u7pg8eTIKCwvRokULTJo0CVZWVgCerj/asGEDFixYgDlz5iA/Px9VqlTBjBkz0KtXr1f6f0JEZZtMzSccEhERkYnhFBgRERGZHBZAREREZHJYABEREZHJYQFEREREJocFEBEREZkcFkBERERkclgAERERkclhAUREREQmhwUQERERmZz/B2qnKzBJOZUvAAAAAElFTkSuQmCC\n", |
|
|
2845 |
"text/plain": [ |
|
|
2846 |
"<Figure size 720x504 with 2 Axes>" |
|
|
2847 |
] |
|
|
2848 |
}, |
|
|
2849 |
"metadata": {}, |
|
|
2850 |
"output_type": "display_data" |
|
|
2851 |
} |
|
|
2852 |
], |
|
|
2853 |
"source": [ |
|
|
2854 |
"conf_matrix = confusion_matrix(y_test, predictions)\n", |
|
|
2855 |
"df_cm = pd.DataFrame(conf_matrix, index = [i for i in \"012356\"], columns = [i for i in \"012356\"])\n", |
|
|
2856 |
"plt.figure(figsize = (10,7))\n", |
|
|
2857 |
"sn.set(font_scale=1.4)\n", |
|
|
2858 |
"sn.heatmap(df_cm, annot=True, annot_kws={\"size\": 16})\n", |
|
|
2859 |
"plt.ylabel('True label')\n", |
|
|
2860 |
"plt.xlabel('Predicted label')\n", |
|
|
2861 |
"plt.savefig('results/conf_matrix_1120.png')\n", |
|
|
2862 |
"plt.show()" |
|
|
2863 |
] |
|
|
2864 |
}, |
|
|
2865 |
{ |
|
|
2866 |
"cell_type": "markdown", |
|
|
2867 |
"id": "2df01fa9", |
|
|
2868 |
"metadata": {}, |
|
|
2869 |
"source": [ |
|
|
2870 |
"There is a substantial improvement in the models performance. Deep learning model achieved ~ 98% accuracy in the current run. The 5-fold accuracy for this setup is 98.21%. The Random Forest model with the same setup achieved 96.66% accuracy." |
|
|
2871 |
] |
|
|
2872 |
}, |
|
|
2873 |
{ |
|
|
2874 |
"cell_type": "markdown", |
|
|
2875 |
"id": "fe32a7dd", |
|
|
2876 |
"metadata": {}, |
|
|
2877 |
"source": [ |
|
|
2878 |
"## 5. Conclusion" |
|
|
2879 |
] |
|
|
2880 |
}, |
|
|
2881 |
{ |
|
|
2882 |
"cell_type": "markdown", |
|
|
2883 |
"id": "72e3da80", |
|
|
2884 |
"metadata": {}, |
|
|
2885 |
"source": [ |
|
|
2886 |
"In this project, we can detect potential faults and classify them. This shows that AI and Machine Learning can be significantly helpful in the field of Structural health Monitoring and civil engineering applications. With an objective to reduce loss of lives due to faults in civil structures, AI and ML can prove to be a boon for the human civilization.\n", |
|
|
2887 |
"\n", |
|
|
2888 |
"In this project we used the following concepts that are taught in the course.\n", |
|
|
2889 |
"1. Data visualization and preprocessing\n", |
|
|
2890 |
"2. Featurization\n", |
|
|
2891 |
"3. Machine Learning \n", |
|
|
2892 |
"4. Deep Learning\n", |
|
|
2893 |
"5. Debugging data science\n", |
|
|
2894 |
"\n", |
|
|
2895 |
"We tried to solve a classification problem. The deep learning model outperforms the standard machine learning models which highly depend on manual feature extraction process.\n", |
|
|
2896 |
"\n", |
|
|
2897 |
"While analzing the model's performance, we observed that both, ML model and DL model, struggle to classify class 4 and class 5 signals due to their similarity.\n", |
|
|
2898 |
"\n", |
|
|
2899 |
"We trained the models again without class 4. In this case, the model performance improved. DL model performs better than ML model in this setting as well.\n", |
|
|
2900 |
"\n", |
|
|
2901 |
"Following is the comparison with 5-fold accuracy." |
|
|
2902 |
] |
|
|
2903 |
}, |
|
|
2904 |
{ |
|
|
2905 |
"cell_type": "code", |
|
|
2906 |
"execution_count": 3, |
|
|
2907 |
"id": "49988f98", |
|
|
2908 |
"metadata": {}, |
|
|
2909 |
"outputs": [ |
|
|
2910 |
{ |
|
|
2911 |
"data": { |
|
|
2912 |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAIACAYAAAAL2vEYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABMR0lEQVR4nO3dd7wcVfn48c+TQCAkgQAJLUJCU5pKCSBICV0RviJSFClRigUQlKaCEKRK8YfYASEgAhZqEKRHRKQqCtJLgCQQEmoSkgDh/P44s8lks/fmbnJv7p3k83695rW7Z87OPDO7M/vsmTkzkVJCkiRJ1dWtswOQJEnSvDGhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6aS5ExKCISBExrLNjmZOIGB4RXp9I7Wpev1cRMazYhga1Y1jtJiJGRsSozo6jCub1s4yIocX7h7RrYAsZEzrNUUQsERFHRsTfI+KNiHg/IsZFxE3FhrhIZ8eozlHsyHfr7Djmp+KHPhXbwQot1PlpUWeWH6mIGFKUHT2/4lXHK33WKSI+jIiJEfF8RFwbEV+NiJ4N3lP7U/jzzohZCx4TOrUqItYA/g38P2AqcAZwCPATYFHgEuD0Tguw87wI9ARO7exAOtlJwG6dHUQn+KB43K9+RET0AL5C3l608HiE/H3YHzgKuAIYAFwMPBoRn+y80LQwsGVFLSr+Vd4IrAZ8MaV0TV2VH0fExsDG8z24ThIRfVJKE1O+xYo/2AuvacCdwFeBs+vGfR5YlvyDvs98jkudZ0xK6fK6shMiYk/g98DNEbFuSunNTohNCwFb6NSag4CPAec2SOYASCk9mFL6ZbksInaLiH9ExKRi+EdEfL7+vRExqjh89cmIuL2o+1pEnBMRi0TE4sXzMRExNSLujoi166ZRO/di++Lw34sRMS0i/hsRX2owzx0j4g/F4ZApEfFWRNwaEVs3qDuyiHG1iPhzRLwBvFOMa3gOXUTsHxEPFNOdXMzn9xHRv67eVhFxW0S8XcTxr4g4sJUYVoqIKyPizWK6t0TERxt9Ji2JiP4RcVlEvF5M446I2KCFuntHxD3FoaN3I+L+iNijNH5QzDx/6oDyIady3HXT3Keo80hd+TeL8k1KZVGUP1zMf2JE3BUR28xNvKV6KfK5X5tFxN+K9TAhIi6KiN5tXJU1lwBrR8SmdeVfBf5DbtluV0XsKSKWLZ5PKJb5uigO/0bEIRHxRLHNPNnCtrdIRBwXEY8X9V6PfHjw4w3qLh4RZ0fE2OK7+kBE7NhKjGtGxO8i4pWIeK/4/p4dEb3mYbk3KZb36dL34R8R8YVW1tFSEfGryPuUqUX9+s+KiFg6Ii4s1uXk4ru70dzGWi+l9CfgLGBF4ND2mm7MPG9tnYg4r1jfte36Y0Wd3Yt9y5TiczikhWkdVKr3duR94hYN6nWLiO9HxAvFOn00Ir7SSowrFp/BS8V3YWxEXBARy7XXetBMJnRqTe0H8YK2viEivgVcCyxDPhx5SvH8uhZ2Jh8BbgOeAI4G7iEfrjgN+DOwAXAm8GNgo2I6jb63Pwa+BPwKOBHoAVwZEUPr6g0t4rkMOJx8KHlt4I6I2LLBdHsDfyMfYjseGNbKsu8LXEpuuTsROJL8z/xjwHKleruSW3fWBs4FfgC8D1wUEac1mHQv4G5gelH3F8AQ4PqI6N5SPA38lfyjMgw4DxgM3B0R69Utx6nAVcBE4IfA94B3gT9FRO0HaTwzDzf+vXi+X6nsTmBgRKxemvS2wIfAJ2LWBHdbcqL8cKnsd8DPgWeBY4uYlwJui4j/m4t4y9Yntzw/CHyX/P07kHwaQTNuBF4DvlaKZSVgR/Jhto70V/L6OBG4ENgFuDYijgGOIX8Pv0feDv4cEavWvf/35O1qdFH/18A2wD9j9iT/SvK2+RAzt9FryNvjLIpE6CFgK+A35ATmRuDb5M9u0blc3i8AawF/BI4g7x+WAa6JiJZaQW8h719+RD5VZD3gpojoU4p30aLeQcBN5HXxNHB78d72clHx+Ll2nGbNpcAnyae+nAt8CrglIvYj7yuuIy/Xm8Bv6hO1iPgx+Tv0Pnn/ci6wDnBXROxcN6+fFPN5ibxdXl/M4//q6hERq5C/C3uQW6sPJW/XXwL+ERFLzeNyq15KycGh4QC8DrzTRP2lgUnkH+ElS+VLAs+Rf3D7lspHAQnYs246D5N/+K8HolT+7aL+TqWyoUXZi8BSpfKlirI3gJ6l8l4N4l4emADcVFc+spj2qQ3eM6gYN6xUdg05MVmklXXUvYjrLWClUnkP4B/kpG3NBjEcWzedY+rXRSvzHF7UvaZufW5UrOe/lso2LOqe3mA61xXL16dUloDhDepuUYw7uFT2PHmHnoC9irIgJ4c3lOp9oahzSN00FyH/QLxQW465jPdD4FN1df9C/kHr3Yb1ORKYVDw/F3i79h0j/yBOIx9yPbqY35DSe4cUZUfP5TZZ+yx/UVf+k6L8JWbd9j5RlJ9RKtuhKPtD3ffhE+Q/Ln8vle3Y6DMmnzeZgFRX/h/gyfI6r/tMh5bKhhVlg9qw3I222yWAp4DHW1hHv6wr37Mo/3qp7JCi7OS6ukcW5aPa+Lkk4MY51HkHeL30elDxvp/P5Xehtv5G0Hg/ORFYpVTen/xn88pS2ceK7eEeoEepfCXyPmoU0L2u7h21stI2+GH9Z0nef78GfKQu7sHF92xYqWwodduKQ/ODLXRqzZIUhxjbaAdya9L5KaUZ7yue/4zc2rV93XvGpHxIouwe8g/9z1KxtRf+Xjyu2WDev0opvV2a59vkVoelyT+itfLJtecR0TsiliUnUfcDsx2OKZzTQnm9t8k/Mp+LiGihzkbAKsDFKaWxpbjeI5+L1Y18DlbZh8D5dWV3Fo+N1kVLziqvz5TSw+TWqe1Lhxu/Qt6xXhoR/coDcAPQB9isDfO6H5hMbn0jIgYCq5Jbex4DtivqfRzoV1oegH3JP0bX1c2/L/nHa1Bpuecm3n+mlO6rK7uTnDAOasOylV1M3k52L14PBa5PKb3e5HSadV7d69q2cVndtvdf8jZc/p7UDlOeVvd9+C+5NW2LUgvqbsXjLOcJppSuIydTMxSHaz9Bbo1ZrO6zuIf8fWjxUG1r6rbbJYrtdgmKlu6IWLLB2/5f3etG28xu5O3/3Lq6v6K5fV9bvEP+rrS381vYT16fUnqpVphSGk/+zMrL/3nyvvasYh9UqzuWnBgPJB8lKdf9SUppeqnuv8j7kRmK1rddyNvg1Lrvwijyn/65+i6oZXaKUGveIf8gtlXtsM7/Gox7rHhcra78hQZ132xhXK182QbveaJB2eP18ywOAZ4G7EROEMoSsxufUnqrQXkjp5MPNV0HvB4RfwNuBv6QUppY1JmbdTQ2pVTfAaOWMDRaFy1paR3tSN5x/498GDjIrSwtWX5OM0opvR8R95AP40FO4D4gHzq+E6gdytm2eCwndGuTv3fj5hDD03MZ7/MN6szN+iSl9L+IeBD4akS8RP6xPKKZacyl+mVoaZupjSsv16rkPwmNvg+PkX+4VyW3nK5W1H26Qd0nyK02NbXzW08uhkbm+N1ppDjn6tQitkbnX/Vl9gRslnWUUnq9+J9VXherAa+Uk+Ci7rSIeJ78h7C9NPsHua2a/S4MLL1u6/7oIWbulxpta7X9SM3HyH9ODyyGRhpth5oHJnRqzWPAVhGxWkqpLRtfS61SrZk+F+MazadRMjZLvaIV6m5yK+J5wKPklqAPge8zM7koe7eV+GYNIKVnImIdcvKyHbA1+dyUkyNiq5TScy3EPietraO5mV5r7w/yuvxsK/NttPNv5E5gp4hYl7xuH0wpTYqIO4FvF+fYbEs+3P1oXQzjab2H6GOlus3G297r82Kg1jFoDHDrXEyjKeUWkjpt2WaaWcbW6jb67kBu7fprC+95s4XylmeSs7BbyQnj+eRzH98mL+tXyd+T2Y42tbKO6tdFo31Hfb15EvmCu32Af7bXNEvm93dhjvva0uvLyef4NTKliXmrDUzo1JqryS1OB5HPDZqT54rHdcnnWZStUzx21L+ydcjN+2W1FoPaPLcjnxvytZTSJeWKxYn18yylNI18cvVNxXR3Jp+f9V3yScHldVSvo9fR2kD9oca1yTv+F4vXzwCfAV5KKTVqwWlGrdVtO3Li9tvi9chinjuQv1+31h0yegb4KHBfSmnSHObRnvHOrSvJ57BtRz6Xr7WEsSt4jtxCvTbw37pxte/gC6W6O5I/j/rEeK26188Uj9NTSre3T6hAPoz7SeBHKaWTyiMi4qB5nPZzwI4RsWS5lS4iFiO3XjWdgLagFudf2ml67aW8P3qublz9/qg2fm1m30etXff6WXLi16OdvwtqhefQqTUXkc+5ODoaXPoAcq+2omcr5PMoJgOH1/Uk60PuUTqJunMt2tE3y72miuffIJ/Y+7eiuPZDW99ytyMtnz/XZsX5IfX+VTwuU3r9EvkQ3Yy7DBS97WodHa6f11hacGz53L6I2JB8TuMdpcTpd8Xj6Y160Da43MAkZi5bvX+RfxC/Qe5deyfMOL/xX+QkdylmPdwKuQdyN3LPxNlERPmwXbPxtrtieb5BPsz4m46eXzu4rnj8ft33YT1yb8V7ivOtYOZ38ZjyBCLfHaR8uBXyZVoeA74REfWnDdQuldLSd6U1LW236zHzfMC5dT25o9JRdeXfpJ3Od4t8HbpjgbHkHqFdyQ3kfc4x5R7IEbEiufXzRWZefqdW97vlba20H5mhOIf0JmD3iPhU/Uwj619frnljC51alFJ6NyJ2If+rvC4ibiUnZK+Te0xtQ/6nf1ZR/62IOJa807o/IoYXkxoKrEHuXfY2HWNCMc+LyTv+r5I7HxyUUqodNr0HeBU4tzgEMpp8CYv9yIf8ZrsGV5NujYi3yYd1Xyaf1zOUvBP8HeTDQBFxGPnSLg9GxAXkw757ky83cHpK6ZnZJ90uBpIvZ3ADOcE6jHzYY8aPdUrpwYg4iZycPBIRfyL/EK1I7tCxM7lHbs195E4Vx5ET1ZRSuqqY1ocRcTf5vKepwL2l990JHFd6PkNK6c8RcQlwWPFjcSP58/0IuYPDGhTn88xFvB0ipXRZk2/ZLiIWb1A+IaX06/aIqSUppdsi4o/ky0csHRE3AiuQW5CnkntJ1ureEhEjyNcaXIZ8KHV14Ovk5G29Ut1UXCrjTuC/xbb4P3LnhTXIHUe+Tz7ZvhlPFNM5NiJqPVs/WophwyanV3YJuafriZEv7fJPcieAPcktUs38Rg6IfOkiyHeRWYXcurkJucVq9xbOxx0cESc0KP8gpXRmE/NvWkrpqYg4m5xw3h0RfyAfGj6E3IntK7UW55TSkxHxC/J+486IuJp8PuNh5N7N9Ze7+SZ5n3t3RFxGTgy7kbfdz5P/uA3ryOVb6HR2N1uHrj+Qd8jfIW+cb5Iv7zCOnOjtR6kLe1H/C+Qf78nFcC+wW4PpjgJGNigfRoPLGdD4UiFDi7LtyT/qL5EvG/EYsE+DaX+C/KP0JjmRGglsSXGpg7q6I2nhsgUtxHIwOeF9FXgPeIX8L3WbBu/fuqj7DvlH9N/k5LO+XsMYGs2/lc9veFG3PzmxfJ18buCdwEYtvOdz5OtzvVGsz5fJHTy+WVdvTfL5Te/Q+DIWhxfld9SV1y6dMbqVuPcj99irraNR5Euv7D0P8SYaX2al9j0a0ob1OZLisiVzqNfaZUtaGp5sy2fZoLw23aFt2c7Iicpx5GRpWrHergM+3uD9Pcnnxb1K/gPwIPmPXEuxDCT3MB9F3g5eJ1+K6Axg5Tlt5y0s90DgT+RzK98FHiDvZ2abRktxtfT5k1uYf1vEObn4fAfTyvbfwnTLwyTyYevryNcp7NngPYPm8F2YOod5Nlx/tLJvaGmZyPuuf5O3s3fI+6YtG9TrRr4e54vM3M9+pZVY+pF7SD9dTPst8p/nnwLrzM3259DyULuWk1RJkS8cfAk5aRrZudFIktQ5PIdOkiSp4jo1oYt8P8sbIt+rM0XdbZqKEyeHxcx7CI4sLoFQrrNYRPwsZt6H74aIaM9btkiSJHVpnd1C15t8DP4IGl+T5lhy76PDgY3JtxG5rdyDknw9sS8CXyafC7UkcGOjHm+SJEkLoi5zDl1ETAIOSykNL14Hubfaz1NKpxVlPclJ3dEppd8Ul6YYD3w1pfT7os7K5BM2P5tSumX+L4kkSdL81dktdK1ZldyVfsZV11NKU8iXhNi8KNoIWLSuzsvknlubI0mStBDoytehq110tf5+juOAAaU608nXqKqvswINRMQh5Gvs0KtXr43WWqv+YueSJEldz8MPPzwhpdTwosxdOaGrqT8m3Nq99+ZYJ6V0AXABwODBg9NDDz00zwFKkiR1tIh4saVxXfmQ66vFY31L23LMbLV7lXzblvpbLpXrSJIkLdC6ckL3Ajlh26FWUNwqZ0tm3kLoYfJdC8p1PkK+UXD5NkOSJEkLrE495BoRvcn3+IOcXK4SEesDb6SUXoqI84DjI+JJ8q1DTiDfUuUKyDfFjojfAmdHxGvkW7f8BPgvcPv8XBZJkqTO0tnn0A0G7iq9PrkYLiXf2+0s8n0EfwEsDdwP7JhSmlh6z3eAD4A/FHXvAPZPxQ2FJUmSFnRd5jp0naGlThHvv/8+o0ePZurUqZ0Qlbqa7t2707dvX/r160e3bl35LAVJ0oIsIh5OKQ1uNK6zW+i6pNGjR9OnTx8GDRpEvr6xFlYpJd5//33GjRvH6NGjWWWVVTo7JEmSZmNzQwNTp05l2WWXNZkTEUGPHj0YMGAAkydP7uxwJElqyISuBSZzKvNQqySpK/NXSpIkqeJM6NSiYcOGse+++3Z2GJIkaQ5M6NoqomOHNho0aBA9e/akd+/erLDCCgwdOpRJkyZ14IJ3vJEjR9KtWzd69+49Y9h1113n2/xHjRpFRPDBBx/Mt3lKktSeTOgqaMSIEUyaNIlHHnmEf//735xxxhmdHdI8W2mllZg0adKMYcSIEU1PY/p0Lz0oSVo4mdBV2AorrMBOO+3EI488MqPszDPPZPXVV6dPnz6ss846XHvttTPGDR8+nC222IKjjz6apZdemlVXXZWbb755xvgXXniBrbfemj59+rDDDjswYcKEWeZ3ww03sO6669K3b1+GDBnCE088MWPcoEGDOPvss/nEJz5Br169OPDAAxk3bhyf/exn6dOnD9tvvz1vvvlm08v4xBNPMGTIEPr27cu6667LDTfcMGPc0KFD+eY3v8nOO+9Mr169uOuuuxg7dixf/OIX6d+/P6uuuirnn3/+jPoPPPAAgwcPZskll2T55Zfnu9/9LgBbbbUVAH379qV3797885//bDpOSZI6kwldhY0ePZqbb76ZNdZYY0bZ6quvzt///nfefvttTjrpJPbdd19eeeWVGePvv/9+PvaxjzFhwgSOPfZYDjzwQGoXl95nn33YaKONmDBhAj/84Q+59NJLZ7zv6aef5stf/jLnnXce48ePZ+edd2bXXXflvffem1Hn6quv5rbbbuPpp59mxIgRfPazn+X0009nwoQJfPjhh7MkV23x/vvvs+uuu7Ljjjvy2muv8bOf/YyvfOUrPPXUUzPqXHHFFRx//PFMnDiRzTffnF133ZVPfvKTjBkzhjvuuIPzzjuPW265BYAjjjiCI444gnfeeYfnnnuOvfbaC4C7774bgLfeeotJkyax2WabNRWnJEmdzYSugnbbbTf69OnDyiuvzHLLLcfJJ588Y9yee+7JSiutRLdu3dh7771Zc801eeCBB2aMHzhwIAcffDDdu3fngAMO4JVXXmHcuHG89NJLPPjgg5xyyikstthibLXVVrOcx/aHP/yBz33uc+ywww4suuiiHH300UyZMoV77713Rp3DDz+c5ZdfngEDBrDllluy6aabssEGG7DYYovxhS98gX//+98tLtPYsWPp27fvjOGPf/wj9913H5MmTeJ73/sePXr0YNttt2WXXXbhyiuvnPG+z3/+83z605+mW7duPProo4wfP54TTzyRHj16sNpqq3HwwQdz1VVXAbDooovy7LPPMmHCBHr37s2nPvWpdvk8JEnqbCZ0FXTdddcxceJERo4cyZNPPjnLodHLLruM9ddff0Zi9Nhjj80yfoUVVpjxfIkllgBg0qRJjB07lqWXXppevXrNGD9w4MAZz8eOHTvL627durHyyiszZsyYGWXLL7/8jOc9e/ac7XVrnTdWWmkl3nrrrRnDXnvtxdixY1l55ZVnuQbcwIEDZ5nnyiuvPOP5iy++OFtiePrppzNu3DgAfvvb3/L000+z1lprsfHGG3PjjTe2GI8kSVXirb8qbOutt2bo0KEcffTRXHfddbz44oscfPDB3HHHHWy22WZ0796d9ddfn7bcr3fFFVfkzTffZPLkyTOSupdeemnGBZZXWmklHn300Rn1U0q8/PLLDBgwoGMWrpjnyy+/zIcffjgjqXvppZf46Ec/OqNO+QLQK6+8MquuuirPPPNMw+mtueaaXHnllXz44Ydcc8017LHHHrz++uteRFqSVHm20FXckUceyW233cYjjzzC5MmTiQj69+8PwCWXXMJjjz3WpukMHDiQwYMHc9JJJ/Hee+9xzz33zNLTdK+99uIvf/kLd9xxB++//z7nnnsuiy22GJtvvnmHLBfApptuSq9evTjrrLN4//33GTlyJCNGjOBLX/pSw/qbbLIJSy65JD/+8Y+ZMmUK06dP57HHHuPBBx8E4PLLL2f8+PF069aNvn37AtC9e3f69+9Pt27deP755ztsWSRJ6kgmdBXXv39/9t9/f0455RTWWWcdjjrqKDbbbDOWX355Hn30UT796U+3eVpXXHEF999/P8ssswwnn3wy+++//4xxH/vYx7j88ss5/PDD6devHyNGjGDEiBH06NGjIxYLgB49enDDDTdw8803069fP771rW9x2WWXsdZaazWs3717d0aMGMEjjzzCqquuSr9+/TjooIN4++23AfjrX//KuuuuS+/evTniiCO46qqrWHzxxVliiSU4/vjj+fSnP03fvn257777OmyZJEnqCNGWw3ELqsGDB6eHHnpotvInnniCtddeuxMiUlfm90KS1Jki4uGU0uBG42yhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOhkyRJqjgTOkmSpIozoZMkSaq4RTo7gKoYObJjb+A+ZEjb7tjx85//nOHDh/Poo4/y5S9/meHDh88YN3LkSLbddluWWGIJAPr27cvmm2/OMcccw8Ybb9ziNN977z1OP/10fv/73zN27Fj69+/Ptttuy4knnsigQYMYMmQI9913H8888wwrr7wyALfffjsHHXQQo0aNAmDQoEFMmTKF559/nl69egFw0UUXcfnllzNy5MjmV4gkLUQ6+jdGHautv+EdyRa6illppZU44YQT+NrXvtbi+EmTJjFx4kTuu+8+1lprLbbcckvuuOOOFqe5xx57cMMNN3DFFVfw9ttv85///IeNNtpolvf06tWLU045pdXYPvjgA37605/O3YJJkqS5ZkJXMbvvvju77bYbyy67bKv1IoKPfOQj/OhHP+Kggw7iuOOOa1jv9ttv57bbbuP6669n4403ZpFFFmGppZbi0EMP5cADD5xR79vf/jZXXnklzz77bIvzPOaYYzjnnHN466235mrZJEnS3DGhWwjsvvvu/Otf/2Ly5Mmzjbv99tvZZJNNZhxKbcmAAQM4+OCDGTZsWIt1Bg8ezJAhQzjnnHPmNWRJktQEE7qFwEorrURKqWHL2euvv86KK67Ypul8//vfZ8SIEfzvf/9rsc6PfvQjfvaznzF+/Pi5DVeSJDXJhG4hMGbMGCKCvn37zjZu2WWX5ZVXXmnTdPr3789hhx3GiSee2GKd9dZbj1122YUzzzxzbsOVJElNMqFbCFx77bVsuOGGM3qflm2//fY88MADjB49uk3TOuaYY7jrrrt4+OGHW6xz8sknc+GFFzJmzJi5jlmSJLWdCV3FfPDBB0ydOpXp06czffp0pk6dygcffDBbvZQSY8aM4eSTT+aiiy7i9NNPbzi97bffnh122IEvfOELPPzww3zwwQdMnDiRX//611x88cWz1e/bty9HHXUUZ511VosxrrHGGuy9996cf/75c7+gkiSpzUzoKubUU0+lZ8+enHnmmVx++eX07NmTU089dcb4sWPH0rt3b3r37s3GG2/Mo48+ysiRI9lxxx1bnOaf//xndt55Z/bee2+WWmop1ltvPR566CG23377hvWPOOIIunfv3mqcJ554YsNOGJIkqf1FSp1/MbzOMnjw4PTQQw/NVv7EE0+w9tprd0JE6sr8XkjqKF5YuNrm14WFI+LhlNLgRuNsoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOha8HC3FlEs/P7IEnqykzoGujevTvvv/9+Z4ehLmTKlCksuuiinR2GJEkNmdA10LdvX8aNG8eHH37Y2aGok6WUePfddxkzZgzLLbdcZ4cjSVJDi3R2AF1Rv379GD16NE899VRnh6IuYNFFF2X55ZdnySWX7OxQJElqyISugW7durHKKqt0dhiSJElt4iFXSZKkijOhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOhkyRJqjgvLCxJVRfR2RFoXt3V2QGo6myhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkijOhkyRJqjgTOkmSpIozoZMkSao4EzpJkqSKM6GTJEmqOBM6SZKkiuvyCV1E9ImI8yLixYiYEhH3RsTGpfHDIyLVDfd1ZsySJEnz0yKdHUAbXAR8AjgAGA3sC9weEeuklMYUdW4H9iu95735G6IkSVLn6dItdBHRE/gi8L2U0siU0rMppWHAs8A3S1WnpZReLQ1vdEa8kiRJnaFLJ3TkFsTuwNS68inAFqXXW0TEaxHxdERcGBHLzbcIJUmSOlmXTuhSShOBfwInRMSAiOgeEfsCmwErFtX+CuwPbAccBWwC3BkRizWaZkQcEhEPRcRD48eP7/iFkCRJ6mBdOqEr7Ad8SD5/bhrwbeBKYDpASumqlNINKaVHU0ojgM8CHwM+12hiKaULUkqDU0qD+/fvP18WQJIkqSN1+YQupfRcSmlroDewckppE2BR4IUW6o8lJ39rzr8oJUmSOk+XT+hqUkqTU0qvRMTSwE7A9Y3qRUQ/YADwyvyMT5IkqbN0+cuWRMRO5MTzSWAN4GzgKeCSiOgNDAOuJidwg4AzgNeAazshXEmSpPmuyyd0wFLkJO0jwBvk5O34lNL7EbEI8HFyp4i+5KTuLmCvokOFJEnSAq/LJ3QppT8Cf2xh3BTy4VdJkqSFVmXOoZMkSVJjJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkV1+aELiK+EhGLdWQwkiRJal4zLXS/A16JiJ9FxAYdFZAkSZKa00xC9yXgAeCbwEMR8XBEfCMiluyY0CRJktQWbU7oUkp/TCl9BhgEnAwsDfyS3Gp3aURs1TEhSpIkqTVNd4pIKY1OKf0opbQasCNwA7AXcFdEPBURx0bEcu0dqCRJkhqbp16uKaXbgZ8AI4AA1gTOBF6KiF9ERO95D1GSJEmtWWRu3hQRywD7AgcC6wHTgMuBC4rnhwPfAJYBvtwukUqSJKmhphK6iNiBnMR9HlgMeAw4EvhdSumtUtX9I+JF4NvtE6YkSZJa0uaELiJGASsDU4CrgAtSSv9s5S2PAX3mKTpJkiTNUTMtdG8DZ5Nb495pQ/0RwKpzFZUkSZLarM0JXUrpk81MOKX0LvBi0xFJkiSpKc3c+muDiDi0lfGHRsT67RKVJEmS2qyZy5acBHyulfGfBU6ct3AkSZLUrGYSuo2Bv7Uy/m/AJvMWjiRJkprVTELXD3ijlfFvFXUkSZI0HzWT0L0GrNvK+PVoPeGTJElSB2gmobsdOCgiZkvqImId8gWHb2+vwCRJktQ2zVyH7lRgd+DBiLgYeARIwAbA14D3gFPaO0BJkiS1rpnr0D0XEdsBw4Fv1Y3+H/DVlNIz7RibJEmS2qCpe7mmlB4C1iuuN7cmEMBTKaX/dEBskiRJaoNmzqGbIaX0SErpTymlP3Z0MhcRfSLivIh4MSKmRMS9EbFxaXxExLCIGFuMH9noPD9JkqQF1VwldPPZRcBOwAHAx4FbgdsjYkAx/ljgKOBw8rXyXgNui4g+nRCrJEnSfNdUQhcRn46IGyNifER8EBHT64YP2jO4iOgJfBH4XkppZErp2ZTSMOBZ4JsREcCRwJkppatTSo+RE78+wD7tGYskSVJX1cy9XLcC7gI2Be4v3nsX8CD5XLrHgN+1c3yLAN2BqXXlU4AtgFWBFcitdgCklKYAdwObt3MskiRJXVIzLXTHA68A6wBDi7LTU0qfAj5DTq4uas/gUkoTgX8CJ0TEgIjoHhH7ApsBK5KTOYBxdW8dVxo3i4g4JCIeioiHxo8f357hSpIkdYpmErpNgItSSuOBD8vvTyndSm6d64jr0O1XzG80MA34NnAlML1UJ9W9JxqU5YopXZBSGpxSGty/f/8OCFeSJGn+aiahWwwYUzyfVjyWOx48AmzUDjHNIqX0XEppa6A3sHJKaRNgUeAF4NWiWn1r3HLM3monSZK0QGomoXsF+AhASmky8Bb5/q01HwHatVNEWUppckrplYhYmtzr9XpmJnU71OpFxOLAlsC9HRWLJElSV9LMhYUfBD5den0r8J2IeJGcGB5G7izRriJip2L6TwJrAGcDTwGXpJRSRJwHHB8RTwJPAycAk4Ar2jsWSZKkrqiZhO63wNCI6Fn0JP0BuSVseDH+VfI14drbUsAZ5BbAN4CrgeNTSu8X488CegK/AJYmJ5U7Fh0qJEmSFnjN3Mv1NuC20uvnI+KjwHbkDgr3pJTebu8AU0p/BP7YyvgEDCsGSZKkhU6bErriAr97ku/bOuOwanEu3Q0dFJskSZLaoK2dIqaRrzG3QQfGIkmSpLnQpoQupfQh8BKwZMeGI0mSpGY1c9mSS4H9ImKxjgpGkiRJzWuml+u9wO7AIxHxS+AZ4N36Simlu9spNkmSJLVBMwndbaXnP6Xl2211n9egJEmS1HbNJHRf7bAoJEmSNNeauQ7dpR0ZiCRJkuZOM50iJEmS1AW1uYUuIvZvS72U0mVzH44kSZKa1cw5dMPJnR6irry+c4QJnSRJ0nzUTEK3TQvvXx34FvkSJse3R1CSJElqu2Y6RfythVF3RMSlwAPAhsBd7RGYJEmS2qZdOkWklKYBl5Nb6iRJkjQftWcv12nAgHacniRJktqgXRK6iFgR+AbwQntMT5IkSW3XzGVL7mxh1DLAWkAP4ID2CEqSJElt10wv19WY/RIlCXgDuAb4eUrp3vYKTJIkSW3TTC/XQR0YhyRJkuaSt/6SJEmquDYndBGxfUSc0cr4MyKi0cWHJUmS1IGaaaE7FlijlfGrAsfNWziSJElqVjMJ3SeB+1oZf39RR5IkSfNRMwndUsDkVsZPAZaet3AkSZLUrGYSujHARq2M3wh4dd7CkSRJUrOaSej+AhwQEdvXj4iI7cgXFb6pvQKTJElS2zRzYeHTgC8Ct0TEzcAj5AsLbwB8ltw6d0p7ByhJkqTWNXNh4XERsTnwK3ICt3NtFHAzcFhK6ZX2D1GSJEmtaaaFjpTSi8DOEbE0+RImATyTUnqzI4KTJEnSnDWV0NUUCdyD7RyLJEmS5kIzd4rYOyIua2X8pRGxR/uEJUmSpLZqppfrYcCHrYyfDhw+b+FIkiSpWc0kdGsD/25l/L+BdeYtHEmSJDWrmYSuF7kVriUJ6DNv4UiSJKlZzSR0LwBbtDJ+C+CleQtHkiRJzWomobsW2DMiDqwfERFfA/YErmmvwCRJktQ2zVy25Ezg88AFEfEdZt4pYn3yuXNPAae3c3ySJEmagza30KWUJgKfBn4DrAjsA3wFWIl894jNU0rvdESQkiRJalmzd4p4G/hWRBwK9CPfKWJ8Sil1RHCSJEmas7m9U0QCxrdzLJIkSZoLTSd0EdEdWAtYmgaHbFNKd7dDXJIkSWqjphK6iDgO+B6wZCvVus9TRJIkSWpKmxO6iDgIOAP4G3ArcBrw/4D3gQOB54FfdkCMUqcaOTI6OwTNoyFDPM1X0oKtmevQfQO4L6W0DXBBUfaXlNL3gE8Ag7B1TpIkab5r9l6ufyqe1/7uLgKQUnqFnOQd0X6hSZIkqS2aSeimA5OL57XHZUrjRwFrtkNMkiRJakIzCd1LwKoAKaVpwMvAlqXxGwNvtF9okiRJaotmerneDXwO+H7x+k/AkRHRk5wY7gtc3L7hSZIkaU6aSeh+CvwnInqmlKYAJwEfBQ4oxt9KvqSJJEmS5qM2J3QppaeAp0qvJwP/FxFLAdNTSpM6ID5JkiTNwVzd+qusuL+rJEmSOkkznSIkSZLUBZnQSZIkVZwJnSRJUsWZ0EmSJFWcCZ0kSVLFmdBJkiRVXIuXLYmI/edmgimly+Y+HEmSJDWrtevQDQcSEKWyVHoeDcoATOgkSZLmo9YSum3qXi8K/BhYFvg18Dg5qVsH+DowATiuA2KUJElSK1pM6FJKfyu/joiTgcWBj6eUJpZGXR8RvwDuA7YE7uiIQCVJktRYM50ivgpcUpfMAZBSege4pKgjSZKk+aiZhK4/0L2V8d2B5eYtHEmSJDWrmYTuSeDgiFi6fkRELAMcDDzRXoFJkiSpbVrrFFFvGHAN8FREXAw8Re7hujb5UOsywB7tHaAkSZJa1+aELqV0fUTsAfwUOLZu9Ghg75TSde0YmyRJktqgmRY6UkrXRsT1wEbAauTLljwHPJxS+rAD4pMkSdIcNJXQARSJ24PFIEmSpE7mvVwlSZIqrrV7uT4/F9NLKaXV5yEeSZIkNam1Q64vMft9WiVJktTFtHbrryHzMQ5JkiTNJc+hkyRJqrime7lGxJLA9uTLlgA8D9zW6B6vkiRJ6nhNJXQRcRBwLtCbfA06yOfZTYqI76aUftvO8UmSJGkO2pzQRcT/AReQW+ROBB4rRq0LHA5cEBGvpZRGtHuUkiRJalEz59AdCzwBrJ9S+mlK6Y5iOB/YEHgSOK49g4uI7hFxSkS8EBFTi8dTI2KRUp3hEZHqhvvaMw5JkqSurJlDrp8EfpRSmlQ/IqU0MSIuBX7YbpFlxwGHAgcAjwKfAC4FpgGnlOrdDuxXev1eO8chSZLUZTXbKSJaGdcR16zbHBhROow7KiJuADatqzctpfRqB8xfkiSpy2vmkOt/gAMiolf9iIjoDQwt6rSne4BtImKtYj7rANsCN9XV2yIiXouIpyPiwohYrp3jkCRJ6rKaaaE7B7gG+FdEnA88XpTXOkWsAezevuHxY6AP8HhETCfHe1pK6ZelOn8t4noBGAScCtwZERullKbVTzAiDgEOAVhllVXaOVxJkqT5r80JXUrpuog4jJxk/YyZh1gDmAwcllK6vp3j2xvYH9gH+B+wPvDTiHihdomUlNJVpfqPRsTDwIvA58iJXv1yXEDurcvgwYO9tZkkSaq8ps6hSyn9MiKuAHYAViUnc8+RLyz8dgfEdzZwTilpezQiBgLfBxpe8y6lNDYiRgNrdkA8kiRJXU6LCV1EPA8cmVK6oXh9InBNSukx4E/zKb4lgOl1ZdNp5dy/iOgHDABe6cC4JEmSuozWOkWsQj5/rWYY+bIh89MI4HsR8bmIGBQRXwC+C1wLuTNGRJwTEZsV44cU73mtVkeSJGlB19oh1zHAx+vK5vc5Z4eTrzf3S2A5cqvbhcCPivHTyTHuD/Qtxt8F7OW9ZSVJ0sKitYTueuDYiPgM8EZRdkJEHNzKe1JKabv2Cq5Iyo4shkbjpwA7tdf8JEmSqqi1hO444E1ge2AguXWuP/m8NkmSJHURLSZ0RevXScVARHxI7iRxxXyKTZIkSW3QzJ0ivgrc21GBSJIkae40c2HhSzsyEEmSJM2dZlroJEmS1AWZ0EmSJFWcCZ0kSVLFmdBJkiRVnAmdJElSxZnQSZIkVVzTCV1ELBER34+IeyLiyYj4W0QcFRGLdUSAkiRJal2rCV1EvBMRe5ZeL0m+uPBpwGCgB7AZcBZwZ0T06MBYJUmS1MCcWuh6A4uWXp8KfAI4HuidUloN6AP8hJzYfacjgpQkSVLLmj3kujdwVUrpjJTSBwAppWkppWOAu4rxkiRJmo/anNBFRC+gP3BTC1VuAtZsj6AkSZLUdm2+lyvwHjAdeKeF8ZOA7vMc0YImorMj0Ly6q7MDkCSpdW1J6A6JiO2L51OA1VuotwrwertEJUmSpDZrS0K3VTHU7AX8vwb1tgEea4+gJEmS1HatJnQppTadYxcRywD3ASPbISZJkiQ1oZlz6FqUUnoD+G57TEuSJEnN8dZfkiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHFdOqGLiO4RcUpEvBARU4vHUyNikVKdiIhhETE2IqZExMiIWLcz45YkSZqfunRCBxwHHAp8G1gLOKJ4/f1SnWOBo4DDgY2B14DbIqLP/A1VkiSpcywy5yqdanNgREppRPF6VETcAGwKuXUOOBI4M6V0dVF2ADmp2wf4zXyPWJIkaT7r6i109wDbRMRaABGxDrAtcFMxflVgBeDW2htSSlOAu8nJoCRJ0gKvq7fQ/RjoAzweEdPJ8Z6WUvplMX6F4nFc3fvGAQMaTTAiDgEOAVhllVXaPWBJkqT5rau30O0N7E8+fLph8fxbEXFgXb1U9zoalOWKKV2QUhqcUhrcv3//9o5XkiRpvuvqLXRnA+eklK4qXj8aEQPJnSJ+C7xalK8AvFx633LM3monSZK0QOrqLXRLANPryqYzM+4XyEndDrWREbE4sCVw7/wIUJIkqbN19Ra6EcD3IuIF4H/ABsB3gcsAUkopIs4Djo+IJ4GngROAScAVnRKxJEnSfNbVE7rDgVOAX5IPo74CXAj8qFTnLKAn8AtgaeB+YMeU0sT5G6okSVLn6NIJXZGUHVkMLdVJwLBikCRJWuh09XPoJEmSNAcmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJIkSRVnQidJklRxJnSSJEkV16UTuogYFRGpwfCXYvzwBuPu6+y4JUmS5qdFOjuAOdgY6F56vSLwMPDHUtntwH6l1+/Nh7gkSZK6jC6d0KWUxpdfR8SBwDvAn0rF01JKr87XwCRJkrqQLn3ItSwiAjgQuDyl9G5p1BYR8VpEPB0RF0bEcp0UoiRJUqeIlFJnx9AmEbEjcAuwQUrpkaLsS8C7wAvAIOBU8iHajVJK01qYziHAIcXLjwFPdWjgWhD0AyZ0dhCSFmjuZ9QWA1NK/RuNqFJC9yfygmzSSp2VgBeBvVNK18y34LRAi4iHUkqDOzsOSQsu9zOaV5U45FocRv08cGFr9VJKY4HRwJrzIy5JkqSuoBIJHfBVYBpwVWuVIqIfMAB4ZX4EJUmS1BV0+YSu6AxxEHBVSmliqbx3RJwTEZtFxKCIGAKMAF4Dru2UYLWguqCzA5C0wHM/o3nS5c+hi4htgDuBTVNKD5TKewLXARsAfcmtcncBP0wpvTz/I5UkSeocXT6hkyRJUuu6/CFXaU4iYmhETGrpdRPTmRQRQ9s1OEkLrYgYFhGPzaHOoOK2lZXp4VrEu0dnx6FZmdCp07VwT94UEet3dmytacvOuoPmO1cJq9QR6rbf94sLvd8VEYdGxKJNTmtIMZ1+HRVvC/PtqKTqHGDr0nyGR8SN7TyPNouIkRHx886af3uLiH4RMaYzvjNdkQmduorbyffqLQ/zPVmSNFdq2+8gYEdyB7WTgb9HRK9OjKtTpZQmpZRe7+w4FmCXAI90dhBdhQmduoppKaVX64YPGrWCtUcLVUSsUfxbnRoRT0XELg3qnFmMmxIRoyLirIhYvBYDcBKwbql1Ymgx7rsR8d+ImFz8e7woIvqWprtURPyuaMmYGhHPR8SRdeMvKMZPjIi/1VoOit7clwC9SvMdNi/rQmoHte13TErpkZTST4AhwIbAsbVKEbFvRDxYfK9fi4g/RcSAYtwgcsc2gPHFd3t4Me4zEfH3iHgzIt6IiFsiYu1yABFxYkS8GBHTIuLViLisNC4i4tiIeK7Ynh+NiH1Lb3+heHywmO/IRgsZEX+IiF+VXp9W1N+0VDY6Ir5SPJ+x/yq20wOAz5W23SGlyQ+MiNsi4t2IeDwidqib91YRcX+xzxgXEf8vInqUxs/W+lZuESzW5dbAoaX5D2phOSMijoqIZ4r1OToizmhUt6jf4r6yGL9yRFxffHbvRsSTke/0VBvf4mfXyjyPAJYAzp1T3YXFIp0dgDS/RUQ38qVt3gQ2I+8UfgosVld1MvA1YAywDvBr8vUQfwj8AVgP2IX8wwXwdvH4IXAk8DwwEPhZMexXjD8V+Hjx3tfIrRr9i9gC+EsxrV2AN8g/AndGxMeAe4tpnw6sXkzPw6/qclJKj0XEX4Evkv/8APQonj9JvtXVj4Erga2Al4u6VwPrkr/7U4r39QLOA/4L9AROAEZExDoppfci4ovA0cCXgUeB5YBPlcI5FdgDOJR8u8fNgAsj4s2U0l+ATYAHgM8A/wHea2GxRgJHlF4PId+uaxvg/ohYk3wt1JEN3nsOsDawDDP3BW8AKxXPTwOOAb5VLN9VETEwpTSpSHpvBn4HDCVv+xeR9zVHtRBrvSOAj5LX/Q+KsvEt1D0d+CbwXeBu8v5pg1am3dq+EuCXwOLk9fQO+babALThs5tNRGwAHAdsjDcSmCml5ODQqQMwHPiAnJjUhpuLccOAx+rqDwUmtfV1g/ntCEwHVimVbQEkYGgr7/sG8Gzp9WyxtfC+z5B3bt2K1zcAl7RQd9ti+XvWlT8CHNuW5XNwmJ9Dsf3e2MK4M4F3W3nvWsV295Hi9ZDidb85zLNXsQ1vUbz+LjlRW7SFulOALevKzwNuKp4PKuY7eA7zXbuotyL5j+A04HvALcX4g4FnSvVn2Uc0WleleX+9VDagKKst32nAs7V9SFE2tJj/EsXrkcDPW/tsGtVpsIy9ganAN1qpk4A9Whlfv6/8L3BSC3Vb/Oxa+eyfBL7YzHdmYRhsoVNXcTdwSOn1lJYqtoO1gTEppZdKZfeT/+3OELkX15HAGuSdXPdiaFVEbAt8v5jPUsV7egArAGOBXwF/jogNgduAESmlvxVv34j8QzE+N9bNsDgzW+Skqgjyj21+kb/zJwHrk1uqal/yVci3bWw8kYjVgVOATcmtRd2KYZWiyp/ILVAvRMQtwF+BG1JK08gtRosDf42I8nW6FgVGNbMwKaUnImIcM1vmniPfweiEyB1AhtC4da4t/lt6PrZ4XK54XBv4Z0qpvI+6h7xfWaPuvfNqHfLRijva+oY27Ct/Cvw6Ij5TTPfalNLDxbjWPrtGzgf+kVK6us1LtJDwHDp1Fe+mlJ4tDWOK8g+ZudOvaarnXAP105u9QsSnyDvqW4BdyYcbTpjTvCNiIPmQ6RPAnuQE7WvF6B4AKaWbyYdizyEfdvpLRFxS1OkGjCP/4JWHtZh5+EKqinXIpx4QuXPELcC75EOOG5Nbr6HYNloxgpzIfZ2c1G1AbtWvbVMvkw/jfZ18SO9c4OFinrXfuV2ZdZtal9xa36y/kQ8dDgHuSimNIid3G5PPURs5F9MEeL/2JBVNT8yMfZbEuE6tvL32lXPcP85SuQ37ypTSb4FVyef/fhS4t3bu7xw+u0a2A4ZGxAcR8QEzE89XI+K0ZmJf0NhCp65uPLB8RERpJ7f+PE7zcWBARKycZt5VZBNm/YPzaXIr3im1giJZK3uP2VvsBpN/ZL6TUppevG+2DhcppQnk82F+FxE3A1dGxDeAfwHLAx+mlJ5vIf5G85W6lIhYj5ywnVoUrUX+A/ODlNILRZ3d695WO3dtxvc7IpYlt1AdmlK6qyjbkLrfr5TSVPKfqb9ExJnAq+Tt+J/kQ5MDU0p3thDubPNtxUjyYcLXyIdtISd5h9Dy+XPl+czNtvs4sFdEdCu10m1RTO+54vV48qHgsk8yaytkW+b/OHl9bQc804bY2rKvJKU0mnx7swsi4jhyq9ywYlxLn92tDea3I7P+AdgYuJicYLcl3gWWCZ26upHkQzM/iIiryBvtvF7Q8nbyORiXRcR3yCdZ/z/yP/6ap8lJ31fIPwg7kU/aLRtF7pm2IfASMJG8Q+kGHBkR15BP7j2y/KaI+BE5cfsfeRvcHXg+pTQtIm4H/gFcHxHHFnGuQP5hvD2l9PdivosXveD+TW7dfHce14k0LxaLiBXI3/3+5GTgB8DD5JZoyNvINOCwiPgFOUk7pW46L5JbnD4XESPIp168SW4BOzgiXiYnTWdT2l4j9zBfhHzqxCRgb3KL1zMppYkRcQ5wTtHp6G7yYcFPkf84XUBOzqYAO0XEKGBqSqnWyaneSPJJ/oOYmbyNBC4knzc2ptGbCqOAzxYdnF5nZkeqOfkleT/yy4j4KbAa+fzEn5e2/TuB8yLi/8jnpH0dWJlZE7pRwCZF79ZJwBt1h3Ep1tdPgTMiYhp5fS0LbJRS+hWzm+O+spjezUXdJcn7s8eLcUNp4bNrtCJSSk/XTbt2/bkniz/KC6/OPonPwYFWTqouxn+dvKOfTG7aP4J56BRR1Pko+V/1NPKO4//IO5OhpTpnkP/1TgKuIff6SqXxiwF/Jv/gzOhQAXyb3NtrCvlwwF7F+EHF+OPJydy75F5uNwFrl6bbh3zOyWjyP+qXi+VevVTnV+QfuQQM6+zP0GHhHYrtNxXDB8X3ciRwONCjru7e5BalqeRepTsV7xtSqvND8r25PwSGF2Xbkq9LObV43Km8vQK7kZOJt4r9xIPALqVpRhFPrfVpPPn81R1KdQ4iJ53TgZFzWOZXmLWzw6BiOS6sqzesrl5/cqvTxNpy00KHDOo6HpB7At9fxD+O/Cd0sdL4RYFfFOt/AvAjZu8U8dFiPb1b3ic1WL5u5M4ez5f2Qae1Etuc9pU/I+9npxb1rgIGtOWza8P3bwh2iiCl5L1cJUmSqs5OEZIkSRVnQidJklRxJnSSJEkVZ0InSZJUcSZ0kiRJFWdCJ0mSVHEmdJLUBUTEHhHxn4iYEhEpIoZExNDa886Orz1FxKiIGNnZcUgLEhM6aQFTJAKpNEyPiDcj4rGIuDQiPlNcMX9e5rF+RAwrrjjfpRRJ0JGdHUczIuKjwJXkOwccRr7X6ROdGtQ8Kr4fu3V2HNLCwgsLSwuYojXnLnKCcBP5Kvl9yDfA3g1YhXz7sz1TSm/N5TyGkm+0vU1KaeS8Rdy+ipafQSmlQZ0cSptFxCHAb8i3V/pXqbw7+Q4A76W6WzR1dRGRgEtTSkMbjFuMfCeB92Z7o6S54r1cpQXXv1JKl5cLIuK7wFnkm4tfCXy2MwLTbFYoHt8oF6aUppNvRdVpIqIn8H5K6YM5Vm6jlNK09pqWpMxDrtJCJKU0PaV0FHAP8JmI2KI2LiJWiohzI+KR4hDt1Ih4PCKOK1qKavWGkVvnAO4qHdodXozvExGnRsT9ETEhIqZFxLMRcWZELFGOJ7IjI+K/ETExIt6JiKci4rcRsWhd3cERcW1pmk9FxPERsUipzihga2Bg3WHnIXNaNxGxTUT8JSJeL5b9+SKOfqU6ixTr4/GizutFTB+vm9agYr7DImKXiHiwqP9KRJxdF3MCTi5evlC8b1QxruE5dMX0ry7W19sRcX1ErFp/blo5jgbLO6wYN6hUNrwo6x8RF0fEOPL9NT9SjP9WRNwaEWMi4r1ieS6vm8agYpkADih/DqU6Dc+hi4jdIuIfETGpGP4REZ9vUG9URIyMiLWKz2xisR7+HBEr1NeXFga20EkLp98CWwCfIyd3AJ8AdgeuJd9AfVFyC96ZwGrA14t61wArAocApzPzXK/niscB5BudXw1cQb5h+9bAscAG5Bur15xAvon4CODX5NaoVYH/AxYD3geIiJ2LuJ4FziW3ZG1WvHd9YM9iekeSbxTeD/hOaT6tno8WEV8HfgWMKR5fJB+a3pWczEwoqv4e2It8Y/dfkVvWDgX+GRFbppT+XTfpnYFvFct2MfB54GjgTfK6g3y+3O7AF4qYJ5Bvct5SrMsCfweWL6b7BLAl+TB7r9aWswm3Aa8CpxTTrMVzNHAfcD75M1iP/FlvGxEfTym9Tr75+n7A74o4L2jLDCPiW+Sbyz8JnEq+4fpQ4LqI+HpKqX46A4CR5O/FMcAnyd/RJYEdm11gqfJSSg4ODgvQAAwh/xge3UqdDYs6V5fKelKcV1tX93fkRGvFUtnQ4v1DGtTvASzaoPyU4j2blMr+BTw+h+VZnJxc3A0sUjfuO/VxkH/kRzWxvj4CTAMeB/o2GN+teNyhmNcfyuuJnAh/APy9VDaoqDuZfD5frTyAx4BX6uYxrKg/qK58tvVMPmSegK/U1a2Vj2wQx7AGyzXbPIHhRdnlLayrXg3Ktivec2xdeQKGtzCdUXVxLk1OGp8FliyVL0n+ozCx/NkU70/AXnXT/UVRvtb82t4cHLrK4CFXaeH0TvG4ZK0gpTQlpZSzjogeEbFMcbjxFvLpGYPbMuGU0nsppVrL2iIRsXQxnduLKpuWqr8NDIjSod8GdiC3Rl0C9I2IfrWB3OkD5q1FZk9yEnpyatBJJM3sjPCF4vG02noqxv8XuBHYIiL61739upTSqFLdRG5JWyEies9lvLsCr5DPgSw7Zy6n10jDaaWUJgNERLeIWKr4DP5D/hw3bfSeNtqB3BJ4fkqp9t2keP4zoDewfd17xqaU/lhXdmfxuMY8xCJVkgmdtHCqJXIzfjyL5OuEiHgamArUDp/9rqiydFsnXpxr9V9yy9cbxXRGNpjOD4p5/b04L+v3EbFPRPQo1Vm7eLy4mE55eLIYt3xbY2tgzeKx/nBpvVWBD2l8+PaxUp2y5xvUfb14XLZN0TWO49lU1+s1pfQa8NZcTrPe040KI2Lb4ty3ycW8ap/DUjTx/Wigtt7+12Bcbd2uVlfeEetWqizPoZMWTp8oHp8qlf0EOJx8SPE04DXyOWwbAj+mjX8AI/ekPRe4lXyu1VjgPfI5T8PL00kp/TMiViefV7dNMewDnBARW6SU3iAfpoR8ntQjLcx2bFtiaynkWjhtrNeM1nqoztO1ANuotWVqcf+fUnq3viwiNiZ/ps8C3wNeAKYU87iKeWsgqOK6lboUEzpp4XRg8fiXUtl+wN0ppS+VK0ZEo8NXrSUK+5HPcfpsuRUpIj7TqHJKaRK5A8XVRb3ayfEHAmcDzxRVJ6eUbm80jSZia6SW1G5Qmlcjz5ETz7WB/9aNW6d4fKHJec+NUcAaEdGtbv0uB/Stq1u7DMoyDaZT3+I1J/sA3cmf64zljIhezFvrHMzsULMucEfduNq6bdQiJ6ngIVdpIRIR3SPiHHIP15tSSv8ojZ5OXctG8WNd7i1aU+v12ChRmE5OqmZMq7hMx/caxNOvvozcUaI87VvIrYXfi4jZ5hcRPSOiT11sS0e0+W4Yfya3IJ4UEUvWjyxN57ri8fvlaUfEeuReufeklMa3cZ7zYgS5l/GX68qPrq+YUppI7lCybV3Mq5EvMt2MWotY/Xr9AY1/SybR+PvRyG3kw7iHlz/L4vnhxbRuaypaaSFjC5204NowIvYtnpfvFDGQfOhsn7r6fwa+HhF/IHdgWB74GjPPSyp7kHw+2fERsTT5x/iFlNL9xXTOAG6OiGvI5+vtQ3EJkjpPRMR9wP3kw6a1y6G8Rz6MR0ppckTsT06onoqIi8mH/foCazHzkh8ji2neB+wC/Dwi7iUnIncW55jNJqU0OvKtwn4BPBoRl5EvWzKAfJmRrwGPpJRui4g/Al8iJ4w3MvOyJVOBbzeafgf4MXl9XhIRm5DPI9wC+DT5kif1LZQ/J18G5OaIuA5YCfgG+dy0jZuY77Xk5P6miLiA/BntQD58P6FB/fuA7SPiOOAlcp+QqxpNOKX0VkQcS/4M7o/imobkXr5rAF9PKb3dRKzSwqezu9k6ODi078DMy5bUhunkXoj/Ay4FPtPC+5YgH+J8kZygPENuVatdlmJoXf0DyJf6eI/SJSrIh+W+T066phXTO4t8qHKWS2gU07+b3AI3DXgZ+BOwYYP41gMuJ18r7j1gHHAv8ENgmVK9XuTr7I1jZmvhkDastx3JrUBvF8v/PHAhsGypziLAceSOEbUOH9cBH6+b1qD6ZS2NG8bslwuZrawoH9oofnIngmvIl/N4B7i+KJtAbnmlLuazyD1jp5JbQHdtIY7hFJ1xW1hHuwEPkxP4CeSkexXqLkNS1F2T/MfhnWI+qTRutvpF+ReKz3RyMdwL7NagXkvvH0KD76qDw8IweC9XSVoAFBccngD8JqX0jc6OR9L85Tl0klQxke+vWu+44tFzzaSFkC10klQxxbXgXgQeIh/i3o583uC9wFYppdYu6SFpAWRCJ0kVExFHAfuTz9XrCYwmn1N3cso9WyUtZEzoJEmSKs5z6CRJkirOhE6SJKniTOgkSZIqzoROkiSp4kzoJEmSKs6ETpIkqeL+P+Bmer4RD+7MAAAAAElFTkSuQmCC\n", |
|
|
2913 |
"text/plain": [ |
|
|
2914 |
"<Figure size 720x576 with 1 Axes>" |
|
|
2915 |
] |
|
|
2916 |
}, |
|
|
2917 |
"metadata": { |
|
|
2918 |
"needs_background": "light" |
|
|
2919 |
}, |
|
|
2920 |
"output_type": "display_data" |
|
|
2921 |
} |
|
|
2922 |
], |
|
|
2923 |
"source": [ |
|
|
2924 |
"num_bars = np.arange(2)\n", |
|
|
2925 |
"algorithms = ['Full dataset', 'Dataset without class 4']\n", |
|
|
2926 |
"fig = plt.figure(figsize = (10, 8))\n", |
|
|
2927 |
"plt.bar(num_bars - 0.2, [83.71, 96.66], color ='r', width = 0.4, label = 'Random Forest')\n", |
|
|
2928 |
"plt.bar(num_bars + 0.2, [87.19, 98.21], color ='y', width = 0.4, label = '1D CNN')\n", |
|
|
2929 |
"plt.legend(fontsize = 12)\n", |
|
|
2930 |
"plt.xlabel(\"Dataset configuration\", fontsize = 18)\n", |
|
|
2931 |
"plt.ylabel(\"5 fold accuracy\", fontsize = 18)\n", |
|
|
2932 |
"plt.title(\"Comparison between ML model and DL model\", fontsize = 18)\n", |
|
|
2933 |
"plt.xticks([i for i in range(len(algorithms))], algorithms, fontsize = 14)\n", |
|
|
2934 |
"plt.yticks(fontsize = 14)\n", |
|
|
2935 |
"plt.ylim([75, 100])\n", |
|
|
2936 |
"plt.show()" |
|
|
2937 |
] |
|
|
2938 |
}, |
|
|
2939 |
{ |
|
|
2940 |
"cell_type": "markdown", |
|
|
2941 |
"id": "cc200092", |
|
|
2942 |
"metadata": {}, |
|
|
2943 |
"source": [ |
|
|
2944 |
"#### Further investigation,related work and References" |
|
|
2945 |
] |
|
|
2946 |
}, |
|
|
2947 |
{ |
|
|
2948 |
"cell_type": "markdown", |
|
|
2949 |
"id": "035104f7", |
|
|
2950 |
"metadata": {}, |
|
|
2951 |
"source": [ |
|
|
2952 |
"To improve the model's performance without dropping class 4, we can explore more methods such as frequency domain features for machine learning methods. Another way to approach this problem is to process each sensor's data separately using 1D CNN. This method will be computationally expensive as it requires separate CNN modules to train each signal. These methods can be explored as future work and further investigation apart from discussed here (dropping class 4).\n", |
|
|
2953 |
"\n", |
|
|
2954 |
"1.The following paper (Magar et al.) makes the interesting use of vibration signals to classify faults in bearings. They have also utilized feature engineering to help the Deep Learning framework make better predictions. \n", |
|
|
2955 |
"\n", |
|
|
2956 |
"https://ieeexplore.ieee.org/document/9345676\n", |
|
|
2957 |
"\n", |
|
|
2958 |
"\n", |
|
|
2959 |
"\n", |
|
|
2960 |
"2.Autodesk is using ML methods to optimize deign in order to make cost reductions and reduce carbon footprint. They go much more in depth and also utilize graph neural networks to make predictions. \n", |
|
|
2961 |
"\n", |
|
|
2962 |
"https://www.autodesk.com/research/publications/learning-simulate-design-structural-engineering\n", |
|
|
2963 |
"\n", |
|
|
2964 |
"\n", |
|
|
2965 |
"\n", |
|
|
2966 |
"3.The following is a very extensive paper that goes much more in depth on the application of Artificial Intelligence (AI) in Civil Engineering. The ideas in this paper can be used to come up with new variants of deep learning models to solve problems more efficiently in civil engineering. \n", |
|
|
2967 |
"\n", |
|
|
2968 |
"https://www.researchgate.net/publication/258381956_Artificial_Intelligence_in_Civil_Engineering \n", |
|
|
2969 |
"\n", |
|
|
2970 |
"\n", |
|
|
2971 |
"\n", |
|
|
2972 |
"4.This paper gives information about the new advanced data analysis techniques for practical applications of Machine Learning in the field of engineering. To illustrate this research, a seven-step procedure has been discussed to use Machine Learning for Civil Engineering applications. \n", |
|
|
2973 |
"\n", |
|
|
2974 |
"https://www.researchgate.net/publication/2770938_Machine_Learning_Techniques_for_Civil_Engineering_Problems\n", |
|
|
2975 |
"\n", |
|
|
2976 |
"\n", |
|
|
2977 |
"\n", |
|
|
2978 |
"5.The following is aligned with the objective of the project. This paper presents an embedded machine learning approach for Structural Health Monitoring and predicts faults in the sensor reading for better accuracy and reliability of the civil structure.\n", |
|
|
2979 |
"\n", |
|
|
2980 |
"https://www.researchgate.net/publication/303933051_Machine_learning_techniques_for_structural_health_monitoring\n", |
|
|
2981 |
"\n", |
|
|
2982 |
"\n", |
|
|
2983 |
"\n", |
|
|
2984 |
"6.The following is a brief overview about the future applications of Artificial Intelligence in field of Engineering and constructions. It points out the current challenges, needs and how AI can transform future engineering and digitalization with its rapid research growth. \n", |
|
|
2985 |
"\n", |
|
|
2986 |
"https://www.ips-ai.com/download/readme.pdf\n", |
|
|
2987 |
"\n", |
|
|
2988 |
"\n", |
|
|
2989 |
"\n", |
|
|
2990 |
"7.The following paper from Kansas University reviews novel Machine Learning Algorithms and their usage in Civil Engineering applications. This article focuses on the data acquisition and validation for better monitoring of Civil Structures.\n", |
|
|
2991 |
"\n", |
|
|
2992 |
"https://www.tandfonline.com/doi/pdf/10.1080/02630259608970203?casa_token=9U-lfIOWcEcAAAAA:EMhyfdycJ7rRs0e5HBIpb01V8opceuzGTftOlii2U8MGCfaMeEeDcjJlbfZvD9-2ju0Z0M0sGHnQ\n", |
|
|
2993 |
"\n", |
|
|
2994 |
"\n", |
|
|
2995 |
"\n", |
|
|
2996 |
"8.This book is a very helpful handbook which provides a broad overview of practical as well theoretical aspects are discussed for using Artificial Intelligence and Machine Learning for construction engineering, marine engineering, geotechnical engineering, etc. It addresses many complex civil engineering problems such as drought forecasting, evaporation modeling, and ground water level forecasting.\n", |
|
|
2997 |
"\n", |
|
|
2998 |
"https://www.routledge.com/A-Primer-on-Machine-Learning-Applications-in-Civil-Engineering/Deka/p/book/9781138323391\n", |
|
|
2999 |
"\n", |
|
|
3000 |
"\n", |
|
|
3001 |
"\n", |
|
|
3002 |
"9.Book: Feature engineering for machine learning : principles and techniques for data scientists, Zheng, Alice, author.; Casari, Amanda, author. 2018\n", |
|
|
3003 |
"\n", |
|
|
3004 |
"https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/?ar\n", |
|
|
3005 |
"\n", |
|
|
3006 |
"\n", |
|
|
3007 |
"\n", |
|
|
3008 |
"10.Research paper: W. Caesarendra and T. Tjahjowidodo, \"A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing\", Machines, vol. 5, no. 4, pp. 21, Sep. 2017.\n", |
|
|
3009 |
"\n", |
|
|
3010 |
"https://www.mdpi.com/2075-1702/5/4/21" |
|
|
3011 |
] |
|
|
3012 |
}, |
|
|
3013 |
{ |
|
|
3014 |
"cell_type": "markdown", |
|
|
3015 |
"id": "a95dfc21", |
|
|
3016 |
"metadata": {}, |
|
|
3017 |
"source": [ |
|
|
3018 |
"## Appendix" |
|
|
3019 |
] |
|
|
3020 |
}, |
|
|
3021 |
{ |
|
|
3022 |
"cell_type": "markdown", |
|
|
3023 |
"id": "c28205fa", |
|
|
3024 |
"metadata": {}, |
|
|
3025 |
"source": [ |
|
|
3026 |
"**Mean**: The statistical mean is an arithmetic mean process, in that it adds up all numbers in a data set, and then divides the total by the number of data points.\n", |
|
|
3027 |
"\n", |
|
|
3028 |
"**Median**: To find the median, the observations are arranged in order from smallest to largest value. If there is an odd number of observations, the median is the middle value. If there is an even number of observations, the median is the average of the two middle values.\n", |
|
|
3029 |
"\n", |
|
|
3030 |
"**Min_value**: the minimum number in a set of numbers\n", |
|
|
3031 |
"\n", |
|
|
3032 |
"**Max_value**: the maximum number in a set of numbers\n", |
|
|
3033 |
"\n", |
|
|
3034 |
"**peak_to_peak**: the difference between the maximun and minimum numbers in a set of numbers\n", |
|
|
3035 |
"\n", |
|
|
3036 |
"**variance**: Variance describes how much a random variable differs from its expected value.The variance is defined as the average of the squares of the differences between the individual (observed) and the expected value. That means it is always positive. In practice, it is a measure of how much something changes.\n", |
|
|
3037 |
"\n", |
|
|
3038 |
"**rms**: The RMS value of a set of values is the square root of the arithmetic mean of the squares of the values, or the square of the function that defines the continuous waveform. In the case of the RMS statistic of a random process, the expected value is used instead of the mean.\n", |
|
|
3039 |
"\n", |
|
|
3040 |
"**abs_mean**: The abs_mean value of a set of values is the arithmetic mean of all the absolute values in a given set of numbers.\n", |
|
|
3041 |
"\n", |
|
|
3042 |
"**shapefactor**: Shape factor refers to a value that is affected by an object's shape but is independent of its dimensions. It is a ratio of RMS value to the absolute mean of a given set of numbers.\n", |
|
|
3043 |
"\n", |
|
|
3044 |
"**impulsefactor**: Impulse factor refers to a value that is affected by an absolute maximum values. It is a ratio of maximum of absolute values to the absolute mean of a given set of numbers.\n", |
|
|
3045 |
"\n", |
|
|
3046 |
"**crestfactor**: Crest factor refers to a value that is affected by an absolute maximum values. It is a ratio of maximum of absolute values to the RMS value of a given set of numbers. Crest factor indicates how extreme the peaks are in a wave. Crest factor 1 indicates no peaks.\n", |
|
|
3047 |
"\n", |
|
|
3048 |
"**clearancefactor**: Clearance factor is peak value divided by the squared mean value of the square roots of the absolute amplitudes.\n", |
|
|
3049 |
"\n", |
|
|
3050 |
"**std**: In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.\n", |
|
|
3051 |
"\n", |
|
|
3052 |
"**skew**: In statistics, skewness is a measure of the asymmetry of the distribution of a real-valued observations about its mean. The skewness value can be positive, zero, negative, or undefined.\n", |
|
|
3053 |
"\n", |
|
|
3054 |
"**kurtosis**: Kurtosis is a statistical measure that defines how heavily the tails of a distribution differ from the tails of a normal distribution. In other words, kurtosis identifies whether the tails of a given distribution contain extreme values.\n", |
|
|
3055 |
"\n", |
|
|
3056 |
"**abslogmean**: abslogmean is a statistical measure which stands for absolute logarithmic mean of a series of observations. Its takes a mod of each value followed by log and then a mean of the resultant log values\n", |
|
|
3057 |
"\n", |
|
|
3058 |
"**meanabsdev**: meanabsdev is a statistical measure which stands for mean absolute deviation of a series of observations. The average absolute deviation, or mean absolute deviation (MAD), of a data set is the average of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability.\n", |
|
|
3059 |
"\n", |
|
|
3060 |
"**medianabsdev**: medianabsdev is a statistical measure which stands for median absolute deviation of a series of observations. The median absolute deviation of a data set is the meadian of the absolute deviations from a central point. It is a summary statistic of statistical dispersion or variability.\n", |
|
|
3061 |
"\n", |
|
|
3062 |
"**midrange**: In statistics, the mid-range or mid-extreme of a set of statistical data values is the arithmetic mean of the maximum and minimum values in a data set.\n", |
|
|
3063 |
"\n", |
|
|
3064 |
"**coeff_var**: coeff_var stands for coefficient of variation. In statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a distribution. It is often expressed as a percentage, and is defined as the ratio of the standard deviation to the mean." |
|
|
3065 |
] |
|
|
3066 |
} |
|
|
3067 |
], |
|
|
3068 |
"metadata": { |
|
|
3069 |
"kernelspec": { |
|
|
3070 |
"display_name": "Python 3", |
|
|
3071 |
"language": "python", |
|
|
3072 |
"name": "python3" |
|
|
3073 |
}, |
|
|
3074 |
"language_info": { |
|
|
3075 |
"codemirror_mode": { |
|
|
3076 |
"name": "ipython", |
|
|
3077 |
"version": 3 |
|
|
3078 |
}, |
|
|
3079 |
"file_extension": ".py", |
|
|
3080 |
"mimetype": "text/x-python", |
|
|
3081 |
"name": "python", |
|
|
3082 |
"nbconvert_exporter": "python", |
|
|
3083 |
"pygments_lexer": "ipython3", |
|
|
3084 |
"version": "3.8.8" |
|
|
3085 |
} |
|
|
3086 |
}, |
|
|
3087 |
"nbformat": 4, |
|
|
3088 |
"nbformat_minor": 5 |
|
|
3089 |
} |