Switch to unified view

a/README.md b/README.md
1
# Real-time Fall Detection for RNN(AFD-RNN)
1
# Real-time Fall Detection for RNN(AFD-RNN)
2
2
3
<p align="left">
3
<p align="left">
4
<img src="https://github.com/chizhanyuefeng/Fall_Detection_for_RNN/blob/master/result/rnn.gif", width="720">
4
<img src="https://github.com/chizhanyuefeng/Fall_Detection_for_RNN/blob/master/result/rnn.gif?raw=true", width="720">
5
</p>
5
</p>
6
6
7
result picture illustrate:
7
result picture illustrate:
8
8
9
- The red,green,blue lines is acceleration sensor's x,y,z data。
9
- The red,green,blue lines is acceleration sensor's x,y,z data。
10
- In the picture ,"correct" is the ground truth,"predict" is AFD-RNN network predict data
10
- In the picture ,"correct" is the ground truth,"predict" is AFD-RNN network predict data
11
- Fall1、Fall2、Fall3 and Fall4 are represent Forward-lying,Front-knees-lying,Back-sitting-chair,Sideward-lying 
11
- Fall1、Fall2、Fall3 and Fall4 are represent Forward-lying,Front-knees-lying,Back-sitting-chair,Sideward-lying 
12
12
13
## AFD-RNN using RNN 
13
## AFD-RNN using RNN 
14
The sensors(acceleration and gyroscope sensor) is realtime to collect data,so we using rnn to detect the people movement.
14
The sensors(acceleration and gyroscope sensor) is realtime to collect data,so we using rnn to detect the people movement.
15
15
16
## Requirenment
16
## Requirenment
17
- TensorFlow >= 1.4
17
- TensorFlow >= 1.4
18
- python3
18
- python3
19
- matplotlib
19
- matplotlib
20
20
21
## Class
21
## Class
22
Sitting,standing,stand to sit,sit to stand,upstairs,downstairs,lying,jumping,joging,walking and fall.
22
Sitting,standing,stand to sit,sit to stand,upstairs,downstairs,lying,jumping,joging,walking and fall.
23
23
24
## Train and test
24
## Train and test
25
25
26
### 1.Train data
26
### 1.Train data
27
- The data collect frequence is 50Hz
27
- The data collect frequence is 50Hz
28
- Need acceleration and gyroscope sensor
28
- Need acceleration and gyroscope sensor
29
29
30
### 2.Before training
30
### 2.Before training
31
Put the train data to ./dataset/train/,and use kalman filter  to handle the data.
31
Put the train data to ./dataset/train/,and use kalman filter  to handle the data.
32
32
33
33
34
    python utils.py
34
    python utils.py
35
35
36
### 3.Training
36
### 3.Training
37
    
37
    
38
    python train_rnn.py
38
    python train_rnn.py
39
    
39
    
40
## 4.Testing
40
## 4.Testing
41
Put the test data to ./dataset/test/,and use kalman filter  to handle the data.
41
Put the test data to ./dataset/test/,and use kalman filter  to handle the data.
42
42
43
43
44
    python run_rnn.py
44
    python run_rnn.py
45
    
45
    
46
## Dataset
46
## Dataset
47
47
48
We using public dataset [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact) to train and test our net.
48
We using public dataset [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact) to train and test our net.
49
49
50
I upload the dataset at [Baidu网盘](https://pan.baidu.com/s/1arZMNPs1GzWrQf4beJFCSQ),if you cant download from [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact),you can try this
50
I upload the dataset at [Baidu网盘](https://pan.baidu.com/s/1arZMNPs1GzWrQf4beJFCSQ),if you cant download from [MobileFall](http://www.bmi.teicrete.gr/index.php/research/mobiact),you can try this
51
51
52
The final accuracy is 98.78%
52
The final accuracy is 98.78%