|
a |
|
b/data_load.py |
|
|
1 |
import os |
|
|
2 |
import random |
|
|
3 |
import numpy as np |
|
|
4 |
import pandas as pd |
|
|
5 |
|
|
|
6 |
class DataLoad(object): |
|
|
7 |
|
|
|
8 |
_all_data = None |
|
|
9 |
_extract_data_size = 0 |
|
|
10 |
_class_num = 0 |
|
|
11 |
|
|
|
12 |
def __init__(self, data_path, time_step, class_num): |
|
|
13 |
if not os.path.exists(data_path): |
|
|
14 |
print('%s is not found'%(data_path)) |
|
|
15 |
raise FileExistsError |
|
|
16 |
self._time_step = time_step |
|
|
17 |
self._extract_data_size = self._time_step |
|
|
18 |
self._class_num = class_num |
|
|
19 |
self._data_file_list = [os.path.join(data_path, file) for file in os.listdir(data_path)] |
|
|
20 |
|
|
|
21 |
self._all_data = pd.DataFrame() |
|
|
22 |
for f in self._data_file_list: |
|
|
23 |
# 读取所有csv文件 |
|
|
24 |
if 'csv' in f: |
|
|
25 |
data = pd.read_csv(f, index_col=False) |
|
|
26 |
self._all_data = self._all_data.append(data) |
|
|
27 |
|
|
|
28 |
def get_batch(self, batchsize, start_list=None): |
|
|
29 |
data_size = len(self._all_data.acc_x.values) |
|
|
30 |
|
|
|
31 |
if start_list is None: |
|
|
32 |
start_pos = [random.randint(1, data_size - self._extract_data_size) for _ in range(data_size)] |
|
|
33 |
else: |
|
|
34 |
if len(start_list) != batchsize: |
|
|
35 |
print('batchisze = ', batchsize) |
|
|
36 |
print('start_list length = ', len(start_list)) |
|
|
37 |
raise KeyError('batchsize is no equal to start_list length!') |
|
|
38 |
start_pos = start_list |
|
|
39 |
|
|
|
40 |
train_x = [] |
|
|
41 |
label_y = [] |
|
|
42 |
for i in range(batchsize): |
|
|
43 |
|
|
|
44 |
train_x.append(self._all_data.iloc[start_pos[i]:start_pos[i]+self._extract_data_size, 0:3].values) |
|
|
45 |
label = [[0 for _ in range(self._class_num)] for _ in range(self._extract_data_size)] |
|
|
46 |
|
|
|
47 |
for s in range(self._extract_data_size): |
|
|
48 |
j = self._all_data.iloc[start_pos[i] + s:start_pos[i] + s + 1, 6].values[0] |
|
|
49 |
label[s][j] = 1 |
|
|
50 |
label_y.append(label) |
|
|
51 |
|
|
|
52 |
return np.array(train_x), np.array(label_y) |
|
|
53 |
|
|
|
54 |
def get_test_data(self): |
|
|
55 |
""" |
|
|
56 |
x shape = [datasize, 3] |
|
|
57 |
y shape = [datasize ,1] |
|
|
58 |
:return: |
|
|
59 |
""" |
|
|
60 |
x = np.array(self._all_data.iloc[:, 0:3].values) |
|
|
61 |
y = np.array(self._all_data.iloc[:, 6].values) |
|
|
62 |
return x, y |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
|
|
|
66 |
if __name__ == '__main__': |
|
|
67 |
data = DataLoad('./dataset/train/', time_step=150, class_num=11) |
|
|
68 |
x, y = data.get_batch(50) |
|
|
69 |
print(x.shape) |
|
|
70 |
print(y.shape) |