|
a |
|
b/Real_Time_Prediction_From_Microcontroller.py |
|
|
1 |
import socket |
|
|
2 |
import msvcrt |
|
|
3 |
import csv |
|
|
4 |
import pandas as pd |
|
|
5 |
import tensorflow as tf |
|
|
6 |
import matplotlib as plt |
|
|
7 |
import glob |
|
|
8 |
import numpy as np |
|
|
9 |
from tensorflow import keras |
|
|
10 |
from keras import Sequential |
|
|
11 |
from sklearn.utils import shuffle |
|
|
12 |
import sklearn.model_selection |
|
|
13 |
|
|
|
14 |
STEP_SIZE = 20 |
|
|
15 |
SENSOR_NUM = 6 |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
Label = { 'STD':0, 'WAL':1, 'JOG':2 , 'JUM':3, 'FALL':4 , 'LYI':5,'RA':6} #, 'JUM':3, 'LYI':4, 'FOL':5, 'FKL':5, 'BSC':5, 'SDL':5, 'STU':6, 'STN':7, 'SCH':8, 'SIT':9, 'CHU':10, 'CSI':11, 'CSO':12} |
|
|
19 |
class_names = { 0:'STD', 1:'WAL', 2:'JOG' , 3:'JUM', 4:'FALL', 5:'LYI',6:'RA'}#, 3:'JUM', 4:'LYI', 5:'Falling', 6:'STU', 7:'STN', 8:'SCH', 9:'SIT', 10:'CHU', 11:'CSI', 12:'CSO'} |
|
|
20 |
|
|
|
21 |
inputSensor = [] |
|
|
22 |
model = tf.keras.models.load_model('./model_4/') |
|
|
23 |
|
|
|
24 |
model.summary() |
|
|
25 |
|
|
|
26 |
|
|
|
27 |
l = [] |
|
|
28 |
packet = [] |
|
|
29 |
p = "" |
|
|
30 |
tp = [] |
|
|
31 |
s = socket.socket() |
|
|
32 |
|
|
|
33 |
s.bind(('0.0.0.0', 80 )) |
|
|
34 |
s.listen(0) |
|
|
35 |
i = 0 |
|
|
36 |
|
|
|
37 |
record = input("Press R to start recording...") |
|
|
38 |
if record == 'r' : |
|
|
39 |
|
|
|
40 |
|
|
|
41 |
# while True: |
|
|
42 |
|
|
|
43 |
client, addr = s.accept() |
|
|
44 |
# x = kbfunc() |
|
|
45 |
|
|
|
46 |
carry = '' |
|
|
47 |
try: |
|
|
48 |
while True: |
|
|
49 |
content = client.recv(1) |
|
|
50 |
|
|
|
51 |
|
|
|
52 |
if len(content) ==0: |
|
|
53 |
# print("heree?") |
|
|
54 |
break |
|
|
55 |
|
|
|
56 |
else: |
|
|
57 |
#print(len(content)) |
|
|
58 |
|
|
|
59 |
temp = '' |
|
|
60 |
content = content.decode("utf-8") |
|
|
61 |
|
|
|
62 |
if content == '!': |
|
|
63 |
|
|
|
64 |
tp =[] |
|
|
65 |
p = '' |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
elif content == '@': |
|
|
69 |
tp.append(float(p)) |
|
|
70 |
# print(type(tp[0])) |
|
|
71 |
p = '' |
|
|
72 |
inputSensor.append(tp) |
|
|
73 |
if len(inputSensor) > STEP_SIZE: |
|
|
74 |
inputSensor.pop(0) |
|
|
75 |
if len(inputSensor) == STEP_SIZE: |
|
|
76 |
temp = np.array(inputSensor).reshape(-1, STEP_SIZE, SENSOR_NUM) |
|
|
77 |
#print(temp) |
|
|
78 |
pred = model.predict(temp) |
|
|
79 |
results = np.argmax(pred, axis=1) |
|
|
80 |
print("prediction: ", class_names[results[i]]) |
|
|
81 |
# inputSensor = [] |
|
|
82 |
|
|
|
83 |
|
|
|
84 |
|
|
|
85 |
elif content ==',': |
|
|
86 |
p = float(p) |
|
|
87 |
p = p |
|
|
88 |
tp.append(p) |
|
|
89 |
p = '' |
|
|
90 |
|
|
|
91 |
else: |
|
|
92 |
p += content |
|
|
93 |
|
|
|
94 |
except KeyboardInterrupt: |
|
|
95 |
pass |
|
|
96 |
|
|
|
97 |
|