import argparse
from whs import load_model
from overlay import launch_overlay
def get_inputs():
# Create the parser
parser = argparse.ArgumentParser(description='Toggle between Local LLM and ChatGPT.')
parser.add_argument('--auto', action='store_true', default=False, help='Automatically get commentary')
parser.add_argument('--api_whisper', action='store_true', default=False, help='Run whisper through api instead of locally')
parser.add_argument('--api_gpt', action='store_true', default=False, help='Will use use gpt api otherwise, by defualt will use a local LLM through the text-generation-webui API')
# Parse the arguments
args = parser.parse_args()
# Extract the specific arguments
auto = args.auto
api_whisper = args.api_whisper
api_gpt = args.api_gpt
return auto, api_whisper, api_gpt
def get_whisper_model(api_whisper):
# Load the model
# If api_whisper is true, then we will not load the model
# This is because we will use the api instead
if api_whisper:
whs_model = None
else:
# Load the model
whs_model = load_model()
return whs_model
def main(whs_model, auto):
# Launch the GUI in the main thread
launch_overlay(whs_model, auto )
if __name__ == "__main__":
# Get the inputs
auto, api_whisper, api_gpt = get_inputs()
# Get the model
whs_model = get_whisper_model(api_whisper)
# Run the main function
main(whs_model, auto)