
Test Your Algorithm

Instructions
1. From the Pulse Rate Algorithm Notebook you can do one of the following:

Copy over all the Code section to the following Code block.
Download as a Python (.py) and copy the code to the following Code block.

2. In the bottom right, click the Test Run button.

Didn't Pass
If your code didn't pass the test, go back to the previous Concept or to your local setup and
continue iterating on your algorithm and try to bring your training error down before testing again.

Pass
If your code passes the test, complete the following! You must include a screenshot of your code
and the Test being Passed. Here is what the starter filler code looks like when the test is run and
should be similar. A passed test will include in the notebook a green outline plus a box with Test
passed: and in the Results bar at the bottom the progress bar will be at 100% plus a checkmark
with All cells passed.

Example

1. Take a screenshot of your code passing the test, make sure it is in the format .png . If not a
.png image, you will have to edit the Markdown render the image after Step 3. Here is an

example of what the passed.png would look like
2. Upload the screenshot to the same folder or directory as this jupyter notebook.
3. Rename the screenshot to passed.png and it should show up below.

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

Passed
4. Download this jupyter notebook as a .pdf file.
5. Continue to Part 2 of the Project.

In [2]: import glob

from tqdm import tqdm

import numpy as np

import scipy as sp

import scipy.io

import scipy.signal

import os.path

from tqdm import tqdm

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import KFold

from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor

from sklearn.metrics import mean_squared_error

def LoadTroikaDataset():

 """

 Retrieve the .mat filenames for the troika dataset.

 Review the README in ./datasets/troika/ to understand the organizat

ion of the .mat files.

 Returns:

 data_fls: Names of the .mat files that contain signal data

 ref_fls: Names of the .mat files that contain reference data

 <data_fls> and <ref_fls> are ordered correspondingly, so that r

ef_fls[5] is the

 reference data for data_fls[5], etc...

 """

 data_dir = "./datasets/troika/training_data"

 data_fls = sorted(glob.glob(data_dir + "/DATA_*.mat"))

 ref_fls = sorted(glob.glob(data_dir + "/REF_*.mat"))

 return data_fls, ref_fls

def LoadTroikaDataFile(data_fl):

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 """

 Loads and extracts signals from a troika data file.

 Usage:

 data_fls, ref_fls = LoadTroikaDataset()

 ppg, accx, accy, accz = LoadTroikaDataFile(data_fls[0])

 Args:

 data_fl: (str) filepath to a troika .mat file.

 Returns:

 numpy arrays for ppg, accx, accy, accz signals.

 """

 data = sp.io.loadmat(data_fl)['sig']

 return data[2:]

def AggregateErrorMetric(pr_errors, confidence_est):

 """

 Computes an aggregate error metric based on confidence estimates.

 Computes the MAE at 90% availability.

 Args:

 pr_errors: a numpy array of errors between pulse rate estimates

 and corresponding

 reference heart rates.

 confidence_est: a numpy array of confidence estimates for each

 pulse rate

 error.

 Returns:

 the MAE at 90% availability

 """

 # Higher confidence means a better estimate. The best 90% of the es

timates

 # are above the 10th percentile confidence.

 percentile90_confidence = np.percentile(confidence_est, 10)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 # Find the errors of the best pulse rate estimates

 best_estimates = pr_errors[confidence_est >= percentile90_confidenc

e]

 # Return the mean absolute error

 return np.mean(np.abs(best_estimates))

def Evaluate():

 """

 Top-level function evaluation function.

 Runs the pulse rate algorithm on the Troika dataset and returns an

 aggregate error metric.

 Returns:

 Pulse rate error on the Troika dataset. See AggregateErrorMetri

c.

 """

 # Retrieve dataset files

 data_fls, ref_fls = LoadTroikaDataset()

 errs, conFs = [], []

 for data_fl, ref_fl in zip(data_fls, ref_fls):

 # Run the pulse rate algorithm on each trial in the dataset

 errors, confidence = RunPulseRateAlgorithm(data_fl, ref_fl)

 errs.append(errors)

 conFs.append(confidence)

 # Compute aggregate error metric

 errs = np.hstack(errs)

 conFs = np.hstack(conFs)

 return AggregateErrorMetric(errs, conFs)

def RunPulseRateAlgorithm(data_fl, ref_fl):

 Fs = 125 # Sample Frequency

 window_len = 8 # Window to calculate PR

 window_shift = 2 # Difference between windows

 reg, scores = Regressor()

 targets, features, sigs, subs = Data_window8(data_fl, ref_fl)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 error, confidence = [], []

 for i,feature in enumerate(features):

 est = reg.predict(np.reshape(feature, (1, -1)))[0]

 ppg, accx, accy, accz = sigs[i]

 ppg = Filter(ppg)

 accx = Filter(accx)

 accy = Filter(accy)

 accz = Filter(accz)

 n = len(ppg) * 3

 freq = np.fft.rfftfreq(n, 1/Fs)

 fft = np.abs(np.fft.rfft(ppg,n))

 fft[freq <= 40/60.0] = 0.0

 fft[freq >= 240/60.0] = 0.0

 est_Fs = est / 55.0

 Fs_win = 30 / 60.0

 Fs_win_e = (freq >= est_Fs - Fs_win) & (freq <= est_Fs +Fs_win)

 conf = np.sum(fft[Fs_win_e])/np.sum(fft)

 error.append(np.abs((est-targets[i])))

 confidence.append(conf)

 return np.array(error), np.array(confidence)

def Data_window8(data_fl, ref_fl):

 Fs=125 # Sampling frequency

 window_len = 6 # Window to calculate PR

 window_shift = 2 # Difference between windows

 sig = LoadTroikaDataFile(data_fl)

 ref = scipy.io.loadmat(ref_fl)["BPM0"]

 ref = np.array([x[0] for x in ref])

 subject_name = os.path.basename(data_fl).split('.')[0]

 start_indxs, end_indxs = Indexator(sig.shape[1], len(ref), Fs, wind

ow_len,window_shift)

 targets, features, sigs, subs = [], [], [], []

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 for i, s in enumerate(start_indxs):

 start_i = start_indxs[i]

 end_i = end_indxs[i]

 ppg = sig[0, start_i:end_i]

 accx = sig[1, start_i:end_i]

 accy = sig[2, start_i:end_i]

 accz = sig[3, start_i:end_i]

 ppg = Filter(ppg)

 accx = Filter(accx)

 accy = Filter(accy)

 accz = Filter(accz)

 feature, ppg, accx, accy, accz = CreateFeature(ppg, accx, accy,

 accz)

 sigs.append([ppg, accx, accy, accz])

 targets.append(ref[i])

 features.append(feature)

 subs.append(subject_name)

 return (np.array(targets), np.array(features), sigs, subs)

def Data_window6():

 Fs=125 # Sampling rate

 window_len = 6 # Window to calculate PR

 window_shift = 2 # Difference between windows

 data_fls, ref_fls = LoadTroikaDataset()

 pbar = tqdm(list(zip(data_fls, ref_fls)), desc="Prepare Data")

 targets, features, sigs, subs = [], [], [], []

 for data_fl, ref_fl in pbar:

 sig = LoadTroikaDataFile(data_fl)

 ref = scipy.io.loadmat(ref_fl)["BPM0"]

 ref = np.array([x[0] for x in ref])

 subject_name = os.path.basename(data_fl).split('.')[0]

 start_indxs, end_indxs = Indexator(sig.shape[1], len(ref), Fs,

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

window_len,window_shift)

 for i, s in enumerate(start_indxs):

 start_i = start_indxs[i]

 end_i = end_indxs[i]

 ppg = sig[0, start_i:end_i]

 accx = sig[1, start_i:end_i]

 accy = sig[2, start_i:end_i]

 accz = sig[3, start_i:end_i]

 ppg = Filter(ppg)

 accx = Filter(accx)

 accy = Filter(accy)

 accz = Filter(accz)

 feature, ppg, accx, accy, accz = CreateFeature(ppg, accx, a

ccy, accz)

 sigs.append([ppg, accx, accy, accz])

 targets.append(ref[i])

 features.append(feature)

 subs.append(subject_name)

 return (np.array(targets), np.array(features), sigs, subs)

def CreateFeature(ppg, accx, accy, accz):

 """ Create features """

 ppg = Filter(ppg)

 accx = Filter(accx)

 accy = Filter(accy)

 accz = Filter(accz)

 Fs = 125

 n = len(ppg) * 4

 freq = np.fft.rfftfreq(n, 1/Fs)

 fft = np.abs(np.fft.rfft(ppg,n))

 fft[freq <= 40/60.0] = 0.0

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 fft[freq >= 240/60.0] = 0.0

 acct = np.sqrt(accx**2 + accy**2 + accz**2) # Total signal of acc

 acc_fft = np.abs(np.fft.rfft(acct, n))

 acc_fft[freq <= 40/60.0] = 0.0

 acc_fft[freq >= 240/60.0] = 0.0

 ppg_feature = freq[np.argmax(fft)]

 acc_feature = freq[np.argmax(acc_fft)]

 return (np.array([ppg_feature, acc_feature]), ppg, accx, accy, accz

)

def RegressionAlg(features, targets, subs):

 """ The regression model"""

 AdaBoostRegressor

 regression = RandomForestRegressor(n_estimators=400,max_depth=16)

 scores = []

 lf = KFold(n_splits=5)

 splits = lf.split(features,targets,subs)

 for i, (train_idx, test_idx) in enumerate(splits):

 X_train, y_train = features[train_idx], targets[train_idx]

 X_test, y_test = features[test_idx], targets[test_idx]

 regression.fit(X_train, y_train)

 y_pred = regression.predict(X_test)

 score = Error(y_test, y_pred)

 scores.append(score)

 return (regression, scores)

def Filter(signal):

 """Bandpass filter between 40 and 240 BPM"""

 pass_band=(40/60.0, 240/60.0)

 Fs = 125

 b, a = scipy.signal.butter(3, pass_band, btype='bandpass', fs=Fs)

 return scipy.signal.filtfilt(b, a, signal)

def Indexator(sig_len, ref_len, Fs=125, window_len_s=10, window_shift_s

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

=2):

 """

 Find start and end index to iterate over a set of signals

 """

 # Set the length of the biggest signal with regards to the referenc

e signal

 if ref_len < sig_len:

 n = ref_len

 else:

 n = sig_len

 # Start Indexes

 start_indxs = (np.cumsum(np.ones(n) * Fs * window_shift_s) - Fs * w

indow_shift_s).astype(int)

 # End Indexes (same size as the start indexes array)

 end_indxs = start_indxs + window_len_s * Fs

 return (start_indxs, end_indxs)

def Predict(reg,feature, ppg, accx, accy, accz):

 """Predict based on the regressor"""

 est = reg.predict(np.reshape(feature, (1, -1)))[0]

def Error(y_test, y_pred):

 """

 Calculate error score of a Prediction

 """

 return mean_squared_error(y_test, y_pred)

def Regressor():

 fname = "outfile.npy"

 reg, scores = [], []

 if os.path.isfile(fname):

 [reg,scores] = np.load(fname,allow_pickle=True)

 #

 else:

 targets, features, sigs, subs = Data_window6()

 reg, scores = RegressionAlg(features, targets, subs)

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

 np.save("outfile", [reg,scores])

 return reg, scores

In []:

Create PDF in your applications with the Pdfcrowd HTML to PDF API PDFCROWD

https://pdfcrowd.com/doc/api/?ref=pdf
https://pdfcrowd.com/?ref=pdf

