Switch to unified view

a b/Structural Health monitoring.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "id": "b9ff0033",
7
   "metadata": {
8
    "scrolled": true
9
   },
10
   "outputs": [],
11
   "source": [
12
    "import os\n",
13
    "import scipy.io\n",
14
    "import pandas as pd\n",
15
    "import numpy as np\n",
16
    "import seaborn as sns\n",
17
    "import matplotlib.pyplot as plt\n",
18
    "#list of files for october \n",
19
    "arr = os.listdir('./traindata_201910')\n",
20
    "#list of files for April\n",
21
    "arr2 = os.listdir('./traindata_201904')"
22
   ]
23
  },
24
  {
25
   "cell_type": "code",
26
   "execution_count": 13,
27
   "id": "98d246d3",
28
   "metadata": {},
29
   "outputs": [],
30
   "source": [
31
    "\n",
32
    "#looping to include all data in october month\n",
33
    "\n",
34
    "for j in range(len(arr)):\n",
35
    "    strain = []\n",
36
    "    time = []\n",
37
    "    mat = scipy.io.loadmat('./traindata_201910/'+arr[j])\n",
38
    "    for item in mat['predat_sg'][0][0][3]:\n",
39
    "        strain.append(item)\n",
40
    "    for item in mat['predat_sg'][0][0][0]:\n",
41
    "        #convert matlab time to date_timestamp before appending \n",
42
    "        time.append(pd.to_datetime(item-719529,unit='d').round('s')[0].date())\n",
43
    "    if j==0:\n",
44
    "        col_name = []\n",
45
    "        for i in range (1,17):\n",
46
    "            col_name.append(\"strain_\"+str(i))\n",
47
    "\n",
48
    "        #create datafrome to add the strain values\n",
49
    "        strain_oct = pd.DataFrame(strain, columns=col_name)\n",
50
    "        strain_oct.insert(0, 'timestamp', time)\n",
51
    "        strain_oct = strain_oct.groupby(['timestamp']).mean()\n",
52
    "    else:\n",
53
    "        temp = pd.DataFrame(strain, columns=col_name)\n",
54
    "        temp.insert(0,'timestamp',time)\n",
55
    "        temp = temp.groupby(['timestamp']).mean()\n",
56
    "        strain_oct = strain_oct.append(temp)\n"
57
   ]
58
  },
59
  {
60
   "cell_type": "code",
61
   "execution_count": 49,
62
   "id": "bf71e1d5",
63
   "metadata": {},
64
   "outputs": [],
65
   "source": [
66
    "#creating column names\n",
67
    "col_name = []\n",
68
    "for i in range (1,17):\n",
69
    "    col_name.append(\"strain_\"+str(i))\n",
70
    "\n",
71
    "#create datafrome to add the strain values\n",
72
    "strain_oct = pd.DataFrame(strain, columns=col_name)\n",
73
    "strain_oct.insert(0, 'timestamp', time)\n"
74
   ]
75
  },
76
  {
77
   "cell_type": "code",
78
   "execution_count": null,
79
   "id": "a1e7388f",
80
   "metadata": {},
81
   "outputs": [],
82
   "source": [
83
    "#convert matlab time to date_time stamp\n",
84
    "#dates = strain_oct['mat_time'].apply(lambda matlab_datenum: pd.to_datetime(matlab_datenum-719529,unit='d').round('s'))\n",
85
    "#strain_oct.insert(1, 'timestamp', dates)\n",
86
    "\n",
87
    "#group items with same timestamp values and apply mean on the strain values\n",
88
    "strain_oct = strain_oct.groupby(['timestamp']).mean().drop(['mat_time'], axis=1)"
89
   ]
90
  },
91
  {
92
   "cell_type": "code",
93
   "execution_count": 15,
94
   "id": "87f32135",
95
   "metadata": {},
96
   "outputs": [],
97
   "source": [
98
    "#save the dataframe to CSV file\n",
99
    "strain_oct.to_csv('daywise_oct.csv')"
100
   ]
101
  },
102
  {
103
   "cell_type": "code",
104
   "execution_count": 19,
105
   "id": "80976996",
106
   "metadata": {},
107
   "outputs": [],
108
   "source": [
109
    "#save the dataframe to .mat file\n",
110
    "import scipy.io as sio\n",
111
    "destination_folder_path = ''\n",
112
    "sio.savemat(os.path.join(destination_folder_path,'daywise_oct.mat'), {name: col.values for name, col in strain_oct.items()})"
113
   ]
114
  },
115
  {
116
   "cell_type": "code",
117
   "execution_count": 26,
118
   "id": "735f1765",
119
   "metadata": {},
120
   "outputs": [],
121
   "source": [
122
    "#looping to include all data in april month\n",
123
    "\n",
124
    "for j in range(len(arr2)):\n",
125
    "    strain = []\n",
126
    "    time = []\n",
127
    "    mat = scipy.io.loadmat('./traindata_201904/'+arr2[j])\n",
128
    "    for item in mat['predat_sg'][0][0][3]:\n",
129
    "        strain.append(item)\n",
130
    "    for item in mat['predat_sg'][0][0][0]:\n",
131
    "        #convert matlab time to date_timestamp before appending \n",
132
    "        time.append(pd.to_datetime(item-719529,unit='d').round('s')[0].date())\n",
133
    "    if j==0:\n",
134
    "        col_name = []\n",
135
    "        for i in range (1,17):\n",
136
    "            col_name.append(\"strain_\"+str(i))\n",
137
    "\n",
138
    "        #create datafrome to add the strain values\n",
139
    "        strain_apr = pd.DataFrame(strain, columns=col_name)\n",
140
    "        strain_apr.insert(0, 'timestamp', time)\n",
141
    "        strain_apr = strain_apr.groupby(['timestamp']).mean().reset_index()\n",
142
    "        strain_apr = strain_apr.groupby(['timestamp']).mean().reset_index()\n",
143
    "    else:\n",
144
    "        temp = pd.DataFrame(strain, columns=col_name)\n",
145
    "        temp.insert(0,'timestamp',time)\n",
146
    "        temp = temp.groupby(['timestamp']).mean()\n",
147
    "        strain_apr = strain_apr.append(temp)\n",
148
    "\n",
149
    "#save the dataframe to CSV file\n",
150
    "strain_apr.to_csv('daywise_apr.csv')\n",
151
    "\n",
152
    "#save the dataframe to .mat file\n",
153
    "import scipy.io as sio\n",
154
    "destination_folder_path = ''\n",
155
    "sio.savemat(os.path.join(destination_folder_path,'daywise_apr.mat'), {name: col.values for name, col in strain_apr.items()})"
156
   ]
157
  },
158
  {
159
   "cell_type": "code",
160
   "execution_count": 28,
161
   "id": "a62fa77b",
162
   "metadata": {},
163
   "outputs": [
164
    {
165
     "data": {
166
      "text/plain": [
167
       "[<matplotlib.lines.Line2D at 0x1feca1f0670>,\n",
168
       " <matplotlib.lines.Line2D at 0x1feca0447f0>,\n",
169
       " <matplotlib.lines.Line2D at 0x1feca044850>,\n",
170
       " <matplotlib.lines.Line2D at 0x1feca044a30>,\n",
171
       " <matplotlib.lines.Line2D at 0x1feca044b50>,\n",
172
       " <matplotlib.lines.Line2D at 0x1feca044c70>,\n",
173
       " <matplotlib.lines.Line2D at 0x1feca044d90>,\n",
174
       " <matplotlib.lines.Line2D at 0x1feca044eb0>,\n",
175
       " <matplotlib.lines.Line2D at 0x1feca044fd0>,\n",
176
       " <matplotlib.lines.Line2D at 0x1feca1ef130>,\n",
177
       " <matplotlib.lines.Line2D at 0x1feca1f0dc0>,\n",
178
       " <matplotlib.lines.Line2D at 0x1feca1ef250>,\n",
179
       " <matplotlib.lines.Line2D at 0x1feca1ef460>,\n",
180
       " <matplotlib.lines.Line2D at 0x1feca1ef580>,\n",
181
       " <matplotlib.lines.Line2D at 0x1feca1ef6a0>,\n",
182
       " <matplotlib.lines.Line2D at 0x1feca1ef7c0>]"
183
      ]
184
     },
185
     "execution_count": 28,
186
     "metadata": {},
187
     "output_type": "execute_result"
188
    },
189
    {
190
     "data": {
191
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAFwCAYAAAB3ioerAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39ned9WLJVvFHVwwtqk2vdckQEjyEVIhDQgJJCEUUxNKQkgCKRBIQkijBgIB04sNNpaNjcHdlq0u7Wp7b/P9sVpZsiVZZYts3fd5eIDdmXuvpJ3Z35x7zu9IsiwjEAgEAoFAIBAIRo8i3wsQCAQCgUAgEAgOdoSoFggEAoFAIBAIxogQ1QKBQCAQCAQCwRgRologEAgEAoFAIBgjQlQLBAKBQCAQCARjRIhqgUAgEAgEAoFgjORNVEuS9JgkSV2SJH2SofEmS5L0qiRJmyVJ2iRJUk0mxhUIBAKBQCAQCA5EPiPVfwHOzOB4jwP3ybI8C1gMdGVwbIFAIBAIBAKBYFDyJqplWX4XcPZ9TZKkekmSXpEkaa0kSe9JkjRzOGNJkjQbUMmy/FrP2H5ZloOZX7VAIBAIBAKBQLA/4y2n+mHgKlmWjwSuA343zPOmA25Jkp6VJOkjSZLukyRJmbVVCgQCgUAgEAgEfVDlewFpJEkyAccCT0mSlH5Z2/PeZ4HbBzitVZblM0j9HEuAI4Am4N/AV4BHs7tqgUAgEAgEAoFgHIlqUlFztyzL8/d9Q5blZ4Fnhzi3BVgvy/IuAEmS/gMcjRDVAoFAIBAIBIIcMG7SP2RZ9gKNkiRdDCClmDfM09cANkmSSnr+/2RgUxaWKRAIBAKBQCAQ7Ec+LfX+CXwAzJAkqUWSpK8DXwK+LknSBuBT4ILhjCXLcoJUDvYbkiRtBCTgkeysXCAQCAQCgUAg6I8ky3K+1yAQCAQCgUAgEBzUjJv0D4FAIBAIBAKB4GBFiGqBQCAQCAQCgWCM5MX9o7i4WK6pqcnH1AKBQCAQCASCCcTatWsdsiyXHPjIsZEXUV1TU0NDQ0M+phYIBAKBQCAQTCAkSdqTi3lE+odAIBAIBAKBQDBGhKgWCAQCgUAgEAjGiBDVAoFAIBAIBALBGBGiWiAQCAQCgUAgGCNCVAsEAoFAIBAIBGNEiGqBQCAQCAQCgWCMCFEtEAgEAoFAIBCMESGqBQKBQCAQCASCMSJEtUAgEAgEAoFAMEaEqBYIBAKBQCAQCMaIENUCgUAgEAgEAsEYEaJaIBAIBAJBTohEIrjd7nwvQyDICkJUCwQCgUAgyAlvvvkmf/3rX/O9DIEgKwhRLRAIBAKBICe0tbURDofzvQyBICsIUS0QCAQCgSDryLJMV1dXvpchEGQNIaoFAoFAIBBkHZ/PRyQSyfcyBIKsIUS1QCAQCASCrCOi1IJDHSGqBQKBQCAQZB273Z7vJQgEWUWIaoFAIBAIBFlHRKoFhzpCVAsEAoFAIMg6QlQLDnWEqB5ntLW18de//pVYLJbvpQgEAoFAkBFkWRbpH4JDHiGqxxkbN26ksbGRQCCQ76UIBAKBQJARPB4P0WgUpVKZ76Xkjfb2dj799NN8L0OQRYSoHmc0NTXlewkCgUAgEGSUdJS6qKgozyvJHytXrmT58uX5XoYgiwhRPY6IRqO0t7fnexkCgUAgEGSUdD51aWlpnleSP3w+H7Is53sZgiwiRPU4orW1lWQyme9lCAQCgUCQUex2O0ajEb1en++l5A2fz5fvJQiyjBDV4wiR+iEQCASCQ5Gurq4JHaUG8Pv9+V6CIMsIUT2OEKJaIBAIBIcayWQSu90+oUV1JBIhGo3mexmCLCNE9TghmUzS3NyMWq3O91IEAoFAIMgYHo+HWCxGSUlJvpeSN0Tqx8RAiOpxQmdnJ9FolKqqqnwvRSAQCASCjCGKFIWonigIUT1OSKd+TJ48Oc8rEQgEAoEgc6Tt9ESkWnCoI0T1OKG5uRmLxYLVas33UgQCgUAgyBhdXV2YzeYJ7fwhihQnBkJUjwNkWWbPnj0iSi0QCASCQw673T6ho9QgItUTBSGqxwEejwefzydEtUAgEAgOKXLl/DHem6oIUT0xEKJ6HCDyqQUCgUBwKOJ2u4nH41mNVPvebaHrofVZGz8TCFE9MciIqJYk6VpJkj6VJOkTSZL+KUmSLhPjThSamprQarUTujJaIBAIBIceuXD+CH2yi1iLn4Rv/PpAC1E9MRizqJYkaRJwNbBQluXDASVw6VjHnUg0NTVRVVWFQiE2DgQCgUBw6JAL549YaysA4a2dWZtjrIhCxYlBplScCtBLkqQCDEBbhsY95AmFQnR1dYnUD4FAIBAccnR1dWGxWNDpsr+BHfxoV9bnGA2im+LEYcyiWpblVuAXQBPQDnhkWX513+MkSbpCkqQGSZIa0k+ugpSVHoh8aoFAIBAcenR1deUstTHa5M3JPCMlnfqhVCrzvBJBtslE+kcBcAFQC1QCRkmS/m/f42RZfliW5YWyLC+c6NY6fWlqakKhUDBp0qR8L0UgEAgEgoyRTCZxOBw5s9NLhrXj0gUkLarNZnOeVyLINplI/zgVaJRl2S7Lcgx4Fjg2A+NOCJqamqioqECj0eR7KQKBQCAQZAyn00kikchZpFpS6ol1jr+CQCGqJw6ZENVNwNGSJBkkSZKAU4DNGRj3kCcej9PW1iZSPwQCgUBwyJGP9uSBDzblbK7hIkT1xCETOdWrgaeBdcDGnjEfHuu4E4H29nbi8XjWRXWssxP7Qw+Ny20xgUAgEByapO30ciGq5WgAOREjvLkj63ONFL/fj1qtRqvV5nspgiyTEfcPWZaXybI8U5blw2VZvkyW5Ugmxj3USTd9qa6uzuo87n//G8dvHyTeOX7thgQCgUBwaGG327HZbDkSk0nkiJ14dzwHc40Mn88notQTBGGMnEeampooKirCZDJldZ7gmoasji8QCAQCwb50dXXlNPVDaUqAZCMZG1/C2ufzZf17XjA+EKI6T8iyTFNTU9aj1MlolNCGDVmdQyAQCASCviQSCRwOR047BWvrCpFUWoINW3I253AQkeqJgxDVecLhcBAKhbKeTx3euBFZmM4LBAKBIIc4nU6SyWROI9WGxTMACDbsyNmcw0GI6omDENV5Ip1PnW1RLVI/BAKBQJBr0kWKuYxU6w6bghwPE23y5GzOAxGJRIjFYkJUTxCEqM4TTU1NGAwGioqKsjpPcO3arI4vEAgEAsG+pO30iouLczanQqlAUvhIBjXjxu1K2OlNLISozhNNTU1MnjyZlLV3dpDjcULr1iHpdFmbQyAQCASCfenq6qKgoCDnjc1UZVokQxnRppaczjsYaVEtChUnBkJU5wGfz4fL5cp+PvWWrSQDAfTz52d1HoFAIBAI+mK323OaT51Gf1gVklKN/731YxrH7XazZ8+eMa9HRKonFkJU54Hm5mYgB/nUDWsAMBx5ZFbnEQgEAoEgTTwep7u7O6f51GkMi6YBEN7UPqZxXn/9dZ555pkxr0eI6omFKt8LmIg0NTWhUqkoLy/P6jzBhgbU1dWoysuyOo9AIBAIBGnSzh/5ENWqQj1yMkzCGRvTOC0tLSSTyTGvR3RTnFiISHUeaGpqoqqqCpUqe880siwTaliLYeHCrM0hEAgEAsG+5LI9+b5IkoTSGAdVEXGnc1RjBAIB3G53RtaTttPLZv2UYPwgRHWOiUQitLe3Zz31I7pzJwm3G8PChcQ9Goyn340cG/tTt0AgEAgEQ9HV1YUkSTl1/uiLprYAhbmC4IfrRnV+W1tbxtYiuilOLISozjGtra3IspyDfOqUP7Vh4ZHEnXoUhkKS4URW5xSML6LNzTgeeSTfyxAIBBMMu91OQUEBarU6L/MbjqhFkhQEGraP6vzW1taMrUU0fplYCFGdY9JNX6qqqrI6T3BNA6qSElRV1SS8ubU0EowPuh97DPsv7yfhD+R7KQKBYALR1dWVl3zqNNraAgCie9yjOj9TkWpZloWonmAIUZ1jmpqaKCsrQ5dF72hZlgk2NGBYtJB4RxDiyqzNJRi/BFa+n+8lCASCCUY8HsfpdOYlnzqN0qQBRYRkWEcyGBzRubIsZyxSLbopTjyEqM4hiUSClpaWrKd+xFpaiHd2ol+4kPA2V1bnEoxPok1NxHp2RQQCgSBXOBwOZFnOa6QaQF2qQWmbQujjj0d0ntfrJRAIZKSw0O/3A8JObyIhRHUO6ezsJBqN5iCfOtWa3LBwIeFto6t+Fhzc+FesyPcSBALBBCTdnjzfolo3qxKFsYTA6vUjOi8dpc7E+oVH9cRDiOocks6nzkXTF4XVirqqhugeH6hEgeJEQ6R+CASCfJB2/igqKsrrOrT1KeeR8OaRtStvbW1FoVBkpI+EaFE+8RDNX3JIc3MzVqsVq9Wa1XmCDQ0YjjySaKMPkjJKW5SEU5/VOQXjBzkWI7hqFarKI9DMOBc5Ked7SQKBYIJgt9spKirKah+G4aCpSgnZmD2OHI8jDXM9bW1tlJWVZWT9IlI98RCR6hwhyzJNTU3Zz6fu7CK2p6k39UPSKFEao1mdUzC+CG3YQDIQQHv4WSit1cKfXCAQ5Iyurq68FimmUehUKPQJlKYqwpu3DOucZDJJW1sbkyZNysgafD6f6KY4wRCiOke43W58Pl/WRXVobcqfWr/wSMLb3WjrreKvPMHwr1gBai0KY3W+lyIQCCYQsVgMp9OZ93zqNJoaG4qCGgI9fRsOhNPpJBKJUFlZmZH5/X6/6KY4wRByK0fkLp96LZLBgLq0loQzjG56QVbnE4w/AitWYlh0BsjCSlEgEOQOh8MB5Kc9+UDoppag0FkJf7R5WMenixQzGakWqR8TCyGqc0RTUxNarTbrN5tgQwOG+fOJ7ErlcglRPbGIu1yEP/0UTd3R+V6KQCCYYHR1dQH5d/5Io65OCdpIowtZPnBtSWtrK2q1OmPf06JF+cRDiOockc6nViiy9ytPuN1Etm3DsCjlT60s0qEqEgWKE4nA+++DLCMzPr7UBALBxMFut6NQKCgsLMz3UgDQVJgAGVRFRHfvPuDxbW1tVFRUZOR7WnRTnJgIUZ0DgsEgdrud6urs5rgG160DQH/EkUR2ukWUegISWPk+yvJ6kv4kkjqW7+UIBIIJRFdX17hw/kgjqRWoijQoC2oIrV075LGJRIKOjo6MpX6IbooTEyGqc0BzczOQg3zqNQ1IajUKay1yLIlumhDVEwlZlgmsWIHhyDMBUBgCWZljONuoAoFg4mG328dN6kcaTX0RyoIaAg3rhjyuq6uLeDye0SJFEHZ6Ew0hqnNAU1MTCoUiY0/AgxFcuxbdvLlEGv2glNDW27I6n2B8Edm+nXhXF8qimahK9UjqeMbn+OSTT7j//vtJJERDIYFAsJdoNIrL5Ro3RYpptFVmJLWB8Ke7hjwuG0WKIET1REOI6hzQ1NREZWUlarU6a3MkAwHCn36KYeFCIttcaKdYUGiF+8NEIrDyfVBqSQS06GZmJ6exubkZn88nRLVAIOhH2vljvEWq1T1NYJIhLbGeQsqBaGtrQ6/XU1CQmR1e0U1xYiJEdZaJxWK0tbVlP/Vj/XpIJNAddiSxjgBakU894QisWIFuzomQAN2M7Ihqp9OZlXEFAsHBTdr5Y7xFqtVlRlCC0lZDaN3gKSCtra1UVlZmzFM6V5Fq97PP0frD65CTosnXeECI6izT3t5OIpHIgT91AygUSIYpgLDSm2gkw2GCDQ1opx+LpFWinWLJyjwulysr4woEgoObrq4ulErluHH+SCMpJTSTTCiL6giuHVhUR6NRurq6MpqimatuisGGBrwvvYT7qaezOo9geAhRnWXSTV+y7fwRWtOAbvZsok1BFGY16gpjVufzer288847JMXT8bgg2LAWORJBVpSjm2ZDUmX+0k4mk7jd7oyPKxAIDn7sdjtFRUUoleMv7VBTbUFhm0xwEAeQjo4OZFnOWJEi7G38kqtuil3330+8uzsncwkGR4jqLNPU1ERxcTFGY/ZEbjIaJfTxx+iPXEhkuwvdtIKsX8gbNmzgrbfeoqWlJavzCIZHYOVKlIVTkMNS1lI/RC61QCAYjK6urnGXT51GU21GklTE2nwkelw5+pLpIkXY26I8F0h6PclgkK5778vJfILBEaI6iySTyd6mL9kkvHEjcjSKdsYiksF4TlI/0kUpO3fuzPpcggMTWLEC3RFnANnLpxapHwKBYCAikQgej2fcimp1VUrcKq1TCH20fr/329raMJvNGRXBuWr8IsulaOdcTOHXvobn+ecJrFqd9TkFgyNEdRZxOByEw+Gc+FMDSJpJIIF2qi2r8wF092wzCVGdf2KdnUS2b0dVMhv1JBNKiyYr8whRLRAIBsJutwPjr0gxjapIh6RToiisJbi2Yb/3W1tbMxqlTndTzIXzhyyXoq48HvOpl6KurqbjtttIRqNZn1cwMEJUZ5Fc5VMHGxrQTptKtDmcElWm7IiqNLIs43A4kCSJ1tZWQqFQVucTDE1g5fugNpCMGNDNyN4uhXD+EAgEA5EW1eM1Ui1JEpoqM+qyGYT2KVYMhUI4nc6Miup8dFP0vtZK2U03E21sxPnYYzmbV9AfIaqzSFNTE0ajMavV0HI8TmjdOnRHHkW02ZuTLoqBQIBwOMysWbOQZZnGxsaszykYnMCKFWimHg0yWfOnBhGpFggEA9PV1YVKpcqYx3M20FSZkXTFhD7Z1C+S29bWBpDxIkXIbeOXeFcQSTcV85ln4vj9H4j2BPUEuUWI6iySzqfOZtFgePMWksEgmtpFkMyNlV46n3r+/PloNBp27Rq6U5Uge8jJJIH330c7/XgUBhWaquzdxIWoFggEA2G32ykuLkahGL+SQlNlAhRIulLCn37a+3q6SDGTojrXLcqTEQ+aGgve1/ZQ8oPrkVQqOu64E1mWczK/YC/j9wo4yPF6vbjd7uznU/fkh0nKCiStEs3k7F/EfTtn1dTUiLzqPBL+dBMJtwdJXYluegGSInsPcEJUCwSCgejq6hq3+dRp1NU9xYoFNYT6WOu1tbVRWFiIXq/P2Fy5j1TL2M6pI+mPEd4cpeSaawi89x6+5ctzNL8gjRDVWaK5uRkgJ01f1JMnE20Jo51qQ1Jm/0/qcDhQqVRYLBbq6+txuVwi3zZPBFauQFFQgxxXZDX1IxwOEwwGMRgMWZtDIBAcfITDYbxe77jNp06jtGhSPRyqDu/XBCbTRYqQnxblmmoz+nkl+N5rxXz2Z9HNnk3nXT8b0EJQkD2EqM4STU1NqNVqysvLszaHnEwSaliLfsFSEu5Izroodnd392711dfXA8IFJF8EVqxEd/hJKdeXLObTp5u+jOecyYOR9evX8+CDD4ptWsFBy3gvUkyTLlZUFtYSXLcOOZnE6/Xi8/myIqpz0U1xX6xn1gAyvjdaKL/tVuIOB/Zf/yanaxgM+4MP0XL1NfleRtYRojpLNDU1UVVVldXuUtGdO0m43airFwDkpEgRUpHq4uJiAIqKirBarUJU54GE309w/XpUZXPQTLagNKqzNld6J0KI6syye/fu3nQqgeBgpKurCxi/dnp9SdWcmEgGokR37sxKkSLkvptiGlWBDvNxkwh+1IWyoIaCL3wB19//TuiTTw98cpaJNu0hvHlzvpeRdYSozgKRSISOjo6cpH4AIBWjKtGjKtRldT6AWCyGy+WiqKgoNbUkUV9fT2Njo+i2l2OCH36IpDQgx43oZmZX7KbzqYWozizdoq2w4CDHbrejVqux2Wz5XsoB0aTzqntalre2tiJJUsZ3lHPZTXFfzCdVozCqcL/USPE1V6MsLKTj1luRxfdzThCiOgu0tLQgy3IORPVaVGWVxNqjOYtSpyOW6Ug1QH19PZFIpLeKWpAbAitWoErvUmSpi2Ial8uFXq9Hp8v+g9tEQtQiCA52urq6xr3zRxr1pFSOs6rqMIJr19HW1kZpaSkaTWZ7O+Sqm+JAKHQqLKdOIdroIdYSp+wnPyH8ySe4/vWvvKxnojH+r4KDkKamJiRJoqqqKmtzyLJMsKEB/cLTkGNJtDnKp05vVfcV1bW1tYDIq841/hUr0U4/DoVFg7rCmNW5XC6XiFJnmHA4TCAQyPcyBEOQTCYJh8PE4/F8L2XcYrfbx30+dRqlUY2yUIemeg6BtQ1ZKVLMZTfFwTAurkBVosfzciPmM8/EeOwx2H/1ALGeVB1B9lBlYhBJkmzAn4DDARn4mizLH2Ri7IORpqYmysvLs1qkEGtpId7ZiapiLnG3hLbOmrW5+pIW1en0DwCDwcCkSZPYuXMnJ510Uk7WMdGJNjURa25Ft7Aa/YzCrOfuuVwuKioqsjrHRENEqbNDJBIhEokQjUb3+/dArw3177SYLioq4qqrrsrzTzb+CIVC+Hy+gyKfOo2mykTYV4bb6yMcDmdcVOejm+K+SEoJ69m1dP91E8HVHZTfcgu7zr+ArrvvYdL9v8zLmmSKUBTMzsvcuSQjohr4NfCKLMsXSZKkASas71YikaClpYUjjjgiq/ME16TyqeW4DW2NGYUmewWRfenu7sZqte63XVZfX897771HKBTKqN+nYGACK1eiLKyHpCKrrckh9Zl2u93Mnj2bSE/3zLjbjeYgiU6NV4SozjwNDQ28+OKLwzpWo9Gg0WjQarW9/22xWPq9ptVqaWxs7C1oE/TnYHH+6IumykzoYweu0lRxYjaKFCG33RQHQjezEG29Fe8bTZRfv4iiK67A8eCDWD/3WUzHHZf7BUmTUU2amft5c8yYRbUkSVZgKfAVAFmWo0B0qHMOZTo6OojFYjkpUlSVTibhTmA6Nnfb8n2dP/pSV1fHu+++y+7du5k1a1bO1jNR8a9ciWbqMaCU0E6zZXUur9dLMpmkoKAA58aNANh/eT9T7rk7q/Me6ogixczjcrmQJIlzzjlnP8HcVyir1eph5wBHo1EhqgfhYHL+SJPuOuuqqkVJ5h8IxouoliQJ6zl1dP32I7xvNVH0zW/g/e9/6bj9dupeeAFFju3+JgqZyKmuBezAnyVJ+kiSpD9JkpTdBM9xTFNTE5Cbpi+6BacDuWlNDqlcMYfD0S/1I01VVRUajUbkVecAORYj+MEqVJXz0NZaUWgzteE0MGnnj8LCvcWQ3hdfxP/ee1md91BnIkeqnU4nr7zyCv/73/8yPrZCoWDhwoXMnTuXGTNmUFtby6RJkyguLsZisaDVag+KorqDga6uLjQaDVZrbtIPM4F6kgkkcJUUU+j3Z9z2NtctyodCU2nCsKAM/8o2kgGZ8mW3ENvTRPfDj+R7aYcsmbizqIAFwO9lWT4CCAA/2fcgSZKukCSpQZKkhvSW0aFIc3MzNpsNi8WStTlinV3EmppQlcxGYdGgKstNto3P5yMajQ4YqVapVKJleY4IffwxclILsinrqR8wsJ2eetIk2pctI+EXhXajZaKJalmWaWxs5J///Ce/+c1vWLVqFQ1pW1DBQYndbqekpOSgekhRaJUoSnR0q5PYWttI9DS2yhTjJVKdxnr6FCSFhOeVRozHHovl3HPpfvjh3lQ+QWbJxJXQArTIsry65/+fJiWy+yHL8sOyLC+UZXnhwbRVNBJkWaapqSnrUerQ2gZAIhkxo5tWkDOD+YGcP/oiWpbnBv+KFagq5gFktTV5GpfLhUKh6PegWHrTjcTbO7A/8EDW5z9UmSjpH7FYjHXr1vH73/+ev/71rzQ3N7NkyRLmz5+f76UJxkhXV9dBlfqRxl+SJE6SQqeT4EcfZXTsfHVTHAylVYtpaRWhjx1E9ngp+/GPkHQ6Om6/XXRyzQJjFtWyLHcAzZIkzeh56RRg01jHPRhxuVz4/f6cpH4oK2YiR+WcpX7A8EQ1CGu9bBNYkcqnVhbqUBVnvyjU5XJhs9n6RaMMc+dS8KUv4fr73zP+pTQRCIfDBINB1OrsdcHMNx6PhzfeeIP777+fF154AUmSOP/887n22ms55ZRT8mo5Jhg7wWCQQCBwUBUppunWpXbYiqISobVrMzp2Pj2qB8O8tAqFWY3npV0oi4sp/cG1BD9YhffFl/K9tEOOTCVjXgX8vcf5Yxfw1QyNe1CRs3zqNQ3oDz8NJNBOtWV1rr50d3ej0Wgwm80EPvyQrl/8Ek3VJDR19Wjr6zDW1mG1WNi5cyeLFi3K2bomEnGXi/CmLZinfhfdjNzsUjidzgE9qkuv/T6+N9+g/aabqX3uWRQZbqBwKJPezSksLKSzszOjY3d0dLB9+3aWLFmS0XGHS3NzM6tWrWLz5s0kk0lmzpzJUUcdRU1NTVY/r3IsRnDVKhCe0jnhYCxSTNOVcKORVZTWHklw7bqMjj0eRbVCq8R6eg2uZ7YT2ujAdskluJ/7D513341p6RKUB1FO/HgnI6JaluX1wMJMjHWw0NHRwZo1a7Db7Vx22WWo1WqamprQ6XSDRnIzQdzlIrJ9O9oF30VdakZpzF2kK+38IUejtN98M0mvj4TTifflV6BnG6lo8SJ2Op3s+fZ30E+t7xXcmro6lCIyNWaCH3yAsmg6yAr0OUj9gFSkeiAvV4XRSMVtt9H8zSvo/sMfKLn66pys51AgnfqRDVHd0NBAQ0NDTkV1PB5n06ZNrF69mtbWVrRaLUcddRSLFy/OSdOguMtF67U/IBQMIs+YnvX5BAennV6aDredYtmCZvI0PM+8QDIcRpGhbrF+vz/jNn2ZwHBkqmDR88pu9LOLqLh1GY0XXUzXAw9QsWxZvpd3yJBd24BDjHg8zubNm1mzZk1vVBpSF1FBQUFvPnU2izZCH30EagNyxJCzLoppHA4HkydPpvtPfyK2p4nJjz2K8dhjSYZCRHfvJrJzF9O2bGaX30+bsxvbX1ZALNZ7vqqsrEdg16OdWo+mrg5tfT3Kwuw3L8kksiwTiUTy0rLbv3Il6uoFSGpFThr+hEIhwuFwP+ePvpiWLMF6wfk4Hn4E8xlnoJsxY8DjBP3pG6nONOk0rVzg9/tZu3Yta9aswe/3U1RUxNlnn828efNyllMa3raNlu9+j3hHB8olx+dkTkEqUq3VarNalJ8NYrEYnV2dzDPWI1EOsRjhjRsxZGB3Nd1NcbxFqgEkhYT1nFocj36C//02zEtnU/B/X8L1tyewXXgh+nnz8r3EQwIhqoeBx+Nh7dq1rF27lkAgQEFBAaeddhqSJPHqq68CEAgEcDgcWS++Ca5pQF0xB8idlR6kvFo9Hg8FajXdf3wYy9lnYTz2WAAUej26WbPQzZrFvJNPYvm99xL59reZedxxRJtbiO7aSWTnrt5/u599FjkY7B1babWiqa/fK7jrU2JbVVGBNA6ryj/++GNeeuklrr/++pzmxMqyTGDFSvRH/RhtvQ1Jnf2GPwM5f+xL6U9+gv+9FbTfdDM1//onUoYtqg5FnE4nFoslK5+fXLgrtbe3s3r1ajZu3EgikaC+vp4LLriA+vr6nDpB+N54g7brf4RkNDDlb4+z9X//g1AoZ/NPZNLOHwdTQASgs7OTZDJJZVkFyV0qQCK4dm1GRHW6m2Ku6gXkRIKkx4OkH96DjW5aAboZBXjfbMZwZBklV1+N75XltN96G7VPPYmkEpJwrIjf4CDIsszu3bv58MMP2bJlC7IsM23aNBYtWsTUqVNRKBSsX7++9/jm5mYAqqurs7quYEMDmhmnIelUvSb2uSC9Xa184w0klYrSH/94wOMMBgOVlZXs3LmTE088EW1dLdq6Wsyn7j1GlmXiHR1EduzsFdqRXTvxvf4GCdfTvcdJej3a2to+gjsltjWTJyPlscCrubmZaDRKLBbLqaiO7thBIgAoTOhm5uaBajiiWlVQQPlNN9L6gx/ifPxvFH31KzlZ28FMd3d3VqLUoVCIQCDzNocrV65k5cqVnHvuuaxevZo9e/agVqs54ogjOOqoo3KeVyvLMt1//CP2B36N7vDDqXroQdRlZZAF32vBwHR1dTFz5sHXIa+1tRWA6vopxLe0oT1sUcbyqnNtp+d64gkSbjea0uE3XLOeXUvnA+vwvdGE7fx6yn76U1q//31cf/87hZdfnsXVTgyEqN6HcDjMxx9/3JsvrdfrOeaYY1i4cOGQX4JNTU0olcqs5lIl/AHCmzZhnnYlumk2JGXuIgTpLWXNqtUUX31V6gtsEOrr61mxYsWgLcslSUJdUYG6ogL22a6Nu1xEd+4ksmMnkV07ie7cRbChAe9//7v3IJUKzZQpaOvq0PREtTV1dWjr6lDkoEV6LrfX++JfuRJVWc8uxYzc5VPD0KIawHzWWZj++yL2X/8a8ykno8lyse7BjtPpzIogydZn87XXXgPgySefxGq1ctppp7FgwYIBr+9skwyFaPvpT/G9/AqWc8+l4s47MpYPKxgefr+fYDB4UBYptra2YjKZKJxWRhdtaGcfg//lR5ETiTHvsuVSVEdbWuh64NcYT7wahW7416G6zIhxUTn+Ve0Yj6nAfMbpGJcuwf7r32A+4wzU5eVZXPWhjxDVPXR1dbFmzRo2bNhANBqloqKCCy64gMMPP3xY0cimpiYqKyuzGrkMrV+PwlAKSQ26aTnOp+7oAFmmuLycwv/7vyGPra+v57333htVy3JVQQGqhQsxLOxf95oMBIjsatwb2d65k8j27fjefBMSid7j1JWVaKbWo62r7xXc2mnTUGbwJpcvUR1YsRJNzVJUZQZUBbkREU6nE4PBcMD8WEmSKF92C7vOOZf2W5Yx+c+PHXTbwrkiFAoRDAYpKioi1qfmIBP0Tf2ItrSiqdq/wHQsXHLJJcyYMSPjXeiGS6ytjebvfY/I5i2UXvdDCr/+dfE5ywMHc5FiW1tb6ru61IikUaAqmkrS7yeybRu6EX5f7UuuuinKskzHLbcgKRTojziCWGtkROdbTptCcL0dz8u7Kf7ybMpvvpld555H589+TtVvfp2lVU8MJrSoTiQSbNmyhTVr1rB7926USiWHHXYYixcvZtKkScO+WcdiMdra2jjmmGOyut7g2gaU5alIZa6LFFtXr8YYCDDplpsPmHfVt2X5SEX1YCiMRvRzDkc/5/B+ryejUWJ79vSmkER37iKyaxfB1R8iR1I3GoXJxLQV72UkmhUOh3tvnLkkGYkQXPcxptP/L2dRakhFqofr3qAuL6f0+uvpuPVWPM8+i+1zn8vy6g5Osmmn1/eBz/3M05Rec82Yx0wmk6hUKhYtWsTs2bPHPN5oCa5dS8vV1yBHIlT9/neYTzwxb2uZ6BysdnrhcBiHw8GcOXOQFBLqSSbkYCoQFmxYO2ZRnatItefZ5wi8/wHlty5DVuqBkYlqpVmD+cQqvK/uIbLLjbaumuJvfxv7Aw/ge/ttcW2NgQkpqn0+X2/hoc/nw2q1csopp7BgwQKMRuOIx2trayOZTGa/k+KaBjS1Z6IqNaCy5a5bU2TnThx2B4UWC4Yjjzzg8blsWa7QaNBOm4Z22rR+r8uJBLG2Npx/+Suuv/+dZCiUEVGdryh1sKEBpbUOUOSkNXkal8tFVVXVsI+3XXIx3hdfpPPuezAuWYL6IIxkZZu0qC4qKsqqqPY8/Qwl3/3umIuPPB4P8Xg8q1ahB8L11FN03H4H6soKqh//K9qeRlOC/GC329HpdOPS5WIo2tvbAXrTNDVVZvwf+FBVVhFct5bCy4behT0QueimGLfb6bznHgwLF2K75BJcz+wY1Tim4ycRWN2O+6VGSr87n6KvfRXPf/9L5x13YjzqqJykUh6KjD9rhSwhyzJ79uzhqaee4le/+hVvv/02paWlXHrppVxzzTUsWbJkVIIa9jZ9yWaRYjISIfTJZhSGqpy6fsiyTPvtd+Azm6g8cr/u84OS75blklKJproaTW1tRsfNW+rHyvdRVcxD0irQ1uTGwiqRSODxePrVEiRjqahOMpoc8BxJoaD8jtuRo1E677gzJ+s82EgX/WbDv7lv+kfcbsf/zjsZGzMfUUk5FqPjzrvouPkWjIsXU/vkk0JQ55DQxo04//bEfq+n25MfbKk36SLFvqKauIx+wQmEGtaOuW13Luz0Ou64EzkcpvyO28fkjqXQKLGcUUOs1U9wgx1Jo6F82S3EWltx/OGPGVzxxGLCiOqGhgb+/Oc/s2PHDhYvXsz3vvc9LrvsMmbOnDlmC6impiZKSkowGAwZWu3+hDduRGGpBRQ5FdXeF1/CsXEjCZWKkhFELA/VluX5y6degWrSfHTTC5GUublsPR4Psiz3E39yPBX19L7WMuh52tpair/3XXyvvYZ3+atZX+fBRrbs9GKxGG63m7TMUZWW4nryyTGPmxbVuY5Ux10umr55Ba4nnqDwK1+h+o9/EJ3fcozn+Rfo/NnPiPcJjsiyjN1uPyjzqVtbWykoKOgNoGmqUwJYM2UucbudWMvg97XhkG1R7X31VXyvvkrx976HNgMBI8P8UtSTTHhf2Y0cS2BcvBjrhRfS/dhjRHaMLgI+EHIshhyNZmy88cyEEdWzZs3ivPPO44c//CFnnnlmRr8g0k1RskmwoQFV2WxQSWhrcxSp9PnovPcewnNTedwj+Z0VFRVhtVqFqM4Asc4uYh1BJKUx56kfMHBENbTRSXDj4L+Loq9+Fe3sWXTceQcJjydrazwYcTqdFBUVZWVcWZax9AQJbBd9jsC77xFraxvTuHa7HaPRmNWgwb6Et21j9yWfJ7R2LRU//zllP/mx8NDNF7JMYMWK3v/1+/2EQqGDLp8a9hYpplEWaFEYVEiGCiCVVz0WsimqEx4PHXfcgXbWrIzZlkoKCds5tSQ8EXwrUlH80h9dj8JgoPOee8c8fsLtxvHII+w47XTiXV1IqvxZ4eaKCSOqTSYTRx55JBqNJivjZ11Ur2lAXXUE2rrcNP0AsP/mtyQc3XDBhcDIRLUkSdTX19PY2EiijzvHwU4+RHXg/fdRlefWSg/25v4OJKpVJVrcz20n4R04+iCpVFTeeScJp4vOe8d+cz6UyJZHdTqiXNDjzJEuFHU//cyYxnU4HDkVUL433mDPpV8gGQ4x5W+PY/vMhTmbO1fIySSJPBQ8jxb/O+/2/ne6SPFgi1T7/X48Hg+TJu11xJEkCXWVmYRPgcJqJbRu9KJalmX8fn/WRHXnffeRcLqouPOO/n0akmNLWdHW2dDNLsL3VgsJXxRVYSGmE5YS3bVr1GNGdu2i/bbb2H7Sydh/eT+a2hoMixejOggfxEbKhBHV2SabolqOxwlv3o2kLcqZlV5482Zcf/87tks/j0ejRqfTjTjnvK6ujkgkQtsYI2XjhUQigdPpzGnDF0infhyBepIRpTk7D4UD4XK5UCqVA35JWM+pQY4lcT69bdA8RN3s2RR97Wt4nnmWwPvvZ3u5BwWhUIhQKJTV9uRpUa2eNAnjkuNxP/MMcjw+qjHTW/25ENWyLOP4wx9o+e730NTWUvvUU+hH0KE21hkgGbWANP47erbf8FMae4IVBwOBFSuQe4IjB6udXvp7aN9eEpoqE/HOIIYjFo4pUp3uppgNUR344AM8Tz9D0de+iv6ww3pfj7vDhD7tRl05unqwNNazapDjSbyv7wFAkkYuDWVZxr9yJU1XXMGus8/B88yzWM4+i9rnn2fKn/88YfyvxX5aBjCbzdhstqyNH968BYW5DiAn2/9yMknHrbehtNko/f73cfznPxQVFfUrSkkEYgTXdiLHkshJGWQZkqkLi2Tqn6JY6sL85MUPMZWFU8clZZDpc46MnGTvf8sM/nrv+X3eS4+17+s958vRKgwn34qcGLiwbiS4XC6SySRlZWW9VeTZRk4mCXz4EYZjz0c3M/MpA0Phcrmw2WwD1hyoirRYz67F/fxOAqvaMR0zcNOj4u9+B99rr9F+yzLqXngeRQ5TCMYj6SLFbKR/2O12bDYbyvBee62CSy6h5XtX4X/3PcwnnzTiMX0+H5FIJOuierQNXeREktCn3fg/aCfa6EFWGZGU3Vld61jxvfEGnucPrmsh4fEQ+vhjDEccQVdXF3q9ftSF/WlkWc5poWNrayuSJFFRUdHvdU2VGWTQzj4a/9tvEO/uRjWK6zNtp5fpFuXJUIj2W5ahmTKF4u9+t/d1WZZxP7cDZBnbeWMr3lWXGDAdXYH/gzZMx46sgV0yHMbzwgs4H3+c6I6dKIuLKb76Kgo+//lR/R4PdoSozgDV1dVZvTkEGxpQlh2GwqxCVZJ9mxvPs88S2rCBip//HKXVisPhoK6urvd9OSnj/PtmIrv65MpKgCSBIrWlhkICSaIEC7s7m5nnnLT3dYWEJNF7jKRIn9vnvfRYCglUCqSBzkn/d7/XU+el/zu4YRckK5EjYxfVfQu2ciWqw5s2I2kmgSSN+IFKoUvZOoU+Wof61BNHPLfL5Royomo8uoLQZiee/zWinWpDXbK/SFDodFTccTt7Lvsy9l//hrIbfjLidRxK9PWozjQOh4Pi4mLkxm4ghBxLYjrhBFQlJbiffHJUojoXRYqjaeiS8ETwf9hB4MMOkr4oygIt1rNqkN76GMa2G55VEm437bfemu9ljAhJo0GOx/G/+y6GI47oLVIc7XeeVqslFArx0EMPsWDBAubNmzdmgT4cWltbKSkp2c/uLl2sqCpJ2bIG163DctppIx4/Wx7V9t/8llhzM1P+9ni/B83Qx3bCW11Yz6lDVTh2u1jzKZMJrOvE87/GYR0f6+zC9Y9/4P73v0m43WhnzaLi7p9jOftsFFlKsz0YEKI6A2S/SHEtqrLz0c8szvqTfdzlousXv0S/8EisF15AJBLB5/P1+1L1vtFEZJeHgs9Nw7CgbK+QHoCZbwRZsWIFhT+cjy4PrYQjjZ+QDGRm3vT2ei5dEAIrVqAqn4OkV6YiKiNAd9hhRFua6LzrZxiPOnJEXSVlWcblcg352ZYkicKLptP5wFqc/95K6bfnDehMYli0CNuln8f5t79hOeds9HPnjujnOJQYKk99LCSTSbq7u1MpVztTD7vhbU70hxVj/dxn6X74EWLt7aj3idIdiPRnPmuRalmm8eJLhtXQRZZlIrs8BFa1E/rUATLophdgPGYauukFqQfqt8b+8JxNOn/+cxIuN4ajjya0YUPOo7WjQdLr0U2dSuDd95Cvvpquri7mzJkz6vFOOOEECgsLWbduHa+++iqvv/46M2fOZMGCBdTV1Y3ZjWsgZFmmra2N6dOn7/ee0qxBadUgJ81IGg2hhrXjRlSHNm7E+de/Yrv08xgWLep9PRGI4X5hF+oqE6bjRhZZHgylUY3l5Ml4/teIxODfcaGNn+B8/HG8L78MiQSmU06m6PLL0S9cOOhnORlNkAxmtnvseEXkVI+B9MWf1XzqZJLIdjuSUpeTLor2+39Fwuej/OZbkCRpPyEZ3uHG92YThgWlGBeVIymlIb8U6uvrkWWZxsbhPf2OZxwOB2azOavG/vuS9qfWzyxKiYYRIPXk1sYdDjrvuWdE54ZCISKRyAHFn9KiwfaZacRa/HjfaBr0uNLrrkNVWkr7jTdNGGulgeju7sZqtWY8L9/tdu/XoCW4PhVltl10Ecgy7meeHfG46SYfmd7ShlSEmkQChclIzb//NaigTobj+N9vo/NXa3E8spHITjem4ydRft1Cir96OPqZhSO+NvKB78238Dz/AsVXXon1/PORQyG8L7yQ72UNC9OSJYQ//RTX7t1EIpEx5VOr1WoWLFjAN77xDb7zne9w1FFH0djYyBNPPMGvf/1r3nrrLdxud+YWT+r6CAaD/YoU+62pykysLYB+7lyC69aNao5MtyiXo1Hab7wJVUkJpddd1+89z0u7SIbiFHxuekY/+6ZjK1EW6pCZBewdV47H8S5/ld1f+j92X3wx/jffpPBLX6T+1eVUP/gghkWL+ukAOSETafLifbMJ+8Mf03bbB4S3unJaE5QvRKR6DMyYMYNLLrlkvxytTBLduRPJOAWQ0U21ZW0egND69biffprCr3wF3YzUE306B7S4uJiEL4rz31tQFeuxXTB1WGNWVVWhVqsz2rI8X6S313NFwh8g3OjEOEmPbuboH6gKv/xlnI/+EcsZZ2JacvywzhlJRNUwp5jwglJ8bzWjm1mIdvL+lo9Kk4nyZbfQ8u3v4HjkEUr65AZOJJxOZ7/UDzlDzjh9I8qtPa+FNjtJRuJoqqowHncc7qefpvjb3+p92BoO6SLFbERTYy2tIEPtk08O6D8d6wjg/6CN4EddyNEk6ioTBRdNxzCvOGcOSJDa5h5toWeahMdDx7JlaGfMoPjKKwh+6sJ48vfo/PndGJcuRZWFRkCZxHTCUuwPPEDze+8Bmdu5KC0t5YwzzuCUU05h69atrFu3jnfeeYd33nmH+vp6FixYwIwZM1CN0U5xsCLFNJoqM+FPu9EdsRjnY38kGQiMeA6fz4dGo8lY0MXxpz8R2baNqt/9DmWfh9rwdhfBdV2YT6pGU5HZtBlJpcB6Zg3Of4RRFs8j4fPhfuppXE88QaytDXVVFWU/vQHrZz/bb02yLBO3h4jscBPe4Sayy40cTt3b1JVGTMdVoptagCZHjcvyiRDVY0Cr1TJ79uyszhFsaEBVehjqch0Kffb+XHIiQfvtt6MqKelXDOFwOJAkiQJbAc7HN5MMJSj+2hwU2uF9qalUKmpraw96v2pZlnE4HMzNYepC8MMPURWnPl9jcX0puvIK/G+/TvvNN1P33xeGlQYylEf1QNjOryeyy4Pz31spu3rBgJ8P80knYTnnHBx/+COWM85AO3V4D2aHEk6nk8P6VO+HN25M/XvzZvRjuJcMmJoUTxXxGReUYbvkYlqvvgb/e+8NmWKxL3a7nRkzZox6XQdEop+gluPpwsM2oru9oJIwzC3BdExlb+5rrgl9tA55jEWFnT+/m7jTSdUffk94uw/Xk9tQFs0jEfgjXXffQ+U9d2dotZklGStGO+sLaGfORFVSwu5PPwW9PuPOHyqVisMOO4zDDjsMl8vF+vXr+eijj3jqqacwGAzMmzePBQsWjFrMt7a2olQqKSsrG/B9TVVKIGpq50MiQejjj0c8h8/ny9iOTmTHDrp//wcsZ5/drxYiGU3gem4HqmI9lpOzs0Oun1MMshtF0UJ2nHAiyWAQw6JFlP30BkwnndT7UJ7wRlICukdIJ3vsVZWFOgxzS9BOtaGts6I0HfrR6b4IUT3OCaz5GIXtTHSHD3wzyBSuf/6LyKbNTHrgVyhNe59+HQ4HBQUFBFe0EdnuxvaZqSN+Oq6vr2fbtm37RekOJvx+P5FIhOLiYpI9UauEywVZrOAPrFiBqmIemslmFIbRpwsotBoqf3YXu7/wRbruvY+KO24/4DmDiWqpZ0vwxdeWM2vO4UybNg2dTodCp6Lw8zOwP/wxnpd2UfDZaQOOW3bjTwmsXEn7jTcx5R9/H1HU9GAnGAzuZ6eX7EmFafvxj6l96qlhOV4MhN1ux2Aw9GvQorRpCa63Y1xQhvmkk1AWF+N+8qlhi+pAIEAwGMyJnV7cEyGwup3Amg6SvhjKQh3Ws2oxLCxDacxfw4i4y0WsvR3G0Brd9/bbeP7zH4q+/S0Uhirsj36SKqaUFBR94+t0//4PWC84H+Oxx2Zu4RlCTlpRlc8m4QxjXLoEe0cHxpkzs1pYWFBQwEknncQJJ5zAzp07WbduHatXr+aDDz6gurqaBQsWcNhhh42o50RraytlZWWDRrzT9SqSoQIUipS1Xs2UEa07U41f5ESC9ptuRmEwUHbjT/u9531tDwlnmJIr5iKps5O9K0kSki6GFNJiPu00Cr58GfrDDiMZjhPemhbRLuJdIQAUBlVKQE+1oau3oSrKvpnCeEaI6nGMLMtEd/vRTFegz2LTj7jdjv2BBzAeeyzmM87o957D4aDQYMP76h7080owLh6512S6ZfmuXbsOWlHdNxLY9PrrAOw862wMVgu6mbPQzZyBduZMdDNnoqmpyYhY9K9ej27Oiehmjd2WSD9vHkVf+yrdf3oU8xlnYDr+uCGPd7lcmEym/b646lVWuoOwu7mJTdu2olAoqKmpYcaMGUyfPh3z0ip877Sgm1mIfvb+61YVFlL20xto+9GPcf39HxR++bIx/2wHC0M5f0S276Dr/vsp/+lP93tvOAzUoMUwvwTfuy0k/FGUJg22z3yG7kcfJdbZiXqQiN2+Y0L2ihTTJh3df9tEaHN3n8LDyr2Fh3nG9/rrY2qukfB66bhlGdpp07B+9nIcj25CVaBFU20m9Ek3xd/6Fr7/vUz7sltTlpP68SlIwttdmJYsxf3iixTlqOBcoVAwbdo0pk2bht/vZ8OGDaxbt47nn3+el19+mTlz5rBgwYJBUzrSJJNJ2tvbmTdv3uBz6VWoivXEu6JoZ8wguG50onqwnO2R4PrHPwmtX0/lvff0s6SLtvjwr2jFeFQ52rr906UyiW7WLCI7PRR94SepOqp31hNt8UESJLUCTa0V48LylOtTuXFcXKvjBSGqxzGx5mYkXRUoE6gnZb5QKE3nffchRyKU3XxTv9zJtKNAhWxEVaij4DNTR5VbWVRUhMViYefOnSxcuDCTS88ZfUX1np7oYvGVV6BobiG8dSvdf1kFsVR1s6TToZ02Dd3MmWhnzkA3axba6TP67QAciGhzM3LMBmTOm7z4qqvwvfkW7bfcTN0LL/TLidsXl8s1YOqHSaFhaXw2pd+cS2fAy9atW9m6dSsvv/wyL7/8MmWlZVTZrFQ/E+Tw6hNRmffPL7Scdx6eF1+k61e/wnTyyWiqxv5FdDAwoEd1MvXwVfClL+F6/G+Ylp5wwAeefUk3aOmbVgJgmF+K7+0WQhsdmI6pxHbxRXQ/8gjuZ56h5DvfOeC4aTu9rInqmAGkKJFGD6bjqzAdVT7uoly+5a+O6fzOu+8h3t1NxT2/oftvW1FoFBR//XD8K1I5vgqtlvLbb6fp8stx/O73lP7wB5lYdsYJb3Nju/AYvO+9y6Qel4tcYjKZOO644zj22GNpamrio48+YsOGDaxdu5aysjLqFDL1DHx/dTgcRKPRAwpeTZWJ8C4PhiOPTDVMuvDCYa8vU90UY62tdP3qVxiXLsFy3nl7x08kcT2zHYVJg/Ws2jHNMRwkhYKkL4b94Y2gSEXyzSdWo5tqQzPZgqQSHheDIUT1OCawZi3K0sPQTs7ek2Bg9Yd4X/gvRd/+Ftra/her2+UmkUhgieso/PosFLrRfVzSLcs3bdpEIpFAmYctfzkcHtP5DocDtVqNxWIBOfW3sJ7/GczVqSiJHI0SaWwkvHkzkS1bCW/Zgu+113A/9VTvGOrJk9HNmIF2ViqirZs5E1VFxYAPKoGVK1GVzUFhVKLOUDGKQqtNpYF88Ut03fcLKm67ddBjXS4XU6YMHqlRKBRUV1dTXV3NqaeeSnd3d6/AXmffzlp5G68+8BEz581m5syZ1NbW9jpeSJJExa23suvc8+hYtozqPz0y7m3FMoHT6UzVJ/R5WEnGdIAP62e+QXD1KtpvuIHaF54fUeFaIBAgHA7vV0SrLjeiKjMQ3GBP5SRPnozx2GNSBYtXXnnA3RS73b73M58N5NQXc8UNi3NaeDhcEm43gVWr4PDDR3W+/9138Tz7LIXf/A7+92PI0SQl35qLytY/0ms8anHK9vCxx7Ccew66bOawj5LITjf+eAVxtRrDGNpXjxVJkpgyZQpTpkzhzDPP5JNPPmHdunV8oGxjs9HH9zl/v3MOVKSYRl1lJrjejuHoI5GfeILECBxIMtFNUZZl2pfdigRULFvW757oe6+VWHuAostG/z08EoyLy1EY1GjrrGjrrDmZ81BB/KbGMcGGrSh0x6FfUJWV8eVolI47bkddVUXxlVfu937Lu1sBqDp2GpoxRsrr6+v56KOPaGtro7q6ekxjjQTt1Gpi7QHabnuQ6l//ZNRV9mnnD0mSSIZSKRGdf9xKZKoL3axC9DML0c2Y0e8LUZZl4p2dhLdsIbJlC+EtW4ls3pzaUu5p7a2wWlNCe+YMjEcdhfmUU4AeK73y89DNHoM3ec+DWNIfQ6FNXer6+fMp/MpXcD72GJYzTh8wjzMej+PxeEbkpVxUVMSxxx7LscceSzAYZOOLH7Jl4yY2btjIunXrUKvV1NfX96aJGCsrKfnhD+i84048zz+PbQRRoYMVp9OJ1WodMK/T+1Yblffey+7PX0rHLcuY9JtfD/vvPlSahmF+Cd7le4i7w6hsOmyXXELr968lsHIlpqVLDzhucXFxVnyD+zIeBTWA7403IR4fVXvlhM9H+823oJk+EzTHEe8MUfKNw1GX731AlpNJ5HgSSaWg7Prr8b/1Nu0330LNP/8x7moN5EiCtk9TLayNW7cS6+xCXZbfNuU6nY6FCxeycOFC/nHL/TRJwQGPa21tRaPRHNC5KV0IqyxN1YPEe3ZqhkMmuil6nn+ewIoVlN10E+o+UfWYI4T39T3oDy9Cf1hu3Ke0NVa0NdlNMTlUETH8cUy0JRVdzVY+dbqtaNmNP92vQCrS5KV1bSoiUXXC2CMn6Y6MuXYBsZ51BAqTjNK6mKbLv0q8R4CMlL52enJPpFo/w0qsK4j7uR20//xDOn+zDs+ru4k2+5CTqaYO6vJyzCeeSPG3vkXVA7+ifvkrzGhYw5R//oPyW5dhOfNM5EgE95NP0fLd75EMBJBjMUJbUt7k+jG0JtfPLgKVhPf1/v7RJVdfhaamhvabbibh3986Ku0RO9oGJQaDgcUXncDZU5ZwWWwpX7jgEubPn09bWxvPP/889913H48++iibJk8mctRRdPz87lH/XXJJrLU1tS0sjy7Htru7e9CaglirHzlRSun3r8H32mt4nvvPsMcdquuhYW5KaIc2pI4xn3wyysJCXE8+Oaxxc1GkOF7xLn8F9aRJKItHfg123XsvcUc3plN+RKwtQNEXZ/YTKbrpBRCX8b3TAoDSZqPshhsIf/wxrn/+K2M/QyaQEzFQQPuO1FotHi+BFe/leVX9UcqDP4C2tbVRUVFxwIdDdYURFJD0KVFXV5MYwT1prI1f4g4HXT+/G/2CBRR88Qu9r8tJGdcz25FUCmznTzy3pIMRIarHKXGHA0lTiaSJoLRkvtlIrL0d+0O/w3TKKZhP6t++OBmM4fzHFrzaMHq9PiOV3gaDgcrKypyLakkhUXDR4SiMpcjSFPb832XEOjpGNEY0GsXj8ewnWszHl1J+/ULKrl2QapGsUeJ7q5muh9bT/rPVOJ/eRugTB8lIf49bhdGI4YgjKLj0Uipuu5Waf/+L0mu/D6Qqv0MbN6K01IMkox2DN7mqUIf5+EkEP+oi2rw3D1Kh01Hxs58Ra2+n65e/2O+8kdrpDYSkkCi4eDpKhYqCD6KcfebZXHvttVx55ZWceOKJxONxXn/jDf5TW8NLxx/H87/8Jbt37yaRId/mbOD574u033gTvldfG/G5siwP6X6jKtbjfXU3BZddjmHxYjrvvJNo0+DNdPrSLzVp33GL9Ggmm3sbwUgaDbbPfgb/W28T6+oadMxwOIzX652wojrh8RD4YBXmM8+gbxOM4eBfsRL3U89gveh2Yu1xCj47bb+iXd30AvRzivG+1UTMkXJRsJx7Dsbjj8d+//0px5HxQjKGptpCV0cnJpMJY0EB/nfezfeqhkU8Hqejo2NYBYQKjRJ1mZFoiw/DkUcSt2deVMciCZLx/R/KO+66i2QwSMWddyD1Ef/Bhk6ijR5sZ9ehtEwsa7qDFSGqxynB9R+jLJqGtj47+YydP/s5yDLlP72h3+uyLON8ejsJX5RAiZzRZif19fW0tLQQHmN+80jRzShAW29FN+8i4i4fe/7vMqItrQc+sYe+DXD2RZIk1GVGzCdUU/qteVTcdDSFn5+Btt5G6BMH3U9spu32Vdgf3Yh/ZStx54F/9sCKFSjL5qCZYh62H/hgmE+sRmFS435xV78Iq2HBERRefjnuf/4rlTfah7SoHqtTi8qqpeDCeqJNPnxvN6dyqSsqOPHEE7nyyiu59tprOeeccygoKuJTlYq//OUv/OIXv+C5555j06ZNRCKRMc2fceRUC+zOu+4i0dM9bbiEQiHC4XD/IsU+WE6fQtweIrTBQeXdPwelkrYf/XhYTUcOlKahn1dCrD1ArDO1K2G76CJIJPA8+9yQY8LAn/mJgO/NtyAWw7KPG9KBSPj9tN98M/rjvk4yUozljCkYFw2cPmI7rx5JqcD9nx297crLb12GnEzSccedo94RyQa66QU4Qx5KiooxLV1C4P33kWPjv+10Z2cniURi2K4cmiozsVY/ugULSEYiw27ONFxR3bXHR3ifdt2+N97A9/IrFH/3O2h7dnQBEt4o7v/tQltnxbAou5a6gswhRPU4JbyxBUmhwnj06P1RB8P/7rv4XnuN4m9/u1/uFoD//TbCm7qxnllLt8+VcVGdj5blkiRhPbsOOQrF372fhNfLnssuI7p797DOH4nAUBrVGI4opegLM6m8+WhKrpiD6bhKEu4I7v/uouPeNXT8ai2elxuJ7PYgJ/b/4vSv+hilpRL94WPPWVToVFhOn0J0j5fQxv6Rl5JrrkYzZQrtN97Ur4OYy+VCpVJlpJGBYX4p+nkleN9oSlky9cFqtbJo0SK+ev31XPLJpyzZ+AlTa2vZtm0bTz75JPfeey9PPPEEa9aswePxjHktmSLe1YX9N78Z0TnpB7PBHlR0s4vQVJvxvrYHVUkZ5cuWEVq/HsfDDx9wbLvdPuRn0zC3BCQI9qSAaGpqMBx9NO6nnkJOJgc8J9t2euMd3/LlqCor0M2ZM6Lzuu69D8k0F1XJYkzHVmI+cfD6EaVFg/WsGiI73L07CZqqKkquugr/m2/ie23kOyLZQjvNhksKUKi0YFy6lKTfT/Cjj/K9rAMy3CLFNOoqE8lgHN30+QDDfnDw+/3D6qYYDfd/SE74fHTcdjvaGTMo+vrX+73nfmEHcjyJ7bPTJkQh96GCENXjlFhnAlmOoavPbPvaZCRCx513oamtpeirX+n3XrTFh+d/jehmFaJaWEggEMioqO7bsjzXaCaZMMwvIbQtRtXvHkUOh9lz2ZeJ7NhxwHPTXSUHizIOhqRUoK2zYTu7jvIfLqT8uoVYz61Dadbge68V+x8+pv2uVTj/tYW4xwhqPQmPh4Qr5ZKRKSs948Jy1OVGPC83Isf2iiiFXk/Fz+4i1tZG1y/v7309baeXqRt5wQX1KM1qnP/eSjK6f+RHUquZcvvtVG7ezLGffMp1113HV77yFRYvXozT6eSll17iV7/6FX/84x95++23aW9vz2sUz3bJJbie+DuhTz8d9jlDeVQDIIHlzBoS3ij+D9qxnnsOlnPPxfHQ74bs7haJRA6YpqE0a9DW2whusPf+3gouuZhYayuB9z8Y8By73Y5SqRxTCtDBSsLnI7ByJZbTzxjRNRB4/338HzShO+xz6OcWYz237oDnGxdXoKk243lxJ4lASsAVXv5ltLNm0XnHnSTyYF83EEFTgriUwBrSYjzmGFCpCLw3vvKqB6K1tRWDwYDNZhvW8ekmMLJsRaHVDltUD7fxSzTUX1R33fcL4g4HFXfeiaTe2+Qo9ImD0CfdWE6dgrp4fNlMCoZGiOpxiqQpQ2kIZ9wPsvuRPxFraqL8lpuR+jT2SIbjdP9jC0qThsKLpw+Z8jBa0i3Ld+XJkslyRg0gE9mlZsrjf0VGZs+XLye8ZcuQ59ntdgoKCgbtxjVcVMV6zMdPouQbc6i85WgKvzQT3cxCwttdRNvKMJ32M/wrPkBVdjgKk4QqQzdTSSFhPbeWhCuCb2X/tBfDkUdS+OXLcP3jHwRWfwikBGAmxZTCoKbg4unE7SE8Lw+8S6GfcziFX/kK7iefJNywlpqaGs444wyuuuoqvvvd73LqqaeiUql4++23+eMf/8ivfvUrXnrpJXbs2EF8GCkSmSAZ1aKZdQHF378GZWEhHctuHfb2cHd39352evuiq7ehnV6A961mkqE45bfcjKq0lNbrr++3k7DvuHDg69Qwv4REd5hYSyptxXTqqSgLCnAPUrBot9spKirKi/1lvvG/9RZyLIblzOGnfiT8ATru+yu6BV9BU2uh8JIZw7JBlRQSts9OIxlK9F4bkkpFxe23E+/upuv++w8wQm7osqfy701dylRNyJFHjjqv2tHiY+vqkdW1jJa2tjYqKyuH/XCkLjeASkGs1Z8qUB2BqD7Qzl4kGOuXTx1Y/SHuJ5+k8CtfQT9nr21jMhTH9fxO1BVGzEsmhof/oYQQ1eMUhaEEXYZdP2KtbXQ//DCWs89ORRt6kOVUhXHCHabwizNRGNRZy6msq6vD6XT2Ru5yiapAh+nYVOGeZKxgyuOPI2k07Ln8K4Q2fjLoeX2dPzKFQqfCMKeEwktmUHHj0aiKXEgaI8EP1qIsmYl+TllGt/x0UwvQzSrE91YzCV+033sl3/8+6smTab/xRhKBwKCNX8Y6v+m4SgIftBPe5hrwmJKrvpdaxy03kwylirckSaKkpITjjz+er3/961x33XVccMEFVFZWsn79ep544gnuvfdennzySTZs2EAwOLCtViZIBi1oZ5xDrDVO2U9+QviTT3D9a3hODUPZ6fXFekYNciiO790WlBYLlXffTaypmc577h3w+KGcP/qiP6wYlBLB9SlxpNBosH7mM/jefHNA67ADpZQcynhfWY6qvBzd3LnDPqfz3j+iqb8EVaGK4q8cNqJgiKZHPAUbOonscgM9D5mXXYb7n/8iuG7dSH+EjJP+nFkDGmIdQUxLlxLZtm3ERd8Aa17azYqntmd6ifsRiUSw2+0j6nIoKRVoKlPFigqdbtg7YsOJVHvsod7/TobDtN9yM+rJkym56nv9j3ulkaQ/SsHnpiEphUQ72BB/sXGMacnMjI5nf+ghJLWa0h//uN/rgdXthDY6sJxeg3ZKqjDS4XCgUCiGvW02XPq2LM8HlhOrkHQqPC83oq2tZcoTf0NpNtP01a8O+OWV7iqZTYEhKSQkVSriGW50Iyk16Gdlfj7r2bXIsSTe1/b0e12h11P5s7uItbbSdP+viMViWdn2t55Zi6rUgPOpbb1b3fuuo+L224ntacL+4IMDjmEymTjiiCO49NJL+dGPfsQXv/hF5syZQ1NTE8899xz33Xcff/7zn/nggw+y9uDme7sF89lnYTz2WOy/emBIF400TqdzWOlDmkkm9PNK8K9oJeGNYjxqMUVf/xruJ5/E9+ab+x2fTk06UFGpQq9CN7OQ4Md25J6227aLL4J4HPc+9n2xWAy32z0h86kTfj+BFSuwnHF6PxeGofC++j4J/ywkTYLS7y7q9YQfCeZTJqMs0OJ6LpVHCynrS1VlBe233IIcjR5ghOzS1dWF2WRGi5rINhempUuAVH3OSOls9O7tUZ9F0mliI20dni5WlIew6euLLMsjFtWOBx8ktqeJittv79eaPrLLQ2B1B6bjJ/WmoggOLoSoHqfICR/qysyar0e3b6fk6qv6mfZH2/y4X9yFbkYB5qV7m8w4HA4KCwszvv1bXFzc27I8HygMaiwnTyay3U14mwtNVRVTnvgbqqIimr7xzd4UiDRud6qrZK6idkrLVFAk0dZm3nhfXWLAdEwFgTUdxDr6pxMYFi6k4P/+j5ZXXgHG7vwxEJJaQeGlM0gGY72OB/tiPPoobBdfhPPPfxly9wBArVYzffp0zjvvPH7wgx/wjW98g+OPP55QKMTy5cv5zW9+w0MPPcTrr79Oc3MzyUGK8kZKrDVAdKeH8ltuRo5G6br7niGPl2V5SI/qfbGeNgU5IeN9M2WpV3z11WhnzaL9xpv2iyrb7XYKCwuHlZpkmFdC0hfrjYZqa2sxLF68X8Fid3c3sixPSFHtf/sd5GgU8zBdP6JtLjwvO0GC0u8tRmkane2ZQqPEduFU4vYQvrebU68ZjVQsW0Z0x066H310VONmCrvdTmlZKaoyA+HtLjRTp6KqrBhxXrXfFSbgzo2rz0iLFNOoq809tSfDeziKRCLE4/EDimpvj3Uiskz3Y3/GdvFFGI8+qvd9OZbE9ex2lIU6LKcN3s1WML4RonqckQylLNeUpmjGK3419fUUfOlLe+eKxHH+Y0tvzmvfHMBspDzA3pblu3btypsnsemYCpSFulThXlJGXV7O5L89jrqyguYrrsD/3oreY3NtLaYsPQzNFBOSOjuXpuWUyUg61X4WewCl136f8JTJAFj12SmO0VSasJw2hdBGB8F1A0d4S6+/HlVREe033TTsQiGFQkFVVRWnnHIK3/nOd7jmmms488wzMZlMvP/++zz66KP88pe/5Pnnn2fLli1ExxD5U5jUeN9sRlNTQ9GVV+D93//wr1g56PHBYJBIJDJsUa0q1mNcVEbgww7i3SEUGg2T7ruXZDBI20039fu7jeQ61c8qRNIoe50mIFV0GWtuJtjHVjG91T8RRbVv+SuoSkvRz59/wGOTwRhdv10NCg3Ws4vRVNrGNLd+RiH6ucV432omZk+lMZlOOAHL2Wfh+N3viezKrWsSQJwkPinS2whIN72ASKMHOZbEtGQpgZXvjyiK3tnozeJq+9Pa2orVah2xi5Gmqud4eXgPSMO10+uNVMsyqqIiSq+/vt/73jebiDtCFHxmKgrNxKtlOFQQonqcEdmailJop2VOxCm0qW6Jpdd+H6knoiXLMq7ndhDvDlF06cx+EZZEIoHT6cyakKyvrycSifRGEnKNpFJgPaOGWHuA4EcpYacuLWXK44+jqauj5Tvf6d1qz7WoVmjNGOaNLLIyovENaiynTCayw014q2uf9wxwzjkAxB5/PGtrMC+tQlNjwf3CzgF9u5UWC+XLbiGydSvdjz42qjkKCgo4+uijufzyy7n++uv53Oc+R21tLZs2beJf//oX9957L//4xz9Yu3Zt75ficDEdX0m00UNkt4eib34TTU0NHbffTnIQ//V0GspI3GMsp0xGUkp4elJ1tFOnUnrddQTeeRd3Tx53+jodrviV1Er0hxUR+sTRm2JgPu1UlDYbrief6j3ObrePyu3mYCcZCOB/9z3Mpx849SMZTdD54GrkuAaVbQeWUxZlZA228+qR1Arcz+3dySm74QYkvZ6OZcty7nqzQurgSdM64vE4paWlqU6QCZnILg+mE5aSDAYJrhu+tV5HDkV1ukhxpKiK9EhaJaA+4LEw/Bbl3j6iunzZLSj7NGuKtgfwvdOCYUEpumkTz3HnUEKI6nFG3J268HTTB24YMBp0s2en/t3HczXY0ElovR3LqVPQ1vVPNXC73SSTyawJyXy1LO+Lfm4x6ioT3ld3I8dSEXNVYSFT/vJntDNn0nL1NXhfeQWHw4HBYMBgMORsbbqZ2b2pmo6pQFWsx/PSLuRE/5QIv8GAEfA98XeCDQ1ZmV9SSBReMgMA51Nbe3N8+2I+9VTMZ56J43e/IzLG/Hu9Xs+cOXO46KKLuP766/nyl7/MkUceSVdXF//973/55S9/ySOPPMK7775LZ2fnAYWLcWEpCmMqWq3QaCi/dRmxpia6B/GUPpBH9UAoLVpMx00itN5OtC3l2FHwf1/CePzxdN5zL5Fdu3A6nSO+Tg3zS5DDid4HKoVWi/XCC/G9/npvq3iHw5ERt5uDDf877yBHIljOOL3/G7ICpL1flXJCpvuJT4l3J4nteZ6y676asTUozRqsZ9US2eXp3clRlZRQev11BNeswfPssxmb60B4vV52SHtFcGlpKdoaK5JaQWSbC+NRRyGp1SPKq+5szI3ffDAYxOVyjTifGlL3p1S0OjuRahkJ86mn9r6eakW+DYVehfWcusFOFxwkCFE9XhmGHdNw2TfqEusI4H5hJ9qpNswn7d+cINvR2Xy1LO+LJEnYzq4j4YniW7E3Yq60Wpn858fQz5tH6w9+SMfWrTl1QVCYZFQ2XVbnkJQKrGfXEreHCKzq3w7Z5XJRVFWFetIk2m68sdeFI9OoCnXYzq8n2ujF/97A3S3Lb7oRSa+n/eZbBm1SMuJ5VSrq6uo466yzuOaaa/j2t7/NySefjCzLvPnmm/z+97/n17/+NS+//PKgKUqSWolpySQi21xEW3wYjz4ay/nn4XjkTwM+ADidztTnbYRFv+YTqpD0KrzLd6fmlSQqfnYXCp2Otuuux9HjvDCSz6d2qg2FUUVww97UG9slF0M8juc//wHo3eqfaHiXv4qypBj9ggX9XpdjViRF3x2+7US2eYh8/A/Kf3RZv0KzTGBcVI5mshnPS7t6C3ptn/schoUL6bz3vt6Hn2zT0NBA31q9kpISJLUCTa2V8HZXylpv0UL8774zrPESiST2Pbnx3W5tTd1TRiOqocevWh5ZpHooUR2PJfAPkkvuf7+NWIsf2/l1KI3Dm1MwfhGieoKRjCbo/sdmJK2Sws8P7KWaFtXZ3P7NV8vyvmjrrCmbubebSfj35gUqTSYmP/IwhsWL6e7uxuLN/palsigljAxzM7dDMRS6WYVop9rwvtFEsk/bXJfLRUFRERV33ply4Xjg11lbg2FBKfrDivC8urs3GtsXVXExZT/+MaG1a4dtXTcSJEmirKyMpUuXcsUVV/CDH/yAc889l5KSEhoaGnj88ce59957efrpp9m4cSMRea/ANh1dgaRT4X0rla5V9qMfodDr6bj1tv0i3d3d3dhsthFHfhV6FZYTqwhvdfUWF6pLSym/43bCmzax+8WXgJGJakmpQD+nhPBmJ8lIyt9bW1eHYeFCXE89RSIep7u7e8KJ6mQwiP+dd7CcdhpSn+LsmCOEnNz7kOtdvidlfbflv5iOn4xh4cKMr0VSSBR8dhrJcALP/3q8qxUKym+/DTkYpPPnd2d8zn2JxWI09Nmpslqtvd0CddMKiNtDxF1hjEuWEt2xk1jrwA/GfXG2BojHkmiN2d8BSacWVlRUjOp8ddp5QzpwbvNwuil6HeEex5P+wYG4M4x3+W50MwvRz51Y19yhihDVEwz38zuJ20MUXjoDpXng7S2Hw4HRaESfpWI12NuyfPcwW4VnC+tZtcixBL43m/u9rjAYKLr/l0R0OlRvvYXzib9ndR3anpQY/eFlWZ0njSRJWM+pIxmK430j5TIRi8Xw+XwUFhamXDi+cCnOxx/Pmk+uJKUaXygMKpz/3tqv22Ma62cuTFnX/eKXxLKcg2+xWFi4cCFf+tKX+PGPf8znP/95Zs2axa5du3jmmWf4a3Qzb6o3IssyCp0K07EVhD/tJtYZQFVcTOkPf0jwww/xvvBCv3GdTueo3VSMx1SisGjwvLK7V6xbTjsN60Wfo2PrFkw6HTrdyHY2DPNLkGNJQpv2Wg7aPn8JsT1NtL39dlZTv8Yr/nffQw6HMZ9xZr/XAx/s/cz5VrTie7uZuH0dcmA9pdd+P2vrUZcbMS+dRHBtJ+GdbiB1jyj61pV4X3ppVFZ2I+GTTz4hGAxS0FOs1/chSzfdBkB4mwvTCUsB8A/DBaRzdyo4UZ4FZ6N9aW1tpbi4eMTXRhpNdSo/WpIUxHvStwZjOHZ66XxqObk3gCHLMq7/7ABJwnZhvWhFfoggRPUEIBgN8amymcDaDoJrOzGfVI1u6uB5u9ly/uhLPluW90VdasC4qBz/qnZijv6pDk5/KnpaWldH5513ZtXWSltnxbCwDM0Uy4EPzhCaCmPqZ/+gnZg9iNvtBuj1qC794XWoKypov+GngxbhjRWlUU3BRdOJdwbx9KQ59EWSJMpvvx1Zlmm/bf8ocLbQaDTMmjWLCy+8kOuuu46vfe1rVEomdim7etdgOm4SkkbRG622XXwR+nnz6LznXhI9v0tZlsckqhUaJZZTJxNt8hHuI4LLb7gBX3Expvb2Ebey1ky2oLRpCa3fmwJiPv10FFYre159FZh4zh/e5a+gLCrCsPDI3teSkTiBhs7e//e8uAtJ5SC08o9U3HVnqrA3i5hPnoyyUJcqWuwpLC365jfR1NfTcettJLPU6EiWZVatWkVpaSnlcupnLC3da8OqKjWgtGqIbHOhqa1FPWkS/neHIap3edCb1ZiLspveJsvyqIsU0yitWlACkpJdZ5+D+z//GfTeM5xuir3OH31EdXC9ncg2F9Yza7Ke8ifIHUJUTwDW79nEB+ptdLy+HU2tFcupQ3tg5kJUq1Qqampq8i6qASynTkFSSb25q2nSaTAzb7gBy9ln0XXfL7A/9FBW1qCpNFF40XQkZW6jFZbTpiCpFXj+14jLlSpeS4tqpclIxV13Et2zB/uvf5O1NehnFGI8ugL/ilbCO9z7va+pmkTptd8n8M67eHtSHnKJQqFg8uTJVCj6iyilUY3x6ApCG+zEHaHeLfqEx0PXL1PtpQOBAJFIZEypVMYjy1OFpct39xZ1SgYDfpsNk6ObzjvvHNF4kkJCP6+E8HZ3b86uQqvFduEFdPbYtk2kSHUyFML/zruYTzu1X+pHcF0XciSBpEilhqmKFXifW0bBl76IcfHirK9LoVFScOFU4o4+3tUaDRW330asrQ37bwdukDRW9uzZQ2dnJ0cddRQ+KfX56PuQJUkS2mkFqQh6EkwnLCWwahXJA1jrde72UlZrJdt3OK/Xi9/vH3U+NaR+RqVZh6RSo6mtpf0nN9D8jW8SbWnZ79hhNX5xhJDUCiQ5lXKV8Efx/HcnmslmjEePLkVFMD4Ronq8EU9ddH2rzcdKmztV0CTplBRdOnAedZpAIEAoFMrJl2p9fX3eWpb3RWnWYF5aRWijg8ievfnTDocDpVKJrbiYyvvuw3rhhTh++yCx5uYhRju4UJo1mE+qJrzZSde2VF5k326KxmOOwfb5z+P8y19GZJ01Uqxn16Iq1uN6aivJUHy/9wu+9CV08+bSedddxPP8eemL+fgqUEr43kl92epmzKDw8stxP/UUwXUf9X62x9JMR1JKWE6fQrwr2GsB6fV6icbjVM6fh+f5F/D+738jGtMwrwSSMqGNe4vebBdfjNdkxKxUDpkfeqjhX7ECORjE0qfhi5yU8b/fhrraDEo/yDL+N+9BXVFG6Q+uzdnadNML0M8rSXlXd6Ui04Yjj0xdk3/9K6FPP834nKtWrUKv1zN37lxcpIrr+kaq0+uSwwmizV6MS5YgB4OEhnALCgdiuDqClNVkfycuXaQ4lkg1gKRRICMx5R9/p+zmmwh99BG7zjuf7r/8BbmngHm43RS99hBxgwItMSRkPC/uIhlJpFqRZ9CUQJB/hKgeR8jJJJHGVKRImaGOdslkkjZ36ovYdl5daltrCNL2X7kS1ZC/luV9MS2pQmFW4/lfY+82Xzpir1AokJRKKn52F7bPfz5r2675wnzcJJQ2LZ0fN6NWqzEajf3eL73+OlQV5bTfeCNybH/BmwkUmlThbMIXw/X8jv3el5RKKu+8k0QgQOfPfp6VNYwGpUWDcVE5gXWdxHuq+0u++x1UFRV03Hor3T2NVMZa9Ks/vBj1JBPe1/Ygx5O9uyg1F16Ibt5c2m+9jViPG8hwUFcYUZXqCfZJAdFOnYq/vBxzT0fFiYLvleUoCwowLNrrNR3Z4SZuD2E6thJJGUFOxojt2k7FnXei2Of6yDa2c+uQ1MpUC/Oev0vpD3+AsqiQjptvQY5n7pp0uVxs3bqVI488ErVaTUBKjb1vOpBuqg2kVF618aijkDQa/O8Mnufd1ROsKKvLvqhua2tDoVBQXp6Zom9JoaDwS1+i7qUXMS5eTNfd97D70i8Q3rqVcDg8rG6KHnsInwoUJFFIEsH1dswnVqMuy+1nSZB9hKgeR/jfeotkT35kpmoWuru7icRSX/baOtsBj8+F80eafLcs74tCq8Ry2hSie7yEP009WNjt9n4PF5JCQfmty9D0dB2URlkEM96Q1AqsZ9XiCXmx6sz7FcwoTSYq7riDaGMjoSwVLQJoqs1YTplMaL29n+VbGu20aRRfeSXeF1/E9/bbWVvHSDGfUAUy+N9NRasVRiPlN91IZNs2Wt95Z1R2evsiKSSsZ9aQcEfwr2rf2/WwvJxJ99yDHI/T9pMbhm09KEkShnmlRHd7ex8GkskkHr0eU0cnwQ/XjGm9BwvJSAT/W29hPvXU3sZYkLI5U5jUGObsvf5tX7i0X1vpXJHyrq4h2ughuDZ1XSgtFspvvInwpk04//ZExub68MMPAVjU84BxemIS02IlaDT9i9oVBjWaajPh7W4UBgOGRYuGLFbsbPSCBGU5qBlpbW2lrKwMtToT9nRyr5e/uqKCqj/8nspf/oJYayuNn7uIPb/7HTC0nV4yKeN1hOhKxlECKklCVWrAMoCdreDgR4jqcYIsyzgefhiFIbNPrs0jTFXoTXkYowgYDumW5Y2NjXlrWd4X45HlqEoNeF7ZTSwSxe127xexlyQJ7YxU4xKFZnjNAQ4G9HOL8WkimPyqXqu1vpiOOw7bxRdnzbc6jfnEajSTzbie20ncs7+va/EV30Q7bSodt95Gwr+/DV8+UNl0GI4oxf9hBwlfKq/UfMopmE4+mc7Nm7GZzSiVB7bmOhC6aQVop9rwvdWEo9OOVqvFZDKhqamh7IafEFy1Cudfh98J0zAvFX0MbUgJdI/HQ1yWscaiuJ98cszrPRgIrFhBMhjE3Cf1I94dIrzVifGoCiSVAlWBDUmhoPSH1+VtncZF5WimWPD8b693tfmM0zGddBL23/yGaMuBLe0ORCQSYd26dcyePRurNeXQMQUzS8NTBzxeO62AWIuPZDCG6YSlRHftIjrI901no5fCCiMafXbt9JLJ5JiLFNMozBqQofuJzb3ORCnXpHOoe+lFrOeeS0eP0496CEtBvytMMiHjirrRa4xIkpRK+1AJ+XUokrG/qiRJSkmSPpIk6cVMjTmRCH64hvCGj9FOn5bRcUcjqouKilAcoE1vpqivryccDuetZXlfJKWE9awa4o4QLe9sQ5blCVWw5SOEKabD9/b+xTgApT/+Ub/WutlAUvZ0W0wkcT21bb9ui5JGQ8WddxLv7MR+//1ZXctIMJ9YBYkkvhV7v1zLb7oRv9GI0Z65Zh3WM2pIBuJ07GxNNePo2VWwXXQRplNOwX7//cjh4aUnqYr1qKvNvSkg6eh35fz5+F59lbjLNdTphwTe5ctRWq0Yj9pbeOj/oB0kCdNRqQIy7bRpSFotSlP+tupT3tVTU97VL6XS5SRJovyWm5EkiY4MOONs2LCBSCTC0UcfPazjddMLQIbwDjfGJUsABrT6k2WZzkZvTvKpnU4nkUhkTEWKadTFehRaJeEtThx//oRkeG+wQVVQQOXdP8dw1VUAeG++mfZbbx3QiSdtp2dQdKKQlCDLaHPo8iTILZlUTtcAmzM43oSi+5FHUBYVoZkytDPHSBmNqM6lkKytrQXy27K8L7qZhWjrrLSuSuX1ThRR7ff7iSfiFE0qwfdeC3HX/hZ6SpMJy7nnAiBl0cNcVazHem4dkR1u/O/v/7ClnzePwi9fhusf/8xaK/WRoi4xoJ9bQuCD9t5mOqqKCvwFBej37Mb3xhsZmUdTbUZ/eBHdHidFtr11F5IkUXHH7SisVhIu97DHM8wrIdYeINYV3JunfcGFyLEYnv88n5E1j1eS0Sj+N9/CdOopSD2pAslIgkBDB/o5xSgt42snSl1mxHxCFcF1Xb0uOeqKCkq+/30C77034mLVviSTSVavXk1lZSVVVVXDOkdTZUbSqQhvc6GpqUE9eTKBAaz1PPYQ4UCMstrc5FPD2IsU00g9tR6R3R7sf9rYu0uQJtqTt13xuYtwP/kUu845d79rPW2nV6o8dArcBYOTEVEtSVIVcA7wp0yMN9EIffopgRUrKLz88n6WTmMlGEx9UQ43lSMej+NyuXIqJI1GI5WVleOiWBF6tvfOrsUVSRXW5CK3fDyQdqmoPCbVhMDzyu4Bj9P0RICy3ajAuLgc3cxCPK80EusM7Pd+yTXXoJ40ifabbiYZGbj9b66xnFSNHE30PggEAgFisoxNb6DjzrtIBvb/OUaD+oRyQlIUs6v/VrqqsJDKn901orEMc0tAguD6Lux2O0ajkYK5c9DPn4/7yScP6YLFwMqVJP1+LGfubfgS/KgTOZzAdFxmRFmmsZxcjbJIh/s/O3pTEgq+9EV0c+bQ+bOf9/qjj5SdO3fS3d3N0UcfPexrW1JK6KbZiGxL7WiYli4lsHr1ftdjZ2NPkWKOmr6oVKqM+qwb5pdSdNlsYh1B7H/Y0C8tzefzodFoqP7Jj6n5979RFhTQ8t3v0XLN94n37Px4HSFQQLWyMWNrEoxfMhWpfgD4Efv24BQMi+4//QmFyUTBFy7N6Lhpa6HhRh5cLldeUh7q6upobm7Oa8vyvmiqzPgLE5hkHcrQoSsq+pL2qC6qKsW0ZBKhDfZ+9oK5Jp13qNCqcP5ra2/zizQKg4Hy228juns3jod+l6dV9kddbkQ3uwjfyjaSkXivk86Uiy8i3t6O/cHMeJx7SIlz/Z4EcWf/a8a0dCmqsuF35VRaNGjrbYQ22LHb7b1ixHbJJanC1HGyE5ANfK8sR2GxYDwqVXwoyz02elUmNNVDuznkC0m917va2+NdLSmVVNxxOwm3m85f/GJU465evRqTycTs2bNHdJ5uWgEJb5R4VxDT0iXI4fB+Ra6djV5UWiWFldlPn2ltbaWysjIjNQx90c8qouRrh5HwRrH/fkNvozC/399bpKifczi1Tz9FybXX4n/rLXaecy7uZ57BYw8R0ymZpRm+O4/g4GXMolqSpHOBLlmW1x7guCskSWqQJKkhnbsngOju3fiWv0rBFy5FeQBbnpHS3NyMJEnDzi/LpfNHX8ZLy/K+ePURbLIRz2t78r2UnJAW1TabDfMJ1SjMGjwv7tovpzmXKM0aCj43jVh7AO/r+/8dTMcdh/Uzn6H70UcJbx4fmWeWk6qRQ3ECq9p7o/8VixZhu+QSnI8/TnjLljHPkb5/2jAO+HtRV4/MVcAwr4RYdwh7115RbTnrTBRmM64nnxrzescjcjSK7803MZ9yClJPwXFkh5t4V4+N3jhuGa2bVoBhfgm+t/d6V+tmzqToa1/F8/QzBHocPIaL3W5nx44dLFq0CJVqZIWE2ukpT/vwNheGxYuRtNr98qo7Gz2UTTGjyLIfc1KS6ejoyFjqx75o62yUXDEXOZbA/ocNRNv8+3lUS2o1xVdeQe3z/0E3YwbtN96EvWELoWSYqYr2rKxLML7IRKT6OOB8SZJ2A/8CTpYkaT+PH1mWH5ZleaEsywsnWgvcoeh+7M9IKhWFX/5yxsdubm6mrKxsPzukwUiL6lxHqqurq8dFy/I0yWQSh6ub4opSgms7iXVkZtt+PONyubBarahUKhRaJdYzaog2+wh9nN8HYP3sIoyLyvG900Jkt2e/98t+/COUBQW033hTRv16R4um2ox2mg3fe6102x0oFApsNhulP7gWpdVKx7Jbh217Nxhph56KY+oIftS1/+dzhIJQf1gRIWWMSDTSe+0r9Hqs552Hb/nyQ7JgMbBqFUmfD/MZp/e+1mujN3f8fz9Zz61D0ihxPbe998G3+DvfQV1VRceyW0eUErV69WqUSiVHHnnkgQ/eB5VNi6pUT3ibC4VOh+GoxQT6iOp4NIGj2Z+TfOqolCAej2ekSHEwNJNMlFw5D0kpYX/4Y7wuz4AtyrW1tUz+618ou+02ArKRGbs+QPXJ/kWMgkOPMYtqWZZvkGW5SpblGuBS4E1Zlv9vzCubAMQ6u/A89xzWz34GVYYfNJLJJK2trVSPIGrlcDgwm80576Y2nlqWQypPLhaLUTl3CpJWhft/h34unMvl6tdJ0bCgFHWlEc/Lu0lG82t3aD23FmWBDue/t/arwAdQ2myU39Tj1/uXv+RngftgOWkySX+Mrp1t2Gw2lEolSpuNsp/8mNCGDbjHGP1NO/TYTpqCpFXiWb57TOMpDGoCk1NfBSXFe+9DtksuRo5G8fbYhh1KeF9ZjsJsxnjssUCPjd4WJ8bF5QeF1ZnSpMF2Vi3RRi/BtZ1A6kGo/NZbiTY20v3Hh4c1TigUYsOGDcyZM2dAcTgcdNMKiDR6kWMJTEtPILpnD9E9qR0Ue7OfZFLOST51mmxFqtOoSw2UfGseCqMan9eHIT6wH7akUKA/+0ISSh0eVRL7BgtycvzugAgyw/i/exzCOB//K3IiQdHXvpbxsbu6uohGoyMW1flyu0i3LHeNg6hYOmJfUlmG5eRqIttchLfnf13ZZF9RLSkkbOfWkfBE8L83dg/csaDQqlLdFt0R3P/dv6DVfMbpmE49BftvHyQ6DlKItHVWNDUWurscFBbsdeiwnHcehqOOouv++4k7Rm+zl25KpDCoMZ9QRXizc8Ao/kgIlKai55bg3gdq3cyZ6ObNxfXkU4dUwaIci+F74w3MJ5/U6zXvX9XfRu9gwLCwDE2NBff/Gkn4U/7opuOPw3L+eTgeeYTIjv07k+7LunXriMViHHXU6Jva6KYXQDxJpNGLaWnaWi/lAtLZmPpc5iJSDaDT6SjMUDfioVAV6LB8dQYJKYn0qZ/ghoF39NLOH5/WFTPpOCcITX3Ik1FRLcvy27Isn5vJMccz7mefY/tJJ4+qCUXC48H9z39hOessNJMnZ3xtaSu94RYpyrJMd3d3XkU1jA9rvb5pMKZjK1EWaFPty/OYX5xNotEofr+/n6iGVA6h7rAifO80k/BG87S6nrVMsWA+sZrg2k5Cn/QXpJIkUX7zLUgaDe033zLm9IpMYD6pGk8yiCWxt+umJEmUL1uGHArRee+9oxo3Fovhdrt7c59Nx01CYVLjeWX3mISvWxlEI6tQbO2fSlJwySVEd+7MaifNXBNYtZqkx9Pb8CUZTRBY04n+8CKU1tzu0o0FSSFR8JmpyNEEnpf27qaV/eQnKA0G2m9ZNuS1kEgk+PDDD5kyZQoVFaN/mNDUWkElpaz1Jk9GU1PTm1fd2ejFVKjFmKPf66RJkzKWDx8NxUnEB//9BeVUio2l0IrzX1vwf7h/znRaVJcom7FUh0Et4piHOuIvPEqC69bRvmwZ8fb2UdkYuf75T5LBIEXf/EbmF0dKVBuNxv2E0mAEAgHC4XDeRPV4alnucDh6u9VJKgXWM2qItQd6m2QcaqR3Bwb6rNjOqkVOyHhe3Z3jVe2P5dTJqCeZcD27fT+Rry4rpfRH1xNcswb3U0/naYV7iVeqiUsJ9G0ycmKv2NXW1VL0zW/gfeG/BD74YMTjdnd393PoUWiUWE6ZTHS3l/DW0e+mOJzdFBpshD7t7ue0YjnrLBRG4yHVYdH36nIURiPG444DIPhRF3I4jum47OXiZote7+qPunp301SFhZT+5CeE1q0bMtVo69ateDyeYTd7GQyFRom2xkq4x1rPuHQJwQ8/JBkK9TR9OThTPzp2eYiGBq/T8PU0eqk4dza66QW4n92B753+XtReRwgZqNXsRDaWIkLVhz5CVI+CWHs7LVdfA7HYgQ8egGQohPPxv2FcugTdzJkZXl2K5uZmqqurh/3Uni/njzR9W5Yn8xxpTKfBpH93+rklqCeZ8C7fgxzLfzv1TDOUqFYV6zEdW0lwbSfR1vy2BZeUCgo/P4NkNInrmW37RWZtF12USq+47z5inZ15WmWKtPOHya8mtLH/1nDRlVeinjyZjltvgxHufgxUTGxcXI6ySIf3ld2j3k2x2+2UlJcih+K94ghS1oWW88/D+8pyEp6xpZiMB+RYDN9rr2M66SQUWu1eG71JJjSTx6eN3oGwnFSNqte7OnV/sl54AYajj6brF78g1jlwMGD16tXYbDZmzJgx5jXophcQ7woSd0cwLT0BORKh+53V+Jxhyuv6p37Y/REi8ezcRzNVpJhIJAl4ht6dS4tqS4GFostmo59Xgufl3Xhebuy9N3nsIWIaidmadqSigdu9Cw4thKgeIclwmJbvXYUcDFL0ja+Pagz3s8+ScDop/uY3M7y6FH6/H5fLNeJ8ashvB8Hx0rLc4XD0ax4gKVINYRKeyIAd/g520qJ6sFxEy8mTURhUPe2R85sCoy41YDu7lvBWF4HV/bdb010F5Xicjttuz2secNqjurCwEO+bzf3ErkKrpfyWW4ju2UO8a2S7HwNdp5JSgfW0KcQ6AoQGye0cimAwSCAQoLx+EgqDar/80IJLLkGORPC88N8Rjz3eCK5ZQ8LtxnJmKvUjstNDvDM47m30hkJSK7F9Zirx7jDet3q8qyWJittuRY7F6PzZz/Y7p729nT179rB48WIUirHLAF2PtV5kuwvDooVIej3N73wKsF978vXNHkJZCk5kKlLductLMjF0cCctqs1mM5Iq9cBvPCrlVOR+bgdyUsZrD+FRyEyhDYqFqJ4ICFE9AmRZpv2WWwh/+imVv7gPTf3ILxI5FsP56GPojzgC/cKF+72fjKUv5NHf4FtaWoDh51ND6starVZjseSmoGQgxkPL8nA4jM/n2+/hQldvQzezEO9bzcjR/OfsZhKXy4VWq0U/SOtxhV6F5dQpRHZ5CG1y5nh1+2M8pgLt9AI8LzUSswf7vaeZPJmSq67C/+ab+F55JU8rTEWqFQoFk06eTrwrSHhTd7/3Tccfh+Xss0dsA2i327HZbKjV/R0H9HNLUFf0+KqPMFqd9r0uKS1BP6eY8KZukpG9okc3axa6OXNwP3Xwe1Z7X1mOwmDAePzxQI+NnlF1UNjoDYVuagGGI0rxvdPS24FUM2UKxd/5Dr7ly/G9+Wa/41evXo1areaII47IyPyqMgMKiyZlrafVYjzqKDp2uVAoJEr67ACEYwk6vZlv8mVCTWFCn7Hvr+bNqfvcUM/l6W6KabcsSSFhu3Aq5hOrCXzYgfNfW/DYgziTYcwJNxRNy8jaBOMbIapHgPPPf8H7wn8pueZqzCefPKoxvC+/TKytjaJvfnO/yEgyEieyLXUxK83D85YeiObmZhQKxYie2tM2XZmIWowWo9FIRUVFXkX1UBF761k1yJEEkcaDfxu8L2nnj6EidcbFFahKDUTz2GUxjSRJFF40DUmtwPnvrcj7RJQKL/8yusMPp+OOO/Pmsex0OikoKMA4ryyVmvFW836R87IbfoI0ws5v++6ipJEUEpYza0g4w8TaR+ar3ut2U1KCYX4pciy530OA8ZhjiIyDeoexIMfj+F5/HdOJJ6LQ6Yg7w4Q3d2NcXIF0CBSQWc+pRaFV4uqJkgIUfe2raKdNo+P2O0j4U58Lv9/Pxo0bmT9//qAP0iNFkiR00woI73AjJ2WMS5fgoojCEjUqzd7PeMNuF4ksFHzPTxZxQeDwjI03XFFt3qdhmyRJWM+swXpWLaGPHcxNJNEoer4vRPrHhODgv5PkCP97K+j6xS8wn3EGRd/61qjGkJNJuh95BO20qZhOPGG/972vN5EM90SIxrAT2dzcTEVFxX7RrKHIp/NHX+rr6/PasnwoUa0uM2JcVI4cO7Qi1WkBOBSSUsJ2Tm2OVnRglBYtts9MJdbix/tm/+IgSaWi4q47SXi9dN19T17W193dTWFhIZJSwnJiNbFWP5Ft/QW+qqQETU3NsMdMJpNDXqe66QVoaq3II/QVt9vtqNVqrFYrmikWlFbN/hZhWe6GlwuCDQ0knM5e1w//qjaQwHj0wWOjNxRKkwbrWbVEd3sJNqRqCiS1moo7bife2Yn9178GYO3atSQSiTHZ6A2EbroNORQn2uLDcPwSfOYpFND/4ey97dlrJqXIUBFgOBCja3c6eDC4qu7bonxfzCdUoTqpmlKVxOc1VpKyEYpFpHoiIET1MIju3k3rD3+Idto0Kn9216hz7/zvvENk+45UlHqfiHCsI4B/ZSvaMZrkx+Nx2traRpRPHYvFcLlc40ZU57NlucOR6oI3mMi0nDoFSXnwC4w0yWQSt9s9LJcY3YzC3rbE4yH91DCnJLXl/VYTkab+EXTdjBkUffMbeJ5/Hv977+V0XbIs43Q6e3PUDUeUorRqe/Nd+6IqThUGD+ee4na7icfjg16n6SjZSOn1vVYokBQS+nmlhLe5SARGV4g9XvEuX46k12NauiRlo/dhJ/rDi1EdRDZ6B8KwsAxNbY93tS9VaKefP5+CL34R1xNP4F+/njVr1jB16tSM3++1UwtAgsg2FwFlAQmVDmPrxn7HvLd99P7suaJliwtZhvABLsmBItV9CZYaaQgmKJOM2KM/J6HOblMawfhAiOoDkPD7af7u95AUCqoeehCF0TiqcWRZpvvhR1BXVmI566z+7yVlXM/tQKFToT98bO4bnZ2dxOPxEYnqtFNBvpw/+pLvluUOh4PCwkKUg2zLKy0atFNtqf85CDqvHQifz0cikRi29WLhRdMpvHQGknpkaQvZwnZBPUqLFte/t/bLAwYo/va30dTV0b5sWe/Wdy7w+/3EYrHe60lSKTAvnUR0t5fIrtGnDvVN0xgM7RQLquKRbemnRXUaw7wSSMr7+YEfzMiJRMr144QTUOj1e230jj20hI4kSRR8ZhpyLNFTWJyi5NrvoyotZdUDv8bv92c8Sg2gNKpRTzIR3u6mszH1kKvf8CbJYKruwe6LsKndOy4eyIeieYuThBKC0uBRalmW8fl8Q3ah9NhDtMVkmjXPEmcS9oc3oRCS65BH/IWHQE4mabv+R0R372bSAw+gGUHh376E1q4l9NFHFH7ta0j7pGUE13UR3ePFelYtvgNUHB+IkTZ9gfHh/JEm3y3Lh9NVMl3pfijkYR7I+WNflBYNhvml2VzSiFDoVBReMp24M4znf/27LSo0GiruvIN4ewf2Bx7I2Zr6On+kMS4uR2FS432radTjDvc61c8efke5SCSC1+vtJ9TVlUZUJfpDypc9uHYtCYcDyxmn77XRqzSimZK/wuxsoS41pBolrbf3elcrTSbKbr6JTWYTNpWqt9lWptFNLyDa7KVrhwutFnS+dgKrVgOwckePbatx9PVC2UaWZfZ80s1uRWJIn6NwOEw8Hh8yUu1xhIgqoVr7DsV1/yURiKNh+CmZgoOTg18VZBH7b3+L/623KLvhBoxHj+3J3vHIIygLC7F97rP9Xk8GY3hebkQzxYJ+QSlPr0s5d3R5I6Oap7m5GYvFgtU6/DSSfHtU70u+WpYnEgmcTue4eLjIFUN5VB8saOtsmJZUEVjdQWhz/xxOw4IFqa3vv/+d4Ecf5WQ96Z2fvqJaUisxL5lEZLubaLNvVOPa7XYMBgMGg2HI40ayizBQ9FuSJAzzSoju9hJ3j+4+NN7wLX8VSafDtHQpkV0Hv43egbCcWI2qWI+rj3e1Z8YMnEVF1DesJd7jEJVpdNMLIAnRXV7K6gtQGAz430t1V3x3u50Cg5oSrYRiHHQ9HQhPV4iAK8IuVQLtEEGTvnZ6g45lD+JWJKlItKKdbKLkyrkkSebZlFSQbYSoHgTvK6/Q/fs/YP3cZyn40hfHNFZ461YC77xL4ZcvQ7FPtbVn+W6SoRi2C6fy+pYutnSkLtbRXnjppi8jweFwpIqUNOMjgpCvluUul4tkMjnhRLUkSSN6CBuPWE+fgrrciOuZ7ST8/Zs2lFx7LaryctpvuplkNPvt1ru7u1EoFPv9To1HVyDpVQPmVg+HwZw/xkKvnd4+4+rnl4IMoY+zV1iWK+RkEt+rr2JasgSF0bjXRm/e+NlxyTSSWoHtwqkkusO9hbyrVq1Cq9FQ295Ox623ZsXHXVNtRtIqMfijlNXZMB5zDIF33iWZTPLedgfHTS2mqHUXhliI7j//Ja9e8gORdv2IlWjQqgZ/OPX7U42whhLVrs4QQUKo5SgUTUVTYcSJl9g4+5kFmUWI6gEIb9lC2w0/RT9vHuXLlo05mtH98CMoDAYKvvCFfq9Hm30EPuzAdOwkksU6bn9x05jm8Xg8eL3eEYvq8eL8kSZfLcvHUxpMrnA6nVit1kFzyA8WJJWCwktnkAzFcT27o9+XtdJkpOK2W4nu3En3H/6Q9bWk3VT2/Z0qtCrMx1US3tRNrGNkOd6yLO+X+5wJ7Hb7gIW56mI96irT/i4gByGhjz4ibrdjPvMM4q4w4U3dGBcdGjZ6Q6GbasOwIOVd3b2zg02bNrHgyCOZ9P1rCLz/Ad4XXsj4nJJSgVxmoFQlUV5jxrRkCbG2Nrau2YjdF2HptBIkOYkEdN1zDx233oY8ys7E2WDHRgceRZKTFgyda3+gSHUikSTgCqNSulMv9Dh/JEgii1j1Ic2hfVcZBXGXi5bvfBel2cyk3/4GxRDRW1kGyTB0ykS0uRnvyy9j+8KlKPtEruSkjOs/O1CYNFhOnczv395JiyvEkZNHvw2fbvoyElEty/Kw8ohzSb5alk9EUZ32qD4UUJcbsZ5ZQ3hTd6+lWBrT0qVYzj8Px8OPEN66NavrcDqdg6ZSmY6tRNIoRxytDgQChMPhjH820/70Az1UGeaVEmv179dgZ6wkw2Hsv32QuD03gt37ynIkjQbTCSfiX9V+SNnoHQjrOXUodEpWPpNq/rJ48WJsn/88+iOOoPPnd2fFx92jVWFQSBSaNZiWLgGg8b+vAXD8tNTnV0ai6IorcP/73zRf+S0S3vz73ycSSdq2uditSnLe/KHbnadF9WCFir7uMMhgUfbch0TjlwmDENV9kGMxWr9/LXGHg6oHf4u6dPDtQTmRJLzdhPG0u0gGB/eF7X7sMSSlksIvX97v9cDqdmKtfmzn1tESiPL7d3Zy3rxK6koGryY+EM3NzahUKsrKyoZ9js/nIxqNjpt86jR1dXU5b1nucDgwmUzodLqczZlvDiVRDWA6bhLaOivu/+4i3h3q917ZDTegNJtpv+lm5ER22iTva6e3LwqDGtMxFYQ+to9IrA7H+WM02O32Qcc0zCsGCYLrMyd+/e++y67zzsfx0EP9ggzZIp36YVy6BEmjI/BhB/rDilHZDh0bvaFQGtUYzpjMp4FGppZOSTV5UiiouP02EoFAVnzc2wKpLqFysw91ZSXaaVORPnyfqaUmKm170x9Lf3AtFXfdRWDNGnZ/4YtEm0eXFpUpOhu9EJOJFGuYUT54Wgfs301xX7z21L2nQt2MrDGD6dBNNRL0R4jqPnTecy/B1aspv/029HPnDnqcHE/S/fctJFxaJEmBHB84mhq32/E88yzWCy9EXbb3okr4oniW70Y71YZ+bjG3v/gpaoXEjWfPGtP6m5ubqaysRKVSDfuc8RqdraurA3KbVz3eIvbZJhKJEAwGh+38AdC4wc6/7/qQZBa6omUCSSFRcMl0UIDzyW3Iib3rVBUUUHbTjYQ3bsT5+N+yMr/P5yMWiw35OzUdPwmUCnxvD79YLJ37nMnPZ9qffjBRrbRo0dZaCW2wD9lZblhztbXRctVVNF9xJZJKxeS//HlEjW9GS2j9BuKdnVjOOIPQejty6NCz0TsQO1UdRKQYMzpLer2rtdOmUfSNr+N5/nkC77+fsblkWaa52UdUrSDS4zyiO34Jk5q3cVJ1yo5Wl/CRrhqyfe6zTH70T8QdDnZf8nmC63JTTDwQm9Z1kkRm4aID72IcyKPa0yOqZ+h3IRVPHR/G/oKcIER1D+6nn8b1xBMUfuUr2C68cNDj5FiS7r9tIrypG4V56Fww5+N/Q47HKfrG1/u97vlfI3Isie2Cet7a2sXrm7u4+pRplFtHHyGNxWK0t7ePqkgRxp+oznXL8vGYBpNtRuP8sWu9HUezn8Q47iqpsukouGAq0T1efO/2j35Zzj4b04knYv/1r7MSGRuO57vSrMG0uJzgR10kQ8OLmDscDtRqNRZL5izguru7kWV5yM+8fn4JcUcIOT6048hgyNEojkceYec55+J/bwUl115L3fP/wXj00aNd9ojwLV+OpFZjPPFE/O+3oq4woqk59Gz0BkOWZVavXk1pUSllMQvuF/faThZ/61topkyhfdmtJEOhIUYZPr7uMCFfjGSFicguD3IsSdPUeajlBCcF9gBgiHn69T40Ll5Mzb/+idJioekrX8Hz4ksZWctI2bbBQYdS5txFB7ajHaqbIqTs9OISTFdsE6kfEwwhqoHguo9ov+12jMceS+l1Pxz0uGQ0gePxTwlvdWH7zFTUJYPbTSV8Plz//CfmM05HM2VK7+uRXW6CH3VhPqGKhE3LrS9sor7EyFePG1sL6Pb2dpLJ5KhEtUajGfIGkS/q6+tpaWnJScvydM5qprfXxzOjEdVde0ZnB5dr9PNL0M8txvtaE9GWvWuWJInyW5chKZW033xLxt0HBvKoHgjT0iqQGHbBYvqBT6HI3C17OCklhsOLQSmRDA1/NyNNYPWH7PrMZ7H/8n6Mxx5L3YsvUnzlFUg5chmSZRnvq69iPP54EvYEsY5D20ZvIBobG+nq6uKY44/BetJkQhvshLelrnuFVkv57bcTa27G8bvfZ2S+dNMX0+FFyLEkkd0e3lJXEFRpqd6xHnwdqOX9vze1tbVM+dc/0c+dS9t112F/8KGcOoOEAzGS3RGChSpqiw/c4O1AkWpXZxCPlKAo0QFFUzO5VME4Z8KL6lhHBy1XX426ooJJ9/8SaZDUiWQ0QfdfPiWyw03B56ZhOmroLSLXv/5F0u+n6Bvf6H1NTiRx/WcnygIt5hOrefjdXTQ5g9x2/uFoxtidbzRNX2Cv88d4/KKpr68nmUzmpGV5NrbXxzvpqOpwRXU0HMfVnrvOhGNBkiQKLpyK0qTG+e+tvV69AOryckqvv47gqlV4nn02o/M6nU6USuUBLQpVNi3GBWUwzDSabDl/SJI0ZFRdYVCjm15AMlwADO8eEbfbab3+RzRdfjlyOEzV739H9UMPoqkauvgr04Q//ph4ezvmM07Hv7INhUGFYf7EeWgGWL16NQaDgcMPPxxzH+/qZDR1PRiPWoz1c5+l+7HHMlLA29noRalWULSwDJQS4e0u3tnlZk/NYYRXrEDetnzQc1UFBUx+7FGsn/kMjgcfpO36H5GM5MYnfX1DBxIwY96BPx/D6abY3RkkpuypmSgWonoiMaFFdTIcpuV7VyEHg1Q/9CBKm23g4yJxHI99QqTRQ8ElMzAuKj/guM6/Po7xuOPQH3ZY7+v+FW3Eu4LYzq+n1R/hobd2cPac8t6K6LHQ3NxMQUHBkBf6QIznlIdctiwfr2kw2cTlcqHT6dDrh9fW2tHiH3NubS5RGNQUXDyduD2E5+Xd/d6zXXIJhoUL6bz7HmJdmesc2N3dTUFBwbAiyub/Z++8w+Ooz7V9zzb13ntzlXvvDTDGpvdOIGBIPkhy0stJLycnpOckJLQEAgFMBxtwwRg33ORuyUVdq76r7Sttnfn+GK2KrbK7WtkS1n1dvgy7s7Mja2fnnff3vM+zItuvOrWv1MNQoNPpSEhIQK0eOOUtcmYKiBqUg3TcJI8Hw0svU7l2HdbNm0n+f1+m8INNxKxaFcrD9hvLlq2gVhM5ZykdZW1EzUsPKBhntGMwGDh79ixz585FrVYjqBTE3zwOr8GB9ZPuZM+0b38bZVycvHIzxAHe5mozqXkxqCPVhOXFYj9t4EyzFWHhYjzNzTj3vDfg6wWNhoz/+RUp3/gGlk2bqHvwITydN//DyeEDTTiRuHZV/qDbDpamKEkS7QYHKoVJfmBM/nFZcdkW1ZIk0fTjH+M4dYrM3z5J2Pi+P/iiw4P++VO46iwk3jWJqFmDT/Ga330Xr15P0qOPdj3mMTmxfFxLeHESEZOT+OUHZSgEgR9eWxySnyWY0BeXy4XZbA7K+aNGb+cXm8pw9TOkGQouZmS5T7M6EmUww0Wgzh+6USL96En4+ASil2Ri+6yxa9kbQFAoSP/Fz5GcTlp+8cuQvd9Azh/no0qOQJ0++FLzcN3w+XtDHT45CQQvqqx5/W7TcewY1bffQcuvfkXEjBkUbnyflK9+FcUlctKRJAnr5s1ELV5Exyn5cxu16PKw0fNx4MABFAoFc+fO7XosvCieyDlpWHc1dEmPlPHxpP3gBzhOnMD4yqtBv5/XI6LX2kjr1KyHTUhA0nWQhMD4664GwH7gyKD7EQSB5EfXk/WnP+EoK6PmjjtxVlQEfVyDIUkS7VobllglOUn+ST+gf4/qdosLySMRq/LZ6Q1PJPwYI5PLtqg2vPAilvc3kvzVrxBz5ZV9biO2u9E9dxJXvY2keyYT6c/SkMdD2/P/JHzGdCLnd1+EzBvlwjD++kJ2ntOxpbSFJ64Y18tiKFiMRiN2uz2o0BcI7mK9oUTL83uq2Xh8eC3vLlZk+XBoVkc6RqMxIOePlppL7yUbDHHX5KNKjcTw5jnE9u7h4rCCApKfeALrtm1yV3OIiKI4oEd1X4RPkv/9B5JfDUdR7fV6/U5oVGiUKMLMqDJmXfCcx2ik6Uc/ouauu/EaDGT96Y/kPPfsRXH2GAjHqVLcjY3ErL4G+6FmIoqTUMVfPlaZDoeDo0ePMmXKlAuGW+PWFaAIV2J8uxypU34Ue+06opYtQ/fHP+JuagrqPfX1NrwekbQCWfoUPkG+YV+lCad4+jjC8rOw1SvwCv65U8Ves4a8l/6N6HBQc/c9IXUp6cnx03oi3ZA1qXeDQaDvhtFgaYrmVnnoMzesHmKzQDN4oT4U9uzZwz//+c8Rl055uXL5VBA9sO3ZS+tvf0vM1VeT/KUv9bmN1y4X1O4mO0n3TSZiqn8XNMvmLbi1WpLXr++6UHacMdBR2kbMlbl4Y9T89P1SCpKjeGTZ0IYTfQQT+gJDu1gfrpGL3Gd3Vw3ryeyLLK+qqhpky6ExkmUww4EoiphMpsA61XWjr1MNIKiVJN45EdHuxvhO77TFpIceJKx4Ms2//AVes3lI72O1WvF4PAHdqAh+zFLo9XoEQQhov4NhNBoRRdF/SYnSiaDqbgBIoojxjTeoWrsO09vvkPjQQxR+8AGx11wzIuYzrFs2g0qFKmUGYruH6CWXl43esWPHcLlcLFiw4ILnlFFq4q4txFVnxX6oGegc4P2JPLjb/ItfBvWd3lItnz9pBXIRr0qLxChIrImMQKEQiC6MoF2nwY3/NzcR06dT8PoG1BkZ1K1/FOOG1wM+rsH4dKcshbliZW6vx2PcBoQ+0g8H61T77PTGh1VclCFFvV5PXV0drSGUsY0RPJddUe2qraXhG98gbNw4Mn/9Pwh9dCa9Nhf6Z0/gbm0n6YFiIor96zxJkkTbs8+iKSoi+oor5MfcXkzvV6JKiSBmaRbP7a6mWm/npzdMIUx1ob5PED0B/0xarRaNRkPqAGE1feErqgO9WDs9Xo7Vm8iKj+BMs5Xd5fqAXh8IycnJxMTEDKsExCeDuZyKaovFgiiKfhfVzg4PppZ2NBH+e6CPJDRZ0cRelUfHSX2vMBNBrSbzl7/EazDS8uSTQ3oP3+BnKItfkLXPiYmJAfnP+7NPCC5MxnH6NLV330Pzj36MZlwRBW+/Tdp3v4Myeng7coFg2bKVqEWLaD9mQp0eiaZg+INmRgqiKHLw4EGys7P7HVyPnJ1KWGEc5o+q8Vpk72pNdjYpTzyB7ZNPsG7bFvD7tlRbiIrTEJ0gB6KcbbVxQHIzrl1E8opEx9SAJIAtsFhydWYmea/8h6gli2n+yU9o+c2TIQtvkiSJ1gozDo1AYUF89xMuO2Fi30PZg6UpmnXtiEgUCqUX1fmjtLT0or3XGP1zWRXVXpsd7eOPIwgC2U/9DUXUhRcBr8WF7pkTeNocJH9hChET/b9A2nfvxnn2LEmPPNJVrFs+rcdrcBB/4zgabU7++kkFa6aksWJC3xezrBY5TlZwtPn9vlqtlqysrIClC76hqsEGlc7nVIMZl0fku2snkRoTxrO7h6+L7Issr6qqGrbI8qHIYEYrgTp/+LrUqXmjV3MesyIbTV4spncr8Bi7bRrDi4tJ+uJDmN96e0hLzP54VAfDcKyiBLtK1fyr/6H61ttwabVk/O+vyXvpJcInTghoH16rC9P7lbi0Vn8NRQLGrdUStfha3E12ohdnjYju+cWivLwcg8HAwgG8wAVBIP7mcUhuEdOm7oZF4hceIGzyZFp+8Uu81sBWppqrLaQVxHX9W+8u13EAD2qXiLvsNBFhdSgiw1B4JAIdF1VGR5Pz1FMk3Hcfhn/9i/qvfBXRPnQnopNaM8l2ibj8mN6fkbMfIfTTrR8sTbG1yY5d4SVaNEHyxRtSLCsrG5OAjAAum6JaEkUav/tdXNU1ZP35T2j6uIP3mp3onjmB1+Qk6cEphI8PLL657ZlnUWVkEHftOgDc+g6sO7VEzEwhfFw8v/qgDAmJH13Xz3CitZk0/X4ABI/Lr/d0Op20tLQELP2A4C/WJZ3Sj0WFSTy4JJ/d5XrKGodPb1tUVDSskeWXq/MH+F9Ut9bKv9/RXFQLCoHEOyeC1Jm22MPOLvnxx+UgjB//BLHd//jwnrS1taFUKkMa0OL1ejEYDMPi/BEbG9tvYdAfxpdfJuGuOyn66EPib7opoGJV7PBg3lJD828PYdvfKA9pKoap2FUqEclHiFARcRna6MXExDB58sAJveqUSGJX5dBxQk/HWfmGUFCpyPj5z/G0tdH6hz/4/Z4dNhcWXUeX9ANgd7keQ4os9XCUnEJQQNTC+aSn5HNVcjzmLTVd1n7+IKhUpP/wv0n74Q+xffopNffdj7u52e/X98XmnbWEITB/0XnyoJNv9vuawTyq25rtuBWd3yEX0flDr9d3rUCNcem4bIpq42uvYdu+nbTvfa/PNC+PyUHrMyfwWl0kf3Eq4UXxAe2//chR2ktKSHroIQSNBkmSML1fiaBUEL+ukD3lej482czjK8eRndBPOtnOJ1FIgS2NNTY2IklSwEW1KIro9fqgumqHaowUJEeREhPGvQvyiNIoeW4Yu9XDHVk+HJrVkY7RaEShUPhdALbWWIlNDqehXb7Z847QmPLBUCWGE39DIa5qM7Y9DV2PK8LDyfjlL3DX16P7818ueJ0kSTi9A/fXDAaD33Z6/mIwGBBFcVg8qgMp1DVZWSAI5L/+Ouk//jHKQXy4eyK6vFg+1dL05CGsO7SET04i7etzCJ8YWNMiEKIWrcJZbiFqfjoKzeVjo9fa2kpVVRXz589HqRz8545ZmYMqJQJTD+/qiGlTSbz/fkyvvobHzyLNF/riK6odbi8Hqg3MmJCCOisaR50XUqcQfeU1qJUalIKAdYeWlt+X0H5cF1CHNfG+e8n5x99x19VRc8eddAQpexBFiapTbUjAhOk9zoV2A1R83O/rBiuqO4xO1EqT/D8XyflD0xmoNCYBufRcNkV1/M03k/7zn5Fw370XPOcxONA9fQLR7ib54amE5Qeuv2t79lmU8fHE33YrAB2n9DjPGYm7Og9vpIqfvH+KvKRI1i8v7HsHhio48iJuZWBxwMGGvlgsFjweT8AXa0mSOFxrYG6efEGMi1Bz57xc3j/eSKMpNFG35zPckeV6vZ74+PiAZTCjGaPRSHx8vF8XXgBdnYWU3FhKG+VhJKcnNJrGS0HknDTCpyRh3lKDq0eYTeS8ecTfdSeGl16i48SJrscbK0y887sjmDrkrq7o7bsAaGtrGxbpBwSnfe4P3w11IPtUZ2UhKBVETJvq92skj4htXyPNvz2EZXMNYbkxpH51Fkl3T0KdElzsub+ETVkHEkQvvPxs9FQqFXPmzPFre0GlIOHm8XiNTizbu72rU776FVSZGXjb/JMhtlRbEARIzZOL6oPVBlwekWUTkgkviMDVkYFYuJaoZUsBcIkiKV+ajiJKjeHVM+ieOdnrXByM6OXLyXvlFVApqb3vfjz6wOd6jmqNJNq8aFLDCY/q8d1/eiOIbjyKvpM/B4ood3Z4kJwiCeoWJKUG4nP73C7UhIeHk5eXR1lZ2UV5vzH657IpqhURESTccccFy5UefYdcUDu8pDwyjbDcwJduXVU12HbsIOH++1BERiI6PZg3VqHOiCJqYSb/2ltNpc7OT64vJry/8IFP/xcUalqTFwX03lqtluTkZL8DPHwEK3mo1NkxtruZm9/dZXpoST4S8MJnNQHtKxCGM7L8cnP+gMA8qh02Nxa9g9S8GLSG4blxupgIgkDCzeNQRKgwbjiD5O7W6qd+61uoUlJo+u8foqs2sOlvx3nnd0ew6DvQKPvX9IuiGLBFoT/4ztNAinVnx8DDzhaLBbfbPWyfeUmUsB9pofkPhzG9V4kqKYKUL00n+aGpaDIDC6cKFLekAgQcbTEoCuJQxgcmbxnNtLe3c/z4caZPn05kpP83LWGFcUTOTcO2u76rsFVERZHxk5/4vY+WajOJWdGow+Tr2+5yHRqlggUFiYRHlAMqnOFXok5NRep0vAnLjyP1iVnE3zwOT4ud1r8cwfheRS/by4EInziBgg0bCBs/Hq/J5Pex+thU0kCGV8Gk8+VBp96ExELcwoVFtS9Nsb+i2tLp/JEbXo+QWAiKi7dKUlxcjE6nG5OAXGIum6K6L9y6dlqfOYHk9pKyfhqa7OD0osYNGxAiI0m8V+6CW7bX4bW4iL95HC02J3/eXs5Vk1O5YlJa3ztoKYUTr8OCx3Cr/T8GURSpr68PWk8NgRfVJTWy9m5ufnfxkJMYybppGbxyoA6LIzD5ir8MV2S5KIpdUe2XE4EU1a118tKuMjkMc8fw/H4vNspoDQm3TcDd3I55W02Px6OJ+uaPOaJawuu/OUpzpZlFNxdx7y8WoVb235332emFulOt0+mIiYkhPIAQlaaKga0Bh+L8MRCSJNFRqqflz0cwvn4ORZiSpIemkPLY9KBW/4LBGyYPnys9ErtPtPHqzw5w4P0q2hpsn/shriNHjuDxePq00RuMuLUFKCJUmHp4V0evWIGmoAAG0c1LokRLjZX08/TUc/MTiNSo0Bg/RKADh0H+jpXCu11sBIVA9IIM0r81l6iFGdj3N9H8uxJsB5p6zTz0hyolhbx/v4gmLx+U/rvjeEWJE0daUCAwblqP88DaDNW7Yept9DVF60tT7M/5w9Qqa6kLVecuqvMHyEU1jElALjWXbVHtbrGje/oEiBIpj04fUgfFUXqKhDvuQBkfj7vZjm1PA1Hz0wnLjeVXH57GI0r8+Lop/e/gk19CWCws+VpA79vW1kZHR0dQRXVbWxvh4eFE9eGAMhCHaowkRmkoTO79uvXLCrA5PWw4qA34WPxhuCLLzWZzUDKY0UxHRwcdHR0BDCnKLgDV3s9HQe0jYlIiUQvSse1uwFFpwm52svOVs7y3WUCfNps87cfc8cV0Zq/JQz2ILtfnIDMcnepAi1+bceDVnOEoqh0VJnRPHaftpdPglUi8ZxKpX5lFxMTEPocZzboO9FobfdgADwlBkC9pypQIptw2jsg4DYc/quG1XxzklZ/KBba+/vNXYHu9Xg4ePEhBQQFpaf00bwagy7taa8V+sDv8JWrJYhT9FJA+jC3tuDo8XXrqVouDM81Wlo1PAdGLULWFsHg9jgozkiQhhV1Y/Coi1STcOI7Ur85GlRaF6Z0KWv96FGfN4N7xivBwohYtRBnn/yrzgao2Eq0iglpBWmGP15W+A0gw7bY+XzeYR3VbZ0plrnTqojp/gHxMubm5YxKQS8zoNJ0dIq4mO/rnToICUtZPR506RH2fSk3ig19AkiSM71agCFcRuyafzyr1bDzeyNeuHE9uUj/voT0IZz+EK34IkYFdkIMNfYFuyUOgVlOHaw3MyUu44HXTs+NZWJjIP/dW8+CSfNTK0N6v+SLLQx0CMxya1ZFOwM4fNRbi0yI50jS0cJSRSNy1hTjKTTS/WMZ2owuXV6J4WSYzF8bRctePMPyimphX/oMwiPZ8ODyqJUlCr9czc+ZMv1/jcnjosLpggDpIp9MRFRUVkESg3/fTWjFvqcFZYUIZpyHh1vFEzk5DUPb+fnDY3dSfMaI9Y6D+tAGL3oEtug0xaniK25ilWWQsyGDqyhzaLS6qjumoONzK4Y9qKPmwhvi0SIpmpzBuTipJWdGj3nLvzJkzWCwW1q1bF/Q+Imel0n6kFfNHNUQUJ6OM1cg3KYP823QNKXauRvhyC5aNT4aGw9DeRvjUOBwlDjxtA9/waTKiSHl0Gh0n9Jg/rEL3jxNEzkolbm0+ytjQSXk2nmikwKMkpzgBZc9r1ck3IH0apEzs83WDFdUN9VY6BA8Rgu2id6pB7lZv3rz5spQ0jhQuu6La1WBD//xJBJWC5PXTQjIwE3PVlajT07EfbsFVYyHh1vGI4Up++n4pOYkRfHllPxPAkgTbfw5RKbDgywG/r1arJTw8PKglZ71e3+Wq4S86q5OatnbuWdD38MWjywv54gslfHCiiZtmZQV8TINRWFhIeXl5QNKFwRiz0xscXZ2VjHHxvFxjGKhWG3W4XV5O7qinsqWDBSpYmB5B9qPTiPN9J/z3D2j8zncx/ucVEh+4f8B9GQwGVCpVwHZ6Ay1xWywWXC5XQJ9N36rCQITigutusWPeWoujtA1FlIq4awuJXpiBoJYLFK9bpKnKjPa0XES31llBAnW4kqwJCTgLo6g5U0mo42JEpZyBFzmrOwgrMlbD1OVZTF2e1avAPrK5lsMf1RKXGsG42akUzUklOXt0Ftj79+8nISGBCRMC8wzviSAIxN80jpY/Hca0sZKkewe25PPRUm1GE64kIV0+b3aX60iK0lCcEQs7toCgJHzhbCipwHnO6NdxRM5IIXxyItYdWqy76ukobSP2yhyil2T5lUI6EC6PyJ5jzdwlqsib0uPaaaiSbwKu+lm/rx0sotzY2o5XefHt9Hz4iuqysjKWL19+0d9/jMusqHZpreieP4UiXEnK+mmokgIb7jsfZUwMIJFwx52I7W7MH1ajyY0hck4az++t5lyLjWcfmNv/cGLVDqjZDWufhLDAyxWtVkt2dnbAFl5OpxOr1RrwhfVwrdyNm5PXdzdu5YRUxqdG88yuKm6cmRnyi1PPyHJ/p9sHQ6fTERkZGZKu3WghkKLabnZiMzqJzYrizM4alqj6nogfTXi9Iqf3NnHog2razS7ypiWhyYgk7mAz6iY7dBbVsddfj3nTJlr/9KeuhNT+8AUpBXouNlXJ3X9Jki44X4JZRWmuGng1QZIkdDodU6f67+LRE4/BgeXjWtqPtiJolMRelUv0siwEtZK2Rhva00bqTxtoLDfhcYsICoH0gljmXVtAzqQEUgti2VvZxldfOMT1wyA+dEdpEO1SvzZ6fRXYlUdaObKllsOba4lLiaBoTirjZqeSnDM6CuzGxka0Wi1r1qwZsp2jOjmC2FW5WLbV0nHG4NdrWmospObHIigERFFiT4WepeOTUSgEOLcFchagys5AmViPw4+i2odCoyRuTT5Rc9MwbarC/FEN9kMtxF1fGFAo2/nsrdCTZJWHjnOLe+zn1Fvy31Nv7fe1g6UpOowuNMrOn/Eiyz8AYmNjycnJobS0dKyovkRcNkW1s9aC/p+nUESp5YI6wf/Bn/4ImzCe9uPn0OTmYN5ai9juJv7hqehsTv70cTmrJqZw1eR+osN9Xeq4XJjzYMDv3dHREfTFMdju7KEaI2EqBVOz+u7GKRQC65cV8p23TvBZZRtLxoW2+5uSktIVWR6qovpyXCYzGo1ERkb6NfzmS1JsU0tIEmQlRIDNv2CikYYkSlQcbuXA+1WYdR1kFMWx5pGpZI6PR/JKtDbZMb5TQVheLMq4MARBIOMnP6Hq+hs4+50fYM9eCJH0qcc1GAxBST/Mrf27qfi0z4F8PlsGKaptNhsOhyM4uZMIzb8vAUEgelkWihkpNNRa0b58lvozBjqssuY+IT2SyUszyZmcSNb4+F7R9hWtVh5/5QjjU6NJsYfhvoQfpZ4Fdoe1u4N9dGsdRzbXEpsid7DbvSP7875//340Gg2zZs0Kyf5iVmTTfrwV07sVhI2LH3Bbt9NLW72NOWvzATjdbEFvc8l6anMDtJzs6vyGT0ig/UgLQoAxmqqkCJK/MAXHWQOmjVW0/auU8MmJxF9biCo58MbYxuONjBNVRCeGEZfa4/Un34KchRDfv5xyoDRFr1uEDi/Jsa0QkRCwnDNUFBcXs2XLlmGx+BxjcC6bohpRQpUYTtKDU1DFhdZmyVVvxX6giejFmWgyo/n1hmO4PCI/uX5K/52O0+9D41G48SlQBX48DQ1ycMXFdv6YkRNPmEoJdr38M8x+EHp0R26clcmTW87y9K6qkBfVvsjyM2fOIIpiSEI29Ho9kyZNCsHRjR4Ccv6okf1nTzscKBUCmXERoB3ZRcb5SJJEXZmB/e9WotfaSMqK4trHp5M3Nanr/BSUctpi65+PYHjzHMkPTQUBdltVHJ5/E9d9+gqq1JkQCd7zimpRFDEYDIwfH1hnyuP2Yjc66U8DodfrCQ8P77cr1tfP2Vw9cLJpsEOKyhgNCODNj6M+TEXtwVaM79cAEBGrIWdyItmTEsmZnEB0Pw0Lo93Fwy+WEKZS8PyD8/j3U7UBHcNwEhGjYcqyLKYsy6LD5qLqqNzBPrqtDmtUM96o/u0ULyVWq5VTp04xd+7cgBxiBsLnXa17+gTtx1oR+ltpRfavlyRIy5cbLXt66qnPvSJvNGENAOHjE7DvbyKW4FYFwycmklYUj21vI5btdTT/8TAxy7OJWeX/NdDh9rKttIVHPRpyi7vPf1pKQXca1v1uwNcPaKfX1oEAZGu0l0T64cNXVJeVlbFs2bJLdhyXK5dNUR1WEEfqV2YhDEMsrvmDKhTRGmJX53Gw2sA7Rxt4YtU48pP7uVqKXtnxI3kizLgrqPfUarUIgkBWVuDa5ba2NtmrNwBdcrvLQ2mjhUd94TUl/4Idv4SYTJh4Tdd2YSolDy3J57dbznK6ycLkjNBFNoMsATl27BiNjY0BB96cT3t7O+3t7Zddp9pgMPj9b9daZyUhI4pP601MzYxFoxIYmeVF3zRXmdn3TiWN5SZik8O56qFiJsxL6/N7QJ0cQdx1hZjeqWDfm6f5eaOeM81WsnIXsmLcUdRi35Z6FosFr9cbcKe6tcaCOICmOtBhYrOuA4fNjSqp/yIo2BvqJrWCT8wePId1qNQKMifEU7w0k+xJiSRlRQ16jC6PyGMvH6bJ7OC1RxeSFT806d1wEhHdu8D+91ONNNtHpltISUkJoigGZaM3EGEFcUTNS8d+qBkGyMRqruqdpLi7XM/EtBjSYsPh3FY5/CRFblqEFcWBQiBSDMcV5LeIoFIQsyKbyFkpmD+qwbpDS/vhFhTR/gV3fXq2lZh2EYVXImdyj/P15JsgKKH4pgFfP1BRbWqRtdR5irOXRPrhIy4ujuzsbEpLS8eK6kvAZWWpNxwFNYDX7CL+ugJEtYIfv3eKrPgIHl81wOTv8ddAf052/AjSHF6r1ZKamtrnMtRg6PV6EhMTUan8v6c6pjXhESXm+fyptQfkv/f99YJt712QS4RayXO7qwM+tsEIZWT55Tik6PV6MZvNft1QSZJEa62VpJxojmtNvbzJRzptDTY+eOoEbz15GGNLO8vvmsA9P13IxAXp/X4PONxe3vE6OKIWSTuiJ80l8fvbZ/Dpd69kxp9/i9TP14fP+SPQpdbGctOAz+t0uqCkH9EDBJ7odDrCwsIGjFnui7ZGOx5J4qavz+KRPyzn+q/MZOZVuX4N9kmSxA/fPcnBagO/vW06s3OHL5481EREa9BEjszek8fjoaSkhPHjxw/LMn/c2nwUUQMXqy01FmKTw4mI0dDh8nKwxiB3qd0dUPUpTLimyz1EEa5CkxdcFsT5KGPDSLxzIilfmo4QrcbdaO836bQnG483USyoQYDsSZ2fQ0mS9dSFKyB64BWcgdIU67TyDUa6dPaixZP3R3FxMc3NzV3fTWNcPEbmt8UoI2xcPBHTU3jhsxrONFv5x32ziejP19bjhE9/DZmzYPL1Qb2fL/Rl+vTpQb1er9cH/CVcUmNEEJAviKII9YdAEyMPWjYeg8yZXdvGR2q4c14O/zlQy7fXTCQ9LjTLktA7snzFihVD2tflWFSbzbJXrF9DiiYnHRYX7lg1To/IvPwEautqR3Sn2qLv4OCmas4eaEYTpmTBjYXMuCKnK+mtL8wdbl7eX8u/9lajt7lYnhXHdL2CJ8PDSZ2RiaBUQFER7shYwAZC715EsB7VDedM/T7X0dGB3W4PcEjRgjpcSUSMBvpJfNbpdKSkpAQ1gCcIAlkTAy+In9tdzesl9XzlinHcODP0rkCXK6dOncJut7Nw4cJh2b8iUk3i3ZNwN9j63aalykzmBPkzcbDGF02eIgeoeDpg/Jpe24dPSMA1iERpMDpsLpqrLDRXmmmuMtNaYyFTkIgQBAZaf7M7PWw/08JjyihS8yK7o8nrS8BUCyu+O+D7Dpam2Fhvw4OXCIX5kso/QC6qt27dSllZGUuXLr2kx3K5MVZUDwFVQhiKaDXxNxaht7n4w9ZzLBufzJop6f2/qORfYNbCDX8Z1P+zP1pbW3G5XEHpqX0JguPGBeahWVJrZEJqDHGRatCdA4cJrv6VfIOw729w67O9tn94aQH/3lfDC5/V8L21odUsFxUV8dlnn+F0OoPq1PvQ6/UolUri4+NDd3AjnECcP3z2bFrk2Os5eYm4jW9Tx2TwOICREwHdbnFR8lENpbsaEBQCs1bnMntNXveFsw9aLQ6e31vNf/bXYXN6WDEhhS+vLGJBQSKOsjbaXjqNZXsdcWvyAfBERIJ44YqXz04vkO6v1yvKTh39HF4wN3zN1WbS8mOxCm39bqPT6YKyXbObXYRFBH652H66hf/56DTrpqXz9auCt3sbozeSJHHgwAFSUlICtkYNhPBx8YT3M6xoMzqwm13d0o9zOjQqBfPzE2HbFlBHQn7vgi58fAKWLf5r6SVRwtBkp7nK3PnH0iWzUCgEknNjmLIsi9Y6C7rOx/vj49MtSE4RjdVD7uKerh9vgjIMJl834Ov9SVP0KNvly/ollH8AxMfHk5WVRWlp6VhRfZEZK6qHgDo/juhvzkYdoeE3bxzH4fHysxsGGE502mD37yB/GRSuCvp9hxL6YjKZ8Hq9AV2svaLEkVojN87M7DyAg/Lf464CSwMcfAau+inEdXehchIjWTstg/8cqOWJK8YR3UeKVrAUFRWxZ88eampqmDixb5N+f/B17EMx8Dha8BXV/nRVW2ssKBQCh812CpOjSIkJI8bRAEyW5wJGAM4OD8e21XFsuxavW2TykgzmrSsgOqH/gr9Gb+eZ3VW8ebgej1fk2umZfGlFIVMyu6O0I6YkEzk3DeunWsInJgwYs+1z/gjkc6SrteJxiUQkqWnvY9U6UOcPt9NLW4Od2Wtyaa3r+3fT3t6O3W4PamWmqdxEelFgUeOnmyx89dWjTM2M4/e3z5Qt1sYICXV1dTQ1NXHdddddMts/X+hLekF36Mv8/EQi1ArZSq9wJah7r1KqM6Nx46E/5anL4aGl2iIX0JVmmqstuDrkm/rwaDXphXFMXpxBemEcqXkxqDpXhD995WxXsd0fG483MV0TDhLkTO5sKoheOUVx/GoIH/jzPVjwi8vsIlxlREJASCgYcF8Xg+LiYrZt2xbSXIcxBmesqA6SE/Umfvp+KaWNFv5+32zePFzPl1cWUZgywKT+gb+DXQd3vRp0lxpkPXVUVFRQJ0owHbAzzRZsTk8PPfVB+QsoeQIs+BIc+AccfBpW/7zX6x5dVsgHJ5rYcEjLw0tD9yXTM7J8qEV1evoAqwqfQ4xGI0ql0q+uamudlcTMKErqjawuTgOPi2hn80U4ysHxuL2c/LSBI5trcdjdjJuTyoIbColP699Z4FSDmX/srOTDk02oFApum5vNo8sK+x0ojr++EGeVGcPr50j7Wv92ZW1tbQEXqj49dUxiOG19NJZ9qyiBuLRIokR6YRybT/Rt0xdseqjd7MSs62DKMv+lGzqrk0deLCE6XMWzD8ztXw43RlAcOHCA8PDwoCWAoaC52oJCJZCcHU2LxcHZFiu3zM6C1tPyauzyb13wGkEhYMRKDLFIkoRF7+gqoJuqzBgabEgSIEBSZhTj56aSXhRHemEccSkRQd9AmNvd7DzXypejE1BbXaR13ghQsxtsLf3GkvdkoKJaFCUU7V5SYloR4nMvuJm4FPiK6rKyMpYsWXKpD+eyYayoDhC9zcnvtpxlQ4kWkGccvv/2STLiwvnKFQNIKtoNsPf/YOI6yJk3pGPwhb4E8wXj038GUgQcrpW7m3PyOi/w9Ycge55spZeQB5NvgJIXYPm3Iaz7C2dGTjzzCxL5555qvrAoD1WIostVKhV5eXlDGlb0eDwYjcagQzBGKwaDgfj4+EG7qvKQooXkifEYq9zykGLTcRTSpe1Qi16RM/ubObSpGpvRSW5xIgtvKiIlt++bBEmSOFBt4O+fVrLznI7oMBWPLi/ii0vySY0d+MKnCFOReMcEdE+fwLSxqu/jEUWMRmPAkorGChMJ6ZFIYX37Sut0uoBWUZqr5f0k58ZgbnfTl2tosHZ6TRXyvjPG+depdri9PPZSCW12J288tjikMxVjyKuNp0+fZvHixWg0wxvGJIkSHo+Iuo+bopZqMyk5MSjVCnaf8FnppcC55+QNxl/d5z5rhCbabZHs/u5eOiyyPac6XEl6YRyFM/JJL4ojrSAuKLlRf2wpa8btlYgze0mfmIDSl8p48k3QRMsDlYMwUFFtNzlRSJCprr3k0g8fCQkJZGZmjhXVF5mxotpP3F6Rl/bV8sePz9Hh8vLwkgKyEiL42cYyWixO/nbPbCI1A/xz7v0TOC1wxY+GdBx2ux2DwcDs2bODer1erw84QfBQjZH02HCyEyLAYZY7ET2thxZ/BcrehaP/gYVf6vXaR5cV8si/S/jgZFNIh5SKiorYsmULJpMpKE20wWBAkqTLakgR/PeotrY5cNo9GMPkG7d5+Ylw9p3hPrx+kSSJyiM6DrxfhamlnbSCWK58sJjsfgbnRFHi49Mt/H1nJUfrTCRHa/j2monctzCPuAj/7LcAwvLjiFmZg3WHlhiNeMGqtdlsxuv1BjT4K4oSTeUmxs9Lo8He1Oc2er2ejIwMv/fZXGUhPi2S0jYbnn5s+nQ6HSqViri4wGQcTRUmVGpFvzcuPZEkie+9dYIjdSaeunc207IDe68xBufgQVl+N2/e0Joz/vDpq2dpPGfi3p/1Hob0ekV0tVaKl8mSwN3lOpKjNUxKj4HNWyF9OsRm9rnP8MgW2q0R5BbPJb0wjoyiOBIyooYkD+orkKknG483MjkmAofWRc6azhVXj1POWph0HagHt3j0RZT3palubpAL7mzOQNLcAI9++CguLubjjz8O+jo5RuCMFdV+sKdcz882llLeamPZ+GR+cn0x41JjePOwrG1eMi6JddMGkBFYmuDAMzD9DkgrHtKxDEVPDcE6fxiYm58gd8brS5BFaT2+0LPnyklU+5+C+et72QReMSmVwpQont1dxQ0zQhdd7ossDzZd8XJ0/pAkCaPR6NdnxzekeNbtJDlaQ35SJNTtZ0DT2mFCe1oObmmtlT2z135pGgUz+vZvdntF3jvWyD92VlLRaiMnMYJf3DSV2+dkEz5AiMVAxF6Zi+OckYhmLiiqfZZVgTh/tNXbcDm8ZI6Pp+HYhc+73W5MJpPfS/uSJNFSbSZ3ShKfnGntdzuf73WgMwSNFSbSCmO7u3sD8LcdFbx7rJFvXT2BddP8vykYwz9cLhdHjhxh8uTJw14k6eutlO1p7LNjbGiw43GLpBfEydHk5XqWjU9G4TDKdqvLvtnvfpMSqlnkfYaEB+uHfIxtNievl9TTfPQMyR19F8Z6m5PPKtt4IjcNtOZuPXXFdrlJ5If0A+ROdVhYWJ/D8VWdK0WJQi0kBZc9MRz4iuqysjIWL158qQ/nsmDIRbUgCDnAv4E0QAKekSTpz0Pd70hAa2jnVx+cZnNpM7mJkTz7wFyumpzadTHPjAsnLkI98HAiwK7fguiGld8f+jFptSgUCjIz++4CDIZerw9oqbrB1EGT2cHcntIPBMg672580ePw+v1weiNMuanrYV90+fffPsm+qjYWF4WmiB1qZPnlWFR3dHTgdDr9c/6okfWS+9oszM1LlIOFtfuBixcm0FJjYf+7ldSfMRKdGMaVX5jMhAXpfXa02l0eNhzS8uyuKhrNDialx/Dnu2Zy7bSMIcuOBJWCxDsmIP7l5AXPBVNU+/TUmePj4diFz7e1tQW0imLRd9BhdZNeGMf2kgom97OdTqcjNzfX7+MEcHV45BjqdfmDbvvRySZ+t/UcN83MHNinf4ygOX78OA6HI+RhL33x2VsV8hW9D1o6i8i0gljKmiy02TujySu2gyT6JacIFkmSOFJn4uX9tXxwookMsZH/9lZRJ/XdIf7oVDNeUSLLIdCRGNY9d3HqTYhIlAcq/cBqtfbr/NHUYEVEJFrZNmLkHyB/L2VkZIwV1ReRUHSqPcA3JUk6IghCDHBYEIRtkiSVhWDfl4QOl5e/76zk6Z2VKASBb6+ZyMNLCy7odC0el8zRH60eeNnKUAVHXoTZX4DEoQ/rabVa0tPTUasD7xg6HI6Ap/9LauSiYW7PIcXUyRB+XlLipGshoUC21+tRVAPcPCuL3289y7O7qkJWVA81slyv1xMXFzfsmsSRREDOH3UW4tKjqDXqeGBJAbRVQHsbHerhnyI3NNk58H4VVUd1RMSoWXrHeKYuy0KpvvB3bGp38eJntbzwWTXGdjfz8xP51c3TWDkxOC/m/lArGrAp5Bsxeuy2ra0tYDs9X7pjf3HegQ4U+lLtpEQ1Fa02pikv/LmdTidmszlgPXVzlRlJgsyi+AG3O1lv5uuvH2NWbjz/e+t0v/7tFZInoGO53PHZ6GVkZAR8cxQodaVtaE8b0fSja26pthARoyYmKZzdOxuBzmjyrZshMhkyg5MnDkS7y8N7xxp5aV8tZU0WYsJUfHFOPN+o+wGf1a7u93UbjzcyISUKc62NcbM7vxecNjjzIcy8G5T+XUsHjCjXdSAp2lEIIiSNrBvK4uJitm/fjtlsDlj6NUbgDLmoliSpCWjq/G+rIAingSxg1BXVkiTx4clmfvVBGY1mBzfMyOT76yaREde/3mpQHdiOX4NCDSu+M+Tj83q9NDQ0BNWZheC6s4dqDESHqWStnCjK8o+pN1+4oUIJC/8ffPRtufDOmd/1VLhayRcW5fP7bec412JlQlpoUrWGElkeaFrd5wF/PaolUUJXa0VTFAM2mJefAHXvA2ALH74lfavBIQe37GtCFaZk/vUFzLgyB034hV9TTeYOnt9dzSsH62h3eblyUipfXlkU+tRHUx18+hs4/goKz4OgjKNnUHugdnqSJNFYbiJ/ev8SLN956q9Mq6XKjCpMySGjrPmMi1DDefOkwTp/NFaYEBQCaYWx/W7TYnHwyL8PkRQVxjP3z/VPZtNWSUp7BXWqy+emdqhUVlai1+u56aabhtVGTxQlPnu7gtjkcHImJ1Jx+EJJUXO1hbSCOARBYHe5jknpMaRGqaDiY3kYP4Q2pRWtNl7eX8tbh+uxOj1MSo/hf26exo3Tkol6/Q6w1mNXxYPzwtc2mTs4VGPg67PycJW3klPceU6d/UgOp5nqn/QD5KK6P+mcy+wiTmOUvbljgltFHi58RXVZWRmLFi26ZMexZ88edDodN9/cR/3wOSKkmmpBEPKBWcCBUO73YnCm2cJP3y9lf5WByRmx/OmuWcwvGOIFuqUUTr4BS74GMUO3bmtubsbj8QStpw7G+aOkxsis3Hh5Cb31NDjNkD2/741n3gM7fgmf/R/c+VKvp+5bmMffPq3gud1VPHnbjKCO/3x6RpYHUlRLkoRerw962HO04pMqDKbFNOs6cDm86AUvkRolxRmxULIfIhLpEEPfqe6wuTj8US0nd8oay+lX5DDnmjw5GfA8KnU2nt5ZyTtHGxAluGFGJo+tKGRSev9FX1DYWmH376Hkn4AAC76MdX8s4Oi1mcFgCKhQNTTZcdjdsvSjH3Q6HfHx8X6vRjVXW0jLj+GtczqKUqIId5tw9FNUB3oj2VRhJiUnus8bG5BX9R55sQSrw8NbX15MSowfgUANR+A/t6MUbwFCW1SLnQNrTo+XMNXny8bvwIEDREVFDbtj0dn9TbQ12Ln6kSk0VV7oTuOwuzG1tDNxYTodLi8lNUa+sDhPzi9wmGBC364fgeD2imwra+GlfbXsq2pDo1Swblo69y/KY3ZugrxY9P5XZEu8m5/B/lrfcdwfnGhCkmCipKZCoHuw+dSbEJsFuf4VmZIk9RtRLkkSqg6R5OgWOZ58hOUeJCUlkZaWdsmL6tbWVrRa7SV7/4tFyIpqQRCigbeA/5Ik6YIcUkEQHgUeBYZ96SoQTO0u/rDtHC/vryU2Qs0vb5rK3fNzUYYiqOCTX0JYLCz9r6Hvi9AMKSoUCr8HXMwdbs62WFk7tbM7qe0Mfcnpp6gOi4a5X4S9fwZDdS+5S0KUhjvm5vDaQS3funrioHZm/uCLLK+qqgoostxiseB2uy/LTnVUVNSgKZQtNfLpe8ze0X1DVbdPvgDVhK5D5nJ4OL5dy9FtdXicXiYtymDedQXEJF742ThRb+Lvn1ayubQZjVLB3fNzWb+skJxE/11s/KLDKN8U7v+77A4w6z55lSkuG+/B39Ezo91npxeIV3pTl55avrh7+3Dq0Ov1fhfqbpcXfb2NqVdms/9IOQ8tKYATDRdsp9PpUCgUAWm/vW6RlhoLU5f37dojihLffOMYpxrNPHv/XCZn+HFjU7EdNtwPkUk4VHFc0FIfIq1WuV059SdbmJgew7SsOKZlxTMtK44J6dGjttDW6/WUl5ezcuVKVKrh8xdwu7wceK+KtIJYxs1J7bOobu38fkgriOVAdRsur9hppbcBFCoouiLo9282O3j1YB2vHqyj1eokKz6C71wzkTvm5pAc3eN7a++f4ehLso3rjDvhtb/3ub+NJ5qYmhWLrdZGam4M4dFq2d62YjsseMzvAtiXptinnZ7VhVqEdGXtiJN++JgyZQqffPLJmATkIhCSs1MQBDVyQf0fSZLe7msbSZKeAZ4BmDt37sD+NxcBryjx6sE6fr/1LOYON/ctzOMbqycQHxmizon2IJz9ULbQiwhNd0+r1RIbGxv0SaHX60lMTESp9O/CcqTOiCR1Lv+D3ImISBj4i2P+Y/DZX+VAmLW/6fXUw0sLeGl/LS98VsN3rglNdHlhYSH79u0LKLL8chxSBP/t9HS1VpRqBSVGK0/MHi93bQ1VMOchqBn6cXjdIqd2NXB4cw0dVjeFs1JYcEMhiRm9Q1gkSWJvRRt/31nB3oo2YsJVPL5yHA8uye99gQ0FLrv8md37Z9kRYOptsOoHcuepH3x2eoEOKUbFhxGbLN84aA1yCpzPEkwURdra2vyOntbVyqEvOg24vRJXTErl0xN9bNfpe+3vuQ9y+I/XLfbrT/2nj8/x4clmfrBuElcVpw2+wxOvw7tfhpRJcO+buH//EtB3UE2w+G5SHl5ayKkGMx+caOLVg3J3TK0UOgvt+M5iO46J6TFo/HA1udQcPHgQpVLJ3LnDa9d2/OM67GYXV6+f2q/EpKXGAgKk5cXywvZzcjR5QWc0ee6iQZMJz0eSJPZVtvHS/lq2lrUgShIrJqTw64V5rJyYemGD6/RG2PYTmHILrPxBv/uta2vnuNbE966cQMs79cxe09nMO/2+bBzgp+sHdHtU9zWoWFFlAiBNOgdJK/3e58WkuLiYTz75hNOnT7Nw4cLBXzBG0ITC/UMAngdOS5L0h6Ef0vBzsNrAT98vpazJwsLCRH5y/RT/uiz+Ikmw/ecQlSInDoYIX+hLsOj1er8v1gCHa4woFQIzc+M7D6Az9GUgPV9sBky9FY68BCu/1+uGIi8pimumpPPy/loeXzWOqBBElxcVFbF3796AIssv56Lan1Wi1joLYSnheNvtsj913WfyE7mL6NOuwk9EUeLs/mYObqrCZnCSNTGBRTcVkVbQ+9zzihJbS5v5+85KTtSbSY0J4wfrJnH3/FxiwkNs6edxwuEXZYcee6vsWnDFDyF92qAv9cmp/NU+S5JEQ7mJrAmyPaVXlGizuYjtcR9vMpnweDx+fzZ9Q4qHrDZiw1XMyUvg0z620+l0pKX5Ufj2oKnCBEBGH0OK7x1r4C+fVHDH3GzWL/PjO+Wzv8LW/4a8pXD3KwEXXoHyvbXyTbskSWgNHZxsMHf+MfHBiUZePVgHgEapYGJ6DFOz4pieLRfaE9JGVqHtcDg4duwYU6dO7dd9IhS0W1wc2VJH4cwUMsfF97tdc5WFxIwoNBEqdpfrWFCQSLitHnSnYdav/H4/c4ebt4/U8/L+Wip1duIj1TyytIB7FuSSl9R3yimNR+Gt9bKN601PDdhp3nhCHqCcExHBQVEit7jz5vfkm5BYBBkz/T7WgYJfqmtMAMSrGkeU80dPkpOTSU1NpaysbKyoHmZC0aleAtwPnBQE4VjnYz+QJOnDEOw7pDSZO/j1h2d4/3gjmXHh/O2e2ayblh76oY+qHbLWa+2TsiQiBFgsFsxm85BOCJfLFfCQ4pTMWDnUpsMI+rMw/fbBX7j4CTjxmlysnCd9Wb+8kI9ONfN6iVZeqh4iubm5qFSqgCLL9Xo9YWFhw3qBGml4PB7MZvOgXVVRlNDVWXHkRKB0CMzKjYcd+0EVDhkzCKaoliSJ6uN69r9XhbHJTkpuDFfcP5mcyb2Pxenx8u7RBp7eWUWV3k5+UiS/vmUat8zOCv2yvdcDJzbAp/8L5jq52LvzZcj136osUDs9s66DdrOrS09dUmPA5RV7bRO484eZuJQI/lXVxoqJqaj7sA8MNj20qcJEfFokkbG9V+8O1xr59psnmF+QyC9vmjbw96cowsc/liU1k2+AW569qBHOgiCQmxRJblIk106XZWy+QvtEg4mTDebOjvaFhfa0ziK7w31pU0SPHj2Ky+Uadhu9Q5uq8bpFFt3c/+qMJEm01JgpnJFCs9nBuRYbt83JhvKt8gYT1vj1XpIksfB/ttPh9jIzJ57f3z6Da6dnDDzkam6AV+6Sm1V3vTJoYMvG443Mzo2nvc6OKkwpR5NbmqBmjyzpCuC6P1BR3dJgByBW2TrgytalZsqUKezYsQOLxUJsbIhnUMboIhTuH3voZTI1MvnwZBPffP04Xkniq1eO58sriojoI3p1yPi61HG5MOfBkO12qHpqH/4W1S6PyDGtiXsX5HUewGH57/6GFHuSPg0KVsCBp2VHkB4T/rNzE5ibl8Dze6q5f+HQo8tVKhX5+fkBRZb7QjCGc4J+JFBXV8exY8e4/vrrMZtlbeRg8g9jsx2PS6TC42JKZqy8mlC3D7Lm9Po9+kvDWSP73q2kpVpO/Lvm0akUzuptd2dzenjtYB3P7a6m2eJgSmYsf7tnNtdMTQ/NbENPJAnK3oMdvwL9OcicBTf8GQpXBXSRBbmoVqvVftvp9fKnBj44eWGaoi9K3J/zVJIkmqstROdFo9cauGJS34W4z/c6kIFKSZRoqjRTNKv3a+qN7Tz2UgnpseH84745A3d0vW5473H55mXeI3KTQXHpNc09C+3rpstODZIkUWdo7+pon2ows+l4I68cqOMmrMSHWG3kL6IocuDAAXJzc4POJvAHY7Od0j2NTF2W2e3jDLjcYi/dv7m1A6fdQ1pBLLvL5c/qsvEpsH0LJBb6pSmO1KgQELhhRib3LczzL3XTaYNX75RlWg+/A9GpA25e3mLlTLOVn1xfTN3mZrInxMvhRaXvAFJArh/QnabY17lu0XcQqWhHJbhGrKYaZAnIjh07OH369EXxOb9cuWwSFSelx3DFpFS+t3ZS6IebenL6fXmJ6qa/gyp038RarRalUkl6+tBcRPwtqksbzTg9InN9emrtARAUcnHlD4uegFdul7/EZtzZ66lHlxfy6EuH2Vza3HVRGwqBRpYHKoMZjbhcLt5++21MJhNr1qzp6qoOVlS31sgdmUNmO+um5soXsabjAQ/bttZa2P9eFdoyA9EJYay6fxKTFqaj6HET1WZz8uJnNby4rxZzh5tFhUk8edt0lo0fhhseSYLK7bD9F9B0DJInwh0vweTrAy6mu46/rY3ExES/j7Wx3EREjJqE9Ei8omzfef66k16vJzIyksjIwb+jrG0OOiwuLEoRhQArJsiFhtrb3sujxFeoB+pS4mz3kNEpA6jU2dhxppU3D9fjdIu8un4uiVED3GQ5bfD6A/K/+RU/hGXfCvrf+WIgCAJ5SVHkJUVdUGj/66+vh3qe0m/OnTuHyWRi9er+fZhDwb53KlFpFMy7rnv10OMV2Xa6hTRXt594S9eQYhxP7y4nOTqMSYkKqN4lD6n78TuelhWHZFTzm9v8SwxF9MLb62U3rXve8CuVeOOJJgQBVmQm8JGumhlXdMomT70pR6in+B+ABt1pin3lGngsbqI0RohKHXZZ01BISUkhJSWFsrKyQYvqc+fOUV9fz6pVqz73zadQc9kU1YUp0fzt3mG2UPN6ZMeP5Ikw/c7Btw8ArVZLVlbWkCe//dV/ltTInsbdSYoHIXWK/3KWcVfJ/w77/irHs/c4Ma+anEZBchTP7qri2mkZQz5pA4ksdzgcWK3Wz72eeteuXZhMpq7/99ejWldrQaFR0Cx55QHV+hKQvH5bT5la2jnwfhUVh1sJi1Kx+NZxTFuRharHqlCDqYNnd1Xx2qE6HG6RNVPS+NKKImblDlOwTN1+efWodi/E58JN/5A/k0PsmhoMBlJTB+6Y9aSx3ETmuHgEQeBgVRt6m/OC1bJAnD+aq+TVh4MWG7NzE7qK3BhnC9YeDWRfUe3vue87VqCrqL7y9zsBUAjwr4fmM34gr3m7Hv5zu3zzcsP/wewH/H7fkYSv0NaoFLguUVG9f/9+4uLimDQpNIPdfdFYbqT6uJ6FNxX2srF8elcVOquTVKn7M+rzRI9Pj2RPhZ6VE1IQanaD1+m39AMCXNre9mN56H/d72D8VYNuLkkSm443srAgiXatLM3ImZwoD1s3HIbVPw/k3YGB0xTVHV4So5pHrJ66J1OmTOHTTz8dMMgGoLS0lOPHjxMWFsaSJUsu4hGOfkbONMZoo+EwvHQL/CZfdgsAeZlTf07uzIRwmdPtdtPU1DSkIUWQLegiIgbWofk4VGMgLylStr4TvbL8I2ee/2+mUMCi/wfNJ2R9ea+nBB5ZVsDxejMHq/v2Fw2EnpHlgxGMV/doo6Wlhc8++6yXz7HRaESlUg2qI2+tsyLFq0GAOfkJ8goFgjygOgA2o4MdL5/hlZ8doOZUG3PX5XP/Lxcza3VuV0F9rsXKN14/xoond/Dy/lqum57Jx99YztP3zx2egrrphFzc/XMN6Mvli/ITh+UUtSGen16vF6PR6HehajU4sLY5yJwQD8AHJxsJVytI6OE2JElSQKFEzdUWlBoF+9qsXDG5s7j3ugn39HY01ev1JCQkBJTC2lRpJipOQ2xyOO09OpU/vq6YFRMGKPqNNfD81dBaBnf+Z9QW1COB5uZmampqmDdvXkCuLYEgiRJ736wgOiGMGVd0SwtPN1n408fnLmg8t9RYSMuL4UyLFYPdxbIJyXBuM2iiIW8Yiq+Sf8mNmfmPwfz1fr2ktNFCld7O9TMy0Z6WV8ri0yLh1FvyBlNuCfgw+itC9cYOIkWBNEX1iJZ++Cgulrv8p0+f9mv7jz/+OCBp5RhjRXXgNJ+EV++GZ6+Ayk/kAb4Oo+wi8Omv5XjWydeH9C2bmprwer0XTU8tSRKHa43M8XWpdWfAZYWcAHVY0++SI2v3/e2Cp26dnU1ilIZnd1cFts8+8EWWV1VVIYrigNt+3p0/RFFk48aNhIeH91riMxqNxMfHD5j85/WK6LU2WlQS+UmRpMaEy3rqtCkQEd/naxx2N5+9VcHLP97PmX1NTF2Rxf2/WMSCGwoJ64w4PlJnZP2/S7j6j7v46GQzDyzKZ9d3VvG722cwLjU06Zq90FfAGw/B08tka8urfgpfOyZflEOU4Gc2mxFF0e8hxZ56ao9XZPOpZq6clNZLM26323E4HH53qluqzAiJYUgCXDmp09mjbh8KqXdbVafTBaanliSaKkxkjJe76jvPyp3uexbk8oXF+f2/sOmEXFC3t8ED78GkdX6/5xgXcuDAAVQq1bCGVFUcbqW11sqCGwq7bn5dHpFvvH6cuAgNBcndLhwelxe91kZaQRy7OvXUS4qS4NxWKFoVsnOri8od8ME3YdxqWPM/fr9s44lGVAqBqyenUX/GSE5xp0Tr5Fvyilt84NfR/orq0xXyCmASNaOiqE5NTSU5OZmyssEDr6OiokhOTubNN9/sWukcY3DGimp/0Z2F178A/1gKNXth1Q/lwRsfJf8Csxau/HHItYMXe0ixWm+nze6S7dSgO/RlkG7lBajD5ULm3GbQnev1VLhayQOL8vj4dCsVrdbA9tsHRUVFOBwOmpouHP7qiS8AJxBv4fPZWyEX5g73wAX8peDIkSPU19dz9dVX99LlGo3GQX9mQ6Mdr0fkVEeH/Lv3euTffe6FjjMel0jJhzW89MN9HP24jnFzUrn3ZwtZfucEImM1SJLEp2dbufPpfdzy1GccqjHwX1eN57PvXcGPry8mM96/FZOAMGnhvSfgb/Ph3BY5GOJrx2Hp10HTj0VXkATq/NFYbiIsUkViZjQHqw3oba4uNwofgdzw+QqcBqWXrPgIJqR1rkCc29JrO6/XS1tbW0BFtbXNgc3o7LLS+/BUM0lRGn5+w5T+pVrVu+Bf6+Twjy9u6fMzM4b/2O12Tp48yYwZM/zS1weD1y2y791KkrKjmbCge1bn/z4p53SThV/fMo2wHoOoOq0NUZTkIcVzeiZnxJJqLwdro2xFGUp819uUiXDbP0Hpn+xRln40sXR8Mh69A1eHR5Z+tJTKln9Tbw34UCRJ6reorqmVV6njVKND/gFyt7q2trZr+LI/1Go1d911F6IosmHDBlwu10U6wtHNWFE9GG2V8Paj8NRCqPhYvlD/13FY8e1ufbHLLvvc5i+DwpUhPwStVktCQsKQLeD8Lap9euru0JdDEJkkT3cHytyHQRkG+y/sVt+/MI8wlYLndlcHvt/zKCiQB2wGW6oKNADnfBxuL/sqZQmJy3NprbbOx2q18vHHH5Ofn8+MGd1R8JIk+RX84ktKq/S45aK6tRRcNsi5sEB653dlHHi/iszx8dz1w/lc9WAxsckReLwi7x9vZN1f9vDgvw5RZ2jnR9cVs/e7V/BfV00gYaDhtmCx6WDz9+H/ZssSrPmPyp3pK37Yb4d9qATqUd1YbiJjXDwKhcCmk01EqJWsmthbjx2I80drrRVRlDhktXPl5NTuYtdnbdaJyWTC6/UGtDLj86fOHB+Hw+3lk9MtXD0lrX+nntJ34OVbIS4bHt4GqcOn/71cOHz4MB6PZ1hdGk7urMfa5mDJLeNQdK6YHNOaeOrTSm6bk83q4jSUkhcFsvtHS7VcQMZmRVJSa2D5+GQo77yJGxfCQUqfJl8VBvdsgHD/7d+O1JloMHVw/XRZ+oEAOZMSZW9qQQlTbg74cBwOB16vt8+iurXJZ6fXDEmjo6ieMmUKkiT5JQFJSkri1ltvpbm5mY0bN3aFVI3RP5fNoGLAmOpg55Nw7BVQamQ3iyX/BVF9XET3/x3a9XDlT0LepZYkCa1W21U0DgW/i+paA/GRagqTO4t47QHZSi+Yny06BWbcBcdfk9Mlo7qPISk6jNvmZPNGST3fuHqCLDcIkujoaNLT06msrGT58uX9buez0wuWt47UY3d5IcQZJKFgy5YtuN1urrvuul4dxfb2dlwu1+BFdZ0VQaPApJBk15eqTqv5Hl1HpUrW18anhbP0tomkF8rT7g63l7eO1PPMripq29opSonit7dN58aZWcMXpNFhkvWW+54CTwfMvAdWfC+o5d1A8dnp+XOjazc7MbW0U7wkE49XZMupZq6cnEqERonK250oqNfrUavVfiWmNncWOLV4+O6kzuLcUAX6c4hCd0x0MM4fjZVmNBFyV337mVbsLi9rp2b0vfGBZ+Cj78ifkbtfDVl67OWM1+vl0KFDFBYWBjQIGwgOu5uSD2vInZJITmcoisPt5ZuvHyMtJowfX18MksR482c0MRmAlmoL0YlhnGyz4/ZKspXezi2y5DEmsGChfvE44bV7wdYCD34gDxYHwKYTjWhUClZPSePjT07I0eRRKtn1o3Blr+uPvwzkUW3TdxChcBKuckJCXsD7vhSkpqaSlJREWVkZ8+YNvvo8YcIEVq1axY4dO8jKyhoLjxmEsU71+ViaZB3XX3xdr/XyEvLVv+i7oAa58J54bWCDfH5iMpmw2WxDkn74BpT8vbCW1BiZm5cgdy/aDdBWMbSfbdHj4HHAoecveOqRZYW4RZGX9tUGv/9OioqK0Gq1OJ3OPp/3LYUHW1R7RSkkXfXhoKKiglOnTrFs2bILfj7/nT+s2KMUJEV3ainr9kFsdq8iNSm1hbuSvsraL08gvTAOq8PN3z+tZOlvdvDf75wiPkLNP+6bw7avr+D2uTnDU1C72mHPH+HPM+QVoglXw+MH4ca/XZSCGuSi2l87vZ566gPVBtrsLq7rlH7EOjrlSj2GFP3ZZ0uVBU+EAilMycLCzu+lc3KX2qHu7uwF0v320VRuIqMoDoVC4KOTTcRFqFlUdN53n8+P/6Nvw8R1cP87YwV1iCgrK8NqtQ5r8VLyUQ2uDg+Lb+nWAf92y1kqdXaevG0GseFqOPkGce5mhK5OtYX0Tj11mErB3BSv7A4UgOvHgEiSLN/S7oeb/yGnJgbIByeaWDUxhTBJoLnaIks/6g/JTbIAYsl7MlBEudfqJlJthIR8UI7ATksfCIJAcXExNTU12O12v16zbNkyJk6cyJYtW6iuHpnXwJHCWFHtw6aDzT+Av8yEwy/ArPvgq0dh7W8GvwuXRHmpeRgIhZ66uLiY9evX++fhbHNSpbcz16enrj8k/+1P6Et/pEyE8VfDoWfB7ej1VEFyFFcXp/HS/tpeLgPBUFRUhCiK1NTU9Pm80WhEFMWgi+ptZS1U6+3kJA6DHngIuN1uPvjgA5KSkli6dOkFz/tTVHvcXtoabNRIHubmJ8iWV3X7L9DGKhQiSWotBruHJzefYfH/fsJvNp9hckYMr6xfwLuPL+Gaqeldy8khxeOCg8/K5+jHP4Wc+fDYLrj9hYuuZ2xra/Nb+tFUbkIVpiQlN5pNJ5qI1ChZOTEVPE7CPeau7fxdRZEkieYqM1qFyJJxyd0pdOVbIGk8HqFbYqPT6YiNjSU83L9VoA6bC2NzOxnj4nB6vGw73cLVxWm9kxq9Hnj/Cdj9e5j9Bbjj34Om243hPwcOHCAxMZFx44Zn8M2i7+Dkp/VMWpRBUpZcKO6vauOfe+VArqXjk+Vmyubvd73GbnZiNTg6Q1/0zC9IJLzmE0AKXVG980k4+bp8LQ1CpgHQanVy/YxMGs4akURJ7sKffFOWIE66Lqh99tepdntFwhwiiaqmUSP98OGTgJw5c8av7RUKBTfffDOJiYm88cYbXWFiY1zImPyj3QCf/UVO//M4YMbdsm46MQC5xfQ7/DKkDwatVotarR7SMqBKpSIrK8uvbQ/XnudPrT0oa9GyhjiBvugJ+PcN8pfmeTZbjy4vZEtpC28erueBRflBv8VgkeVDdf54ZlclOYkRTM4A89BnK0PGrl27MBqNfOELX+jTx9yf4Je2BjuiV+Kcy8md+YlyZ8fa1O/A2XX/txuLqGHd1Ay+tKLIv1S0YBG9cOJ1+PR/5OPKXQy3vwh5/nlnh/xwRBGTydRlTzUYjRVy51cENp9q4qrJaXIhXL6jy6nD5XJhsVj8Wk2yGhy0W1xURri4w2el57TJ8cvzH4V93dsGKndqqpAvlhnj4vmsog2rw8O6aT2kH652ePMhefh4xXdh5fdHVKhLpMeEC+D3k+WVxagU2YEoqvNP13+nyHMiUckQFjtifob6+nrq6+tZu3btgE49Q2H/u5UoBIH518szMjanh2+/eZzcxEi+v65TD7/tx9BhxKpOgQ65Sw2gSgmnotXGnXNzoPzvEJ0G6TP6eyv/OfmmfH7PuFsOCgqSSI2SKyalcuitSlRhStLzouC9d+TVrAC02T3pr6iu0dmIFQVShOoRHU/eF2lpaSQmJlJaWjpotoOP8PBw7rrrLp599lk2bNjAQw89FJBN5+XC5VtUO8yyFnP/U+C0ylPBK78XWMcrPg+i0+ULyzCh1WrJzs4eNp/S8ympMaBRKbqLpPqDkD516O4JBcvl+PJ9f4NZ9/e6iM3JS2R2bjzP7a7m3gV5QUdTDxZZ7iuqAwnB8FFSY+BInYmf3TAFU+3gdkQXi9bWVvbu3cuMGTP61d0bjUZiYmIG/AL0DSk2qyR5SLGucwDpvKI6Nlzex42zMnlo5dRellshR5LgzCY5UEl3Rk5Cu/ePMO7KS1oE+ez0/PkcOWxu2hrsjJubxr6qNozt7m7XjzOb8C0W6gPwT2+pkn9XDUqxe9ix6lPwuuSu4b4DgFz863S6gCzZmipMKFUK0vJi+eO7J4kJV7F4XOfP2W6AV+6UV6+u/QPMe9jv/V4sVGKn9KvoCnnOxa6Th83b2+Sh275QajqL7aTOv1M6C3C56A732LhYvgcHDhwgLCyMmTNnDsv+W6otlJe0MnddPtEJcuLv/3x4mnpjB288tohIjUp2tzr6Eiz+Ku0747pep1AIlHbIMwDLiuJg73YovlHOJBgK2oPw7v+Tb5av//OQzu2rJqcRqVGhLTPI0eT1e8HeGnAseU9sNlufaYpnq0woEIhXNEBy4FKVS4lPArJ3717sdjtRUf59j6ekpHDzzTezYcMGPvjgA2688caxxMXzuPyKaqcNDj4Ne/8CDpPsKb3yB8F1mvOXwDfPDNsF3uVy0dzc3OeS/nBxqMbIjOw4wlRKeZm3/rA8ADZUBEHuVr/zmOyiMr73tPijywv50stH2FrazNpp/QxF+cFAkeV6vZ7o6Gi/A3B68o+dVcRHqrl9bjbPjpCiWhRFNm3aRFhYGFdffXW/2/nl/FFnRdQIeDQKijNj4dg+uYOX2vu8KM6MhVL4+Q0huNHqD0mCqh2yZrfxqLy0evuLMPmGoV/AQ4DB6L+dXmOXk0Y8fzleR5RGKYeniKKcEoe8JN0WwCpKc5UZrwBpudGkx3XKOsq3yL+v3EWAXFRbLBbcbndgQ4oVZlLzYxAVsLWshdWT0+TvAkuTvNJkrJXlHsU3+L3PS8JNF7oN4e6QnSXa9fLf/f23oapXEZ7g/BJW9TDePHZisVgoLS1l/vz5hIWFhXz/kiSx961yImLUzLpaHgDceU7HKwfqeGx5oSz58zhh039BXK7cZNr5IgAtNWaSc6LZVW0gJSaMia5ScFqGLv0w1si5D7GZcOfLsuPHELh+RiYWfQdmXQfTVmXDqWdAEzOk4+zPTq+uVr65jVONHuePnkyZMoU9e/Zw9uzZgG68J0+ezPLly9m1axdZWVl+DTteTlw+RbW7Qx6U2/NH+ctz/BpY9QPInDm0/Q7jXVpDQwOSJA3ZnxrkIbvBOsAdLi+ljWYeXtppnddaBm67rF0NBVNukbWw+/56QVG9ujidvKRInt5VxTVT04O++x0osjxY54+KVhsfn27hq1eMkzs5I4SjR49SV1fHjTfeOGCnwWg0DhpzrKu1oNfArLx4WT9bt1/+vYcwGdQvtAflYrpmN8TlyMOH0+/y26f2YmA0yBIpf4tqpVpBYnY0m19pZnVxp/RDewhsLXgUclGs0+sRBMGvfdZXmGhUelk1uTNhVZKgfJscwNFjWCpQ5w+304u+zsrMq3PZV9mGucPdfYN75N9yWuyDH8rNhNGIOkIeZPV3mLWzCG//w0vA0OY9/OHQoUOIosj8+SH6vj2P6uN6mirMrLhnIppwFeZ2N9998wTjU6P5+uoJ8kZ7/yz/nu99s+umWUJBa42ViQvT2VNey6pJqQjn3pA7/EOxkHWY5ZUP0Q33vtG/EYAf+C5tyyckU7GvGYDcCdHw0kaYfN2QNP/9RZTrm+0k4bPTG/nBL+eTnp5OQkICpaWlAQcMrVy5kqamJj766CNSU1PJyxsdzicXg0vf9rlYHH0Ztv63LGV4eBvc+/rQC+phxjekONR48pf31zLnl9uwOQe+MByvN+H2Sj38qYMMfekPlQYWPCYvVTef7PWUUiHwyNICjmlNlNQGn97kiyyvquqd1ChJUtBF9XO7qwhTKXigM01OIV56E3ybzca2bdvIy8sbdKnY6XQO2Kl2u7wYGu1Uelxyt6rDKAclXMwAj+ZT8Mpd8PxqWeqx9kn4ymF5YHgEFdQgd6o1Go1fdnqN50ykF8RyoM6Iqd3NtdMz5SfObAKFig61vLzu80/vSxPfE4/Li6HBRqNS5EqflV7zCVn/fl4AR6AzBM3VZkRRInNcPB+daiJKo2TZ+M7Xel3ybMVoLaiDobMIly5C78ntdnP48GEmTpw4pGCq/vB6Rfa9U0lCeiTFS+QbpZ9tLEVnc/KHO2bKN3r6Ctj1O3lIsEfTwy1F4nZ6ccepMba7WT4+RfZDz1sCYUEmokpeOfW0rQLueGnIg8aJURoUgkCYSom2rDOa3PoZOM1Dkn5A/51qW5sDQfAQFeGF6OGxPhxOfBKQ6upq2tvbA3qtQqHglltuIT4+njfeeAOLxTJMRzn6uHyK6ln3yb6XD7wXus7rMKPVaklOTh5SolZ5i5VfbCrD1O7G6nAPuG1Jjbys3RVPrj0EUamyXVComPMgqKNkPft53DYnh4RINc/sCj66XBAECgsLL4gs90VAB1pUt1odvH2kgdvmZJMcLS9NZuv3yk+6/LMjGg62bNmCy+W6wJO6PwYqqvV1ViQJmpSifEPlS9DMvQiDgG2V8ObDclJp3WdyIunXjss3X0NcCh4ufOmUg/27uzo86LVWMsbH88GJRmLCVN1F6pkPIH8ZkiCvBOj1er86yro6K4hgi1YyLatz7uHcFkC4IIBDp9MRGRnpt16yqcIMAiTnx7C1tIUrfAOVYww7J0+epL29fdjCXk7vacTU0s6im4tQKBVsPtXM20cbeGLVOHl+RpJk2YcqHK753z73cdYj69WXJVvlbvZQUhQdZqjcLmvzC1cEv59OfG5DoihRf7YzmvzUm7Iufoj776uoliQJqdNOT0guGjGDroFSXFyMKIqcPXs24NdGRERw55134nQ6ef311/F4hn81ZzRw+RTV6gjIv3ja5KEjh74MRfrh8oh8/fVjOD3+xWmX1BoZnxpNfGTnQEb9QfkGJJRfGBEJ8g3OyTdknWbPpzRK7l+Uz8enW6jUDRyhOhBFRUV0dHT0iiwP1vnjxc9qcIsijyzrlMR4nKSYTwEgiAPfpAwXlZWVnDx5kmXLlvm9tD9QUd1aK0+369QSs3ITZH9qhVoOdRguzA2w8Wvw13mytnjp1+Vietk3h0+rHSIMfkS+AzRVmpEkSC2MY0tpS7f0Q3cW2sph0rVd2xqNRr8+mw2VJgDGT07qti08t0V254nu/VnQ6XQB6ambKkwkZUVzvMVCm93Fuqnd0dW42y++FOgyQZIkDhw4QGpqakhCvs7H1eHh4KZqMsfHkz89Gb3NyX+/c5IpmbE8cUWnbOH4a7Lk6qqfQEz6BfsIi1Kxu8lIcUYsSQ2fyg9O6H+Owy8WfxXmfGFo+ziP1loLznYPOeMi4exHUHzTkPyjRYW3zzRFg91FlBsSlE2jUvrhIzMzk/j4eEpLS4N6fVpaGjfddBP19fV89NFHIT660cnlU1SPMsxmKx0dHUOSfvxlezmnGiysmjj4hdUrShyuNXb7U/sGdkIl/ejJwi+B6IGDz1zw1AOL8lArFTy/J3iD+cJCuQDu6QISTFFtd3p4eX8da4rTu10uznyASgxsqSyU+DypExMTAxpgHagIbK2z4FQL5GXFEh2mkvXUGTNAE/wKSb/Y9bDlv+Evs+Dof2QHia8eky/moyQ8xGKx+OX80VhuQqEQqJLcmDvOd/2gV1Htr3/62dI2TAqRVTM7Cx+bDhoOyzMi5xFIUe31ijRXmWXpx8lmItSdXtogdzHPbbm4cqDLiJqaGlpaWliwYMGwOCkc2VpLh9XN4lvl4u+H75zC6vDwhztmyvMT9jbY8gM5i2DOQ33uIzk3hsN1JpZNSJbtFJMnQGJhcAdUfKN883zVz4L9kfpFWyZHk2crDskpq0EGvnQhyME35xfVFa024kWBJKHmonvkn0+zxTGotLM/fBKQqqoqOjo6Bn9BH0yZMoUlS5Zw+PBhDh8+HNQ+Pk+MFdUjlBadXAQG26k+XGvgqU8ruH1ONmumXNh5OJ9zLVasDk+3ntonARgOqUxioTw8UvLPCyQUydFh3Do7m7cO16O39Z2MOBg9I8t9+CKgY2P99yrdcEiLucPNoyt6XDyOvBjUMYWK3bt3YzAYuO666/z2CFWr1QNKAFprrDQIcugLbodcpIW6gHKYYcf/yCmI+5+SL3ZfOQzrfhu6iOOLhCRJ/g0plptIzY/ho9MtxISr5FANkKUfWXNkx4MeDFYAS5KEoc5Ks0pi6fjObSu20V8ARyByJ32dDY9LJK0ojs2lzayalEKEprMz3XIKDJVBB3KMMTAHDhwgIiKC6dOnh3zfNqOT4x9rGT8vjbT8WN471sjm0ma+cfUEJqZ3ForbfiQ7eVz/537ddZxxKtxeiVX5EVC7Vw7zCpaCZbLMaxicfLSnDaTmxhBR+QbEZkFOaL7Hzp+fqKgzo0YgbgQMKWoN7VgcHs40B6drHooExMeVV15JUVERH374Ydcs2OXKWFE9Qmlu0REeHh7UYJ3d6eHrG46TGR/Bj6/3zyqwpCv0xZekeBAUKsicFfD7+8Wir8iWhsdeueCpR5YV4PQMLbr8/MhyvV5PUlKS34EKbq/I83uqmZefwOzczhsNQzVUfYpbOfiA2nCg0+nYs2cP06dP7+rG+0NCQkK/HTBXhwdTSzuNClH2p246Jg+lhUpP7e6QHQX+PAN2/kb2mP5/++GmpyBh9E6MD9apdru8tNZaSCuKZ0tpM1cXp3da0zXKNy09utQ+BjvXbUYnCodIWHqEvKIAcgc5Ol1eWegDfzvVTZ2yEl0Y6KxO1k7tYWtZ+i4ICph0vV/7GsN/jEYjZ86cYe7cucMSpHFgYxWiJLHwxkKazQ5+/N4p5uQlsN4nZ6veBcf+I0sxBrCVrfC6CVcrmO053umHPgQ99TDhFjU0V1nIGR8JFdth6i0hK9zP71Rr6+QCNlZ16YtqH8/uCm51Nysri7i4OMrKgreKVSgU3HrrrcTExLBhwwZstuDlm6OdsaJ6hNKiayM7OzuoVK1fbCpDa2znD3fMJCbcvy/qkhoDqTFh3RHc2kNy2MZwxQ/nzIesuXIYjOjt9VRRSjRXTZajyztc3n52MDDnR5b7Owjm48OTTTSYOnhseY+krCP/BkGBPm5KUMc0FERRZOPGjYSFhbFmTWCeqwPpqXV1sp66SSnKKZp1++Unhtqp9rplC8u/zJLT2TJnw6Ofyh7HKRemXY42ButUt1SZEb0ShkiwOjxc55N+nP1Q/vu8yOSYmJhBvYlPHW+VXzrV58jhhspPZKeGfm6a/P3MN5abiE0O5+MaPWEqBasm9ZB+lL0rz6NE+3/++IMKBQgSJ06cCOl+RxMHDx5EoVAMi9evvt7GmX1NTF+ZTUxSON996wRur8Tvb58h26u6HbDp6/Ig+orvDLiv3W1mFhQkoanaBmFxI1IK5JHC5WjysBOyTd8QXT96cn5RrW+RJYByp3pkpCm+f7yBZrMj4Nf5JCCVlZU4HIG/3kdkZCR33XUXHR0dvP7663i9wV27RztjRfUIxeVyBaWn3lbWwmuHtDy2vIj5Bf5bM5XUGJmX3+lo4PVA45HhdUkRBFj8BBir5YGS83h0eSEGu4s3jwS3lJSTk9MVWe5yuTCZTH53/SVJ4umdVRSlRHGFr7jwuuWOzvg1OFUXv1N97Ngx6urqWL16td9uDj78GVLUpISRGhsuF9VJ4+VEuWAQvXB8A/x1LnzwDTl19MEP4P63h2/V4yKj0WgG/R00lJsQBNhptBIbrmLJuB7Sj6Rxsia1B/58Nk8cb8WNxJULs+QH6vZ3BnD03TUMCwvr0wrsfCRJoqnSTMa4eDafambFhJTuTnjLKdn2rPimQfcTKIlEonbF8t5771FXVxfy/Y90nE4nR44cobi4OCBZmr/se7uCsAgVc9bm89ohLTvP6fj+uknk++ZD9vxB/t1e+4d+mydxMQ0UR27kjKGdZeMSZSu9cVcMafhvOFGFKUnXvSafY/2s3gRKX2mK7QYHIBKToBkRg9UC8lzUv/YG160uLi7G6/UOSQICsvf1DTfcQF1dHVu2bBnSvkYrY0X1CCZQPbXe5uR7b51gckYsX1/t//BEo6mDBlNHt5Veyyl52n84hhR7Mul6iM+Vw2DOY15+AjNz4nl+dxVeUQp412q1uiuyvC2ACGiAvRVtlDVZeHR5YW+HBVtLyKfV/cFms7F161Zyc3ODii8euKi2YFVKTC9KklP+tPuD60JJklww/mMpvPOonGJ2zxvwxc2jzHVncBITBrfTayo3kZQdzdazrayZko5GpYAOk7zcPunaCzrLKX58No1aG+ZwgYLUzkL53OYBAziSk5P9GnwzNrfjsLlxJ2potjhYN60P6cfk0CcoKhCIN04gLi6O1157DYPBEPL3GMkcP34cp9M5LDZ6dWVt1JUZmLsuH53TzS83lbFkXBL3LeiUXOnOwe4/wLTbZUlWP8TFNDMrZgMAqxNb5O/AESj98JFVEI6ybqfcpQ7R0Of5N6ZOjxeFzUOkyowyOT8k7zFUFILAumkZvHKgblDr3L7Izs4mNjZ2SBIQH9OnT2fRokUcPHiQY8eODXl/o42xonqEIggCWVlZfm8vSRLfe+skVqeHP905U9Zv+olPTz3P5/wxnEOKPVGqYMGXZQu3+t5Tw4Ig8OjyQmra2tlW1hLU7ouKimhra+saWPS3qH56VyUpMWHcNKvHv//hFyAm8wIv4IvB1q1buzypg5EDDSRVaKw2d+qpE2Tv2Q5j4EV11afw3JXw2j1yzPFt/4THdsmWW6PUv3UgEhIHdinxukWaqy14k8KwOj3drh/l22TXm/OkHzD4Z9NscxFp9xKT1aMr1hXA0ffKid966s4o9aPt7aiVAldMHn7phw+FpObee+9FkiReeeWVoB0IRhuiKHLgwAGysrJCkpjbe98Sn71VSWxyOFOWZfGtN44jCAJP3jZDbhKIouxJrYmCNb/2a59psWHk6nYh+6FfFdLjDSU5sZWANHTXjx6cX1TXtrUTJwokKBsvufPH0aNHUZm1tAvhPLq8EKvTw6sHA1/18UlAKioqhiQB8XHVVVdRUFDApk2baGxsHPL+RhNjRfUIJTE+jvDwcL+3f71Ey8enW/jOmondU91+UlJjIFKjZHJG5+vqD8rDT3Gh/bLvk9n3yxq9PrrVa6akk5MYwbO7gwuD8Q3zHTwo3yT449hQ1mhhd7meBxfnd9+YmLRQ8fElSferqqrixIkTLF26lNTU4FK7+utUO+xu2g1OmpWibKVYt09+wt8hxfoSePEG+PeNYG2BG/4PHj8IU28dlsn+kcJAnX+AlloLXrdImcdJXIS6h/RjE0SnybME55E0SFG9Y58WJQKTp3UWt4bqzgCO/vX1/hfVZiJi1HxQrWfZ+BRifXMYLaXDJv3oSVJSEnfeeScGg+Gy0WL6VtCGo0t9dn8zbQ02Ft5UxL8P1XGg2sCPry8mK75T4nHsP7KDx+qf+32ztGx8CkL5Vnn1Mlhp2EUgx/qOLPsIYbF7vvNHZauNRFEgTlEvS+UuAaIosmXLFt577z3EyBSOqyczPTuehYWJ/HNPDS4/syl64pOAnDt3bsjHp1Qque2224iKimLDhg3Y7ZcuKO1i8/m98o1y0tL87wzVttn52cYyFhUm8cUlgYcHlNQYmZUbj0rZ+XHQDkPoS3+ExciSirL3wNT7DluOLi/kcK2Rw7WBLw2npqYSHR2NxWIhISHBr+n6Z3dXEalRdi+TAhx9Sf579v0BH8NQcLvdbNq0iYSEBJYtWxbw69PS0sjJySE+Pr7P53Wdemp7lILC5ChZoxuV4p//7OtfkLvTLaVyAttXDsPsB0ZcpPhwkDhIUd1YbgLgoxYj10xJl72A3Q75xmziuj5vOAaTf5w8oQNg8Xxf13ur/HcIiurGChORWVE0mDtY2zPwpfSdYZN+nE9+fj7XX3891dXVfPDBB0hS4JKv0URVVRVKpZLiYv/cmfzF7fJy4P0qUvNjISeSJzef4cpJqdw+p3M+x6aDrT+E3MUwy//vs6tyJHnOZqiBL8NEbEQ7yapqEgxbQzqgCBd2qisbLIRLCuIukfOHw+HglVdeYd++fSxYsABH3iI8gnxte2x5Ec0WB5tOBN4dzs7OJiYmJiQSEICoqCjuvPNObDYbb775Zq+E488zY0X1CCUtxb9ugFeU+Mbrx1EqBH53x4xuDbCfWBxuzjRbuq30bK1gqr24Ue4LHpML+P3/uOCp2+dmExehDsouSBAEiorkyWx/wjoaTB28f7yRu+fnEhfZWYCLXjj6sqw7jM8N+BiGwp49ewL2pO5JUVERDz/8MCpV34Vua6ctVG5RvKy99empB7qZ6ozVRnsAVv0QvnYMFn4Z1P6vqox2EhMGXvFoKjehSQqjzd1D+lG9C1y2C10/hDAi7NkDDj6KooS53o47TEGcz53n3Ga5SzbADZA/cieb0YG1zUGDSkSlEFhd3OkZ7pN+5C0ZNunH+cyaNYtly5Zx5MgR9u3bd1He81KiVCr7PTeD5fh2LXaTk4U3F/KtN08QoVHy61umdWvrt/63nA1w/Z8CWk1aIh2T/2OE6qlnj6vkjqRvyF9dU28J6b7PL6rr6+VmRJyyGZIvblHd1tbGc889R1VVFddddx1r166Vb3w7WTkxhQlp0TyzqyrgG1OFQkFxcTHl5eVdVrRDJTMzs+tm+fTp0yHZ50hnrKgeYagUAgIiGen+LfX/Y2clh2uN/OLGqd3LewFwtM6EKPWhp86+iEV1XLYcLHHk33JISA8iNSruX5jHlrJmavSBLyGlp8udN38cM/7ZmeL4xaU9uv0VH4OlAWZf3AFFnU7H7t27mTZtWteNQajRVpgwKkRmj0uSI+ONNYNLP6bdBmt/K0eKr/i2vNJwmZEwgIxI9Io0VZppDYOESDWLijpv5s5skoc3C3qvOEQKGqKthQMOFJ5sMJPsgNjszs+w0wY1e/rtUmsEFUpPRL8rFD1pqpDPt90mC4vHJRMf2ely4JN+XOTAl1WrVlFcXMzWrVsvm4twqGi3uDiypZaCGcm832jguNbEL2+aKrv6gGy/eGIDLP2637aW+clRhKuVxNR9LIeppE0dxp9gaAgCcgc+LvgU4r64IKLcZ6enabs4EslOqqqqePbZZ7Hb7TzwwAPMnXuhjEwQBNYvK+RMs5Vd5fqA38MnAamqCk5y2RczZ85k/vz5l4WsC8aK6hFHWpyax3mR2JjBbdtONZj547ZzXDs9gxtnZg66fV8crjGgEGBmbrz8QP1BUKhDZkfkN4seB5dVLqzP44HFeagVCp7bE/iJbrHI3dhBB8E63Lx2sI7rp2f0vjk5/AJEpcLEtQG/d7BIksSmTZvQaDQBe1IHQnONhWalyLyCRLlLDYMnkMWkw4JHIdJ/u8bPC3FCOFHWfCIj+r951WltuJ1eDtjsXDO1U/ohemV/6vGrQTWwF3VfbD/SSIwkUOzTU1fvlAM4+km1SxAiSNTP82uotbHChFKj4Li1g3U9pR9l71406UdPFAoFN998M1lZWbz99tuX3ZDTUDj0QTUel0jqknT+9PE5rpuewXXTO68L7g7Y9A1ILJIjwv0kLSaccIUIlTvkz9tIHzyedmvId9mzqJYkiQ6j3MWNTY4Ehf+GAEPh4MGDvPTSS8TExLB+/Xry8/O7nkt3VLLce6Dr/2+cmUVabBjP7KrsY08Dk5OTQ3R0NC6XKxSH3cWaNWvIy8sjYoDvzs8LY0X1CEMhCCRjGnQ7h9vLf204RmKUhl/dNNUv66y+OFRjpDgzttuXVntQLqgv9nJ+5izIWypLQLyeXk+lxoRz86ws3iippy3A6HK9Xr5bH6yo/s+BWuwuL4/2DHuxNMpWerPuvai+rMeOHaO2tpbVq1dfMCQTKtotLrw2D3oNTMmMlfXUqgjICH1U8ueFcEFNpD13wHOt8ZwJgErcXDuts6CpPwR2XZ8piv5QdlLWUxdM7LyRObcFwmJDknrZVGHCFa9GoRS4ekpnUS1JspXeRZR+9EStVnPXXXcRGRnJq6++itlsHvxFlznGZjuluxuZvCSDH35yhrgIDb+4sUdXeddv5UyA6/4Y+He7yyb/GUC/f8kRFLI0bRiGant+B+usTiJcEuFKK5q04ZcDer1eNm3axIcffsj48eN5+OGHLxi4X9r2Jr/w/B7a5bkjjUrBQ0sK2FvRxqmGwM4dnwQEQAzhXINSqeSBBx7gC1+4+Ja0F5uxonqU8pvNZ6hotfHb22d0L9kGiNsrclRr7NZTe1zQePTi6ql7svgJsNTLXbLzWL9cji5/eX9gdkG5ufIX30D2hE6Pl3/trWHZ+GSKM3uEMBz9D0heeQDvImG329m6dSs5OTnMmjV8YSmttXIHPy4zSu6m1u2D7LkjNtRhtNBYYcIZoSAsRsPCws7z6swmefVnfOB2jM1mB16dE5QCyTnRcsFbvhWKVoEquPPeh8Pupq3RzhmPi4WFiSRG9ZR+lMOUm4a0/6EQExPDPffcg9Pp5NVXXw2ZxvPzyr53KlFpFByOETnTbOV/b5lGgu/32Xoa9v4ZZtwNhSuCewNVOBQE+dqLwdyH4dbnhsWZpGenukJnI1GEOEXjsA8ptre389JLL1FSUsKSJUu46667+nQEs7WncK59FZx8o+uxu+fnEqVRBuWc5Suqm8wOqoOQXPaHUqkcNDX288BYUT0K2VOu5197a/jCojxWTAi+k1TWaMHhFpmb7wt9OQkex6Urqsevkb+o9v1VLh56MC41hisnpfLvfTU43P5rs5YsWcJ3vvOdARPL3jvaiM7q5NHlPYa+RBGO/lu+kPjjhhEitm3bhtPp5Prrrw/Kk9pfGqrMSEhMnJQITis0nwxJ5/NyRhIlGstNVEhurpmaLrvpSBKc3iQXM+FxAe9zx9lWMjwCcZlRKFUKaD4B1ib5XBkizVVmkOCk08HaqT0CXy6R9ON80tLSuP3222lpaeGtt966bNwDAqWx3ET1cT0ZC1J5al81t8/J5irfwKkowsavySsbV/8q+DfJXwaayNAc8HCQVhzyAUUAQVT0SlOs1NlJ8kKcsmlY7fR0Oh3PPvssWq2Wm2++mdWrV/d7PdCbJ7HT8hiW/Zu6HouLUHP3/Fw2nWii3tge0Hvn5uYiKsMQRYmHXzyEuSPwMJnLmbGiepRhbnfzrTeOU5QSxffWTh7Svg7VyMtFXZ1q7SH574s5pNgThQIW/j+5W1534fT/+uWFtNldvH2kIYBdKoiM7P9iIIoSz+yuojgjlqXjenQ5qnbIFn8DJCieq6hCr9eH7GJfXV3NsWPHWLJkSdCe1P5SedZAm0Ji7vhk2W9aEoNLUhyji7ZGG64ODzUKL9f5Ugl1Z+Rl9yClH5+UtpDuVVIwsfPG91ynlV4QXe/zaaowIQnQrBa5ekoP148u6cfwfgb9Yfz48axdu5Zz586xbdu2S304Iw5Jktj7VgWRcRr+om0mPTacH13fw6bvyIuyU8/Vv4SowR2Q+mUkSz+GiQRvBInW3kOPVc1WIiQlcaqmYQt+KS8v57nnnsPlcvHggw8yY8bg800SSk7V5cvNkU6+uLQAAfjnnpqA3l+hUOBKLMQkRKE1tPPEK0fweMduaP1lrKgeZfzovVPobU7+eOdMIjRDG5I4XGskJzGC9LjOJaX6g/KEd5z/SY4hZ8bdEJEIn10YBrOgIJHp2XE8t7sKMYjo8r745EwrFa02HltxngPD4RcgMqnP9LuYMAENLrbv2Mlf//pXnnzySV566SU++eQTzp49i81mC/g4PB5Plyf18uXLh/AT+Yel0U6LSmRWbryspxYUwx9L/znH509tj1Uyv6CH9ANkf+oAcbi9lJ81oATSCzu73OVbIGtOSArexnIzxjCYVZBIakznd0Br2SWXfpzP/PnzWbBgAfv27ePQoUOX+nBGFBWHW2mtsdCaF065oZ0nb5vRHd5jbYFtP5G7zDPvGdobXYZFdbikJtIZ3+uxhgYbAgJxypaQyz8kSeKzzz7jlVdeISEhgfXr1weUtlnWvhp3yWtd/58ZH8H1MzJ57VAd5vbAus2ulImcjZzGr26axu5yPT/fFBrv6suBz39Sw+eI94418P7xRr65egLTs+OHtC9JkjhUY2TZ+B7dWe2hS19YaSJh3sOw63fQVglJ3YODPrugr7x6lO1nWrs9dYfAM7uqyIqPYN20HsvftlbZrWHBl/p0a0iKVPBdnqLm7s8w2x3U19fT0NDA7t27u7xB4+LiyMrKIisri+zsbDIyMnotI57PyZMnaWtr49577w3KkzoQbEYngkNESNcQE66WVwXSpkB4/xKZMQZHe9aIRSGxbGZ6d5DSmQ/kcyomfeAX98H+qjaSHPLnKb0wDux6eVVh5feHfKwel5eWWgsVKjfrpvawkLyIgS+BsGbNGgwGAx9++CEJCQmMG3fxQzdGGl63yP53K4lICed3tS08sDiPpT2/z7d8Hzwd8nBisK4d468Gheqie/SPVIw+O73I9pA6IPmaKseOHWPy5MncfPPNA14vLkTEKUVzbn89U65xdc1brF9WyDtHG3j5QC2Prwr8nLljXg4VOhvP7KpiXGo0DyzKD3gflxtjRfUoodHUwY/ePcWs3Hi+vHLovsW1be3obc5uPbWlCcx1sPBLQ973kJm3Xh6s2f8UXPv7Xk+tnZpOVnwEz+6qGnJRfbTOyMEaAz+6rlge1vNx7BUQPQN6UyuRSE5OomhiGrNnzwbA5XLR1NREQ0ND1x9fOpUgCKSmpnYV2llZWaSkpKBUyqsNDocDkFOthpumankiPKMgDrxuuVCbde+wv+/nGUmSqDtrpE7p5QGf64e5XpYyXfXToPb5yZlWciQlUQlhRMWHwbG3ASkkqXattRYkr0R9uMg1Pj31CJN+9EShUHDbbbfx/PPP88Ybb/Dwww8Pu0RqpHNyZz0WvYMdaZCXHMn31k7qfrL8Yzj1Fqz8wdBkCuOvkv+MQYfLi9fqAjTEpoXOlclms7Fhwwa0Wi0rVqxgxYoVAc/TRChMRCYlcNK4guJzWxGK5RXW4sxYlo1P5oXPanhkWQFhqsBXt797zSQqW238bGMZ+UlRLB/CHNflwFhRPQoQRYlvv3kct1fij3fM7O6CDYGSWiPQI/SlvjP0JWfBkPc9ZGLSYPodsvvGqv/u1RFQKRU8vLSAn28q42idkVm5A0dGD8Qzu6qIDVdx17weS2ySJOsQ85ZAyoSA9qfRaMjLyyMvrzvi3GazXVBkHzlyBJCtwzIzM8nKyury074YlJXqEZGYMTVV1uC57WN66iFiamlH7PBiSlD0kH58KP/dh4RoMCRJYvvpVm6TVGT0lH5Ep0H60D3kG8vlG6vk/Nhu+ZdP+jESbqz7ICwsjHvuuYfnnnuOV155hUceeWTYLCdHOg67m5IPrLIr3wAAQjNJREFUa3AkqTnisvDGHYuI1HRezl3t8MHXIXkCLP2vS3qcnyeq9XbivQrUgoOItOByIc6nubmZV199Fbvdzm233cbUqcGG60hMv3oCO/4j0LhzI1nF3d85jy4v5P7nD/Le0UbumBd4WI1SIfDnu2dx298/4/FXjvDO/1vCuNTAz7vXS7RoDe1882r/godGK2Oa6lHAC5/VsLeijR9dV0x+8uDJgP5QUmMgNlzFuJTOk0N7EJRhkD5CfIoXPi4vXZY8f8FTd87LITZcFZRdkI8avZ3Npc3ctzCPqLAe95Y1u8FQFbIExejoaCZOnMgVV1zB/fffz3e/+12+8pWvcMsttzB79mw8Hg8HDhzg1KlTCILQ1bkeThqqzOgVEvPHJ8lDTDB46MsYA1Jd1gbApGnJKBWdS+1nNsmFTRCdwnMtNsyGDjQuSZZ+eN1Q8UnncvzQv7arTrehU4isntlD9lT67oiUfvQkPj6eu+++G5vNxmuvvYbbfXk6Exz+qAZnu4fXXFbWLy9kTl4PKcLO/5WHrK/7U1BhQ2P0TaXORpIoEqtsQghBPPnp06d5/vnnEUWRL37xi0MoqGUmLMgkTOPm5NlkWcLYydJxyRRnxPLMEGaRosNUPPeFuYSpFDz84iGM9sDDYfZVtvHesc9/mNNYUT3CKW+x8r+bz3DlpFTunh+6SNRDNQbm5iei8BUA9Ycgc+aQvW9DRloxFF0JB58FT2+P2qgwFfctzGPzqWZq24Lz0XxuTxVqhYIHl+T3fuLwC7L1WfHwFBaCIJCUlMT06dNZu3Yt69ev5/vf/z7r16/noYceClBHFziSJOHWObBFKUiLDZf11PG5l3Y49XPA8aOt2ASJNQs65TsdRjlKPIguNcD2My1keuSv57TCznAepzkkA2OiKKGrttCgElk7rYf0o+zdESn9OJ+srCxuueUW6uvree+997rmGC4XLPoOTuyopyJKIiEziq9f1WNFrfmUPOQ96z7IX3LpDvJzSKXORrIoEadsHrLzx65du9iwYQOpqak8+uijZGYOvfOt0igpnp9AlWM+1s/e7npcEAQeXV5IRauNHWdbB9jDwGQnRPL0/XNpMjn40suHcXnGHEH6YqyoHsG4PCL/teEY0WEq/vfW6UGnJp6Pwe6iUmfv1lN7nNB47NIPKZ7P4ifA1gIn37zgqQcX56NUCPxzT3XAu22zOXmjpJ5bZmd1ux4A2Nvg9EbZgUR98eJUVSoVWVlZXUE1w4mlrQOVRyImM1IupOr2j/lTDxFJkjDXWtGFw7yCTtuyc1vl4KAgi+pPTrcyLSICpUpBSk6MLP1QqKFw5ZCPt63eBh4JRVo4WfGdn/PWMtCfG1GuHwNRXFzMVVddxalTp/j0008v9eFcVPa/V4VHktihdvL722cSru5c3RK9sid1RAKs/sWlPcjPIVWtNqJENXGq5iE5f3iVHj755BOmTZvGgw8+2CtcZqhMXTsNEDi1u6lX1sO10zPIjAvn6V3Br+4CzMlL4MnbpnOg2sCP3j112d3Q+sNYUT2C+fP2c5Q2Wvj1LdNIiQndMt7hTj11lz910wnwOi9d6Et/FK6C1Cmw728XhMGkxoZz08wsXi+pD3gp6sV9tTg9Io8sOy/U5cRr4HWFTPoxEjl1Uo5tHzcxUfZPtrWMDB39KKa50YbaJZFcGNtb+hGTAZmBp2Ia7C6O1BnJR0VKbrQc+nJuq9x5DBv6BbjshNytmjmrx6DvKJB+nM+SJUuYNWsWO3fu5Pjx45f6cAIi2ITI1loL5YdaOKB28+BV45iW3SNQqOSf0FACa/4npM4UY8g0NNkQUBCnagk6EEyBABJceeWV3HLLLSF3eopNiqAgr4My/Sw8tUe6HlcrFXxxaQEHqw0c05qG9B43zcriiVXj2FCi5fkgmlqfd8aK6hHKiXoTf/+0kjvmZrNmSuB2XD2Jam/gYeUHXYVpSY0BjVLBdN8Xsm9I8VKFvvSHIMCix6G1VA5jOY/1ywvpcHv5z4Fav3fZ4fLy0r4arpqc1nvYQpJk6Uf2fFl68jnl7Ok2vEjMn5kud6lhrFM9RHbs1gKwaGHnEq67Ayq2y97UQeifd55rBRGUJjdphXFgqAb9WZhwTUiOt+yEDrMgss4nVRlF0o+eCILAtddeS35+Pu+//z61tf5/D1xKjEYjJ06cYMKEwAahJUni0w3n6FBI2AoielukWZpg+8/llYzpd4T2gMdAFCXMrR0AxMaJQWvVk9xRpBkLWbZsWchWns9n2rUzcUixlH+0u9fjd83PJSZcxbND7FYDfGP1BNZOTedXH55m++mWIe/v88RYUT1C+f3Wc2QlRPDj66cMbUcmLVcc+CI/Uv8Hhb0ZkJ0/pmXHdS8bag9CXC7EZgywo0vEtNtkx4M+wmAmpMWwcmIKL3xW63d0+RuHtRjb3Ty24rxOQ91+efl7gATFzwMGrQ2DGsZnxMh66vA4SJk0+AvH6JfKsjYcComlszrPn6qdsqNKsCmKZ3RMCAtD8kqkF8RBuS9FcehWepIk0dHYji1WSV5S59Bz62n5s19845D3f7FRqVTccccdxMfH89prr+HCc6kPaVA2b96MIAhcfXVgv8/q43p0VRb2R3h48u5ZvW1AN39XXmW79g/Be1KP0S/NFgcRrs4MgiCcL3yoURLmGd6496xp2SRGmThxOg7J1dH1eHSYinsX5PHRqSbq2gKLLj8fhULg93fMYEpmLF999Shnmi+ee9VIZ6yoHqHYnB7+cMdMosOG4HpobYZ/30BUR+fErSThcHs5UW9ibl4PK7r6Q5AzwvTUPlRhMH89VG6HlgtTnR5dVoje5uS9Y4NHl3tFied2VzM7N773zw+yjV5YLEy5OVRHPuKQJAml2Y2QqJG7JHUHZNePELhJXK5YHW4UehdCSrgs0wA4s1H+LOUvC3h/bq/IzrOtLImXL9zphbFwbous4Uwauj99RZWRMA9kjYvvfrDsXUAYVdKPnkRGRnLPPXJioEUITlZxsTh79ixnz55l5cqVxMb6H7YkekW2vXYWg0LkquuKmJDWQwZ0djOUvQfLvx2Sz8gYF1KpsxEvCijwEJ05tJXj4UYQBKYtjkfvyqN559Zezz20RJ5Fem7P0LvVkRoVzz0wj6gwFQ+/UILeNrLPvYvF2NV0hHLvwrxuD+lgsLfBv28EawtV2Td1PXyi3ozbKzHXt29zA1gaRp70oydzHwZVBOz/2wVPLSpKYmpWLM/sGtwuaPOpZuoM7Ty6vKj30luHUU6Sm3Y7aEJjWTgSqao2oREhLT9G/nzoz475Uw+RrYcaiBcFxk/tHFAUvXD2I7mrHISTzuFaIxaHh1xJRXRCGNGRHtnmcXxoYqI/3VMPwNJFnW4vkiR/9vOXyv7wo5SkpCTuvPNOhBE8N+V2u/noo49ISUlh4cLAzrt9H9fiMbloyA1j/YoehbPTBh9+C1Imw+KvhviIx/BR2WojXXQTo2xFkTLy0zwnrltKmKKdEzt7SzPSumaRtBiCsMU7n/S4cJ77wlza7E4ee+nwgCvGkW0u8q0j+AQNESEpqgVBuEYQhLOCIFQIgvC9UOzzcmViutyBeGRpwSBbDkCHCV66CYw1cPer6BNmdj1VUmsA5CleoEfoywjtVIM8dDPzHjjxOlh7f0n4ossrdfYB7YIkSeKZXZUUJEddmMR44g3wOD530o/jWhPvHK3v+v8jR+V/uylTU7r9qceK6iGx/0ATAPPnd+qptQegvQ0mB+n6caYVtVJAanOSVhAH1TvlZf0QWOkB1J414lLA9OLOVLRRLP04n/z8fLKleCLbR6YufO/evZhMJtatWxeQH72zw82hjTU0qEW++/Cs7mFYgE9/DWYtXP+nkWOH+jmkSm8nVUK20xuC88fFQh2hYfI4I5X6Amza3rMGjy4vxOEWeXl/aGYQpmfH8/vbZ3K41sgP3j7ZryNIdIuLKcaQvOWIZshFtSAISuBvwFqgGLhbEITP76TXMBMbLk8Da4JNTXTa4D+3yxfLO1+GwhW9ni6pMVKUEkViVOcXsPYgqMIhbdpQDnv4WfS4HIBx6LkLnlo3LYOs+AieGWAA40C1geP1Zh5ZVtD7ouQbUMycBRlDT6obCWgN7Xzl1aPc+Le9fH3Dcdpdss60tsKEB4l509NkPbVSA5mzL/HRjl4sDjdWrQ1RJci2dwBnPpD/XccFF+28/XQLy7ITsBuc3dIPTUxIhklbLQ7CTG5UaeEIvnNglEs/zieOcGKtQ2hIDBMGg4Hdu3czdepUCgoCO76XXziF2iMxYXU2BSk99LxNx2H/UzDnwbGb42GmstVKpKjptNMbmkf1xWLq9fOQECh9b2+vx8enxXDFpFRe/KzG71mkwbh2egbfWD2Bt4828NSnlSHZ52glFJ3q+UCFJElVkiS5gNeA0d/2GI24O+DVu6DhMNz2Txi/utfToiQ7f/SSlWgPyoXVSO9yJBXJbgqHnpNjeHugVip4aEm+XDj3Yxf09M5KkqI03Do7u/cTDYdld5HPgY2eucPNrz88zZW/38m2smamZsmaTZ8qpqOlg/YoBeFhKnkwM3MWqMMH2OMYA7H9dAsZboHEvBg5REmSZCu9wpVBWd/V6O1U6uwsipdfm14QC+XboGhVSM7Pj0rqSRQVTJqWLD8gSbKVXt6SUS39GA1s3rwZpVIZ8HDi2SoT1uMG9AlKHriuR7yzz5M6Mhmu+mloD3aMC6hvbgdRRaymDWJDE1E+3MSNn0R+fBWlp6PwunoXz+uXFdJmd/HWkfo+X6uxesgOMFftK1eM44YZmfx2y1k2n2oK9rBHPaEoqrMAbY//r+98bIyLiccJG+6TU9xu/kefiYA1bXYsDk+3ntrtkLsdI1n60ZNFj0OHAY6/esFTXXZBfUSXn2uxsuOsji8szu92PPFx+AVQR8kuI6MUt1fkhb3VrPztDp7ZXcUNMzPZ8a2V3Dij+zS0driJbheJTI+Ub74aj451t4bIlsMNJPcsUlvLZMlV0K4fsnwp26tEoRJI0dSCtTFkVnolJbL7z7SZnQV062lZVz9KAl9GK2fPnuXcuXOBDyeKEi89dxwFcPcj07vTb0FOmm08Ctf8Wg57GWPYsDk9uMzyEF5cgmJUuatMXxxPhzeGio/393p8YWEi07PjeG53Nd4+ZpHitA6WtkJjuf96DUEQePK26czMiefrG45zqsHc6/mCjpOkSrrgfpBRxEUbVBQE4VFBEEoEQSjR6T7//7AXFa8H3vwiVHwM1/+5X5/SE51d3C7ni6bjILpH9pBiT/IWy93V/U+B2DsiNTpMxT0LcvnwZBNaQ+9O9jO7qohQK7l/YV7v/TkscOotmHZrSEI1LjaSJLGltJmr/7iLn24sY3JGLBufWMrvbp9BRlzvRMgDx1vQIJA3PkG+GIvuMX/qIWDucFN3xgRA1oTO8+nMB4AAE9YGtc8dZ1sZlxpNR3M7KTkxKKt8VnqrB36hH7TZnLQ3tCMpBVJyOz/rnzPpx0ik53DiggWBhSw9t+ks6QYP0VMTmFDUo3A218Mnv5AlRlNvDfERj3E+1To78aJcKsWljq7rRPbV15CgauDEzuZeWmdfdHm13s62sgt9poXOP9tfPI3L4b9NZbhayTMPzCEhUs0jL5bQanF0P/n5n1EEQlNUNwA5Pf4/u/OxXkiS9IwkSXMlSZqbkpISgrcdA5CXAd/9krzsfM1vBhy2O15vIjk6jLykTp/MriHFUVJUCwIsegLaKuTY5vN4aLGsl/7n3u6Up2azg/eONXDnvBwSos5bQj/1JrjbYfaDw3zgoee41sSdT+/nsZcOyz/zg3P5zyMLmJoV1+f2pafkG9k5M1NlPTWMJSkOgY/LWkh3CSjUClLyOi+0pzfK51IQUgqb08P+qjaunJBCa6210596iyzNCkEgy9ayFjI9ChJyorut/8akH8POnj17ghpOrGi1Ur6tHq9S4O4Hp/Z+8qPvyt/71/5+VHVNRyuVOhtJnU2c2OzRda4I4bFMG99CqzmBlnO9B/mvmZJOTmJEn6u7AB4BLG0O9r5ZEdB7psaE89wX5mFxuFn/75KQ6bZHC6Eoqg8B4wVBKBAEQQPcBbwfgv2OMRiiKOvqTr4BV/4EFn5pwM1LGy3My0/otpPTHoD4vFGVokbxjRCb3WcYTHpcODfMyGLDIS3mdjcA28+04PZK3Hd+lxpk6UfaVMgaPcN69cZ2vvaaPIRYpbfxq5unsvlry7hiUtqACV26OiseAbJy42Q9dfLEsSjjIfDBySYKJRWZRXEolQow1UHziaClH3vK9bi9EvMTYvC6RdKyBKgvCZnrx5ZjjaR5FYwr7rT+G0HSj/7cAkY7bW1t7Nmzh2nTpgU0nOjxivzqn0fJdyuYvTaPiOgezYDTm+QGysrvQkJ+6A96jAuo1NnIEl1EKfSo0kafD/jEa+ajEeyc2HS41+MqpYJHlhZyuNbI4U5XsJ44lDBrdS5lexqpOakP6D2LM2P5812zONFg5ptvHP/cnuN9MeSiWpIkD/AEsAU4DbwuSVLpUPc7xiBIEmz+Hhx9STb9X/aNQV/idIvdVnqSBNpDo69bqVTLNw+1e2QZw3msX15Au8vLy53R5R6vfDInnt+lbjwmy1/mPDgquj0Wh5tff3SaK36/k82nmnli1Th2fGsl9y7IQzWIU4zHK4LBhRivRoEkh76M6amDxtzh5uBZHfFuyBwfLz945kP570nBW+nFhqtIdMif13SOAFJIimqj3UXdORMCkOkLfSl9l0st/YjQyJ3bDYe0g2w5+pAkiY8++gilUsnq1YHJd/6xo4LcOheqGDWL1/Qoxp1W+PDbkDpFXrEb46JQpbOTLkCcsmVU2Omdj2b8UibFl1BZocZu7h3QcvvcbOIj1Ty9s3e3OtVZS5JkZMHVySRmRrHjpTM4bO6A3nd1cRrfvWYSH5xo4k8flw/55xgthERTLUnSh5IkTZAkqUiSpF+FYp9jDIAkwfafwcGnYeHjsOq//X5pl/OHWQu25tEj/ejJ7Adkm7F9F4bBTEqPZfmEFF74rAanZ4BlpyMvyoEy024fxgMdOm6vyIuf1bDyt5/y9M4qrpuewY5vreRbayYS02m/OBil9WaSPQJJudGgOw1O85ieeghsP91CmktAALImxMsPntkkB3AEmWj36VkdKyamoquxEhUfRkzjhxCdBulDt3ncdrqFTLcAAqQVdg7Klb5zyaUfiZEaQOBXH5ymydwx6PajibNnz1JRUcGqVasCGk4sbTSz9aMqUkUFq+4Yj1Ld4xL9ya/A2iTPzSj9O/fHGDqVOhvhHg2xqtHhUX0BCgXTFicgSkpKt53u9VSkRsX9C/PYdrqFKp2t+3Gv5f+3d9/hUVXpA8e/Z2Yy6b0H0iChk9ANiCBNFLCAYEHFjq59d3X9ue6uq7vuWtfVde3rrhVsKKCgKIL03kIglAQMJQmhpZE+9/fHHSS0tLnJlLyf55mHyczce8+8w8y8c+57zsFKNeYvbmL0tBQqy2tY/PGOZvc43zWsE5P7d+TlhbuoqrU1voEHkBUV3dGSF2DZSzDgNhj7dJN7Wn28zPSIs3/A77PXU3d0k5k/6vMJ1hPrrC/1QTtnmH5RJ4pKq5i96eC5t68q0xd86TkRfENat60tpGkaC7IKGPvSEp6Yk0XX6EC+vn8o/7imD3Ehvo3voJ51Ww7hhaJ7jwi99AOkp9oB87MK6G7xxmRRRCUFwYmj8POKFpd+ABwur2ZUtygKcouJSQqA3T/qAxQNWEJ+fmY+nZQXkQmBWH0sLlX6AVBr03isgUUj3E11dTXz588nKiqKQYOa3mlRVVvHIzM3MbTSi7D4AFL71/vBc2CD3oky8Hb3ma3JQ+QVlWOr8yHYtwx8mv4DyZWEDJ1Iovc6spYVUHdGcjttcBJeZhNvL91z9oZ7lhC59rcMGp9EzoZD7Fp39qDGhiileHpiLwYlhZ1zlhFPJEm1u1nxKiz6K6RfD+OaN1ClZ1wQXidLBfavBS8/vabYHWXcrffYr37zrLsuTAmne2wQby/JPfcXddaXUF3qsisobtl/nGvfWsX0D9ajFPzn5gF8fOf5ByE25ufd+rRIqd3C9aQ6IEbqMR2wKvcoXZQX0UlBWLzM+gItWp1DSbVJwaCYYEqPVBIdelw/m2DA0uTFFTWs3HWYqGqI6xyi3+gCpR/1PXppVxbvKOLz9eeeM9fdLFu2jOLi4mYPTnz5h10E5lXiX6cYNiX11AI9dbX62Bn/KBj1p1ZqtTgfv2r9OyQ4rOmvpcsJTaR3ch4nKq3krD89MY4M9Obqfh35YsN+DpedKg+pwwxjnoKsL+mrvUl0chBLZuyk7FjVmXtvkLfFzBs39cdi0s/ueTpJqt3J2v/Agsehx1VwxavN7sVK71gvKTu56IvZYmwb20pIgj5ocf17eq1hPfp0QcnsOlTGTzvPMX3jhvf0gXouVk++/9gJHpq5kSteXU7OoTL+clUvvntoGKO6NzwIsTEVhRXUWRTBkb56Up2Q4RZ15K7KXKdhLq6pN5Xe1xAYp0/32EL9E0KoLNRLIGJsa8DkpS/64qCF2wsJq1YoG8Sm2t//277Sp6d0kVk/pg1OYlBSGH/5ehuF9afgckNHjhxh+fLlpKWlkZSU1OTtNuQd471FOQytsZKUFnHq/xbA6jf0QbCXPaufpRNtKqRO/6wMjgpo5JGuLeHiiwg2H2TLd9ln3XfnRcnU1Nl4f8Xe0+8Y8gBk3Itp7euM7rWKulobiz7Y3uyzSmH+VqKCfE6fa91DSVLtLjZ9DN/8Rl8IYtLbLUqG0+JD9Cs1FfqHtDvWU9c3+D69R2/jh2fdNSEtjthgHxbtOCOpLszSe+kNGKC4as8Rsg4Wc7isCpuDp7Y25h1j5Is/MX9rAfdc3JnFj1zMTRmND0JsivBqhXekD6r0ABTnSemHg9J9/UCzD/qrPgG7F+q91A78fxrRLZqC3GJMZkVk0ZeQdKEhc6fP31pAd/tqjLGdQ/TSj6JsvfTJRZhMimcnp1FVa+PxL923DOTk4ESLxdKswYkV1XU8/OlmRtt8MWsaQybVq8s/ngeLntbPWvSQhYqdIdZWDUBQvGv8CG0p1eNyegctpPCgxqGfS067r1NkAGO6R/P+qp85UV1vXmql4JK/Qq/JhKx9nCGDjpG37ShZS89TWtkAczvpqXbTbsp2ZussmH2vvvzxlPeavWRxB3sN7i891Qc3gq3W/ZPqjv31AXerXoOBd572Q8PLbOK2C5N5et7pAzNY/x6YrZB+XYsPG+itH+d3n2dSjF6HZjEpogK9iQzyITrQm+ggH6KDvIkK8vnlenSgDyF+Xufsdd6Qd5zqWhs//GYYKQYuMGDWIKpOEd85WOqpDTIoMABTUQUxnYMh91uorXCo9ANgZLcotn28m4hYK5ajWTDw7w63s6yqlp92FvErayAh0Rb8gqyw/itcqfTjpOQIfx4Z25W/frOd2ZsOclVf91uUNzs7m927d3PppZcSGNj09/Bz32VzrPAEXcp96DG0A6Ex/vodmqbP9gEw/gU5u+QkyaYavFUpPnHuN53eaax+dB8QwuofKtjywx5G3376IOjpwzqxYFshn63bj3f9O0wmuOp1OHGYXrtvZ0/ipyz/fBcdu4USEuXXpk/BHUhS7ep2zIdZd+qlCtd9DF4+zd7FyaTa18v+crvzIMUzDb5XX549e+5ZvW/XDYrnlYW7KK2y//KuqYAtM/UeHwfmaO4ZFwxb4P3bB5Ff5UNhSRWFJZUUllRxqLSSvUfKWb3nKMUVZ09BZDWbiAqql3QH6kl31kF9SdfIwOa/vg2JqFOYUXTpbq+n9vKH6N6GHqO9Ca8Av8RAvLzN+iqKPsGQNLRF+wr18yIfSInw56efS+mRehSOYshUej9mH6K6xoZvVR2x/e3zU7tY6YeGwlZnw2Q2ceuFyczLzOeJOVkMSQknyuD3Qmuqrq7m22+/JSoqioEDm/65uiLnMP9dvpf7/ULwqq5l0IR6U+htnwM7v9V7CkMSWqHVoimiUASbCyB8lLOb4jDrwOvotvxTstaPY8iUav2Htt2ApDD6JYTwzrJc7j1zQ4sVrv0Q9b/xjCx4kBnqXyz833YmPtyvXZR0NIck1a4s50f4dBrEpMHUT8Hqb8x+96+FsE7gH2HM/pyp6zgITdan1zsjqQ708eL6CxJ4Z2kuXmYF22ZDZTH0M2aAYnqHYNIbSM4ra+ooKj2VcBeWVFJYWskh+/UdBaUs3Xn4l6TfajHhbTG2IiumTt9fVGIQrF2lzxzgrnX0ThYR4E0+UJ5fQcqoeH0A2Y75eklWC6c487ef9Th6sJzaGhsxdav1abtaODVfffMz8+ni401dcZ1eqnIoWy/9uOx5h/dthOjwUjTMZC4+QPqoeMwmxXOT0xn3ylL++NVW3rixv0NjCdrS0qVLKS4u5tZbb23y4MSyqloe+WwLA/z98DlQRb8rkk8lOZXFMO93ENMbLvhVK7ZcNMZa60WQ5RCEnmMBMXcTP4jecU+QuXs825YdYMC40xclmj6sM3d/uJ7K6nNMR+sdCDd8TsB/LmFY7Vv8kDudTd/n0W+sB8TFQPLt6qryVsKcByCiC9z4hXFT+Wia3lPdeaQx+3M2k1nvrZ73sH1Rk9MHH/72ki6M7Rmtz+m8/j0I69ziXsXm8vEyEx/mR3xYw6fIyqtqOVRahZdZ4eNl3AhzrbKO3tUWsJoI9K/S68mHP2rY/tsbP/trY7NpxHUJgX2roOKow6UfAAW5eo1j9PG5MPgqh/cHsGjHIW6ODIfCMmJTQiDrPUBBD9co/UiOPUqC9wZWzzHTuV8kAaE+pEQF8JsxXXhmfjZfb8nn8vQ4ZzezUYcPH2bFihWkpaWRmNj0BOPpb7aRf7yC6X7haMG1pI+u1xu98C9Qfgiu/1h+BDuRTTNTW+1HcESlZ8wNrhShF4whPm8jWxeb6Ts2UV8R1m5Mj2iSI/yp26ede8BdQBTcNIsu71zCnopBrJ4DCT3Diejo3oM4jSQDFV3VV/dASDzc9JWxy0kf26t/WLt7PXV9faaCTwis/NdZd3lbzPRPDIOiHZC3Qp9Gz8V6v/y9LSRH+NMx1Jj6tOOHTvDTxzuomb2f2DoTgTF+qAPrQLO53IwnbklBbOdgvfTD7A2dHT8tXJBbjJ+/RiAHoMslBjQSKmtsJGoW/IOtBEX42Bd8GQKBMYbs31FKwbDgd7HZNJZ9emrFtTuGJpMeH8KfZm89bYovV9TSwYlLdxUxY80+7kmJo+zgCQZd0Qkv+wqT7FsLa9+BQdOhQ/9WarloimotEA0TQWEe9MMm/XrS/OdTXlJH7sbTB/KbTYo7Lko+z4Z2YZ1QN37G8OC38Fal/PBuJnU17WNhl6aQpNpVBXeAabMhINLY/e5fq//rSUm11V9fCGf713A099yP2fC+Pk1Z+tS2bVsbKsgtZv6bmXz0xCq2rTiI1U//IkjsZB+kqMzQcYCTW+n+Ijr44+1r0f+/dR4B3o730hTuKSEmMB/lHQgJQwxoJYT7WanOryA2JQRVtEMv/ehxlSH7Nkqw5RADxiWRs7GIvZmHAbCYTbwwOY3yqjqemJ3l5BY2bPv27eTk5DBixIhmDU78aUcRvmYTUXsrCO/gT7fBsfoddTXw9UMQGNuslXJF6wqJMW7wuJF+PlJOxblKNRoSFEdij2CCvIrIXHT23PBX9+uIubE66bi++E59jRFBr3HkYAVr5rSfZcgbI0m1q4lN10szps2BoFY49blvDVgDIKqH8ft2pkHTwWSBVW+cfV9tlT4lYbdxxv9IcTLNppG7qYhZz6/ni+fWc2DHMfqPTWTan/sTH1UOQEyyPamO6W3ING3tXVxqCBRk6tMTGlD6AVBypJLo2tV6kt7M2X3OZ1xKJOXHq/TSj21f4UqlH/X1HZNAaIwfS2bspMaeIKRGB/Lg6FS+ycxnfma+k1t4bicHJ0ZHRzdrcOJJfarMlB6uZPCklFODvVb+Gwq3wrjn3Xb1Pk8U1NE1zu7Ul1NUxjVvrkRDa/ZgQdV3Kr195pKfU0xR3unrPPh4mQn1szY+/V3nkSRfdwfdfb9n4/f7yN91tHlPwENJUu1qYtPgpi9bb1DE/jXQoZ9ei+xJgmKh92R9zuqKY6fft32uXvva/xanNK011NbUkbX0AB8/uZr5b2RSdqyKodekMu3BIDK8Xsf/nV6YDqwEIDoW2L9On35QOCwuxV76oUzQ5TLD9htjW2vIrB8nDfTXy4niUoP1VRRdqPSjPrPFxMU3dKX0aCXrvtn7y+3Th3WiV4cg/jh7K0fLq53XwPNYsmQJJSUlzV45EUDV2BhQbqZjt1ASetjL+47thcXPQNfx0H2C8Q0WzRLgrb+mZqrwj09ybmPOsLOwlGvfXEWdTSM22Lf58z93HU/3kHVYTLVsWXx2b7W/t6VpiXraFIZeGU+A6TAL31hOTWVt49t4OEmq25OaE1CwFTp6UOlHfYPvhZpyWP+/02/f8B6EJELyxU5olLEqy2pY+80e3v/9ChZ/tAMvbzOX3JTIjZdvJX3n9Vj/O1wvdUm9hGEZh7g89ElCarP1uZRlfmqHmMwaijriOgfpSXV8hmFnPkxKI8orB1KaXpd7Pn722lz/kjqsvhbCLPuhaLvLlX4QEA22GshdTFxqKN2GxLLp+zyOHCgD9Lnmn5+cTnFFDX+e41plICcHJ6anpzdrcOJJ1p9P4KMphlydos9womnwzW/1zo5xz7VCi0Vz+dln5gmyFKIiuzi5NadsO1jCdW+twqRg5vTBeLVkgTAvH7z7jKer7yJ2rSmgoqzlP1qtF9/DqAv3U1zuy4p/f97i/XgKSarbk4MbQavzrHrq+mJ66wvkrH4Tau0fEkdyYM8S6Det2cu6u5LiogqWzNjBe48tZ83cPUQlBHLltTAl9XVSfxyM6btH9J7TcS/Awzvg6nfwSehBgvcmWfTFID06HeaqsD/hW5cPhZmGlX4ARPjmY+nQ05D5o8P89aUbCnOKiekUjCl7Ni5Z+tH/Zn06zK9/AzWVDJnUGS9fMz/N2IFmX6G0e2wQ941IZc7mgyzIKnByg3WapjFv3jy8vLyaNTixPlO1jWqlERlvL8fKmgW7f4CRf4Dgjga2Vjgq2OsI+LtG2WDm/mKuf3sV3hYTn9w1mBRHlk7vo5eA1NVqbFvW/BUS6+tw/W9IT9zJ1l1R5M35xKF9uTv3zTJE8+1brf/rCYu+nM/g+6A0X5/pACB3kf5vr6ud1yYHFO4p4du3MvnoTyvJWnaQlLQArrsskwm1N9Hxp4monIV6cnLXUrhrCQy6E3xDT99J3koITXLJU//uxMe7jjjrNr2XGvQafYNEs1Gf79pAxwpOnCr9SBjseq+/ly9M+AcczYFl/8A3wMqQSSnk7y5m+8pTddT3jOhM99ggHv9qK8dPOL8MZNu2beTm5jJy5EgCAgyYSqziGMz/P4jto48NES4lOLDKJWaM2ph3jKnvrCLA28Kndw0mOcLBdSvi+hEeF0DHwD1s/ekAtjoHZvAwmcj49e2E+h7lx29NVG6e71jb3Jgk1e3JvjUQnmrsFH2uJmU0RHbTp9fTNLDZPyi83WfQj2bT2LPlMF++uIHPn13Hvu1H6du3gml932HUgdGEb/wThHeCq/8Dv92hD2qKTTv/DvetlXpqI2V/A1E99QWUDBLjlQ2pxkylV19sRIle+tHzKsP3bYjOI6H3FFj2EhzeRffBscSmBLNi1m4qSvUEWi8DSeNYeTVPzd3m1OZWVVXx3XffERMTw4ABBs2k88OTcOIwXP6y54118QBBYc6fn3rt3qPc9J81hPlb+fTuwY2ufdAkSkHfG+htnknZsSr2bDns0O4sPt6MvvciKmwhLH1v7amVm9sZSarbk8Iszy39OEkpvba6IFMv+3AjtTV1bFt2kBlPrWbea1soOVTC0F7Z3Bx1F4MPTsW/dLO+eMuDW/TpFntPbtqy9TXlUvphpH2rDS39AIgJPqL3VBrIbDERXfwtoKC7i5V+1Df2b3qv9de/RikYPrUrNRV1rJi1+5eH9OoQzD0Xd2bWxgP8mF3otKY6MjjxnPJWwfr/QsY9ENfH8f0JwwVHO7dDZmXOEW5+dw1RQd58Mn0wHUJ8jdt52rUk+Wwk0K+CLT+ePWCxuaJSohlwSSw7Twxl99vP6utDtDOSVLcnWp1nl36c1PsavQZu5b+d3ZIm27WukPcfX8miD7MxVx9jTOIX3OgzifRjT2BNGazPCPPgZhjxWMtmhpGeagNphiXVyR2O09//MwK79ze85j8qKRBz9iz9tQ+KNXTfhgqIgtF/hr1LYfNMwuMC6DMmgeyVBRzYeWomn/tGptI1OpDHZmVSXFHT5s0sKipi5cqV9OnTh4SEhMY3aIq5D0FwPFz8mDH7E4YLjnd8nENLLd1VxK3/W0OHEF9mTs8gJrgJnSjNERCFqctoevnO5+Cu4xzeX+bwLvtd2YOoDlZ+Onwz5f+9GYoPGNBQ9yFJdXvj6T3VoPfeDrwTdn0Hh93jl7K3VkKk116uiPgr13hdR5eQzZjH/V0v75jyX/00eUtPDfuG6cvdC2MEx+vzyRsgMvQEGYEfo7oaN5XeSbFxda5d+lFfv1v0WYkWPA4njjJgfBKB4T789PEO6mr1Ei6rxcTzU9I4XFbN09+0bRmIpmDevHlYrVZGjx5tyD69qNVfn3EvGLKAkDCeoo7AJOPKvJpjUfYhbn9vHUnh/sycnkFUoMEJ9Ul9b6CH+UssFo3Mc0yv11xms4lRd/SlxhTA4oNT0D6cfPY0tx5Mkur2xDtIrzduDwbeDhYffdEXN5BQt5DLve4lflAv1F2L4e6lcMFdxtS/J2S4xEAbj9FtvHHx9A0Fa6C+6IvB4tiAy5d+nGQyweX/hMpi+P6PeFnNDLuuC8cKTrBxQd4vD0vrGML0YZ34dN1+Fu841HbtUzb27Nlj2OBEn9pSrNTqr01XYweoCmNEBhWT6L0ec1RKmx97QVYB0z9YR5foAGbcmUF4gHfrHSx1LD4B3nSJ2sXO1QVUljt+Figs1p/BE1PZW9mX7XkdYcZUsLWPOawlqW5POvRvPwNh/CMg/Tp9bu7Wsv5/+mIz22bD7oX6wIxD2+H4Pv2XeV0zPkQ0+4DKMU9BXF9jk+D4C4zblzC2nrr/rfDABkNXurSYbZioJebITNcv/agvuqc+HmLjh/DzCpJ6R9C5XyTr5u+luOjU+/jBUamkRAXw2KxMSivbrgzEyMGJkRW5+pXLZE5qV9Wrr4nxaT+C1YBBgc3wzZZ87vloAz3jgvnojgxC/Y1ZYfW8LFbofQ1ptW9RW2Nj+3JjVjBNG9GRDl1DWHbibkpyc6DY8V5wd2BxdgNEG2oPpR/1Zdx79kIwRghL1ueEXvhk44+1+Oqndr0D9eXhvQPrXT95eyDkbzK+nSdJPbUx4vrqZTgJQ4zbp8Wq1xQbqGfnQuIPvIL3kRwY5GZJ2/BHYeuXeq3x3csYOqULeVmrWDJzJxPuS0cphY+Xmecnp3H16yv427xs/j6pd5s0bfz48ZgMqntX2NDAfX7wtEcXPqhf2tDsTQf49Seb6J8Yyru3DCTQp+GZR44fOkHxCQen1gPoewPhq18nLqaCzJ/2E2t1vFNHmRQjp3Vn5l/WsND8D/xZ63g73YAk1e2Jp66keD6RXSB1rF5bbaQuY+HxQqgug6pS/VJdBlVlUFVS73opVJfWu27/t+RgvW3L9NUOAbyD9VkQjBKTBkkXyawCRkkdrV9cnI+1Dh+vHNym9KM+qz+MfxE+ngIrXiZg2CNccEUnln22i93rD5E6QB801jchlDsu6sRbS3IZ3zuWoakRrdakMM2PuqMdiY+Pb7VjCPH5+v088vlmLkgO4z83D8Tf++z0TNM0jh4sJ2djEbkbi+yrj0bSJdDB6etiekNMGmnFc/m24BpqrdFYKHdsn0BQuC8XXdOFH9/fjsUyFD9rlcP7dHWSVLcHUT0grh8ktMMygDFP6fMJGz03t8UKljBj9ltXqyffZitYDKyd6zRcv4j2KSHDPXtCu1wCPa6EJS9Ar6vpfXESO1YXsOyzXST0DMfbV//a+s2YLvywrZBHv9jCd78eRsA5khAjWDHjUx1i2P5KKms4UV1n2P6E+5uxJo/ff5nJ0JQI3rppAL7WU2WamqZRlFf6SyJ9vPAEKIjtHMzQKal0OvQygfnzgf9zrBF9biB5/mMEBF9HWbEPgV6OJ9UA3QbHsGdzEXs2H4YQD14jw05qqtuD+IEwfZGhdZtuI6obXPaMaw/UM1vsA9YMOI0nxEk9Jzq7BS136bNg8oJvfovJpBg+tSsnSqpZPTv3l4f4eJl5bnIaB4sreHZ+thMb23S7D5Vy1b+XU1Fdiwt/Iok29P7KvTw2K5OLu0Ty9jQ9odZsGgd3H2fZZ7v44PGVfPb3dWxckEdAqDfDp3bllmcuZNLD/UkfFU+gb4UxDek9BZPZTK8Oxs6YpZTi4hu64RPghXLl72GDSE+1EEJ4ErMXbln6UV9QLIz6I8z/HWz9gujek+k9rAOZP+2n2+AYohL1BTkGJIVx65Bk3l2+h3G9XbtX/rusAn7zySZ8rWaSI/z5uX2M2xINeGdpLn/9ZjtjekTzyrXpFO0uJndjEbmbijhRUo3JokjoHsbACckkp0fg49+Kqzv6h0PXy+iR+xprTS8Yumu/ICsT7kun/LiUfwghhHAn/W91r1k/zmfgHbB5Bnz7GKSM5oKrOpOzsYjFH+1g8qP9MZn1E62PjO3Kwmy9DOQ+TXNyo89ms2m89MNO/vXjbtI7BvPGTf3JeVsy6vbutcW7eXH+Dq7tEMFomx8f/X4lVeW1WKwmEnuF07lvFIm9wrH6NpCmHc+Do7nnv7+5+t6I7/Zr6BXwI4drW7DIWAOik5y7MmVbkaRaCCE8iX8E+A91discZzLDhH/C2yNg4ZN4T3iJodeksuCdLDJ/OkD6SH3goK/VzLNXp3HdW6s4Ul3lUmUVxRU1PDRzI4t2FDGlf0f+clUvfLzM5Di7YcJpbJh55X+b2bG+kAdtvpi3lbPXt4qkND2Rju8Rhpe1galvK45B1lew5VPIW6Hf1ucGYxrXeRQERHOh9hqEJAB3G7PfdkSSaiGEEK4prg9ccDeseh3Sp5LSfwDZK/JZPSeXzn2jCAjVB/ZmdArn5sGJ2BbvwlVm4t9RUMpdH6zjwPEK/nJVL268IKFd1JSKhlXZgjGvOkJXLy96ZsSQ0i+Kjl1DMVsaGOJWWwU7v4Mtn8CuBVBXra+SO/IP0HsKhCYZ0zizBdKuRa14BZf6depGZKCiEEII1zXi9xAUB18/hLLVMuz6LthqNZZ9tvO0h/3u0m54N5SYtKF5mflMfG055dV1zLgzg5syEiWhFkSE7CTV71uKBgRzzz+GMeqm7iT2DD93Qm2zwd7lMOcBeCEVPr1JX2Bs4B0wfTHcuwaGPWJcQn2SUb3e7ZT0VAshhHBd3oH6yoOf3ACrXiP4wgcZMC6R1XP2sDfzMEm99Tmq/b0tJEf4s6vUeU2ts2m8sGAHry/OoW9CCG/c2J/oIB/nNUi4lLSEMvxYzJjbnz3/j6xD2XqPdOZnULwPvPyh+wRIuwaSL9Z7k1tTVDd99eUTR1v3OB5KkmohhBCurfsE6DoOFj8DPSfSd0wiO9cUsmTmTjp0Df2lBtXPy3nFH8dPVHP/jI0s3XWYqRck8MTlPfC2uEoxinAFkQHeYLWcPcVrST5s/UJPpgu2gDLrq7eOegK6jWv76VaveBVKD7btMT2EJNVCCCFc32XPwb8vgG8exjz1E4Zf35WvXtrIunl7GXxVZ6c2bXt+CdM/WEdhcRV/n9Sb6wclOLU9wg1UlcL2uXoivWcJaDZ9kbZLn4VekyAgynlti+6hX0SzSVIthBDC9YXEw4jHYMEfYPscOvS4kq4ZMWxakEeXQdGExwU4pVlzNh/k0c+3EORrYeZdGfRLCHVKO4SbqC6Dz2+D7HlQWwEhiXDRw3p5R0Sqs1snHOQaozqEEEKIxlzwK4juDfMfhcoSLrw6BS8fMz99vAPN1rZzVNfW2fjbvO08MGMjPeOCmHv/UEmoRcMsPlBVAjk/Qp+pcNsCeHAzjHxcEmoPIT3VQggh3IPZApe/DO+MgkVP43vZswyZlMKiD7PJXpXfZs04Wl7N/TM2sHz3EaYNTuQP43tgdZGZR4QLG/awXiOdOBQsVme3RrQCSaqFEEK4j479YeDtsOYtSLuW7kP6kr0ynxVf5JAc2YrLONttPVDMXR+sp6isiucmp3HNgPhmba9pGlXVrd9O4YICY/SL8Fjy01oIIYR7GfUn8I/U567W6hg+tSvVFbXs+Dm6VQ/75cb9XP36Cmyaxmd3DW52Qn1w1zFmPb+e7Lw4Yrx3tVIrhRDOIkm1EEII9+ITDJc+A/mbYe3bhHcIIH10PDat9b7Snpq7jV9/spk+8SHMvX8o6fEhTd728P4yvn51M1++uJHSo1WM6LudCZEvtlpbhRDOIeUfQggh3E/PibDpI/jxr9D9CgaOT2b3sp2cONE6ifW7y/dw64VJ/H5cd7zMTTtGyeEKVs/NZeeaQrx9LQye2Jm0ER2xLJoHR2yt0k4hhPNIUi2EEML9KAXjXoDXMuDbR/G69kPGXrCN/PVbgUsNO4zJpC/U8Y9r0pnUr2OTtqkorWbdvL1sXXIAZVL0uySBvpck4uMvtdRCeDJJqoUQQrinsGQY/jtY+BTsmE90WCnRgfMMPURUoDdFh2hSQl1dWcumH/ax6fs8amtsdB8Sy8DxyQSEehvaJiGEa5KkWgghhPsafD9s+QzmPQJdLzN892euKH0udbU2spYeYN28vVSU1tC5byQXXNmJ0Jg2Xl5aCOFUklQLIYRwXxYrXP5PeHcsbPywTQ+t2TR2ri1kzdxcSg5X0qFLCBn3dCYmObhN2yGEcA0OJdVKqeeBy4FqIAe4VdO04wa0SwghhGiahAzoNw02vA/m1i+10DSNvKyjrPwqhyP7ywjvGMCE+9NJ6BGGaqxr22aDE0davY1CiLbnaE/198BjmqbVKqWeBR4DHnW8WUIIIUQzjH4SsudBVWmrHqZgTzErZ+VwcNdxgiJ8GHNbD1IHRKNMjSTTtdWw9XNY/jIUZUNcv1ZtpxCi7TmUVGuatqDen6uAyY41RwghhGgBvzCY9CbkLGqV3R8rKGfVV7nkbirCN9CLi67tQs+L4jA3tjx5VRlseA9W/htKDkBUT5j4FvSa1CrtFEI4j5E11bcBnxi4PyGEEKLpUkbrF4PVaj7MeHI1FquZQZcnkz4qHqtPI1+f5Ydh9Zv6cuqVxyHxQpjwT0gd07TRj0IIt9NoUq2U+gE412L1j2uaNtv+mMeBWuCjBvYzHZgOkJCQ0KLGCiGEEG3J36caE7X0GpHEgMuS8A20NrzBsb2w4lV90GRtBXSbABc+BPED26K5QggnajSp1jStwZ/9SqlbgAnAKE3TtAb28xbwFsCAAQPO+zghhBDCVaSl7KPn0b/hdc3PDT+wIBOW/ROyvgRlgrRr4cIHILJrm7RTCOF8js7+cSnwO2C4pmknjGmSEEII4RpMCkym6nPfqWmwd6meTOcsBGsAZPwKMu6B4A5t2k4hhPM5WlP9KuANfG+fRmiVpml3O9wqIYQQwlXZ6iD7G1j2EhzcAP6RMPKPMPB28A11duuEEE7i6OwfKUY1RAghhHBptVWweSaseAWO7IbQJBj/IvS5Abx8nd06IYSTyYqKQgghRENsdXqJx6rXoawAYtJg8rvQ/Uowy9eoEEInnwZCCCFEQ+qq4IcnIHk4THwdOo2QafGEEGeRpFoIIYQ4n+5X6Au49JsGHWQVRCHE+UlSLYQQQpxP/CD9IoQQjWhkfVUhhBBCCCFEYySpFkIIIYQQwkGSVAshhBBCCOEgSaqFEEIIIYRwkCTVQgghhBBCOEiSaiGEEEIIIRwkSbUQQgghhBAOkqRaCCGEEEIIB0lSLYQQQgghhIMkqRZCCCGEEMJBklQLIYQQQgjhIEmqhRBCCCGEcJAk1UIIIYQQQjhIaZrW9gdVqgj4uZGHRQCH26A57YXE01gST2NJPI0l8TSWxNNYEk9jted4NvW5J2qaFtnajXFKUt0USql1mqYNcHY7PIXE01gST2NJPI0l8TSWxNNYEk9jted4utpzl/IPIYQQQgghHCRJtRBCCCGEEA5y5aT6LWc3wMNIPI0l8TSWxNNYEk9jSTyNJfE0VnuOp0s9d5etqRZCCCGEEMJduHJPtRBCCCGEEG6hyUm1UipeKbVIKbVNKZWllHrQfnuYUup7pdQu+7+h9tu7KaVWKqWqlFIPn7GvX9v3sVUpNUMp5XOeY36rlDqulPr6jNuTlVKrlVK7lVKfKKWs59m+v1Iq0/64V5RSyn77FPvxbUopp4wa9bB4/lkpdUAptcl+GWdEjJrDw+KZbm9bplJqrlIqyIgYNYebxvNppdQ+pVTZGbffbY/lJqXUMqVUD0di0xIeFs+X6r3XdyqljjsQmhZxt3gqpfyUUt8opbLtx3qm3n3DlFIblFK1SqnJRsSnuTwsnrcopYrq/R+9w4gYNYeHxTNRKbVQKbVFKbVYKdXRjZ77ffbnrSmlIhpo8zlj1KL3pqZpTboAsUA/+/VAYCfQA3gO+D/77f8HPGu/HgUMBJ4GHq63nw7AHsDX/venwC3nOeYo4HLg6zNu/xS4zn79DeBX59l+DZABKGA+cJn99u5AV2AxMKCpMTDy4mHx/HP9Nkk8HY7nWmC4/fptwF8knk2KZ4a93WVn3B5U7/oVwLcSz5bH84zH3A+8K/FsOJ6AHzDCft0KLOXU+z0JSAPeBya3dSw9MJ63AK86I44eGs/PgJvt10cCH7jRc+9rf3/tBSIaaPM5Y0QL3ptN7qnWNC1f07QN9uulwHb7k74SeM/+sPeAq+yPOaRp2lqg5hy7swC+SikL+ot58DzHXAiU1r9NKaXQX9jPzzzmGY+LRf8yXaXp0Xm/Xtu2a5q2oynPu7V4UjxdgYfFswuwxH79e+Dq8z/z1uFu8bRvv0rTtPxz3F5S709/QDvX9q3Jk+J5huuBGY08xnDuFk9N005omrbIfr0a2AB0tP+9V9O0LYCtCU+9VXhSPF2Bh8WzB/Cj/foi+3M4L1d57vbbN2qatreh9jYUo5a8N1tUU62USkL/BbAaiK73wVsARDe0raZpB4AXgDwgHyjWNG1BMw4fDhzXNK3W/vd+9BfsTB3s99HI45zOQ+J5n/300LsnT+s4iwfEM4tTH1xTgPhmHN9wbhLPBiml7lVK5aD3ljzQ3O2N5AnxBP20MJDMqS9cp3C3eCqlQtB71RY24zhtxkPiebX9++hzpZR8fjoWz83AJPv1iUCgUiq8KQd38nNvKsM+E6EFSbVSKgD4AnjojB4g7D1uDfYC2ROuK9E/jOMAf6XUjc1th6fwkHi+DnQG+qD/53+xjY//Cw+J523APUqp9einz6rb+Pi/8JB4omnavzVN6ww8CvyhrY9/kqfE0+464HNN0+qcdHy3i6e9x20G8IqmabmtdZyW8pB4zgWSNE1LQz/T9975tm9tHhLPh4HhSqmNwHDgANDoe97dnrtRmpVUK6W80IP0kaZps+w3F9pPZZ88pX2okd2MBvZomlakaVoNMAsYopS6QJ0aWHBFA9sfAULsLz7opygOKKXM9bZ/Cv2Fr386qKP9NpfhKfHUNK1Q07Q6TdNswNvAoKbGwEgeFM9sTdMu0TStP/oHXE5TY2AkN4tnU83ESWVLHhjP63BC6cdJbhrPt4Bdmqb9s1lPtg14Sjw1TTuiaVqV/c93gP6NPvlW4EHxPKhp2iRN0/oCj9tvO+4Gz72h9n1n3/4dzhOjluwX9HqVpjZCAf8Btmua9o96d80Bbgaesf87u5Fd5QEZSik/oAK9wHydpmmr0Xs6G6RpmqaUWgRMRv+CvBmYbe8tOW17pVSJUioD/dTDNOBfje2/rXhSPJVSsfVO60wEtjZ2XKN5WDyjNE07pJQyofeqvtHYcY3mjvFs4Lmkapq2y/7neGBXQ49vDZ4UT/vz6QaEAiubuo2R3DGeSqm/AsFAm89G0RhPiucZ30dXoNf0tikPi2cEcNTeafYY8G5Dx3SV594QTdPGntHms2LkyM6bdAGGonfXbwE22S/j0OtRFqJ/Uf0AhNkfH4Nem1ICHLdfD7Lf9ySQjZ58fQB4n+eYS4Ei9IDuB8bab++EPnPCbvSRqefbfoD9GDnAq/DLYjcT7furAgqB75oaB6MuHhbPD4BM+3OZA8RKPB2K54PoI6Z3on8AKYlnk+L5nH07m/3fP9tvfxm9Tn0T+kCbnhLPlsfTft+fgWfaOo7uGk/03i8NPcE72d477PcNtO+vHL3XLEvi6VA8/47+ft+M/n7vJvF0KJ6T7e3did7zf87ju+hzf8D+dy36IMd3zrP9OWNEC96bsqKiEEIIIYQQDpIVFYUQQgghhHCQJNVCCCGEEEI4SJJqIYQQQgghHCRJtRBCCCGEEA6SpFoIIYQQQggHSVIthBBCCCGEgySpFkIIIYQQwkGSVAshhBBCCOGg/wcFl1krSsAEIwAAAABJRU5ErkJggg==\n",
192
      "text/plain": [
193
       "<Figure size 864x432 with 1 Axes>"
194
      ]
195
     },
196
     "metadata": {
197
      "needs_background": "light"
198
     },
199
     "output_type": "display_data"
200
    }
201
   ],
202
   "source": [
203
    "from matplotlib.pyplot import figure\n",
204
    "\n",
205
    "figure(figsize=(12, 6))\n",
206
    "plt.plot(strain_oct)\n"
207
   ]
208
  },
209
  {
210
   "cell_type": "code",
211
   "execution_count": 27,
212
   "id": "c363f44e",
213
   "metadata": {},
214
   "outputs": [
215
    {
216
     "data": {
217
      "text/plain": [
218
       "[<matplotlib.lines.Line2D at 0x1fec2c48dc0>,\n",
219
       " <matplotlib.lines.Line2D at 0x1fec5a7c190>,\n",
220
       " <matplotlib.lines.Line2D at 0x1fec5a7c1f0>,\n",
221
       " <matplotlib.lines.Line2D at 0x1fec5a7c3d0>,\n",
222
       " <matplotlib.lines.Line2D at 0x1fec5a7c4f0>,\n",
223
       " <matplotlib.lines.Line2D at 0x1fec5a7c610>,\n",
224
       " <matplotlib.lines.Line2D at 0x1fec5a7c730>,\n",
225
       " <matplotlib.lines.Line2D at 0x1fec5a7c850>,\n",
226
       " <matplotlib.lines.Line2D at 0x1fec5a7c970>,\n",
227
       " <matplotlib.lines.Line2D at 0x1fec5a7ca90>,\n",
228
       " <matplotlib.lines.Line2D at 0x1fec2de0880>,\n",
229
       " <matplotlib.lines.Line2D at 0x1fec5a7cbb0>,\n",
230
       " <matplotlib.lines.Line2D at 0x1fec5a7cdc0>,\n",
231
       " <matplotlib.lines.Line2D at 0x1fec5a7cee0>,\n",
232
       " <matplotlib.lines.Line2D at 0x1fec5a51040>,\n",
233
       " <matplotlib.lines.Line2D at 0x1fec5a51160>]"
234
      ]
235
     },
236
     "execution_count": 27,
237
     "metadata": {},
238
     "output_type": "execute_result"
239
    },
240
    {
241
     "data": {
242
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAFwCAYAAAAfeQWTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hcxdXA4d/c7auVtOrN6u6929g04wKGgOm9E0iBkJCPEmoSSIAASQih19CLMR0MuAHGvfciW733vv3e7w9JxkWyVXa1kpn3efTY3r3lyJJWZ2fOnBGapiFJkiRJkiRJUvAowQ5AkiRJkiRJkn7uZFIuSZIkSZIkSUEmk3JJkiRJkiRJCjKZlEuSJEmSJElSkMmkXJIkSZIkSZKCTCblkiRJkiRJkhRk/TYpF0K8KoQoF0Js99P1fEKIza0fn/njmpIkSZIkSZLUGaK/9ikXQpwMNAJvaJo20g/Xa9Q0zdbzyCRJkiRJkiSpa/rtSLmmaT8A1Qc/JoTIFEJ8LYTYIIRYLoQYGqTwJEmSJEmSJKnT+m1S3oEXgd9pmjYBuB14tgvnmoUQ64UQq4UQ5wYkOkmSJEmSJElqhz7YAfiLEMIGTAPmCyHaHja1Pnc+8GA7pxVpmnZ6699TNU0rEkJkAEuFENs0Tdsf6LglSZIkSZIk6bhJymkZ9a/VNG3s4U9omvYR8NHRTtY0raj1z2whxHfAOEAm5ZIkSZIkSVLAHTflK5qm1QM5QoiLAESLMZ05VwgRIYRoG1WPBqYDOwMWrCRJkiRJkiQdpN8m5UKId4FVwBAhRKEQ4gbgCuAGIcQWYAcwr5OXGwasbz1vGfCopmkyKZckSZIkSZJ6Rb9tiShJkiRJkiRJx4t+O1IuSZIkSZIkSccLmZRLkiRJkiRJUpD1y+4r0dHRWlpaWrDDkCRJkiRJko5jGzZsqNQ0LaY37tUvk/K0tDTWr18f7DAkSZIkSZKk45gQIq+37iXLVyRJkiRJkiQpyGRSLkmSJEmSJElBJpNySZIkSZIkSQoymZRLkiRJkiRJUpDJpFySJEmSJEmSgkwm5ZIkSZIkSZIUZDIplyRJkiRJkqQgk0m5JEmSJEmSJAWZTMolSZIkSZIkKchkUi5JkiRJkiRJQSaTckmSJEmSJEkKMpmUS5IkSZLUL3hravBWVAQ7DEkKCJmUS5IkSZLUL5T97e8U/v4PwQ5DkgJCJuWSJEmSJPULamMjrqysYIchSQEhk3JJkiRJkvoNtaEBX11dsMOQJL+TSbkkSZIkSf2Ku7Aw2CFIkt/JpFySJEmSpH7FUyCTcun4I5NySZIkSZL6FU+RTMql449MyiVJkiRJ6lfcBQXBDkGS/M4vSbkQ4lUhRLkQYnsHz18hhNgqhNgmhFgphBhz0HO5rY9vFkKs90c8kiRJkiQdjwQoejyFRcEORJL8zl8j5f8DzjjK8znAKZqmjQIeAl487PkZmqaN1TRtop/ikSRJkiTpeGOdjGXKb/HIkXLpOOSXpFzTtB+A6qM8v1LTtJrWf64GBvjjvpIkSZIk/YwIC7qINDzFxWiqGuxoJMmvglFTfgOw8KB/a8C3QogNQoibghCPJEmSJEn9hDDa0NDjLS8PdiiS5Ff63ryZEGIGLUn5iQc9fKKmaUVCiFhgkRBid+vI++Hn3gTcBJCSktIr8UqSJEmS1Pco1hg8BQUY4uODHYok+U2vjZQLIUYDLwPzNE2rantc07Si1j/LgY+Bye2dr2nai5qmTdQ0bWJMTExvhCxJkiRJUh+khMTglos9peNMryTlQogU4CPgKk3T9h70eIgQIrTt78AcoN0OLpIkSZIkSdCSlMvFntLxxi/lK0KId4FTgWghRCHwZ8AAoGna88ADQBTwrBACwNvaaSUO+Lj1MT3wjqZpX/sjJkmSJEmSjk+6mBS5gZB03PFLUq5p2mXHeP6XwC/beTwbGHPkGZIkSZIkSe3ThSXgLtwQ7DAkya/kjp6SJEmSJPUrwhwhy1ek445MyiVJkiRJ6mcseCuqUF2uYAciSX4jk3JJkiRJkvoZgbBG4imSHVik44dMyiVJkiRJ6neUkBg8hXKxp3T8kEm5JEmSJEn9huZtBFp7lcu6cuk4IpNySZIkSZL6D28z6BWU0Hg8cgMh6Tgik3JJkiRJkvoNDQ19pBldVLIsX5GOKzIplyRJkiSpX9FHmVvKV2RSLh1HZFIuSZIkSVK/oo80I/RheAoK0DQt2OFIkl/IpFySJEmSpH5FH2kGdGgegVpXF+xwJMkvZFIuSZIkSVK/oouyACCsMbjlYk/pOCGTckmSJEmS+pWWkXLZq1w6vsikXJIkSZKkfkUfcXBSLnuVS8cHmZRLkiRJktSvCIOCLtyILiJRdmCRjhsyKZckSZIkqd/RRVpQwhPxFMikXDo+yKRckiRJkqR+Rx9lRjFHyJpy6bghk3JJkiRJkvodfaQZhAV3aQWazxfscCSpx2RSLkmSJElSv6OPal3sabTjLS8PcjSS1HMyKZckSZIkqd/RR7b2KpdtEaXjhEzKJUmSJEnqd3QH9Sp3y8We0nFAJuWSJEmSJPU7ilWPMOtQbLFypFw6LsikXJIkSZKkfkcIgT7S3NqrXG4gJPV/MimXJEmSJKlf0kdZWkfKi4IdiiT1mEzKJUmSJEnql/SRZoQ+TCbl0nFBJuWSJEmSJPVLLYs9FXwNHlSnM9jhSFKPyKRckiRJkqR+6UCv8pAYPMXFQY5GknpGJuWSJEmSJPVLbb3KlZBoPAVysafUv8mkXJIkSZKkfkkXbgIFhDUGt2yLKPVzMimXJEmSJKlfEjqBLsKMEhYvF3tK/Z5MyiVJkiRJ6rf0kWZ04Ql4ZK9yqZ+TSbkkSZIkSf2WPsqCMEfiliPlUj8nk3JJkiRJkvotfaQZoZjwlFSiaVqww5GkbpNJuSRJkiRJ/ZY+sqUtIpoFta4uuMFIUg/IpFySJEmSpH5LF9XWFjEGd4HswCL1XzIplyRJkiSp39JHmoDWDYSKZFIu9V8yKZckSZIkqd9STHqUED0iJAaP7FUu9WN+ScqFEK8KIcqFENs7eF4IIZ4SQuwTQmwVQow/6LlrhBBZrR/X+CMeSZIkSZJ+PvRRFnThCbJ8RerX/DVS/j/gjKM8PxcY1PpxE/AcgBAiEvgzMAWYDPxZCBHhp5gkSZIkSfoZ0EeaUWyxcqRc6tf8kpRrmvYDUH2UQ+YBb2gtVgN2IUQCcDqwSNO0ak3TaoBFHD25lyRJkiRJOoQuyoLQh+Iukr3Kpf6rt2rKk4CDt9oqbH2so8ePIIS4SQixXgixvqKiImCBSpIkSZLUv+gjzSAE3ho3ms8X7HAkqVv6zUJPTdNe1DRtoqZpE2NiYoIdjiRJkiRJfYQ+qqVXuWKKwFteHuRoJKl7eispLwKSD/r3gNbHOnpckiRJkiSpU/SRB/cqLzjG0ZLUN/VWUv4ZcHVrF5apQJ2maSXAN8AcIURE6wLPOa2PSZIkSZIkdYoSagC9QAmJxlMox/ak/knvj4sIId4FTgWihRCFtHRUMQBomvY88BVwJrAPaAaua32uWgjxELCu9VIPapp2tAWjkiRJkiRJhxBCoI804wmJxVMoR8ql/skvSbmmaZcd43kNuLmD514FXvVHHJIkSZIk/Twd6FVeuDbYoUhSt/SbhZ6SJEmSJEkd0UeaEeZIPHIDIamfkkm5JEmSJEn9nj7KglAMeMpqgx2KJHWLTMqloKhd8BH7f/ELVLc72KFIkiRJxwFda1tE1SlQnc4gRyNJXSeTciko3Lm5uPftp3Hx4mCHIkmSJB0H9JGtvcpDYvHInT2lfkgm5VJQ1cyfH+wQJEmSpOOAPqItKY/BUyjryqX+RyblUlA1r1qNOz8/2GFIkiRJ/ZzQKyihehRrNG652FPqh2RSLgWPEKAo1M7/MNiRSJIkSccBfUwISmicHCmX+iWZlEtBoWkgTCHYTjmF2o8/RvN4gh2SJEmS1M/pI80otlg8RTIpl/ofmZRLQaE64rDO+Cvh512Er7KShu++C3ZIkiRJUj+njzIjDDbchaXBDkWSukwm5VJQaKoBxRSKsAxEHxtL7QdywackSZLUM/pICwDeahctm4lLUv8hk3IpqJrWlBF+wQU0/fijbGElSZIk9Yi+tVe5EFZ8tbXBDUaSukgm5VJQeSsdWCfNBVo2FJIkSZKk7mrrVS5CYvAUyoEeqX+RSbkUNJrqQwk14NzjImT6dGoXLEDzeoMdliRJktRPKVYDwihae5UXBDscSeoSmZRLwaOp2KYk4NxTQ+gvLsZbVkbj8uXBjkqSJEnqx3SRZpSQGNyyLaLUz8ikXAqqkCkJoBNAGrroaNmzXJIkSeoRw4Fe5bJ8RepfZFIuBZUu1Ih1VDTNmyoIn3c+jd99h6esLNhhSZIkSf2UPsqMsETikbt6Sv2MTMqloLNNT0Jz+TANmw2qSt1HcsGnJEmS1D26SDNC6HCX1wc7FEnqEpmUS0FnTA7FkByKc7cT69Sp1H64AE1Vgx2WJEmS1A+19SpXG1U0ny/I0UhS58mkXOoTQqcl4q10YJt1CZ6iIppWrgp2SJIkSVI/1NarXDFF4JXlkFI/IpNyqU+wjIpGsRlQXUno7HZqP/gg2CFJkiRJ/ZAu3ASipVe57MAi9ScyKZf6BKFXCJmSgCurlrCzL6Vh6VK8lZXBDkuSJEnqZ4Qi0IXpW3qVy8WeUj8ik3Kpz7BNSQBFYEg9Cbxe6j75JNghSZIkSf2QPiakJSkvkkm51H/IpFzqM3RhRiyjo3FmObFMmkrN/PlomhbssCRJkqR+Rh9tRbHF4pYj5VI/IpNyqU+xTUtEc/kIOfESPHn5NK9ZG+yQJEmSpH5GH2VG6C14iiuOeazm8aG6vL0QlSQdnUzKpT7FlBKGYYANX0MUSlg4tfPnBzskSZIkqZ/RR7Z0YPFWO455bM2CLCqe34qmyplZKbhkUi71ObbpSXgrnYSeeTUN336Lt6Ym2CFJkiRJ/Yg+qqVXueY2oDqdRz3WU1mPp6QJ567q3ghNkjokk3Kpz7G2tkfURU9A83io+/TTYIckSZIk9SO61pFyxRqNp6joqMe6c3IAqF+SK9cxSUElk3IpKCo0B1sM+e0+19Ye0VPkxjzhJGrnfyhfKCVJkqROU4w6hFm09CovKDj6wa2/XzzFzbj21wY+OEnqgEzKpaDYRjUbDXkdPm+bEg9CYJ14Ae79+3Fs3NiL0UmSJEn9nT7SjBISi6fw6CPlAL66AlRnHfWLcnohMklqn0zKpaCo4OiLb3RhJiyjovHW2lDCIqj9QC74lCRJkjpPH2tDscXgOdZIOYAA975vcec14cqvD3xwktQOmZRLvc7pdFKH+5jH2aYnorlUbHOuo/7rr/HV1fVCdJIkSdLxQB9lQZgjcBcVH/NYYTRgGRmG5m6i/ut9vRCdJB1JJuVSryspKenUccbkUAwDbCjW4WguF3WffxHgyCRJkqTjhT7KjBACT3ljp46PueXXuHOW4cpuwlPaFODoJOlIMimXel3RMVbCtxFCYJuWiK9exTLxDGqDsMOnt6YG565dvXpPSZIkqefaepWrte5O/e4wDhiAdawdzeuk9svdgQ5Pko4gk3Kp1xUXH3sqsY11dAyKzYBp+Fxce/bg3LYtgJEdqfqNN8i99DLU5uZeva8kSZLUM229ytGF4aut7dQ50b+5AU/+j7j2NuGtOvbGQ5LkTzIpl3pdV5JyoVcImRyPr96CEjmAmg8+CGBkR9KcLjSXi+b163v1vpIkSVLPKDYDKBpKSDSewsJOnWOIjSVkYiSa6qX2sx0BjlCSDuWXpFwIcYYQYo8QYp8Q4k/tPP9vIcTm1o+9Qojag57zHfTcZ/6IR+q7mpqaqK2tRYfo9Dm2qQmgCEJOuZr6rxbia+z9Wr+mlat6fA2n08mGDRt4+eWXeeONN/wQlSRJktQRIQS6MAMiJKbTSTlA1I1X4y1ei3N3I746VwAjlKRD6Xt6ASGEDngGmA0UAuuEEJ9pmraz7RhN02476PjfAeMOuoRD07SxPY1D6h/aRsmjMFPJ0bc+btPWHtG5U0Nz+aj/8ksiLrk4kGEeoWnlym6dp6oqubm5bNq0iV27duH1etHpdOh0Oj9HKEmSJB3OEBuCOz8Gd0Hnk3J9RAQhU6JwFULNx1uIvnZyACOUpJ/0OCkHJgP7NE3LBhBCvAfMA3Z2cPxlwJ/9cF+pH2pb5BndhaQcwDYtEceWCiwTz6F2/vxeS8o1rxVD+gxce5fhrahAHxPTqfOqq6vZsmULmzdvpq6uDrPZzNixYxk3bhzbtm1jo9wMSZKkbtq1axd79uwhPT2djIwMQkNDgx1Sn6WPtaGExOAu6NqC/ajrL6fglpdwiNH4mjzoQgwBilCSfuKPpDwJOLgzfyEwpb0DhRCpQDqw9KCHzUKI9YAXeFTTtE86OPcm4CaAlJSUnkctBUVxcTHR0dEYK7vWRcWYEoohyYYwnUL9+/Nx7tyJefjwAEX5E2/TEMxjxuAtWk/TqlWEn3NOh8e63W527tzJpk2byMtr2a00MzOTWbNmMXToUAyGlhf1bb28WFWSpOPL1q1b2bVrF5s3bwYgNjaWjIwMMjMzSU1NxWg0BjfAPkQfZUbojHhLqrp0ns4WQsjUGFy5Bmo+WEv0ddMDFKEk/cQfSXlXXAp8qGma76DHUjVNKxJCZABLhRDbNE3bf/iJmqa9CLwIMHHixN7tixcgHo+Huro6oqOjgx1Kr9A0jeLiYjIzM6Gy81OJ8FN7xJr5jegTR1Mzfz4Jfw78hItQ3GiqGUPqOJpWrDwiKdc0jfz8fDZv3syOHTtwu91ERkZy2mmnMWbMGMLDwwMeoyRJPz8xMTGcd955ZGdns3//ftatW8fq1avR6XQkJyeTmZlJZmYm8fHxKMrPt6dDW1tETzc6qURdewEFt76OY2cGPqcHnVmOlkuB5Y+kvAhIPujfA1ofa8+lwM0HP6BpWlHrn9lCiO9oqTc/Iik/Hv3444+sWrWKu+++GyE6v/Cxv6qvr6exsZHExERKtnQtKQewjomh7qscLJMupP7zx4i74w4UqzUAkR5EeAAwDZlO06pX0DQNIQR1dXUHylOqq6sxGo2MGDGCsWPHkpKS8rP4ekqSFDxCCBITE0lMTOTEE0/E7XaTn5/P/v37yc7OZsmSJSxZsgSLxXJgFD0jIwO73R7s0HuVrq1XebNA8/kQXVjPo5jNhEyNxbnXTM27K4m+7pRAhSlJgH+S8nXAICFEOi3J+KXA5YcfJIQYCkQAqw56LAJo1jTNJYSIBqYDj/khpn4hPz8ft/vY280fL9oWeSYmJtK5PT0PJfQKIVPiaVjqQVPN1C/8GvsF5/s3yMOoLhNCAWFNxllVxabFi9lRWsr+/S3vG1NTUzn55JMZNmwYJpMpoLFIkiR1xGg0MnDgQAYOHAhAQ0MD2dnZB0bSd+xoae8XFRV1IElPS0vDbDYHM+yA00eYAQ3FEom3tBRDUlKXzo+66hfk//4dHDviUF1eFFNvFxhIPyc9/u7SNM0rhLgF+AbQAa9qmrZDCPEgsF7TtLY2h5cC72mHbqs1DHhBCKHS0p7x0YO7thzPVFXtUr/u40FxcTGKohAfH9/ta9imJNDwXSHmcfOonT8/oEm5t94FSgjlooy9ag37z52HZ8UKwsPDOeWUUxgzZgyRkZEBu78kSVJ3hYaGMmbMGMaMGYOmaZSXlx9I0Ddt2sS6desQQjBgwIADpS6JiYnHXWcooVdQLKJlsWdhUZeTcmEwYDshFseOEKrfXEb0L2cHKFJJ8lNNuaZpXwFfHfbYA4f9+y/tnLcSGOWPGPqbmpoaXK6fV//ToqIiYmNjDyx47A5duAnLyCgcTKTh07dw7t2LefBgP0b5E8emHHboClhtyEKnKaQ2CIbUVzPpgQd+1jWakiT1L0II4uLiiIuL44QTTsDr9VJQUHCg1OW7777ju+++Y8iQIVx22WXBDtfvdJFmFGtrr/IpXW9vGHHZbJr+uADHDiuqy4NiOvbvMFdODvh8mFpnLiSpM2RmESRtrQF/LtoWeSYmJvb4WrbpSaDqMKRNo3b+h36Irn2Orfk04kCv6LjKcBozLWMIX7EC4fUG7J6SJEmBptfrSU9PZ9asWdx0003ceeedJCcnU9vJrej7G0N8GMIWg7uw4NgHt0PR67FNi0GY7FT975tOnVP+2OMU/fH/unU/6edLJuVB8nMrXamursbpdJLUxanD9rS1RzSPOIu6zz5DDdCMg7ukGc3TjNAphA2MBl0cWnMzji1bAnI/SZKkYLBarVgDvWg+iPTRVhRTGO7C0m5fw37RqWiuShw7XPicx/6do7nduLKy8DU2dvue0s+PTMqD5OeWlB+8yLOn2tojooQhDAk0fPttj695OE3T0DwhCNGyENc00I7mFijhA2hateoYZ0uSJLVQVRWPxxPsMH7W9FEti1m9pQ3dvoaiU7BNi0WxxlL18hedO0nTcG7f3u17Sj8/MikPAp/PR0lJd/qP9F/FxcXo9XpiY2P9cj3r6BgUqx7TyLOoff8Dv1zzYJ7CGoTOjGJrWXZhGmgHwDz6VJpWrPT7/SRJOj4tXLiQZ555hoaG7ieEUs+09Sr31fes25n9/Glo3nocu1zHHgE3pWNIPQnHZjmzKnWeTMqDoLKyEo/HQ0RERLBD6TVFRUXEx8f7bWW/MCiETElAZx+MY2cOruwcv1y3TeOaPQDoo20tf9rN6KPM6BNH49i2DV99vV/vJ0nHsz179rB8+fJghxEUTU1N1NbW8u677/6sWuD2JW1JueYzozq6volQG6EThEyNQReaTOVLnxz9WHMmxmHn4Ni6tdv3k35+ZFIeBP4s5egPVFWlpKTE75+vbWoCCIEx8zRqP/Tvgk/X3nI0rwtDYsyBx0wD7eCzgwZNa9b49X7S8W/FihX861//YsOGDaiqGuxwetX27dtZsmQJ1dXVwQ4lKAwGAyUlJSxYsOBn97XvCxSrAfRqSweWHjZZiDh3IprajHO3B19d3dHvaw7HuSefQztBS1LHZFIeBMXFxRiNRqKjo4MdSq9omxnwxyLPg+nCTVhGRWPMOIW6T79A9eMolLdaRXOWoRy0sYYp047mBV38EJpWyhIWqWsqKyupr6/n888/5/nnnz+wAdXPybp164IdQlDY7XbOOOMM9uzZwzffdK57h+RfulA9Skg07sKu7yZ9MKFXsE2NRRcxkIrnO1M6GYH3Z7aGTOo+mZQHQVFREYmJiT+brdjb2j8GYmbANi0RhBHFNoTGJUv8ck3V4wMlHMV2aOtDU0Y4AJbRM2heKRd7Sl0XGhrKRRddhNvt5s033+Ttt9+moqIi2GH1mk2bNv1sSzimTJnC1KlTWbNmDatXrw52OD87htgQlJAYPAU9S8oBws8aDZob5x4P3srKox6ri8yQJSxSp8mkvJd5vV7Kysp+NqUr8NPMQFRUlN+vbUwNw5AQgnHI6dTOn++Xazq2ZCMUA6Y0+yGP62xGDAkh6KKG4M7L6/E0qOQf27Zt46uvvjr2gX3EiBEjuPnmm5k9ezb5+fk8++yzfPnllzQ1NQU7tIASQuB0Otm2bZtfrqd5vWj9bM+AOXPmMHToUL7++mt27doV7HB+VvQJ4QhrNG4/JOWKSUfIpGj0saOoePatox6ri8rEsUUm5VLnyKS8l5WXl+Pz+X5WSXnbzEAgdsEUQmCbnoRijcW5txp3fn6Pr9m8IRsA68Qjd2IzZdpRXRZQDDTKEpY+YePGjezYsSPYYXSJwWBg+vTp3HrrrUycOJH169fz1FNPsWLFCrz9LNHsLLvdTlxcHGvXrvVLjW3pgw+Rf+11fois9yiKwvnnn09SUhILFiygsIelFFLnGSItCEWHp9g/6xrCzxwOeHFmqXiOUp6ihCfj2CLbIkqdI5PyXhbIUo6+qDdmBqxjYhAWHYbMmdR+uKDH13Pn16G5GrCMHXLEcy2LPcGYOVHWlfcBqqr2657/ISEhnHXWWfz2t78lJSWFRYsW8fTTT7Njx47janGYz+cDYPLkyZSVlZHfwzfPqttN/Zdf4u2HpT9Go5HLLrsMm83Gu+++S01NTbBD+lnQtfUqr3L65XqK1YB1QjT6xAmUP/O/Do8TQoe7uBFN9qqXOkEm5b2suLgYi8Xys2mH2DYz4O9FngcTBgXb1ET08aOp/+aHHl9PbTaCVoOi1x/xnCk9HBSBafhJNK9ajSY7KQRVdXU1rgDt6NqbYmJiuOKKK7jqqqswGo3Mnz+fV199td+PpKqqytKlS9m5cycJCQmMGjUKs9nM2rVre3Td5lWrUPtxuY/NZuOKK67A5/Px9ttv4+hBmz6pc9o2EFKbVL+94Q0/fQhCgCubdtvyap6W7ixKaDLOPXv9ck/p+CaT8l5WXFwsF3kGQMjUBIQQKOGje3Qdb3UDGCPQR7ffT10x6TAmh6KEpuGrrcW5U9aFBlPRcVbXn5mZya9//WvOPvtsqqurefnll1mwYAG1tbXBDq3LnE4n77//Pj/88APjxo3j/PPPx2g0Mm7cOHbt2kV9D3r91wdgF9/eFhMTw6WXXkp1dTXvv//+cVu21FfowkyABvowfH76edKFGbGMjcKQfAIVT7905AE+B7owPbqIDBxb5SZC0rHJpLwXud1uysvLfzalK/DTzIDdbg/offThJoSxBn3S5B5dp3HlDoRQMA2J7/AY00A7apMeDBaaVskSlmDqz6UrHVEUhQkTJnDrrbdy0kknsWvXLp5++mmWLFnSb2YFqqqqePnll9m7dy9z587lnHPOQd868zRx4kRUVWXDhg3durbm9dK4ZKk/ww2atLQ0zj33XHJzc/nss8+Oq5KlvkYoAsUKSkgsHj/OQIXPGYhQdLjz9TjbWbxrTI9AFz0Qp1zsKXWCTMp7UWlpKZqmBbSUIxA8paU0dLPdYHFxMUlJSb0yMyB0ToTefOwDj8K5o2Xk1TZ9RIfHmDPtoIF51KmyrjzIjreR8oOZTCZmzpzJLbfcwrBhw1i+fDlPPfVUn998aN++fbz00ks0NTVx9dVXM2XKlEN+/qOiohg0aBAbNmzo1uhw8/oN+GprUaxWf4YdNKNHj2bGjBls3bqV7777LtjhHNd0ESaUkGg8BQV+u6Y+0oxlZCSG9FOo+M/zRzxvSglFMYXj2OXfXaf7stra2n45u9cXyKS8F/XGTp5VVVXdHoHqSO38Dym8+Raa16/v0nn9cWbAU+5GdVZhPGgnz8MZU0IRBgXTwCk4NmxEdfpn4ZDUNT6fj9LS0mCH0Wm+mhq0bnyv2O12LrjgAn75y18SGRl5YPOhffv2BSDK7tM0jRUrVvD2228THh7OTTfdRHp6ervHTp48mcbGRnbv3t3l+zQsWoQwmbBOndrTkANK0zTWrVtHVlYWISEhRz325JNPZuzYsXz//fds2rSplyL8+TEkhKOExOAq8O+b+bDZ6QidEXepmeaNh379jKlhAKiNhmPuAHo8aGho4KWXXuKLL74Idij9kkzKe1FxcTE2m42wsLCA3WP58uV+/2HQfC2jWaUPP4zW2kWhM9pmBvpLUq5pGpoaimI6euIk9ArG9HAwJqC53TSv9++bIKlzysvL8Xq9mM09mx3pDb76eprWb0dt7v7GOQMGDOD666/n4osvxuPx8NZbb/HWW29ReYzNS3qDx+Pho48+YtGiRQwbNowbbrjhqIvZMzMziYiI6PKCT01VaVi8mJCTTkSxWHoadsDU1dXx1ltv8eWXX5KcnMx555131OOFEJx99tlkZGTw+eefk52d3UuR/rwY4kIRBiuewjI/XzcE81A7xoEzqXjy6UPKkAzxIaC0bSLknx79fZWqqixYsICmpia5RqKbZFLei9r6dQdSbm5uwOoSXTt3Uffxx50+vq20oL+U6zh356KYwjEmHX1UC8CcGY7aKFBsUbKEJUj6U3vRsseeRBeWDjpjj64jhGD48OHcfPPNzJkzh4KCAj788EM/Rdk9dXV1vPrqq2zbto3TTjuNiy66CKPx6J+noihMmjSJ/Px8SkpKOn0v57ZteMvKCJszp6dhB4SmaWzdupXnnnuO/Px8zjzzTK666irCw8OPea5Op+Piiy8mKiqK999/n7Iy/yaOx6S1dDP64IMPWLx4MRs3biQnJ4e6urq+VS4l2l+E3xn6yNa2iGXdX2TckbCZaQi9BW916CG/E4RewZAUgi4y87hf7Pn999+Tm5t7YP2I1HXyf66XOJ1OqqqqGD26Z91BjqampiZwdVyKgmXsWMr//SShp5+OLjT0mKcUFxcTGhpKaCeO7Qua1uwBQrCMTT3msaZMOwCWCXNkUh4kB7cX7fUEpguaVq/BuU8PAw1+u6Zer2fatGmUl5eTkxO8WtW8vDw++OADPB4Pl112GUOGHNnbvyPjxo1j6dKlrFu3jnPOOadT5zQsWgR6PbZTT6Xx+563P/WnpqYmvvzyS3bu3MmAAQM477zzuryLsdls5oorruDll1/mnXfe4Ze//GWvvX4OqovBoaulrKyM3bt3H5KI6/V6IiIiiIiIIDIy8sBHREQEdrsdna77iXJnaZpGw5J8hCEetbF7JT5tbRG9df7vGW5MDsWUGYbmnkPFk/9FP+DcA8+Z0iNw56Xg2PqB3+/bV2RnZ/P9998zduxY2Xu/B2RS3kvaRoMCOaqXm5sbkOuqTjuWE28n9reTyLvsYiqfe564O+845nltizz7C9f+KjTVRMikocc81pBoQ1j0GGxjafr+XbxVVei7+AtY6pnemHnqKdXppPQfL2Iaci2wM9jh+NX69ev56quviIiI4NprryUmpuN1GO2xWCyMHj2arVu3MmvWLKzHWLipaRr1ixYRMnUqugCWAHbHnj17+Oyzz3A4HMycOZPp06d3ewdju93O5ZdfzmuvvcY777zDtddei8lk8nPEh3Ll1ROfZyIpfBQJvzsRVVWpq6ujurqampoaqqurD3zk5OTgOWgjHCEEdrv9QJJ+eNJuMPT8zaimadR/nUvD94Vorv2olcuBW7t8HV3rSLnm0qH5fAg/v5kIPS0V1/56fA12REMDOpsdaFns2ajoceVUo2nacdcSuaGhgQULFhATE8OZZ57J22+/HeyQ+i2ZlPeS3phqD1hS7rGij0zAV28n/ILzqX7zTewXXYipg0VcAA6Hg6qqKsaMGROQmALBVycQ+hoUy7FLDIQiMGeE48ppqbFvWrWa8F+cFegQpVZti4gHDx5Mc3NzsMPpUMV/n0YfPxNhAbzHxwYxXq+Xr7/+mvXr1zNw4EAuuOACLN2s7548eTIbN25k8+bNTJs27ajHuvZm4cnLJ+r6GwDQlIHok5O7dV9/cTqdfPPNN2zatIm4uDiuuuoq4uM7bqfaWYmJiVx44YW89957LFiwgEsvvbTbSX5n1H29HwBvWTnQUl7UNjJ+OE3TaGxsPJCkH5y0FxUV4TxsMfO4ceOYN29et2PTVI26L7JpXFlMyNQEGhe+DXSvRFMx6hB6H8IShbe0FIOfB41MGeEYk21orrPw1f+0CN2Y0jrbYYjBU1CAMSXFr/cNprY6crfbzTXXXHPM0jXp6GRS3kuKi4ux2+3HXIXfXZqmBSwpb9PwXQHRv/kdDQu/pvwfj5H8/HMdHtsbMwP+5GtqRhii0YU1dPoc00A7jh1V6OIzaFq5Uiblvejg9qJZWVnBDqddjh07aPg+H/PIKUReMAze71r3or6osbGRDz74gPz8fKZPn87MmTN7lCzGx8eTkpLCunXrmDp16lGv1fDttyAEoTNPQ1M1UDIRtuDt6pmTk8Mnn3xCfX09J554Iqeeeqpfa2mHDBnC3Llz+eqrr1i4cCFnnnlmQEZYXbl1uHMa0TQVrRPJrhDiQFliauqRpX7Nzc0HEvUffvihS2sGDqepGrUf76NpXSm2E5MIPyudxoXdvhwASpgOJSQGd0Gh35NyIQShM1JwFzSii7KBu2URti7MhBKitGwitGXLcZWUt9WRn3vuucTGxgY7nH5PLvTsJW07eQZKbW0tdXV13R6x6gy12Ytju4Po3/6Gxu++o3H58g6P7Y32j/7UvHobwmDBlNH5EhTTQDsA1nGzaVq5Um780Yv6+iJizeul5K+PYhp2DqbMUMwj+n9pU3FxMS+++CLFxcVccMEFzJ492y+jt5MnT6ampuaYLR4bFi3CMmE8+uhoXNl1IILTdcfj8fD111/z+uuvo9PpuO6665g1a1ZAFrdNnjyZE044gXXr1rF69Wq/Xx+g9rM9qM46fBVdb0/ZHqvVSlJSEqNGjTpqB55j0XwaNfP30rSulNAZyYSflY4QAtXdsw20DDE2FGsMniL/bSB0MPPQSPTxVoSih4PKY0wZEeiiBuI4jjYRaqsjHzNmDGPHjg12OMcFmZT3gqamJmpra3uldCW1dTrX19jo1+trqg/LmBgafywi7NxLMKSmUPbIo2ie9hfMFBUVERERccw60b6ieUseACFTO79QTR9tQRdmRBc3HG9pKe4gLrj7uenri4irXnsNYRyHMBiJOH9Iv68h3bZtG6+++ipCCG644QZGjRrlt2sPGzYMm8121PaI7txcXHv3EjZ7NgCObRV+u39XFBUV8cILL7B69WomTZrEr3/9a1ICPOo5e/Zshg0bxjfffMPOnf5dl+DMrsVT7MKTtwwlpO+0FtW8KtXv7aZ5Uzlhc1IJPz0Nb3k5BbfcQvOq1ZgGDer2tQ1JdoTF7vde5W2EIgg7teX3sDHtp5kEY2o4iiUCx479Ablvb2urI4+Ojuass+Qssb/IpLwXtI0aB3JULycnB6vVSmhpKWgaeydOYt/sORT+7lYqnn2WhqXL8JSU9Gg0N3x2KppPo/HHUuLu+hPu7Gxq3n233WMDPTPgb+6iJjSfC1Nm5+tBhRCYBtpRnSGAoGnlqsAFKB2iqKioz46Su3NzqXl3MYYBkwibmYY+qu/20z4WVVX59ttvWbBgAUlJSdx4440kJCT49R46nY6JEyeyb98+qqqq2j2mYfFiAEJnzULzaTi2925vdp/Px7Jly3j55ZdxuVxcddVVnHXWWb1SP6soCueffz4DBgzgo48+otCPW8TXzN+C6qgl/BejEX2kFljzqFS9vQvHtkrCz8og9NQBVL/zDtlnnkXT8h+Jvf3/SHjowW5fXx8TghAKnsLAdQixjIpBF2VGMf20yLWtrtxb6UV1d3+/gr5AVVU++ugjXC4XF198sawj9yNZU94L2pJyf/8ya9NWT56WlobWuulEzB/+gHP3bly7drW0EWulCw/HNGwY5qFDMQ8bimnoMEwZ6YhOrJDXR1sImRRH05pS4v5vKiHTp1Px36cJ+8Uv0EdGHjiusbGRuro6pkyZ4v9PNgA0TUN1mtHZGhBK10Y0TZl2mjeWYxw8gaaVK4m88ooARSm1cTgcVFdXHzJd6vP5KCgowGQyHfgwGo0BXRzXHk3TKHngr5hGXoLObiD05AG9en9/cjgcLFiwgH379jFp0iTOOOOMgLW+mzBhAj/88APr1q3jjDPOOOL5+kWLMI8YgSEpCWdWDWqTFzT/t7VrT3l5OR9//DElJSWMHj2auXPnBrRMsD0Gg4FLL72UV155hXfeeadTfc+PxbGnEl+Nglq9jqir7qPw7gV+iLRnVLePqjd34sqqxX7uQAzRTeRdcSWOTZuwnjCVhL/+tcf12G29yn1VgVsgLnSCmOtHtqx9aGVMtIGioQtLwbVrF5Z+1AThcD/88AM5OTnMmzdP1pH7mUzKe0FxcTFRUVEB23mwpqaG+vp60tPTKd2XD4BxyJlYJp2LLswIeh/esnxc+3fj3r0b5+7d1Lz7LpqrpTZPGAyYBg3CNGwo5qHDWpL1IUPa7UUeNjOV5o3lNCzKI+7uP5E971wqnnqKhL/85ZDPF/pPPbk7rwAlJAF9bNcXjbXVlZtHnUrj18+heTydeoMjdd/hM09msxmn08krr7xyxLEHJ+kdfZjN5nYft9vtXR4Bqv3wQ7y1kZgSY1rKVgz9czKyoqKCd999l9raWs4++2wmTJgQ0PuFhoYyfPhwNm3axGmnnXbI/7untBTnlq3E/OEPADi2VSKMOjRnCRC4ETpVVVm9ejVLlizBaDRy8cUXM3z48IDd71hsNhtXXHEFr7zyCiUlJT1KhjRNo+bdDagOF1E3zO4To+Sqy0vl/3bgzq3Hfl4GjjUfUvDSS+isVhIefYTwefP8UgZ2IClvDOwaoMNnyIRewRBnwVuRiWPL1n6blGdnZ/Pdd98xZswYxo0b12v3bdsh9HjfmOj4/uz6iKKiItKP0j6wp9rqydPS0ijxrAEaqf8m94jjhCEVJWwQITMvIOxcA+BEbajCW1WIp2AfTau2UffJF+BrmVozDBiAedhQVE8GIqzlF4AuzIhtehIN3xdgO3kcEZdfTs3bbxNx6aWYh7b09w70zIC/Na3ciVBCsIzoejmEPtyEPtoCaiZqUxOObduwjh8fgCilNoe/6ZsxYwZDhgzB5XLhcrlwOp0H/n74h9PppK6u7sDfPR2siQCIi4vjN7/5Tafj8pSVU/HUK1im3YVlVDTmwd1f5BZMeXl5vP322xgMBq699tqA10y3mTx5Mtu3b2fr1q1MnDjxwOMNi5cAEDpnDppPxbG9EvPwSBwb8wIWS01NDZ988gl5eXkMGTKEs88+G5vNFrD7dVZ0dDSXXnopb7zxRo+u07whF9VpRbCT0FNv81N03ac6vFS+uh13UQMhkw2U/eVG3Dk5hJ19NnF3/+mQmdieUmwGECpoFlSHA6UXZz1MmVG4i1Jp3rIQ/31GvSeYdeRvvPEGOp2Oa665plfv29tkUh5g9fX1NDY2BryePCQkhOjo6AOPJT44DbXeja/eja/B1fJnnRtfgxtfvQtPcRO+ejeaxwwMRLEPxDK5ddpYryGEG81Vh6+2DISNgwcoQk8ZQOOaEuq/ySXmlpup//xzyh5+hJTX/4cQgqKiImJiYgK+4YW/OHeXAAMJmTy4W+ebBtpp3ugCRUfTipUyKQ+woqIiIiMjD5QQ6PX6bieOqqq2m7yvXLmSioquLSYs+9vfMA46F8VowP6LjG7F0xds3LgRRVG46aab/FIm0VnJycnEx8ezdu1aJkyYcGBUtGHRIowDMzFlpOPcW4Pa7MU6KgbHRv/HoGkaGzdu5JtvvgFg3rx5jB07tk8t1E1NTeXyyy/H5epeFxJN06iZvxXVKYi79Tw/R9d1viYPla9sw1PWjKJsofTuZzAkJZH80ovYTjrJ7/cTQqBYNJSQGDxFRZgGDvT7PTpiTA1FKAZce8p77Z7+cnAd+dVXXy3ryANEJuUBFuhSjoPryQ/+xaEYdSjRlpZR3KOcq7l8rQl7a+Le4G5N5l346qPx1Sfjq3ejs//0A6hY9ISdOoC6hbl4q5KJ+f2tlP71QRq+XUTonNkUFxczsBdf6HrKW+VFWJvQR3avU4wp007T6hIsE2bStHIlMb+7xc8RHltDQwPV1dXt9g0+3hQVFZGWluaXaymKgsViOaJGeNeuXV1Kyuu//RbH9gosU0YQNicdXXj/eEPaEbPZ3KsJObQkS5MnT+azzz4jLy+PtLQ0vDU1NK9bR9SvbgKgeWsFwqQL2CzEjz/+yJIlS0hLS+Pcc8/FbrcH5D49lZmZ2e1z67/dCCISQ0wupsw0/wXVDb4GNxUvb8Nb0YRr2+u4968m8tpribn1dygB7NylizAhQmJwFxT0blKe0rITreax4a2u9usMQKAdXEceFxcX7HCOWzIpD7Di4mKEEH7Z5a091dXVNDQ0dCtJEUIgzHoUsx5DbMcvgAcvVmkTckIiDSuKqfsml+hfXkjNu+9R/thj+MaPo6mpqc92xjic6nSCEoli6f5qeHNmOAgwDZ5G7XsP4WtsRNeLU92apvHBBx9QVVXFnXfe2Wv3DYaGhgYaGhr61HoFX10dpX9/FMvE/0MfZ8U2re/E1t+MHDmSb7/9lrVr15KWlkbj0qWgqoTNno3mVXHsqMIyPCpgtfqlpaXY7XauvvrqXl8k3BtUn4+6r/aBYiX+T+cGNRZvrYuK5zfhrWnGseIp9LEKaR98gGXkiIDf25AQhjs/GneA2iJ2RB9uQrGALiIdx9athJ56aq/ev7sOriOX/cgD6/h71eljioqKiI2NDdhUT1s9eSBr1oUijuhKohh1hM1KwZ1Xjyurnrh77sZTVMTet98Gjj0z4FF9AYu3K5o3bUcJicWYGtbtayhWA4ZEG8KcBD4fzUfptxwIe/bsoaCgAJ/Pv/+ndXV15PSx3ut9cdOg8ieeQBc9DWEII+K8gQhd3yl16G+MRiPjx49n165d1NfXU//ttxiSkjANG4Zzfy2aw4tldPSxL9QDOp3uuEzIAarfWIhiScQy1IDeHrwe/57KZsr+uRJvRT2ONU8Tdd3ZpPdSQg5gSIxA6Ix4Csp65X4HM6bZ0UVl4tzaPzYROryOvC+Vch2Pjs9Xnj5C07SA9+vOzc3FZrMRFdX7OwaGTIhHH22h7ptcrJOnEDp7Nrnr1qEoyjGntxw93JXNX5rXtWzRbh3XsxpgU6Ydby0IWzhNK1b6IbLO8fl8LG7t4exv33zzDR9++GFArt1dgZ556qqm1Wuo/3oFpkGzsU6Mw5TWuyUfx6OJEyeiaRrrVq6keeUqQmfPRgiBY0sFwqzDPKh/LqANNm9DA03r6tC8DURdNytocTSt30Xpo9+jNrnQGhaR9saTRN1wA6IXu2oYWss6PWUNvXbPNqaMCBRrNI6te3v93l11cB35RRddJOvIe4FMygOotrYWh8MR0HrynJycI+rJe4vQCcLmpOIta6Z5Uzmxd95BdXg4kV4vhqO0BdRUFY+fR3W7y51bi6ZpWIb37GtkHmgHn4Z18uk0rey9pHzz5s1UVlb2aDvr9vh8Pvbv34+qqn69bk8FeuapK1Snk5IHHsAy+XqExUD43MDNVv2cREZGMnjwYDasX4/X5yN0Tmvpys7W0hW9/LXVHRX/eRddWAq2abEoxt6vXFVdLsr++SJVb2WDCiETvSS/8FiP+453h66tLWJN72/i01ZX7i5qRutjr6+Ha6sjP/PMM4NWR646HDj37sVXW9tSbnqckzXlAdQ21R6opLyqqorGxka/LXrrDsvIaAxJNuoX5RH3fxOoiY0led8+HJs3Y+mg9qw8LwdVC/6LkaZp+Bp16CIaUcw9+1EwpoWBTmBMm0DT0g/wlJRgCHBLSLfbzbJly0hOTiYxMZHNmzf77doFBQW4XK5e3yTlaNpmnoYNGxbsUACofPppNDUBJTSV8Lnp6EJkf3p/mTx5Mnv37qV4+DBGjB2Lc08NmtOHZUxMQO/b196E+oszOxt3gQVdhAP7OdPbPcaLRqCGdprXr6f04WfQp16MYtIR/ctRmAcFr2Wu3m4CNFSn0qNdrrvDmGgDoSEsCbhzczFl9M1OTW115KNHjw54P3LV4cCdn487Lw9P65/uvJY/vWUtJUaumaehhnW/zLS/8EtSLoQ4A/gPoANe1jTt0cOevxZ4HGhbVfG0pmkvtz53DXBf6+N/0zTtdX/E1BcUFxej0+kC9g6zN+rJj0UogvAz0qh8ZTuFy/bgBqLdHkoffoS0995FtFObmb9tc6/H2R53YREiJAldZM9/FSlGHcaUUNT6lh0Pm1auxH7BBT2+7tGsWrWKxsZGLr74Ynbs2OHXa+/bt8+v1/OHmpqagM48dYVjxw6q3nyf0LmPYEwOJWRi3yinOV6kJyUR2tjI/pEjmaMoOLZWIix6zJn2gN63pKSkz5RG+VP5P99EF3EaYXPij5hpaKqtYeUHbxPmthCm9+8MlOb14i0poeB3D2CdfhtKqJm4WyYesbFObxN6BWHwIozh+Gpre/feBgV9tBFvRQaOLVv7ZFIeiDpytakJd0HBgWTbnZ+Hpy3xLj+0RaQuKgpjSgohJ5yAMTUFQ0oKytJlcJy+aT5Yj5NyIYQOeAaYDRQC64QQn2matvOwQ9/XNO2Ww86NBP4MTAQ0YEPruTU9jasvKC4uJi4uLmA7UOXm5hIaGkpkkNsqmQdFYBpoZ9eq3QAMOu9cnH99kLrPPsN+7rlHHJ+/fQuB3Imvs5rXbkUxhWEe5J/WW+ZMO/VL6tElJNO0clVAk/KmpiZWrFjB0KFDSUlJYeuPP6J5PGia5pcX0Kysllp7zaviyq/HmGgLetlAX1nkqXk8lNx3P+axF4EwYT934BELoaWeaV65ksy9WWweP47i/CK0nVVYRkUH9HuwpqaG2tpaTjjhhIDdIxjql32H5s1A6D2EnvJTK0WP08m6zz9i/ecf4fN6mB49D3+PGbv378fX4CDklDvRRViJ+dVo9PbA7GzdVUqorqVXeUFBr9/bNCgaT2kazVtWYD/v3F6//9Ec3o+8O/uNqA4Ham0txffe2zL6nZeP97AWs7roaIypqYRMn44xNfVA8m1MTW2/e9kPP3T3U+pX/JEtTgb2aZqWDSCEeA+YBxyelLfndGCRpmnVrecuAs4A3vVDXH7lKWuieUsFYTOSEQbdMY9XVZXi4mJGjx7d4TE9qSdrqyfPyMjoE6uhw09Po/yFteiNOtIvuoj8Tz6h4p//InTWbHS2kAPHeT0eCnfvwBrbe9vzdsSxrRAYhnVC93v+Hsw00A6L87FOOoOmHxegqWq7MwX+8P333+PxeJg5cyYAzr2FaD6Vmg/mE3nJxT26dl1dHWVlZSiA5vZR8ewWNM2HYmhGH6PHNCiGkImZGGJ7dyqxuLgYvV7fo+3F/aHqf//DU9xEyJCp2E5IxJgU/J0ejzcN3y4is6qKHQYDq5auYIorAevowJautHUaCubMo79pbjdVz36IIfMSws9KR+gUVNXH9mWLWTn/bZpqqhk8ZTonXn4NeY98G4D7g2KLRW+3EfPLUejC+k7/fn10CJ6SGDyFhb1+b1NqOE0rjbj2lPT6vY+lrY78nHPO6fYsvyc/H7WujqbtOzCkphBy8kkYU1oSb2NqKobklEPygsO17aGiNnrwNXlQGz0IxQKat7ufVr/hj6Q8CTj4rWYhMKWd4y4QQpwM7AVu0zStoINz+06vs4M4tlfRsLQAZ1Yt0VcPRxd69JHeqqoq3G73UUf1nNu2AeDavx9zFzcwqKyspKmpKaj15AczJodSZXMQ5QgFp0r8PfeQe8mlVL34IrF//Gkb55Ks3XhdLvSKDgjuYk9PqQMl3IsxyT/JpXFAKMKooI8Yha/6JVx79mAOQP1zdXU169evZ/z48cTEtCYqmgmhuKl+fSmWESN61FqsrXQlTrVSLdzgXo2vTuDTRaG6UvGUNNL4wxY0dx2IOvQRLR0FLKPTMA3KRAnQTq5FRUXEx8ej0x37TXGguHNzqXz6WWxz/owSaiRszvG/WVNv0zweGpYtI+q00xg9ejSbN25mnCUOU2ZgO9u07Yx84GfqOFD1xpsokVNQrGCdlED2pnX88NZrVBXmkzB4KGffdjdJQ1peo/ICUVqts4GmEnPTaHS24M+OHsw4IALXXgeuvD1A776xNqa2tKP01SuoDgdKH1m7k5OT45c6ck3TUMLCGLT8p9Ft1d2SZKtNHtyFLtTGBnyt/z6QfDd5UBvd+Jo84D3sG9IYDqqn2zH1F7210PNz4F1N01xCiF8BrwOndeUCQoibgJuAbm+p7Q/e0ibKn9lM9HUjMMR1/E6vMzt5qq3bJBfffQ/p777TpZZQbfXkfSUp9/l8VHrrGOyLp2FZAfazxxA+bx7Vr72G/aILMSYnAy2lK0Io6IOYWEFL5wzNF4picPptSlzoFUzp4XjKf6orD0RSvmTJEnQ6Hae2s/GEadi5FP3xLtI/eAtdN3cjzMrKIjw8nIgaQTVuBvzrDqAlWXJl5+LYkoNzfzW+KhVNDcfXGE7zVmjaVIKvdg14K9CF+TAmh2IekoZp0ECM6ek9StZVVaWkpCTgC47a+Kpr0A7bxlzTNEoe+DOG9JNBF4X9rIweLxCWjtS0di1qfT2hc2YzachQNmzYQHZ8LRm6wJWutM08pqen94mZR3/wlJdTO/97zONuREyys+CRB8jfvgV7XAJn//FuBk2eduBzLap14PGpBGRPJk3tcwk5gCE+DCjGU1RNbyflunATwqShs6fh3LkT64QJvXr/9jQ2NvqtjlwoZoRipezpTQeSbs3TfmWAMCgoIQYUmwGdzYAhPqTl7yEGlJCWx5QQAzy/qtvx9Cf++I1SBCQf9O8B/LSgEwBN06oO+ufLwGMHnXvqYed+195NNE17EXgRYOLEib27XBpQ3S2tk6KvG0bVu3spf3YLUVcO67BnbnFxMQaDgejojje60DxmoBnnrn1Uvfwy0b/+dafjyc3NJSwsLOj15G0qKyvxeD0MSEumcXUJthOTiPnjH6lftIjyxx5jwH//C0D+ti3EZw5C04L7i8+xfQe68BQMCf5NqkyZdpx7ajAOHUPTipVE3XDDEce4mrvfCquoqIgdO3Zw8sknExp6+OYfGsIYghI5heK7/sSA557tcvmM1+slOzubUaNG4Vi3/5DnhMGAecggzEMGHXpOZSNNG7Nx7a3AY45Hc6eD0OGpBFd+Jb73v8RXk4NibMY4IBTbzBntrjU4moqKCjweT6/Uk6sOB02rVqIe9rNVO38+js27sJ39OKa08IB3Avm5avh2EcJqJWTaNPT7GolX7Wxr2M9pqhqwTX0qKytpbGw8rkpXyv/1b3SZZ+BSmvn09ccx2WzMuPYmxsyei07/U6eg2mY317y6loeDGGswtC029VY5EL08UC2EwJgShq+qZbFnsJPytjpyp9PJVVdd1a068kPoQkAYWjbWi7H+lHQfSL6NBx5TjJ0doNMgYP2B+g5/vMKtAwYJIdKFEEbgUuCzgw8QQhzc++gcYFfr378B5gghIoQQEcCc1sf6HOf27QDkXf4LhHc5igUqX9tO45r2a8KKiopISEg46lS7prY8Fzr3ZiqeeRbn7t2dikXTNHJzc4PWn7w9bYvwMmaOBAH1i/IwxMUS/atf0bBoMU2rVuFqbqZk3x5SRo0JcrTQvHYXQm/CMtq/sy6mgXYALGNn0bxhw4HZkDbVxYXsWfkD3m5snqRpGosWLcJqtTJt2rR2jwmZkoAx7RSaN+2j6sWXunyPgoIC3G43gwYNOvbBrfTRNsLnjCb2lpkkPTSXpL+fTMxvxxB2Rgrm4UkYMyZiHnUJxiHXoZnnUftxdpfj6s1FnlUvvwL6SND/9JvaU1ZO+eNPYD31V4AO+7yBfeZn73ii+Xw0LFmC7eSTUcxmmrdWMFKfSl1T/YHFx4FwvNWT165Zw949lRjCktla+QMTzz6PG/7zIuPnnnNIQu70+Pjl6+vJr2r+GaQ7h9K39SpvCE4ZpXlgNIotFsfWPUG5/8GWL19Odna2f/uRax5irh9J5CVDsP8ig7BTkwmZFI9lWBTG5FD0keYuJOQ/Hz1OyjVN8wK30JJM7wI+0DRthxDiQSHEOa2H3SqE2CGE2ALcClzbem418BAtif064MG2RZ99jeZtWWBgnTqFugVvUfvWzah12dR+vI/q+dvR1J8G730+H6WlpZ1v3WYYhD5hIMV3/QnNfezNDCoqKvpUPTm0zAyYTCZiUuOxTUukeVM5ntImIq+9BsOAAZQ9/AiF27egqSopI8cGO1xcWS0rwS3D/Nsr1xAfghKiRxc5CM3lwrFx44HnaktLmP/gPXhc3dsAISsri9zcXE455RTM5vY7GITPSUWxGgiZcTMVTz1F06quTfllZWWh0+l6lJwIvYIpJYywU1OJ/fVkkh48hfi7JxN5+VCEwYEuquslPW3fX4GeGfIUFVH95nx09lRaGku1KPvbQ4iQZBTrYEJPHoAh1j8de6RDOTZvxldZSejsWahuH85d1QwdOZzQ0FDWrl0bsPvm5OS0lGz5eROu3ubzetj41We8+c+HiE47HZfOwWkP3crJV1yHOeTQEg2fqvH79zaxIb+Gf18y9mf3JlOx6EF40bwm6OVe5fBTXbkrv67X730wf9WRS/7hl7lATdO+0jRtsKZpmZqm/b31sQc0Tfus9e93a5o2QtO0MZqmzdA0bfdB576qadrA1o/X/BFPICU+/jiDflxO/P13o1Z9gzt7Gc0baii8/R3qvliI6nJRUVGB1+vtdFIujDpCZ/0e1549VDz77DGP72v15NCSNCUmJqIoCqGnJCOMOuq+zUMxmYi9605cWVns/fhD9AYjiYOHBjVWTdPw1migudFF+bc9l1AEpgw7vgYTGAwHdvesryjng4fuwev1EhbT9e4hqqqyePFiIiIimHCUqU7FaiDs9DQQ0ZjHnUnR/92Op3Xzhc7IysoiNTW159OXh9GHm7COjkEo9d06v6io6MD3VyCVPf4ExoFngPjpPvXffkvD4mWEnPQbdHYToTOSj3IFqScavl2EMBiwnXIKzj3VaB4V25g4Jk6cyP79+6msrPT7PVVVJTc3t1/Xk2uaxt41K/jf//2WZa+/SIaSRoQpjvgLxhDezsinpmn85bMdfLOjjAd+MZyzRgdvI59gUiwqiiXqiPUjvaGla5MGmv2IdoG9acWKFYSGhvqtH7nUM3K/4m7QhYURccnFpL33DomPXIkutAAMA6j9vJJ9M89i1/PPA53YybP1zXnYzFS81Qph5/2GqhdfwrF161FPa6sn7yujOl6v95CZAV2IgdBTBuDcWYUrr57QWbOwTp1Kwe4dJA4cjD7IW6R7S0oQlniUUF9AXoRMA+2oDR6sE06macVKGqoq+eDBu3E7mrnw3oewHFELfmxbtmyhvLycmTNnHrPvfcikeAxJNkxDz0XzqBT9/g+dmoGpra2loqKiS6UrvcHr9VJWVhbwTYOa1qyl8YcNGFJ+2vHQV1dH6UMPYZl2GZrHhP2cTDnlGiCaptGwaBEh06ahs9lwbK1EsRkwpYczYcIEFEVh3bp1fr9vWVkZDoej35auFO/dxXsP3Mnn/3oERdExubKZUYkz0UebsY5pfwDgue/38+bqPH51cgbXTe+fn7c/6CJMKCExR5QZ9gZh0KGL0KGLzDzm7/xA8nq92O12vw/ESN0jk/IeMmdmkHDv5URdNRxddBrW6XdSVFiOwe2m9qqrqXzhRTylpe2e29RaxmCdEoch3ooSNhl9wgCK/3Q3qrP9Eoe2evK+NKpTVlaGqqqHJE22E5NQbAbqvm6p1Qz93S00GPVEVndvpNSfmjdsRglLwpQemDc1bbsOmoadSG3WXj74y59wNNRzwT0PEpfe9Z7oHo+HZcuWkZiYyIgRx251KBSB/ZxM1CaViGv/hmPzZsqeeOKY57XV7Pa1pLy0tBRVVQNaT655vZQ9/DCW8Zcg9DoQLT9/5U88gdoM+oSTMQ+LxDI8KmAx/Nw5d+7EU1xM6Jw5LaUru6uxjIxGKAKbzcaIESPYvHkzLj8nUG315H1p5rEzakqL+fxfj/Du/XdQW1bC7Jtu4YyEDOK1BBRjNGEzUxG6I39HLNhQyGNf7+HcsYncdUZwZy2DzRAfhrBG4fddkzrJPCgaXUQqzZu2BCcAqc+RSbmfWEfGEPvbcSjh4dQmZRIXGoU+KpKKf/+bfTNOI//6G6j7/HNUh+PAOU5P6+hlaxLlq/MQccX9uLOzqXjyP+3ep6Kigubm5j71C6St/ePBSZNi1BE2MwV3Tj3OvTWUORsBsK5YjSsrK2gvggDNm7IRQsEyJjA9pnVRZnR2E6o5ibUZCTRWV3L+3Q+SMHBIt663Zs0a6uvrmT17dqffiJlSw7COj8VdbMJ+xY3UvPEm9QsXHvWcrKws7HY7UVF9K/HsTHvRnqqdPx9PSSO66FHYpici8KEBtfM/JPSs2xFCwX62fzaZktrXsGgR6HTYTpuBc1dL6Yp19E/dqyZPnozL5WKrn0cVc3JyiIqKIjw8sH3Q/WnX8mX874+/JXvzek648DJueOolhmQMofbNt7FMvgJ9jKXd7kDf763grgVbmT4wiscuHIPyM9+J1pgchVB0CEtwupiZMiIQejPOXb2/gZHUN8mk3I+MSTYifzWSatFIZHMk0bc8Ruaib4n+7W9x5+VRfMedZJ14EsX33UflD9/j9f20O5Upw45lTAzObIH90uuofv11mtuZqu2LozpFRUVYrdYjfqmFTIpHF2mm/utc8rduwWS1EqEzUPbIozQqBipswfkl6C5oAMCUZg/I9YUQ6FOsuIpdNBsNnBKfdmCDjq5qbm5m+fLlDBo0qMvT6+Fz0xF6BX3ibCxjx1Jy7324stvvfOL1esnJyWHQoEF9ZgamTVFRESEhIQFLmny1tVQ8+R+sJ1yDMOsJPWXAgedMI2eguSMJPS3lQLeGbt+ntQ1mXXnna/x/ThoWLcY6aRL6iAgcWytQQg0Y0376mg8YMICEhATWrl2L5qeFeT6fj7y8vH5XupK1dhXW8HBu+M9LTLvoCoxmC2WPPooheRIQStjMFMRhCfe2wjp+89YGBsWF8vyVEzAevj9DH/u57w36mJa9RhRrcAYijCktG9d5K7xovuBupif1DTIp97NKRw0qGonxidR+sp/mLR6ib76ZzEXfkvL664TOmUP9VwvZdNftR5wbfmY6QoAh9QwMyckU330PalPTIcfk5ub2uS4BbYs8D0/mhF4hfE4qnpImPHvqSB4xhthbbqFp5UrmjxjOp2Ond3DFwFFdLlSXBRRnwDa0cDY1smnrNxiEiRkxI7Bt2tbtJGL58uW43W5mzZrV5XN1oUbCZqbgyqol+taHEGYzhbfeesT3FEBeXh4ej6fPla5AS1KelJTU4ZsFZ2Mj1cXdH2mqeOq/aLoohCWN0JMHoFhbWsYJwDzmMvQxFkJP6nnpjEdtGX1/7bZf8d2br+BobOjxNY8Xrv37ce/f39J1xeXFsacG66iYQxJLIQSTJ0+moqKiZbG7EKCqeGtqun3f4uJi3G53v0vKAcwhNmwRLSO8jd9/T9P3y7FMvBR9rAXL6ENHyfOrmrnuf2uJsBp5/bpJhJp/aotYX+Vg6Zu78AkzmtL310s0NDRQW1vrl2u19SoXOsMxjgwMXYQJYVBRbEm49u8/9gnScU8m5X7WNtU+5LLJ2KYl0vhjEVVv7ULzaoRMmUziIw8zePkPNJx4whHn6sNNhJ6WgnNPHTF/eAhPUdEhtcAHdwnoK9xuNxUVFR3W+1pGx6BEGxmoG0PKiDFEXHYp+084je0JsXgD3EmjPc4dO9HZUzHEBOZF2NXczEcP/5n9RS2tEBOGnISnuBhPXl6Xr1VTU8PatWsZM2ZMt3vH2qYnoo+10LCihsTHHsednUPJn/9yxJuEtlaIvTIDo2lUPv88zevWdbh2oo3L5aKysvKopSvfvfESHz36l26F4tyzl5r33sN26k0oIQZs01u+j5WwMBACtYmWnuR+2vUVYOiJp7Lhy0949dYbWf/5R3g9x//W0cfSsGgRAKGzZuHcVQ1eFcvoIzdeGzlyJBaLhbVr12JMSwNNa1nI3M3/w74489hVmttN2SOPYh47F81taqklP+jNTFWji2teW4tX1Xj9+snEhrXM+DTWuPj+nT28/cBq9qxpf91TX/T111/z1ltv+eVaujAj0L2N3PxBCIEhyYouMhNnEBd7Sn2HTMr9rLi4GKvVij3Cjv2cTOxnZ+DcVUXFC1vx1bcuUDKbKakqP3DOwSOAoScloY8y49ilEHHNddS++x6NP64AWurJHQ5Hn/oFUlJSgqZpHSZNQhHUDajHZoggUWQgDAZev+CaXo7yJ83rt6FYozEP9X8LMLfTwcf/+AtlOfuYfevv0MdaEPp4ABpbWyN2xbJlyxBCMGPGjG7HJHQttdC+KieqewAxt/6O+i++oObddw85Lisri/T0dIwB7oxjSBoABgs1Hywn76qr2TNpMrmXXkbZ44/TsHTpEaOe7a1XOJimaeRu2YjnGMl9R+eWPfww+pRxaGokoTOSUUwtI4VKaycCy9gYzK0bQvnLGb/5A1f/4yniBw3h+7de5bXbfs2uH7/r9i6vx4OGbxdhGTMGQ1wczVsrUcKMB6b2D2YwGBg/fjy7d++mOcSALiqK5rVrKX24e/tR5uTkEBcXR0hISE8/haCpfvMt3Ll5mEbMQx9nxTLqpzczzW4v17++nuJaB69cM5GBsTaa6lws/2Avb92/ip0rihk2PZGrHjoBQf8on8hXBTudXr+0xxSKQOiD+6bYPDQexRZH8+Zdxz5YOu7JpNzP2voptyXatulJRF0zAm9FM+XPbMZd3EhJ1h6cTY3oTUfWqAq9QvjZmXgrHFgnX4QxM5OS++7DV1/fJ0d1OrMIb1/JRqq8Jfg21LOrtokfrUYMQaqfc+5sidc8NN6v1/W4XXzy2EMU79nNmb+7g4GTpmLKtOMpdWNISj7Qr7yzSkpK2Lp1K1OmTOlxLbV5UASWEVE0LCsg/OJrsJ1yCmWPPIpjS8uK/+rqaqqqqhg4cGCP7tMZEeePxxAfhmXyr7Ff8wIRl98CikLNG29S+NubyTphGvvP+gUl9z9A7SefULBzJ9Dx91d1UQFNtd0rX2j4dhHNa9YQcsK16MJN2KYc9EZNEYDAfmZGt659LDGp6Vxw91+58N6/YQoJ4av/PsHb9/6R/O0/v9Eyd2ERzp07CZ0zG9Xpxbm3Guuo6CNqottMnDgRTdPYXrsfnc1G1C9voPbd9454o3ksXq+XgoKCgM48aqrKwqf/yUeP/Bk1AK953ooKKp99Ftusq1GbxCG15F6fyi3vbGJbYS1PXTaO4VE2Vi7Yx1v3rWLbd0UMnhzHFX+dyqmXD8HmzUcEc/V9FywMjeXrkVPYtds/O2EqocFNg0wprZsIZffJfROlXiaTcj9qm2o/fFTPMjSSmF+PAQ0qnt9K6Q87EIqC2WZr9zqWoZGYh0bS8H0x8X/+O96KCsoefoTc3Fzsdjt2u70XPpvOKSoqIiwsjNAOem9rqkr+ji3UJtaiNnh4fGMuBp/GudlruKHoo16OFjyVbtA0DEnt/993h9ft5rMn/k7Bzm3Mvfk2hpxwIgDmgfaWDhJTz6B59ZoDu8J2xuLFi7FYLJx44ol+iTH8rAw0Deq/ziXxsX9giI2l8A+34a2p6dVWiIa4EOL+MJ6ICwcBJrx1w7DNvpv0L74n9e23iPnjHzEOGED9N99Q8qe7yVqwgBCHg5p776P6jTdx7NhxyP9j3rbN3YpDdTop/8c/MI+fi+owETYrBWH46eXQOMCGYjO0Tm8HTurosVz1yJPMvfmPNNfVMf+he/j4H3+lsqDr5U79VcPin0pXHLuqwasdURN9sIiICIYMGcKOuv14XW6ib/0DtlNOofTvD9O0pvO7fhYWFuL1egOWlGuaxrI3XmLn8mXkbN7Am3fdSu7WTX69R/m//o3q8aJPOgVDvBXLyOgD977vk+0s3V3OX88YRvi+Jt68dxWbFueTMT6Gy/88hdOuHkZYtAU8TvjweoLaEqsLfELQbLKwOL/IL9czRAd3d17DgFBAQ3Wa213vI/28yKTcj0pLSzss5TAm2oi9eSz6aDOx++OYkDkX5SiLauy/yEDzqrhyzUTddCO1n3xC7r59fWqUHH5a5NmRivxcnA31RE/IpGhUBAtxM3VvM/9X8Rz35bzQi5GCp6QEYYhBmD1+2wDG5/Xw+b8fIXfLRub86ncMO+mnUhNThh0E6AeMQW1sxLFtOzsbHSyJz2BzcscJ8P79+9m/fz8nn3wyFovFL3HqI82EnToAx9ZKPJUaSf/5D77KSopvv4N9WVlERkb2WitEoQhCJsYTf/tEws9Mx5XfQMXz23Hus2G/8CqSX3iewatXkf7Zp9RlZhJrMODcupWyhx8m94IL2Tt5CvnX30DFM8+Q88N33Yqh6tVX8RSXYBp5PvpoC9bxh9XsK6JlpWcvEIrC8JNP47onn+eky6+laPdO3rjjd3z7wlM01hz/o2cNixZjGjIEY2oqjq0V6MJNGJOPvsHW5MmTcfhcZDUVUrcwl4QnHseYmkrR73+Pu6CgU/fNyclBCEFqamBao6756H02Lfyc8WfO4+w/3o3H5WTB3+/n43/8tUcLk9uoTid1H3+M/eLf46vzEnpQLfmTi7P4aG0Bf0iIxflJIRsW5pE6MorLHpjC7OtGYI87KBFddD9a2Ta03vqG95NVPh3Nzc09vo5hQHDaIbZRjDp0YaCzp+PYviOosfiLiobaP97j9TkyKfejY5Vy6MJNWC4eQHHzPjK9IzE2d7zYUB9tIfSkATRvLCfsrCtpHjsWp9dLSmzXt2gPFIfDQXV19VE3dclvHclMGTWGV4aaMfvgjsLlpHnyeynKnzRv2owuIh1jsn9GyX1eL1/+53GyN65j1i9/y6gZcw55XrHo0SXZ2GKw8/z5l3NKuYPT1u1hWXwm69Pab5GoqiqLFi3CbrczadIkv8TZJvSUAegiTNR+th/zsOHE3XcfdatXk71vX1C6rgiDjtCTB5Bwx0RCTx5A87ZKSv+5ntrP96M2e/ElJVHv8TBw7lwGLl3CwGVLSfznE4Sfey7e6mrKn36GwqyWOky1obHT9/UUF1P14kuEnnkDar1G2JxDN1mpLMhj37rVOBp6d6Mrg9HE5HkXcv1/XmTcGb9gx/dLeeX3N7Lig7dxO3qefATTxn37+WTNkS1evRUVODZubCldcXhx7q3BcpTSlTbp6elERUWxL6qKplUlODbXk/zsM2iaRuFvb8bXeOwRx5ycHBITEzGbe9bqsj2bv/2KFR+8xfCTZnDqVTcweMp0rv3nc5x0+bUU7trO67ffzLLXX8LZ2Pnv24NpaHjLy9HFxIJhBIb4ECwjWt5Uv7Mil1Vf5nBLkxXDrgaSBtu55L5JnH7jSCITDqud3/0lrH2RV0bN6Sfj5DC9ejWXlXzJ/ugE9uzd2+PrBTspBzBlRqGLSKd5S//fRChrzUp8WktiLnWdTMr96FilHAB5OzezovxjdKNt1BhM7I0d0OGxoTOS0YUZqVuYj+OySwGwfvih3+Purs7Uk+dv30Jk4gBKTDY+r2/k7AIXYwxdq/30F8fG3QhjCJYRHf+fd5aq+lj4zL/IWruSGdfexJjZZx54zqtq/FjTwN17Czl9uMJVmToWnHYmSWWlPDEkmbHVxR1ed/v27ZSWlnLaaaeh1+t7HOfBhEGH/RcZeMuaaVxdjP3ii2iaNw8fMCAI20y3UawGwuemE3/HRELGx9G4spjSx9eT9dVm4KdFnoaEBMLPOov4B+4n45OPCX/vbbw6HUZAa9uIqxPKn3gCUNBFT8OQEHJgyl9Vfaz99EPe+tPvcdTXBW3hpTUsnBnX3sR1/3qOjPGTWb3gXV75/U1sWfRVQOqSe8N9P67ltw0Ky3IPfTPesGQpaBqhs2fj2FkFPq3driuHUxSFhIQEHAYPlpFR1H2Vja8hhAH//heu7GyK77rrqF8/t9tNYWFhQEpX9qxazpJXnyNj/CTm/Pr3iNYuU3qjseVN15MvMvLU2Wxa+Dmv/P5GNi78HF8XStsAPEVFqE4nEVf9CV+Ni7BZKfi8KvPf3kHhW/s5xWkgbXAEF909kTN/M5roAe38TqorhE9+y7dJw/lP425/fOq94qyKb/jbvv+iGhQW5/R8cMcQ7Z/ZyJ4wDY5BGMy4tvfvsrW8rZv58qnHgh1GvyaTcj86VikHQM6m9YRERRF/2VjeGJXA0qETOuxhrZh0hJ+VjqeokbyiGsJ1OrSvFlL/1VeBCL/LjpWU+7weCnZtJ2XUGJ7MK8OiCObuWoxRyaVM370Wfz3hym5ZEGjs4aZBmqry7fNPsWflD5x8xXWMn3sOLlVlUWUdt+3OZ/TK7Vy4eT/vlVQxzmLmoa0Olm7YxiOPPcBlYWas3vZX+3u9XpYuXUp8fDwjR47sUYwdMQ+PwjTITv2iPNQmD9UnTEWnquj/8RieIv/UaHaXPtxExAWDiLttAqaBdvI37wMgrBA035EJVlF2Sy18nM3e6Xs0r1tH/VcLsV96O756L2GnpyEUQXVxEe/9+S6Wv/M/0sdNIizG/zNSauvLbUV+5/qT2+MTOPsPd3H53/5JREIii19+lv/dfjP71q322+Y5vUWYLag6Hb/ZW0yF+6fv/4ZFizCmpmIaNKildMV+7NKVw0VeMgRjcijV7+/BkDyKuD/9icYlS6j47387PCc/Px9VVf2elOdu3cRX//0nSUOG8Ys/3IWunTfWIfYIZt90C1c++iSxaeks+98LvHHHLeRsWn/M62uqStWrr7W0djVb8NZGo48PYV+Fg1fvWUn58jKcVoUz/zCWc24dS2zqkR1sAPB5YcGNbNdp3GN2MzZmbL8qXglRHcypWsWyZi/eLr6hOZwuomWmRPFTqWB3mFq/593Fjn73s92meO9uPn3ib0QmDuhX30t9jUzKO6lKdbJPKe3wB6atlONoSbnP6yFv2ybSx05gZ5OTXeERIMRRd1C0jI7BkBZGQXkh6cNGYB49mtK/Poi3oqLHn1NPFRUVERkZ2WHdc0nWHrwuF9rwsXxcVsM8zcgU43t4jOksN46FXnzxUd1ufE16wIchtvsLezRVZdHLz7Dj+yWMv/gqSqbO5Nc7chnx43au2pbDF+W1zIgM45WRaWw/cST/mziQuRU+IiIHgtdL87q1Ha6nWrduHbW1tcyePRslQD3chRDYz85Ec6vUfZ1LVnY26SkpKB4PhX+4DdXd+RHnQDHEWom+ajh16RChD6X5iwLK/rWB5q0Vh/z85W/fTExqOiZ953rOaz4fpX9/GH1iMqo3HWNqGKZB4Wz86lPevOtWqosKOPOW/+Oc/7sHfQBaQ7aF/uE/1rPxmzzUThZdJgwawiV/+Qfzbr8PgE+f+Bvv/+VPlGTtQXW5urSAuLd5XE6+e+MlmuvrMLqdNAod123YjVfV8NXV0bRmDaFzZqM5vDizarGMju7yjrLCoCPq6uEooUYqX99B6JkXYL/oQqqee77DAYycnBwURSE5OdkfnyYAJfv28NkTfycqaQDn3vkAhna6ax0sNi2DC+/7O/PuuB9NU/no0b+w4OEHOlzk6y4sIv+aayl/7DH0sbEkJ5+Ir9rJhtJmfng/i3y3m2WJ8Nu/TiN96DFKMn54nJKiNfwuMYloawxPzniym591xzS3u9030/5ybdUysiLiyOvGHhAHU4w6lFAjhgE9n0HtLl2UGXQ+hCEGb2n/6RnfpiI/l48f/QshERFccO9DQH9ZNtz3yKS8k3LVer4z7ugwKT9WP2WAot27cDscpI+byNN5ndtqWwiBa3ooLrzENdhIfPQRVKeTkvsfCPo76mPNDORv34IQCh9aYjArChdvXUikoQDHybdQ2ajv1Z9a544d6MJT0NnFIfXDnTgTm60cVXWjaRqfv/Ey7xaU8d11d3Bd9FBu2pHLDzUNzIu1887oDHacOJJnhqdyVoydEJ0OYdBhSgnD12RBmEzUrViDy3HkSLnD4eCHH34gIyODzMxM/33i7TDEWrGdmEjJhhxqamoYPHo0CY88jHPbNsoffTSg9+4sTdMorSknZUQGUdeOAL1C9Tu7KX9mM859tXjcLor27CJl5JhOX7N2/oe4du/GfumdqI0edFPCmP+3e1n2+kskjxjFtU88y7CTZnQ5Keyq9DHRrPp4P589uYmG6s71VxdCMHDSVK55/Glm/fK31JQU8c59/0fuih/wVPfNxaCFu3fwxp2/Y8OXnxIRn0i8LYQzV3/NeqePv2cX07BsGXi9P5WuqBrWo3RdORqdzUj0tSPQfBpVr+8g9va7sUyYQPE997a7eC4nJ4fk5GS/9eWvKizgo0f+gtVu5/x7HsQc0rl1K0IIBk6cwjVPPMOpV/+Skqw9vHHn71j8ynM019cBLT8LtQs+ImfePJw7d5Lw8MOIjBGkipHUejXqQw0si4eF0SpP/HYK0TbT0W+a+yNNyx/n5rRBOAU8M/MZoiz+XeStOp0U3HILeH3g5zK8NpOrVqEZ4Nus7B5fSx9lJsA/9kclhMAQb0KJzMCxpX+1Ra0tLWHB3+9HbzJx4b1/o1o1yYS8B2RS7idtSXlCQseb0uRsXo+i06MNHMan5bUHenUfK7kuamxJ4CP3CoQ5lpjb/kDjd99R9/En/gm+GxobG6mvrz/6Is/tW1BGjuOz6kaujQ9nWMXLNBozeSjbhar27nbOzZu2oISnYMo8dr3qwRRlMQNG/cj9P9zB7CUf8uvkCSw87UKKwqK5MjGKj8YOZNv0kfxzaAqnRYVhbGeE25Rpx1vajHnSiazMisbuqiHVcWhd+YoVK3A4HMyePbtHn2dnhZ2WQqGlFoCBmQMJmz2byOuvp+add6n7/PNeieFo6urqaGpqIikpCcvQSOJ+P56IiwajNniofHkbpc9tIFREkDKqc0m5r66OiiefxDp5Gu6SENxRXt5+8g7Kc/Yz51e3ct5df8YW2TvdZ06/cSSnXT2M8rwG3v/bWrLWd+4NOoBOr2fM7DO5/olnGaa34hTg7mNzxR6Xk2X/e5H3//InNFXlhHv+TnNiKopOxw0jhzB2+2qeK6jgk5370MfHYx45kuatlegizT1qVdoywzIMb5WT6vf3kfTvJ9FFRlB4yy2HzCw6HA5KSkr8VrpSX1nOhw/fj6LTceE9D2GL6PrCQZ3ewISzzuX6/7zImNlz2bp4Ia/+/ibWfvA2eTffQsm992IePpz0Tz/Ffv55hNZFYdOHYjo1ibdDXezwuXnlukmkRR9jE6SmKrwLbuSOxAFkay6eOOWfNCgJPJJdwi0zB/LPTtTzH4va1ETBr35N0/IfUUJDEDr/v9a7hAGdz83cyh/5pra5xwNU9rMyCD8zuDtlW4bGowtNoHlz/+nA0lhdxYd/vw+fz8eF9z5EeGwcjy7sP+sT+iKZlPtJcXExERERWK0dl0bkbFrPgGEjeLm8Ab0QnJi/ndMrfzzmtXNzc4m0RxBqtVH72X4irroK68SJlD38MJ6SkkOOdXVQr+xvRa31xx2NlLudDkqy9rBy3CmYFMH12Yuw64ooGXoZX+zt/Xpy57Y8hM6AeUjXaoV/EOncwku8ol1HhQjhLPEpD2p38qzuLq5V3mO42I3Qjr74zjTQDnhwxkUxJfFt3ii9gw+333bg+bq6OlavXs3o0aOP+qbOnxSznpKoRsJVK6bslpKV2D/ehmXiBEoe+DOu1t7lwXL4egWhCEImxLW0UTwrHbXczelJ1xG604pROXYNcsV/n8ZXX4/xtOvRHF6+2/oWCYOHcs0TzzDqtDkBHx0/mBCCYdMSuOS+SdjjrHz78g4W/28nbkfnylA0TaP6n/8ifcM2LD6tT41KFe7czht3/I71X3+B99wrWXTdXZxfrbGtsZm50eGMn3sOv9ixkrS6Sv46bjoVZ5+L6vDh2lfbsmFQD78Opgw7ERcOxpVdR8N3VQx4+ml8dXUU/u7WA6VZeXl5aJrml/ayzfV1fPj3B3A3N3PBPQ9ij+/Zz681LJyZ1/+Gax5/mpjIaJYveJevi/fhvO4qkv/3GsYBLYMgMfpYmrwNPFhawa7SRp69Yjxjk+1Hv7imwac385jJwxLbUAYP/Te35oVzxoa9PJ1fRrnVwF57z2YOfPX15P/yRprXryfxsX8gAtDZBiDbkgLhKVxVuYSdoVGUl5cf+6SjMCaHYkrr2SZtPWXMiADAtS/4pamd4Wio58O/309zfT0X/OkvRA1IYW1ONV9uKzn2yVKHZFLuJ8cq5aivKKeqMB/7+Cm8X1rN+VFh3F3yDK/seOCotdWqqpKbm0taRjphp6fhzq3Hua2KhEceRlNVSu6995BRgiZ317cb747i4mKEEB0mkYW7tlNls/OjNZLrEuxEb3qSCk86z9SA02vCbGr5BVlf3ztt59zFLS3SurqIrFBEosPHte8/xePZ+/nXpMuZk3kBBkMY+fkvsmHjJSz/cRLbtt9KSckCXO7Dtn4u2Ypx+0MkmK5mqOFJYtlNkSGeEJ/jwCHLli1D0zRmzJhBb3G73RRUF5NmS6Tu61xUhxeh15P0r3+hhIRQeOvvIYjbvhcVFaEoCvHxh+68KgwKoScNYJW2kHwlC/fuWkaEnc9A+5QOr+Xcu5fqd9+lds4ZOHc6KXRkMf6qC7jw3ocIiw5ei9HwGCvn3T6eiWelsXdNKe//fS0l++uOeV7NW29T+/77RN14I4olMElPV3mcTpa+9gKvPPY3lg6ZwFu/eZB/xw1hj8PDHWnxbMmEPzvXYDCZmH7exZzx2asYvB7umHAyldsrQD36hkFdETIulrBZKTRvLMdTHELio4/i2LyZ0j//BU3TyMnJQa/XM6CHNcRuRzMfP/oXGirKOe/OB4hNa3/318+2FPPGqtxOX9fX0IDr6ecY/eVSTvDqMQ5IYunGlSx4+AEq8lp2dRaAR/WwfF8Vj5w3ihlDj/597PCpfL3yA84xTuC/Q1+jLu4e1joiGRVq4T9DU9g2fSRjyo/dRtKnadR5vOQ7XOxodLCqtpFvK+uYX1rNS3vzePDpV/h3xgiee+ol7sgYxauDh7A20f+12poQMPI8JlZvQGfw8e2efX6/R28ztm4i5KtV+vQ6EWj53v/okT9TW1bCeXfeT/zAwaiqxkNf7CQhvG+8JvVXgSn2+plpbGykrq6OKVM6TgxyNresrP8+aTCeGifXZK9ktKdlm+Cj/fiVlpbicrlIS0sjZGQ8TWtKqf0qh/j/m0jcnXdQ+pe/Uvvee0RcdhkNVZU0qyo1Vv/tVtmR4uJiYmJiOqzJzN+2hdUTZ2BUBH+o/x6Lu4A1sdfy5f6BxFnL0etV8MKWLVs46aSTAhqrp7QUoUSCzofOfox6y8P43G50Jh+njhnN7BtuRigKoaFDSUv9FR5PPdU1K6iq+o6qqu8pL/8SgAjTUFJqQ4nIzUJXsQ9NGKjzTsWlm0P9D++z67w4ZjpWAVBWVsaWLVuYOnUqERERfv/cO5KTk4PP52P4qeNQP66mflEe9nMyMcTGkvSvf5J/3fX4BtVDRHBeIoqKioiPj2+3LaSzqZHi7F0knz+a+DMmsv1vXxAVO7Xd62iaRu7Df2NDRiKJrkT0ZgODfzWTyOGB2TCmq3Q6hSlnZ5AyLJJFr+3k4yc2MPHMNCaemYaiO3LMpPHHFZQ98gi2mTOJue0PcNftvR/0YfJ3bOWFDz/kx8RB7Lv6TnxC4eRwG48kRTMnKhy9IuCjP8PW92Dr+4w+69+sef0VLvj2PV4//yZuLy/nH1FmDInHKL3ogtCZKXirndQvzifikrFE33wzlc88g2nIYHKam0lJSelRy1Gvx8On/3yYspz9zLv9XgYMb79b0s6iWjY8tYwQgx5OSDvmdZtWr6H4nrvxlpYR9ZtfM/Q3v2GKorB18UJWzn+HN+/6PSNnzCFabXmz+sfZg7l4UvuLVes8XhZV1bOwso6llXU4tCGIiAEki2LuHz6C06LDCTm4tERoVJr13LWngHqvj3qvSoPP1/r3lo/GYy3cPGEGJjTCjQbCGh0UhNioD0D5CgAjL0BZ8R/OqviBLy0TuSowd+k1ikmHEqKihKXgysrCPKz9vSyCzet28+kTfzvwvZ88YjQAH20qYltRHf+5dCz584/dSUhqn0zK/aAz/bqzN63HlJjM+/Vuzom2MXBF53p55ubmApCW1tK6zT4vk4pnt9CwLB/7JZfQ8O0iyh57nJDp09m7bSOfjRrNjoR4/tPjz6pjmqZRVFTE4MGDOzxm4/5sdp5yIb+KD8f25eOUe9L5n4hC1XTUeuIQrQ0zNm3axIknnhjQ8gHH5s0oEekY4k1dvo+vte5/zq9+d6DfcBuDIYy42LnExc5F83lw7HgdbcNrWApWoKga9TY9RRlxrGmchts7Fa0shcppV5LavPTA7MjixYsxGo0Bf2NyuKysLAwGA5njh9BQlEPj6mJCJsdjiA8hZPJkYm/7A2zt+a6D3aGqKiUlJYwaNard5wt2bkPTVFJHjkEXZuLKUwZQYTVxeM8CTdPY9MIz/NhQgSk8hsH2SYSMj+szCfnBEgbaufS+yfzw/l7WfZlL/s5qZl8/nPCYn8rhXNnZFN12G6bBg0l67B9HfD/2tsrGRh5fuIgvFCtVJ59PmIBfJsVwdVIUmdbDRss0FfRm2L8M5YWTmeq00lTu4SacPG8zM35sKLf58TVACEHE+YPw1bqo+XAv0dddgSsri/z/PEX5vHM6/N7qDFX1sfC/T5C/bTNn/PY2Mie0PxjTWFzK+t+/QGz0SRicRy9JUJ1OKv79JNWvv44xNZW0d97GMnYsADpg3BlnM2TMiWS9/R3WfWYsRhv5zTn87rSBh1yn1OXh68o6FlbUsaK2Aa8G8UYdZ1QtYaV7HZkWN2+d9RZWw0/fV83NORQWvcPA8DrytVl8VKARbtATYTUTpteTYTERqtcRplcI0+sI0+ta/q3TEa7XYamtofGeuzEXFTLksX8QccJPb5BnfLSMGkOA0oz40RA1kMsrlnD5oFNpbGzEZgv8gFQgmdLs+GrTad68pU8m5arPx5dPPUb+9q3MveX/DnzvN7m8PP7NbsYm2zlnTCIffZiPSu+uGzteyKTcD461yNPrdpO/fQvZ866mwadyT+0SQr255OgHkO49euKTm5tLVFQUYWEt/WZNKWFYx8fSsLwI68R4Ev7+N7LPmUfxPfewbPgQtkz9RcBrTOvq6mhubu7wTUhzXS1fxQ9ED9xWuxSlPp81Yb9geclYoi2NTBo4FJHXEmVBYxN5eXl+qe9s1DxU6qo5fNyoedN2lNBJmIfEt3teZyjKkS8wHp9KZe4OtE1vE7FvAVZnOU16O0ts5/OxdjI/1kdRX3lw4qSBLoX73DrQtXxts7KymDVr1lHXIvibpmns27ePjIwM9Ho9YXPScGyrpPaz/UTfOAohBJE33IDu3n8BjmNez9+qqqpwuVwdLiLO37YFvclEwuAhFDvdVFoM6DQvD+4rJsKgI9Kgx+pxsW/hJ1Rv3kC8NYy5s29H7GkibFbnEvJgbBFttOiZde1wUkdG8d3be3j/b+s46ZLBDD0hHl9tLQW//g3CaCT52WdQQkLQVI1m+2DK/PitU1paSl5eHgZDx20mtzc08/T2vXzV6MYdnU6mq5G7M+M5PykWazuj+wB51U1YRSQh136A6d0rGTs6F3OzoOCLJeydOIcn4mFyTQPTI7pWXnY0Qq8QdeUwyp/fQtVbu4m5/c/sqf8/AAaY2p8xy9++habaGoadeGq7z2uaxpJXnmPvmhWccuX1jDhlZrvH1H/5FVv/8RqNw37FspEW1g8ayA9bs5lmtzHNbmOkzdIygwA4tu+g+E934d63n4jLLyf29v9DaX090DQNd34DjSuLcWyrJEqNRsm0sGTzYkpcDqYJwf5mJ19V1PF1ZR0b6lt2fs20mPh1cixnRoczYPGtXFW7kihrFM/O/hCrwYqqeqmqWkph4dvUVC0ntcjFY3lNNFje4rVNk1F9XgxmC6mjxpA+biLpYycSGnXkIlB3QQH5v7yO0Pp6kl98Eev4cV3+OnWbEDDyAsZ9/xhGnZvFe/Zx7oSxvXf/ADANi8exowHHlmy4LNjRHEpTVb55/j/sW7ea0677FcNP+qnc8oXv91NW7+K5KycgtrzHefq3yScteMH2YzIp94OioiJiYmIwdfBCX7hrOw6vj0VRKZxu05G06DFK3ENZaxtEemPHSbnP5yMvL++IjWTC56bj2FFF3ef7ib5uJHH33kP2/ffz8cxftNTaBbhVYtsiz46SplXbt7Fj8BiuCoGwlf+mxjCINw1D0SkaZc3hnD0mkab9LRuobE8bysaNG/2SlO+khs2mKgaWn0Js7E81lq49pejiFUzd2DTI5xNQ6uLl5dkU1zopqXNQU1PNyNolnO5ZwiRlLz5NsEwdy3zf5axlMrEilCiznoySBmIsRk6bm0ZUSDm+tV9iSVhP6U49NMGiRYsICws7atlTIFRWVlJbW8uJJ54IgC7EQNicNGo/2YdjWyXW0TEtLboSE6Gy5+3GuupYM0/527cwYOgIdHoDr+YW8df9zzClbivzdC/jPDibHjKt5QN4BLANsBG5O5tIg/5A8v7Tn3oi9C1/N3k1chs1grWVyKCJccRnhLP4tZ0sfWMXedsqyFzxX3wlJaS88XrL1wX47vscnp88CbOn57uxaprGmjVrWLRoERaLhXPPPfeQ550+lc8ranmtoJyNjU70Hjdjivfx+/GjmDP6xI4uCgVrYN3LJBZ/yz5fPDd+Ws+jtWcTm/8WQzLzSPO9Rua+OK7OmM5NO/JYNHEwiWb/9YhXrAairx1J+bObqX5vPw2z5mDYtR3vA3/G98H76MIO3Vzn+7dexeNydZiUr/zgLbYu/prJ8y5k4tnnH/G8t6qK0r8+SOV3q9k+6V58FoWaEDeqMJHrcLG4qmUNTahOYUp4CGN2bWPQ668yxNFE8ssvYztxest/nUeleWsFjSuL8RQ1Ikw6bCckEHJCIoZoCzsfdLA9Rs8Xa3azt7llHdGYUAt/So9nboydwdaWWUHnpre4oXI51RYr/5vzAhF6HTk5T1NU/C4uVymxTTZO3KdgrGvEJxT0Ph83v/ou+du3krNpHTmbN7Bv3WoAolPSSB87gfSxE0gcMhxvfj75116H5nKR8r//YRk5wl9fts4bcT7i+39wdsV3fOI9hXN7PwK/MrVu9uQubAxyJIfSNI1lb7zEzh+WMu3iKxh3xtkHniuqdfDCD9mcMyaR8SUfwMI7UYBqq1Wm5d0gk/Ie0jSN4uJiBg4c2OExOZvWs2v4RKo1wUMVC9C5KlnjvBOd8bujXvvgevKD6UKNhM1Koe7LHBy7qgifN49Vq1azP20oVreb5qOMcvlDcXExiqIQF9d+F5UXKprQhZi5V90EdfksjziNtSXjGREvyK/VMSbRwxqtpUvMjvhU1q9bzJlOJ+YertTXAAQsX76cCy64AGjZNMhbq6GLB+OArk9tFhaGIQoa+dvWnZxk2MsVpuWc6luBWXNRFZLG5pTbcAy/iNT4FP5pt2Az6aktb+ajxzegN4Zywf9NIMRuAtKp2hmOa8uZlCj/AFre3MybN++oo5KdlW+zsSukg937DpPV2lll0KBBBx4LmRxP09oS6r7Mxjw0EsUYvKnHoqIiDAYDMTFHLvxrrK6iuqiAkTNm0+xT+Wr/Xr4v+gShhrBrQgYLX3uRLZs2Yk7NIHpvPrpRY2keOpuKqma8U+OpFRrVHi/VHi/7m13UeLw0tFcne9qZxNZV8WAvfL7tCY00M++2cWz6No81n+yjUHcGJ/3xXKzjWkYif9hZyvXeOlx6HUZvz8o+mpqa+OSTT8jKymLw4MHMmzePkJCW+u5ch4s3iqp4r7SKao+PqIYaZmxbxRUp8Zx+2eXtb5DjaoCtH8D6V6FsO5oplGWGifzDdS4FxTXcVD+Q/8RdSfiFM9DPv4k07x18VPtHTjSdxY07cvl43MB2W4t2lz7STPQ1I6h4cSs5OYWkJCXh/exziv74fyS/8PyBln2NNdWU5+wnooOFiRu/+pTVH73PqNPmcOJl1xzxfN0331L84IM4m10sOuFuNFMoZ906hgUrthLe5OHHOeMpdXlYVdvI8vwSfszOZXFcGtz5IKGKYEpYKFP3FjM2t5mUNZUoTR70sRbs8zKxjo9DMf30M7likJmsOD3TjHquTkpibnQ4SYe9mVErs7h/9YNstRr596Qb0UpeZEXFN2iah1jLRAaV2DFn/QgRaTgv+i/Fn91OhFaLzWxh4MQpDJw4BU3TqCrMJ2fzBnI3r2fDl5+y7rMFGE1mImvqiTPrGPuvp9pPyDWNNGc+Bq1zr0vdEjsU4kZyafliLomcg9fr7dFagWDTR1tA8aL5QvE1NKAL9d/MUU+s+vAdNi38nAlnzWPq+Zce8txjX+8GNP4a8RUsfIwvo08i3lUFqn9LUpelZ6LT4Fd+vWrf03+/e/uI+vp6mpqajlpPvm/LRjbMuZJZxiaSV75AjvdETENOwOtr6QetdtDl4uB68sPZpiXStK6U2i+yicu08+bkGYQ21jO+pIzvA7z5THFxMXFxce2++OU5XPwYGsvMsn2Eb3sSR+QQXnFNIcTgJa/axNxR8Xy3+dkDo5BeobAxPo1t27YxadIkv8S3fft2Tj31VKKionDt3IkSloJiUVGsXU9+Q7zN3KJfym3R69DV5oISCqMvhXFXEjVgElGH1cE21bn4/KnNaCqcfeuY1oS8hTnTjmNLBYS3nBMbG8uYMZ3f/OZwms+HKyuL3dt28PToUfg6+RqYlZVFbGws4eE/tQATisB+TiYVz2+lYVkB4aendTuuniouLiYhIaHdXU3zd7RsrJEycgwfllZzcdGHGPDiBV6//WYc9XWcft4lJK/aQNO2zSTf8QA17xUTOiOZ8BEp7d7PrarUenzs2V/NZ/P30qDA2qFOakODW5+qKIL08uV417/J7hP+wOK1ZqrC9uGZHME1xSUkeOC6rOcJoxY4oVv32L9/Px9//DEOh4O5c+cyefJkVOCbyjr+V1TJsuoGdMD4xkpmLf2MMZqTM379B5KGDj/yYuW7YN0rsOU9cDegxY/CmX4TJe9v4eWpM2kwmfnDiP/y9Nob+a3lBF4sSSfS9TQOz+0MXPUEq+OWMjf1dv68z8ojg/3bscOYHIr+7ETqvmpitDqIuPvvp+yBByh/4p/E3XUnALmbN7Bz0Bg2jz+Fd9btwatp+DQNnwYORzON3nB019+HPsSG78ftLc8DPlXF61PxGWPhb08fct9/5+dDsp0BNS2zGXEGHacs+ophTzzBr0wmlL/8lW3jJvFjQQ0ryxpYrK8HA9immZlsjeDERDvTIkIZZTz0Z8GnQGS9jwWndTAY5HXx3GeX0RCj8Fi0BVHyL6r0oQxIvJzUch3GZc+heZ0sT7yep1y/YOPbLp7TxZGhUzl4ubkQgujkVKKTU5l09vm4Hc1kffEZO197mXKrkVKrkS2PP0hMajrpYyeQMXIYCUoJSvYS2LeE1+qLWG8bCZznny9ke0aez6glD2JVmvguK5tZwzpe69TXCSHQR+vx1Wbg3LaNkGnTgh0SG7/6lFUfvsuIU2dxylW/PGRd1sb8Gj7dXMTbGV8SsfodPog7nXfE77nfcYff48iNjEIXxI5gvUUm5T10rJ08a0qLWWONpNJs45Gi58Dn4ceay8mYsZXcVS0jCB1tfJCbm0t0dDSh7bxbFjoF+9mZVL6ynQWLd5EbGcdNudsYWr+Mhzash5mB2RVMVVWKi4s7XCj1+O5chOrjHtcKqC9iScqJbCkexTmjovlsWyXnjE3k5VVLOZ8QBHB2jI2v1ExWbNnil6RcaKDT6/jxxx+ZN28eji1b0EWkY0ztXg/ay52LuEb/NdhPghl3w7Czwdh+lwi3w8sXT2+hud7NvNvGERF/6HEt/cp/MmvWrHYTz454a2pwbN6MY8sWHJu34Ny6lXoNbr7jQZqNRoyd6FHvcrnIy8vjhBOOTOJMaeFYx8XS8EMhIRPiaNDVYA7v3d0ivV4vJSUlTJ48ud3n87dtwRwaRkxKGm+t3sSHRZ8ceM5iC+W8Ox8gtKaOvPsfIvq3v8GxxYkw6wk9qeNNrgxCULKilK3zswgTKvYTY9nbXBn0pLxx+XLKHn2UxNNmMO6x2az8aD8fbSlmfngDSQ6VL40riSh/lyJj19s6er1eli1bxooVK4iJieHKK6880H7y4f3FPJNfTrzRwI0WsH/4ChTmMuGsc5l+yZUYjAeV6XndsPvzlmQ8bwXojGgjzsNhnETZqwtx7vwC46BBuIUZTVVIc5m4fdp/eWrzH7lq2R7+HWGn2nch2SXLmG3axw9Vv+Suut8xP/RXXJTg382cSowt7Saji4woGaOJuPJKql97DdPgwdjPO5ecTevZ///svXV4VNf3/f+645OJu3sIEBJCSHB31wJVCnX3UnehLdRbKnipUIq2xZ3gGiLEPRN3G5/7+yNoCRBaQt/fz6/refIQZu4995zJzJ119l577YBwyu2c6KKSIxMEJAjoa6spzkzC386B4NBuyKVSZIKATBCwFBWii49H0tSMXfcY8tUB6HIaEZwV9O/ihH3CCTyrTqNs8sDUJ4CSl1+h6eBBNAP64/nG25iKwf7XPHqUNPGsWkZjnBtJ4fYcMRs4WNPIrpwSoAQ7qYReZ/XofZxsr1o31NiYwf742QT619BRArY2nigc5lBXpESz/h2Uugz2WSJ53TyL4gIfon1teGigD+pDxmvWI5lTziD7YD7dnJzw++576q0mSg+uR0zfglPCBjzT65EIIiaUNLtEU6cQL7F/bRdETIGdbzOhYjerJTZ/i5QnJCTQ1NRE375922GC1wdVR0/M5S21UP82KU/Zu5PdyxcS1qMPIx54/BJCLooi7/6exHzH5fQt3sYy7ymcKJ3Fsx3dEBpERG5spFzkpjYB/9fwHyn/hzjnp3wlKUfOqRMcie7PMEMevqmrKHW7jYZSd/aX/4RCp4IrBG/P6cmjoqKueG1VmBOKCGc+M+txrqvjqX4dsf3paWRXNVn8Z6iursZgMLSaGSjQGVhX00zsmUOEGzZh8Azji/Lh2EvN6K0SXG0VBDpWcVJsZoLREaQwQxHPBkk3tsk03Fpaepkv9fVCgoSYmBiOHz/OwIEDaU5IQ6IegzLs73kgy0UzTaISzaw/r3qcxWRl07dJVGubGPNoFJ5Bl28CSrBSKxcQzt6sLpaP/BXnouC6hAR0pxLQJSRgzM9veVIqRRUejmbSZF7pPZRimZrg5kbqJNcm5Tk5OVit1ivKrc7VK1T8kUGPhoW4GquBj6857o1CeXk5Foul1U2uKIoUJJ/Gv3Mk++qa6JmzDntLI43mQFSSWu6Y+xlSiYTc56Yh8/TEbuStVC5Nx35k4BWzJCajhT0/pZFxpIxMuQVDjCNf3RrJzhXZ7b3Uq8KQnY326WdanFY+/BCJWg6jvfnNS49vo4X3D+3GUfne3xq7qqqKNWvWUFxcTPfu3Rk5cuQl1qblRhOechlzU/ZwZudmnLx8GPnWR/iEX+QGUVcEJ5bBieXQVA6OATDsLXTyaMq/Xkr9sc9IDe/ByYc+Yq/OhpI6PQEaLbn7Hyck9hvmdJ/LZ0ef4dF6+GjUVJK+OoFTr+eJNW7hs/QP2Vx9iLTp39LR7cqbqetFbm4uNjY2+EWH0bhPi+OEuzFkZ1H6+utI/XzJT0qAPj5omhpYHtkSINCmnWH1d+/h7OPL9NfnojxbgGlpaKDs/bnUrVuHMjwc77nvo9WZSfthA56aDKJ0eciy0hCEln4MeksA6ZPXINM34P7yO0hdY6hcnIu12Yzc0wbHKaHYRLsjUUgJB245O+dzcpeDtY0crGlk+1lNOu5yXOou3OetViMVFdsp0v5ETc0RSk3uHNEOQlDeTk5RIzOblnGrdDcVOPKV26sInScxL9iFSB8HVPIWWcyRw+arsp6mgwcpfORRlL5u+L18B7KTc3HL2olbQ0uzGGtgZ2ptR5Jb5Uhjvjc+TZ0p8/gIZ0s7b+ydg8CnO9PLdjDddRyiKF63y1ZycjLZ2dl06tQJZ+fr78h6I6EKc6VxXyn61H+3CU/msUNs/fZz/COjGfPE80j+Ym25/mQus5o/YoI+niU+d1OcNpnb+vjQa3IwCTfvK+P/HP4j5f8QxcXFuLu7X1EXvDGvkIqOffgo53UEhR2Hq6fgFXOSX3J6M4UjVxy3pKQEo9F4zQLIXb1dyS4s4cWEZpz1iwET1hu8Q70YV8sMfJFfjiCKPF68Hom6nE0eQWTkhXFPB09+Si/n1jg/dp78GgCLWYZUakFZ+BkjnX9ltzmYA6cSmDp61D+eY9++fTl+/Dj79++nU34dyg7X3zToeiBaRXYsO4M2vYZhszoREHFphM9otrIwPocvd2XyrFmJw9m/z8VfHOej4AmnW/5NSkJsbnFSkLq4oI6OxuGWqdhER6OKiEBiY8OrmUXsL6rkkzAvOv16G86mYhh99RbHWVlZKBQK/P1bl3JI7VvqFfYfW8ro5hxqZDdX03i1Is/a0mIaqiroOXka8/OL+ahoFUXGzijwQSU9hkwup2bVKgxnUvGaP5+GvaVIbOXY9m1dWlZfqWPzd0lUFjZyyMZMY7ANv9wRg4ARhVKHIPw7qVJzTQ2FDz+CoFKdd1rZVVXPrMQcAhotrKjKw1c5j3JTMOlOLoQYc9s89unTp9m4cSMSiYTp06fTufPlMhR9QwP62ipSd20ldvwU+ky/oyU6brVCzu6WqHjG5pZCzg4jIe4+DKI/+Z8vYN+ZAxwOiuXolFuot0hQVUro4tDA0MAdxLicRLW/N9nio3QfuZk5vefyZcILPLNF5M5uYzm0dSedP/sBMfkHhu1+j9pFA2ic/A22HUf849f0XNOgwMBAnMaHYq01UvtHLq6PvUXJS/eTPOc5DG62WC/qp1dRkMe6j97CzsWVqS+9dZ6QN+4/QOkbLyG3FOM3KwqNvwI2TiSkqZwQJxBFOUZdKEbv6ch7DKRs7Xwk0jq2DXqAAbijOaMCQQt+9jgO9MW2s/MVSaSnUs5kDycme7SISs6R9K+3ZeJWYUKvL6GgaCWH0vZxpsKZrNruJFdNwGC2Q8DKLJsdfMhPaOSNVHe5D9cxr/OY+jo13qJI0x9LaPrhbQKGiqjs8xG2HQGlA4QMgtDhiKFDMVXaIB4sxqOiCg81CAEqxMab1HG2y1Q6bn0ZW7GWo4Vaevpfv/xJFEUOHDjA+PHjr31wO6Llu0rEVGn5WxuMG4H8pAQ2fvYhniFhTHzuFWR/4TfZ1VU47n2Qwc1H+dnnURpODWPYSH96jA+ifO5cuHG12v+/w3+k/B/gXJFna19sACaDnj8cvBlXeRDvwr3o+75OyXozlf6pFDbcgkx18IpjX01Pfg4Gq5V5pWUEVNdxe0UW1P1JncQeO2vDP1nWVaHVapHJZLi6XmqPVaAzsLK0il6ZR+lnk06zuz+fFU3BETNhgY4YMkoZ39Wbj/YepIsZDpoimao8gF9OKbf7HGKrrBs/ljYw8QYU6jg4OBAdHc2pkycJkDmiRETh1T5SBFEUiV+VSdaJcvpMCSW816W2mAezKnltQzLZFU2M7uLJmGAPDuxtea5m5corRsEdJ01C3S0adXQ0cl/fy27MP2grWVRUyYO+btye9Ck0nKBOevXmK6IokpmZSUhICNKrNPSwdLMnev/y638xbgC0Wi1qtbrVRkoFyacBMIdFYHd4FV6GcnbLH6OzMR4p9YhLx2HeloFDn3CUYT1p3J+K4/jgVotWC1Kq2LY4BatVZKerHrV3Ae8N1ZOa8h11dSdxcp+FTPxnLdP/DkSjEe2TT2EuLcV/+TLk3t5sr6zj3uQ8ghqtLMkuJcD8IqK9G1mBC9Dnti1artfr2bhxI0lJSQQEBDBlypRLagouRnVxEaJExa1vf4R3h47QXA3Hv28p3KzOARtX6PskdJ9NWSX8vmgNu0pPctJ9EIaeCuyUFuJ8SolyPkwHhwMopSZEEdRH5ThptyNMuBPVgfGEdVHzbPd3WZD0PEsr/RmsDOHI72sYMusZkr36Il/3AOErpyH2eBBh+Fsg//t+ONXV1dTX1xMUFIQgFXC+rSMV352mdkMRXu98RvJrDyOIoJO2FK7WlZey5v3XkSuU3PLSm9jotVhTVqHfuhxZXRoh/cwIAqDfiVgZQnFDBArzZKxiOPLoXjiMCsWsqienaBkVShEXo5QvREeWKSqJcsqmo7KCAKsRyZ+uKP70xcExGFcvD9x8Nbh4q7DRSMFqAdECVnPLhki04Gk1M9lqoSJvJ6k2jUz90pms2kAMlvsAUMirkdmk82G4DxMrV6IqOQZ+PWHsJ7h6tt7g6FKInDh5O0qrEofKGuzKStEU5aIx6dF0AaOzL82BQzAH9QLf7kiww5iuw7AsC0uxSJNKRl20K9UBtpSazQTuFhElN4GWR0xG3PoKEyt2sTLH7W+RcmiRsQwcOPC8BfG/AYlKhqAyI1F7YdJqUfzDzrPXi5LMdDbMexcnLx8mv/gmCtWln7td2kI0v97OwPok1rg8R82JvvQeF0TsmADK33uf8i37sYy2ws34u/8fxH+k/B+guroavV5/RT35ptPJaD39+PPU2+DoT6ZkEvbBi1iWNwAntRkbpRH0rY+dl5eHm5vbVZshrCiuQmuycvvBtTjZ7cAs8WG1tRuzxY03Ynmt4lwR3l9J3ZcF5Qgi3J+6DJVTIz8pOpHf4MdUqYZt+VX4OKpxlueQipHnXaNZZ/XkV8tgbiveTVnux/Rz/JFjHgGcOJNKz6i/39jjHPr168epkydJ9XOiv7MMQd4+jVZObMknaU8R0cP86DbiQvS5vF7PuxtT+f10Mf7ONiydHcfgcHcsDUY4S8pL33zrilHwq2F/TQMvZxYxxNmON2q3wpFv0Emu7VxTXl5OfX09gwYNuupxx3d9yjBjBZmqQFzNVdcc90aiuLgYb2/vVqND+UkJ2Lm4sUov8GjhSiotfsgiR1FwwAalRI1twUHcwiuBMqwru+NiE41KMQVqh4Bji3u9KIqc2JpJ4oFduEbmUOOYwgO22cilJkq1Ara2HfHxvhVTtgqur/nrP4bZYqXg9bcwHD1K7dOvkmhxZf/uNFaLeoIaLXx5rBylbA711iamGJ8nu7yShe5WQKR2zVrsx49D0kqH3aKiItasWUNtbS2DBw+mf//+V61lEEURQSLgrWmC9Y9A8how68GvFwx6mSKvYWw+WcjGT+JJNDpgFcJxCayjn8dhurmdJswpG6XUlTqtH42lk/HrPhCHDVtpWr8FTd8eDJ4RTsX8E2QmDaNjjw48IZnLwpQn2MUAdIePETO6lC5hPVk+/U/2bn+TB45+B7l7Ycr34PX3CqNzc1uyCUFBQUBL90TXWRGUf32aup31NIdF4JSXhq1Rj8pYxbGP7iFOXUJkRxcUi2PB2IgEUBoFzC7B0Hsyon9P9M3BaNeVozJayJJBzMPRWJyqyCx4B23JWk6XhxJp0tBTyCRTPQtEK0KtFdlfszA6oAQ42bb1PAAcrQtnjuYFJnfzoUeIN2uTnyTXlM4avPFMPgkqB5j4NXS9HdpQuyJYFLhL6vCMP4BtTS0CYJJKqHaUUeViS6WTghqJhCpdLlXJdVQeP0alzpkqnTNVemcqZc7o9DZwsvb8OhbKQZTeBHJm740Q0Idppdu5xX3q3xrC1taWpqYmDh06xMiRI2/wBK8PCj9brPUtTYRuJimvLMhj7dw3sHF0ZOor76C2vZApNVlFPjtzhhFbZtG5MZtfpHOoTelFz4nBdB8VQNk775J4IJ73R97Kh8bvbji7XJD9GmakwOW9Af4v4T9S/g9wLT/lb8vrua06Ho+GbJi6mNw9JaQ6VVBe0Y+3JkRgif+l1fMsFgsFBQVXdeZoNFv4NK+M0Kpi7rQ5g5wituhfpVGSQns10rJYLJSUlBAbG3vJ40V6IytLqhmnL6e/XRZ1Lm58WXwHbqLIyE4ePHIml3v7B7H11DwEUWRUzCOs23OET0xTuU1zlKCMUmaPOMl+fQzfZhfdEFLu7OxMmERKuq2OvgE3rn33xThzoJgjG3Lo0MODPlNaNNpmi5UVh/P5ZFsGBouVJ4eG8fCgkPO6Tamd4nw6N2T7tlaj4FdDTrOB+5LzCFarWGiTj2T9cxA2gn3VMnrV7r3queesEK9m31lYVUyPxO9I9h5Ikc4G14b9bZ7bP4XRaKS8vJzw8PDLnhOtVgpTkvCM68v+1G1ENGWxs/ExdE5yzDZmch27oVp2Cuep9+PUMxzT4Y2obVIQNu4BwOLoS4O7N3mWZhpcKggYbEEUBWobfbBxmkqngEE4OsYhlzsCYE7/rt1I+dIDuZQ3GKg4+3Pu936nd/Bg0gZWdhjC8lxHLE0ZmLo649VgYfHxemyU7+FhLePnjp8xzbs37jZNSI81IhhESl55hYrPP8f57pk4Tp+O1M4Oq9XKgQMH2L17N3Z2dsyePfuKsqWL0bEpnbeKV8DxLJBrELveRqbvSNYUiuzc0kRWdUuGz1ujY7TvUeI8M4nyc8fBIQqV8mmSt6lJOWrGO8yR0bM7Y+esQrt2FwB2I0ZgSq9BACqkErQ/hzD4wfk8In2e5dLZ7CeOZxbtYNFLdzAzwJfH+77Oram9WJ7zEcqFQ2HIq9DncWilmdfVkJubi52dHS4uF6RlUnslrrMjKFuQQKRiMFsczNxb/wd3lm4BWxAFKYh2NJnCqD2ci1kZgNvrn2HTPQZjcSN1G3MwZJdgtoissZqZ8IQdGdUvk5u8lwPFvdmrfZvSRjUxslNUqesRiCTC15lQT3tKGy1kV+nIrGiiqlnEgoC9yoKnbTUeNgW42JQgSEREAayiFLPBHovRGYnUHZXaCyF7Fy6Seva8MBVRFHlr2yN4NCSysLoetbkYut8NQ98Am7broxssTjhImmmWhpDV8TZOaZ04cKSaCp8wKo0haNMNNBksl5yjlljxtLPi62wmxtaAh6YYV5sGXFU1uKirsG6zIliucMG/CUEwIrQ2aJcpBOc/i72ljDOV1XR2vT5tuIODA8HBwRw/fpx+/fqdtwX9N6Du4osh04A+4QSMuznXrC0rZfX7ryNVKJj26rvYOl14/bR6Iy8fP8YrBx8mQFfCosYXsDbG0XtKCN2G+1P2zjusyU7hy9gHkRot7cJBZGL71cr9L+E/Uv4PUFxcjEwmu6RRzTmkNjSTprLhp/wl4B2DIWQC9XvmsDF/MK4aCzN7B7AkvuXYv7qvFBcXX1NP/l1hBVUmMzP2raSrayLm4FG8nhbJHaTcyCVegoqKCsxm82WbkC/yywCYlfANNjITi5VhlDa5M6lZQbENmK0i46O8eGn7SWKtMtz9egNHqMYeBr6E67ZX8E/9kK5Oy9lt40xxVTXeLv+82KZzXjkZfi4kGvPw4e9bD7aG3NMV7PkxDf/OzgyZ2QlBInCyoIZX1yVzpqSeAR3ceHtCBIGul9/Yz6ksr5eQ15nMzEzKQSLALz4WND/OArdwmLoY68KHr3l+ZmYmHh4eV03Npm95j8EWHR5j30P7xwfQfkqoy1BaWoooiq1ucsvzctA3NnC6Uwz3nnqVJpkreeJgjmtLyHXUU9bowUqNBucnXqJiRQY6XwUMHYi+aBeKwgScaspwzCoi2gpitoDWxp/fGyOJHDCd/t3GgPQizaTF3NIW/gbj3N/9o4Rnsdb2x1kSibudCh9HFWN0eQxN/oOamD70fvEVXGRWPiyrJFom57PjlQS5foeyNgmmLOLuqGlYrSZOJcykvFmOaAK/RYuoWryI8nnzqfzmWxTTp7HXyYk8rZbOnTszfvx41Oq2yT+GVe0kRF9IYqfJ/NTUid2nvCk/YEXASrB9GTNcE+mnqSa67wicQ57CxiYQQZCgTa9hx6IzNNcZ6TUpmG4jApBIBCyNRkQhEJlPd+yGDqH6Ny1yTw0DJ4aw/uNTHFvlSf+7FyGVPIxKGMuOoj48uuwAX9zdh4/C/RjX2J9BTp3YWfoNNjvegMztMPmbtr/uZ/XkoaGhl33e5J4a6rs043DCjQ6+U7AT51Muc8Lc+y0c7cMpfvUNTPkFON31IF7PPI1oklD9WwbNJ8tAKeW0wUy6YzKRg/ez75iW3UVDOVzyHnqzhDDbMmp91pJtm8JPViuC7n4SU+uwz5Vxaw9/Zk4LYKCTDbmVTexKK2dXWhlHcqoxW0Uc1DL6BsmI9a6lgzoN0ZCOwZQHstMIwils8pxxN7d8ONfuf4fhCWvpq9ODRxcY9xn4Xb+T1WLjbJ613EZtkR2c7WmnCTLh7+GEj0RKtETEAyteSjnBke6E9vPDxUNz1XvY7m0Dr3se14YVsFJXdxIHh5gLD3eaiLhpDpMqdvFTZhDvXScph5YMa2JiIkeOHGHIkCE3bsrXCWWQIwCGvLqbcj2r2czq917FYjIx480PcHC/YLiwo6qe+ScOsPDk07ib6/mu5lWk+kj6TQsjarAP+W+9xdwmHVu9ZhKq1tLd9SRC2Y13X/n/C/4j5f8AxcXFeHp6tqrP/TQ9j4cLfsHZUgsj3iU3OYtTKgO1Bkc+Gh+F2Wq+0HnzL6T8nJ48IKD1luCVRjMLCsvpbWzgFulBJIKVHxwfotzcjFpjoL3MV1rLDGj1Rn4pqeZuZwVRzfFUOGlYUDKTYBsFHZtkbCmrIcRNg8R4nDzBwkzPFsspJ2sDVkHKZpvxjHT6juBMLfePOMFjtX35ODGNjwf/Myso0WjEtsRAsI87pwqSGdg8/Ia1si/JqmXrohTc/O0Y+UAX6g1mPtyQxspjhXjaq/jmjhhGdfFs9csqpTKFcxYHxW8cQuZhg9zdBrmHzfnfpY7Ky841W0UeTMknX2dkbUdnfFZNBIkcbluJqLTDarn6H12v11NQUHBVy6+k/DMMyFpJcthUuvpEYjbV31QPqqt1ii1IPo1VkJDZVMzbtSc4bpqNa5gbhqafSasZAMChh4dy4sArSENOo1HVoco3Ym/fmeaQuzmy1w2rLoRRY2Rkp21FVbiPhySbkOz/E47aQkBfCBkMwYPYsPcNROXgy+Zwo+DhWkOV7RI8HUOZ2Xkmw8VOaG//Anl4B3ot/ILfG418mJpPNxs1H2+vxsf2V5S1W2Do6xA1DYDMrLnsSDcQXKsCGQg2ofgvXIw+LZVTPyxnT00Nlvp6BgB9YmJQtZGQA5hMRqos9kw4NQ2pYCHKsYTJDfvpdeYEQb7ReDzxNOqIC81iLGYrR//I5uS2fBzc1EyZ0x13Hw26pEqaT5Wjz6gGSSTqnqEgs8OYX4/9iADsgxwYfFdHdiw9Q9IWb2InrEAizEYjrWVDxhgeXHGCr2+PYXGXIEaeMDIp9DX+7DgGxZY58E1f/NxmUMy1I//l5eU0Nzefl678FZkFR7A2QJz9QPKkahqtGjQnyslf+iFyb2/8ly9H3a07jfuKaNhbhGgVUfd2Z1fuRmQRGzGZHfj48DDSqgNQyiRMivZhvEsyL+bOp6vKFXeLHYWmetY92peTBTUsOZDH4v25LIrPYURnT+7pF8Q9fQO5t18Q9XoT+zMr2Zlazu70cjadUSGVdKN7wBCGdnRncLgT7spyEuMfRirWk7P+fsYnrMIiCFh7P4pk2Nsg/Xtf61NNUiJxJMyjBPWqFQT37Y/nwDtoPlWJaLAg93XCtrd3S8ffdpIDXg/y8r+ja9R3Fx6wdYPggUwt2sEt3nfwd7yJ3N3d6dixI0ePHqVPnz7/uKHd34XMVQ2CGWuzEtFoRGhFlnajYLVYqCjMQ1NXx7TX3sXVr4V3mK0iH+SWsOPMIdYkP4+DYGVpw9tI9cH0mBpC1GAfjr77Fi9aPMmV+jPOJZ0IWQVL7U4ytazdpvt/Hv+R8r+Jc37d3c522LsYhXojhytL+KzgZ0xBw5AH9iX12NNszh+Mh53I9Fg/tmduuOLY19KTf5Ffhs5iZfqhJXR2qKAp7mk+PGigu0s5asHQbtFNrVaLUqm8xDLqXJT8oYxlqKUmltj0o6rcnvESBW6h9hwpKOapoR3Ycvo1ZKLI8NjHAQgzFXFaEsD7W7MZNmEeml9n0C1lPmEuXVgvVfG2yYxG/vffnvrUVCR2vkRbA8kxlXPkyBEGD/7nRKuquJGNCxKxdVIy5pEo1iUV88HmNOr1Zh4YEMwTQ8OwVbY+72ZTMy/seYbbxZbNgU13d8xlzejTq2k+ceEuJiikl5J1dxveNjWwp6aBT8M8idtyH9QVwt1/IDr4sXPxAgwGa0sA6QrIyclBFMUr2jCKokj11jewCDLCxrxJY10RDfUSsNw8Vq7VarG3t2/Vl78g+TQl3fszLe9nTDINp8qGIoaX0lh9IRPxZvq5DUeLe4JcKmArkSLTW3BQyAjp4MSmVDOHc4YR438L98c6EdhwCo+qQ9gX70eWuRWA3lIpdg4V/OAzEbjx5Hx7zEtsFhtZnvYTH+14DecV4ChV4vrpXNY3GnnsTD5x9ho+PdKIk2kjtuafIOZu6PcMACUlazlwZidLUp7lXRYCULMqg+rN2ZxwLyLBxgYPZ2cG1dQirFtH7uo12A4Zgst992ITE3O1qQFgNLQQrrmdTHT+dSmKnAzU0dG4vbEAzV/842tKm9i+5AwVBQ107uNJXA9PjMdLKV7aQuSk9grs+vtiLGzAXKdCl1QJgDqqxaI0vKcn1SVNnNySj4tPGD16/obVeAu2ykZ+TpvGXYuPsPjuOL7qFMDMpFxe9OrPJw/th3UP0bNwITJVP+CJq67nr3ryi2Exm8hPOk2+YzhGuYi3pMWytHrJEhxnzMDtuecwpDdROv841nojykh7muMS2Jv2Foc0IexMuo86oz0+jipeGh3I9Fg/HExlPLjqHYwKGR+MWsyXG+8BWtyWugc40z3AmeJaHSsO5/PzkQK2pJQS4W3P7L5BjO/qxZjIlh+LVeR0US27UsvZmVbO3M1pzN0M/s42vGKRESgphYRVHFCp6B73KJKhr1/zb3s1BIrQ2SJH+scmbAY/CoI7TcfKUUe6YtvHG4Wf3b/iBHIlVFbuoKkpC43mghxP6DIVv+xdOBnyyWvoSqBd2yQo2+zcKLOTcp8o0r9/f9LS0s7LWP4NCBIBqSNYagPQp6ejvkJfkBuBmtJizEYjk55/Fa/QFulgicHIQyn5GAuPsSnlBVQKG9br38FY54pNHzdih/rxw9x3+MDQBUGAV51y8DYKvOK+ma8GfQ1ZT9/weUokFiTC//3i0f9I+d9EZWUlJpOp1VT7NwXlPJu/DJVoQjL2Axob89heJdJs1jB3bDQAaxK+I47Lycc5PXlrZB9aCP8ybSVT7WUM1W/FYO/CBw1jMJormNLxO6zpV+4s+k9xrgjvXJFY8bkouasCj/jllDqo+K74Lnr4OeKWZKAyREAUYWykOw9vOkMfQYWje0uETQL0rz7EeuU4Fpd15P6g3vjnHuZBn308x3i+TM7gxW6tu9q0BeeaBnl6e9DRpSNHjhyhd+/e/yjy0VCt588vTyOVS+h0ayh3/XSckwW1xAU68e6kSMI9r24f+OGR9yloLAZavkScJl74MrE0mTCXN2Mqaz77bxP6jBayvtpXztIIFXfkG5l4+FkwxKPrNBexIYRDX33DnycSifKTwFUKqjIzM1GpVPheoWgoPnkfA4u3kRTzOJFOvnyz8nnUOkW71Se0hnPvr7/CYjZRlJZC4ZTbmHB6LuUed2As0lAl/MSx0kmMVNQwWdWMTVRPSvZXYenvQ41SwqnDxZRV6ZC5qpE4KThdUk9pfUtl9cmCWh4uqAUcgdHAaHyFCvpKTjHQmkj/6lQ61uXD1Kdu+DrlP01jgtKecYFDSNniBvVlvHG7gbSTX1PjfA/dbOUs0Aooi/bgqFwAIcNg7CcgCNTXJ3Ek8UMWJD6Ls0aD3GwBCzDFk/Xb/qBKW08X0Z9BQf1xnOkPjz9GzU8/U/PTT+Tfvgt1t2643H8ftoMGIVyx+E8EAaLnvoQyLBS3BV9jO3jwZY1DzuwvZv9vmdjJJYzt44myuJHaZSkICgnqLq7YxLijDHZEkAhUr0zDXGdAl1SB3FuD3PVC5L7XhGBqSprYvyoTR4+uxPVYg75hHHaRTSxKmc2M7w+x/J4ePB3gwaf5ZXS39+OO2Zso/7gPwbrUa77eubm5ODk54ejoeNlz2rQzmPQ6Tlo9MXsqGYyEcJ0Zt0WLkXlFULU0A1NxE5IACfrRx9mp3cvWzVEcLX0Msygj0seex4eEMbSTB1KJAFYry1ffwWGljDciHyHIufVNsLejmhdGdeSJIWGsO6Vl6YFcnvvtNB9sTuX2ngHc2csfdzsVMf5OxPg78dzIcLS1OnanlbMrrZzk+gB8JEX84GZkjn0XVINfvebr0BbYKRTQ+wkkdnJse3qh6emF1O5/0d9OQCJRkV+wkM6dPrzwcMdxWP94kkkVu/gxM4pXYyKuPMRFyFfYkK6y48eSKu7y8SEkJIRDhw7Rs2fPK9odtzdUHdwxV0toPpnUrqTcYjKhUKnx79Ii8dxdVc+jqfl0qzzO8uSXkdp6sNX8HsVFak57SvhsWjhPfTCfDQ2xBNsV8bZVjbLJjgeDPuftfu/Q16cvR9tjngYw/w9tCtsL/34O6v9RXKnIs8Jo4nDmSe4s+ZMSxz7gGkb8kc/ZUTCQADVMjPZBW1fAwaaCK45rMpmuqCefl1uCIMD9JxbgrmqiKO5lfjpZwTD/07hK9Vgs7XMDMZlMlJWVXSIt+LKgHCsiz5etR27R8aN8MPVGFdO8WuwSd9U10MXHnvrq7ZRKREb7DrpkTD+9lmGd3Pl6dxYNg+Yjs8KQzG/xbahiWVUThn/QUrc5IRGJgx/KEGf69++PXq/n2LFjf3s8fZOJP75IwKAzo42yZdqKo+RXNTN/WldWPdj7moR8e/521mZv4N66ulaVdlKNHGWQA7a9vHCcEILb/VF4v9KL7Ce7MC9CxSCJgrdNm7Ex/EmD5FaqTkVSvSKN5uLObPaacNVrX8sK0WCxoNn1BjUKJzqPmENN3RlWZF5ebNme0Ol0VFdXtypdKclIp9DelREVmxAECadqx+DUKZ3TFcEoZFYGm2R0qAsn9LSOwUEuDI/ywn5PBd1LrHwwJZK1Lw/inUmRNBrMdPS049Rrwzjx6jB2PDOAVQ/25ts7u3NvXD1VrseJt9ewpeMHbBR7IjXf4Aq1c7htJWKnCZT9cghZein+cXUM6jCJaqd7kOtT8TnyKbJD+3FWfQgenWHaMpDKMBqrOJ7wGF8l3EuTyY6FM2MRztqOLdv2KzqFmekjpzC4Yx/0h0op/egY9dsrcJg6i9BdO/F49VXM5eUUPfIoOePGU7tmDVaj8fL5nd3beX/4AUHr12M3ZMglhFzXaGTb16fJ/y2TQQ5yBsgFZKlVyNzUOM8Ix+vVXjhPD0cV6oQgEc4PaW0wYixoOB8lPwdBIjBsdmecvTVsXZiCWeeGu/oVOgtpPNltAflV9dzy7UFusbNjsLMdL2UUcarRgF527S69VquVvLy8K0pXck4dB6mMIjt/NgbLsRGb0Uiq0Wc7UrkwCYOpnKqx21nm8B0PbFHwxv77OV4Sh69RwfRYH/54vD8jIjxbCDmQvuctPherGWIfxtRuD11zfmqFlNt7+rPt6QGsuLcHUb6OfLEzk74f7OKZXxNIKrqgKfZxVHNnrwCWzIpjU4iMu/3l3GeU4Tp5UZvcVa6FYkkj5SYdmlvC8HqhB/bDAv5HCXkLvL2nUVq6Ab2h9MKDakcIHcaksp1sPddo6TrwZlYx+ToD/fv3p6mpiZMn22iH0w5QdfZCECToUopuyvXMVpG5OSXclpjD5JpDrEh6AYlTAJtN88jOVrPJxsjYcV5MnLecDfURjPZIYKHFGze9Hc8GLOTxuCcYH9J+Hu9WE1hN/5HyNkEQhFGCIKQLgpAlCMKLrTz/jCAIZwRBSBQEYacgCAEXPWcRBCHh7M/vN2I+NwNarRaFQnGZX/eSokrm5HyLySqBAS/Q0JDKqjQFZquMFyZEA7D+cMvOvrW317lUa2t68tRGHb+V1vCoi5Rw7W+Uij68md8FW4WVMUE/U5N2+1/l6TcMZWVlWK3W85uQEoORn4qrmOUsx+7oV5Q4qllUcisjIzxQFjZj66biSHk9E7p6syllBUqryODYy9PML43phN5kYd5JEVPMDLyKG3nSsoFaqZwf8ksvO76t0GeWI0ikKHzt8PHxITQ0lEOHDmFsjYS0AX9+fZqaCh1/2JlYnKzl9p7+7Hp2ELd0v3axZmlTKW/Gv0wXg4FHOs9us0w7u1nPg1lFhGpULHHPR6P9FDqNR/3iF5xy2s+Syk08JzTjpRZR2xiuWFZTWlpKY2PjFaUrOw+vpnvNKSr6PItEacdnv/9IcZMXUtnNa55zNSej/OTTZHXpyh0lGzGGTya/UEKd5zZOlEfT368IG0FAIUiwNpio97Nn7UcnsZisTH42hoj+PpTVG7hn2TFslTKWzo7DSaPExVZJqLsdPYKccVYeZUPDe3Rx3MvmB+7ni9t7olC0EyEHCB9NTX1PajOkuNw2jo23v81c5ykMrDlO/LGPeK14KI7K1ygTjDzi7sombTxGs47EpMdZlDCErBofPpkeTRefC6TU39+fhx9+mM69o3C5rSOez8dh28cbXUoV5V+couqXbGx6jCF4y2a8P56PoFJS8sqrZA8dRtWiRVgaLte8OUyciHDRJk40WyncnEfqO0foVFhPlI0UBxcVDmOC8HqpB273RmLTzf0yX/jsikb2pFcgGlveTznO8suK2xUqGWMejkIiFdj0TRKdek+k/Eh3gsUqno35mLrmRmZ8d4gnnJxwV8q4Lzm3TaUzJSUlGAyGK5LyvIQTNDr6o4ryoFkJoUI6AiL1JWlkDNjAPLvN3LW9E98nzsBECCMsSm5rVGPro+GdSZdGL/VFx3gh+1ccBTlvjlp0XVIPQRDoH+bGkllx7H5uEHf0DGBrSinjv9rPLd8cZGNiCWbLhc+juzkNf4uBDhO+bdFS3wAkKSvZai1lyp40ThTV3pAx2xP+fvcCVgoLl17yuCRyGp6mKpwbMyjWt/1+72BquYc+lVaAf0AA/v7+HDhwALP533H9UPq3FOSbSw3tfq1GhYppp7P4PL+M+YaDvHvyRXCP4M/GueTlStlmb8YxrIlX1ieiNTjxst9B3mAAUp2KOf7fMy5yIrMiZrX7PP//gH9MygVBkAJf05ID7gzcJgjCX3UHp4BYURSjgNXARxc9pxNFMfrsz9VDfv9DOOfXfbHfb6PZQlLydkZVHeBkXSCeXfuy79TX7CvqQ0dBwphuPlgsZtaV7KePpfWXPi8vD3d391btmD7ILcFOJuHBxE+QYWJ/wBPEZ1UxLngTVAdi5zKmXdcLF0jTl/lno+Sla5EYGlkojsRgkfPEwFC0mbU0OLVE7EdHuLG9IYeBUns0jpcXZYW42XJnrwBWHi0gP+pVLAol4/JW4lFXwRf5ZZis17/LMJWVg6Ulcn2uk+eAAQNobm7mxIkTf2v9pTn1rFfqwV3F+kf68u6kSByu0Lr9YlisFl7e+TgmUzMfKsOQt1H3WWsyMzMxt8VpxVOHzbr7wCsK05jPWT/vXfakZPOzRz+8nWU81XsuUumVSeTVrBCrDXrCDr5PicafDv0fIqtgK6szogmR5aNU3rwvo3NFnq2R8qSMDHorM7Gx6il1vhPnDlvZXNgLpcyKRf7r+eOa7ZVs/T0XtwA7pr0ch2ewAw16E7OXHaPRYGbp7Di8HC4teEwo3MdjB17B12zl+9HLcHBqnbzdSDTu20fZBx9iN3wYW+6dwzOy7gxycWBpz36opa/hJXsfhdjAaaWCotpsXoh/gU+29OTXBA0Hi2N5elgHRkeebWx09uNx5513XqLFlzmpcBwXjNeLcdiPCsRU2kzlkmQqvk5C5hVL4K+/4b9kMcqwMMrnf0zWoMGUzZuHqezSCi1RFDHk1VG9JoOCNw4i7C3EQQB5tDvuT3TD86nu2A3wRWp/uX+kwWzh8x2ZjP4snkZDy3spQ7Aw6ecTDP90H4vic6hqvEA47F3VjH4okvpKHTuWpdNz0p2kr3MhwtmbOd3nIoiNPLD4GM/YO1FpMpMju3bx6tX05HXlZVQVFbDbJ5oKDyWTLGuwEZswiBJeUJ7h/vgB/JkznJhAH5bM7M5jojNdmiVstjXz8e3dUMou2nwYm/lk8/1kK+S8O+ADnNR/3z0qyFXDmxMiOPTyUF4b15myBj2P/nySAR/t5ps92dQ2G1FZdZhQtBQn3yBIJBJsDK7Ellj56tNjzPv8GMkHiilKq6a6pAl9k+myzdS/AVOzBItOQKXyxd19DFrtSkymi6LiHUZhkSiZVLGLldmtZ6T/ik6N6QytPsrbYT4cqm1iibaS/v37U19fT2JiYjut5OqQqGUIcgNIXDDX1LTbdbT2zvwYO5SEeh2bLHu58/DLiH692VD9Ftp8KO+iocouj4P5KlwVVSz0SWGqw62Yy2Cu93LCO3Tkubjn/qfqDf5fxo3QlPcAskRRzAEQBGElMBE4c+4AURR3X3T8YeDOG3Ddfw1ms5nS0lJ6/KXoaYW2gucyv6JO1FDtP4H6hpP8eMoFQRS4K6blS+FAwkLKBCsvBI2jsCLnsnELCwtb1ZMfq2tia2U9n9pVYp+xlhM13iyw7YCXXSUDfeLJ3/IqGWHNtE1Bd/3QarVoNBocHBwoNZj4qaSKWU5S7DZ+TZGThh9KJjOpqyc2NSasZpEDzU30CHSmsHA11RIYE3DlVtlPDm3RVb69o5iFA57CaceHvFy3hCcdXuC30ipu93a94rmtQXc6AalTIIJaQOrQQhb8/f0JDAzkwIEDxMbGtl0nePY7KN7ewswpnbm9h//5VHVbsPTU1xyrSePtZgH/WT+0yV/ZZBV5ICWPAr2RdR0c8P51PChsMU5eyrpP5nEsp5JNfpPxcJDxZNQ7uNspKBSvPG5mZiZeXl6tFg7v3fUdk5vyKJq4GAtW5m0+QrMphlmhNlDR5mX+YxQXF+Ps7HyZbZ9Rr2O32o6vipfTHDyMDK2FWu8zJJ4Yyl3d7fmjqZrJZ/9IR7SNRA72pe8toUilEkwWK4/+fIqMsgaWzIqjk9elVpApZQk8vPMx3M1mFvafj5N395uyVu0zz6IMD2fbMy/xcqaWoc72LO4SiG5dGvb6z5DJShCmLmWUvpYRaRvZYzxKQlNXfsucgMouEb3pD4prnsPb6cIm60rNgCQ2cuwH+WHXz4fmhAoa4ouoWZVB/ZY8bPv647vgO4w5GVQtWkz10mVU/7ACZrQQ/rrt+TQnlGOp0mMBio1WpOFORM/sjEJ99a+OIzlVvLwuieyKJsZ39Wa4RYE1uZquw4L4yF7CymMFvLsxlQ+3pDGisycz4vzoF+qKd6gjA28PZ/eKNBw9/XD2DiB1vYU+D45gjvRdvjj9Am/9cpqZo0Opl0rRSWVc3vv1AnJzc69YNJ+bcIJmlQ0Z3aPwM5YzQbqWwtoAnI2NpOq7MrO3D7P6diTARcPuH9OoLGjkdxsDD4wNv0yutu/PB/lFYeEun8H0CboxjWfsVXLu7RfErD6B7EwtY+mBPD7cksbnOzPo7mW94eLTBtdELEYlXZSdaagBIbWBvalplxwjlUuwsVegcVBgY6/ExuGvv7f8q7aVI5G2jzrWYm6RMuzNqKC7/wOUlf2BVvsTgYFnbWGVtohhI5iQvZvpZQ/zTMSV+zKcw93aX4itS0DWrzebXJx5N7uYgbEd8PT0ZP/+/URHR1+14VZ7Qe6lxtoUhC4xCbuBA9rlGocDOiGIIkfMm3Hb/z6WkJGsK3iSimIj7uPcWHrsGOU6H4baxvOakwvOHWdTvy2f5a4bsAYYeW/AR0iE/5TQNwo34pX0AQov+n/R2ceuhHuBzRf9XyUIwnFBEA4LgjDpBsyn3VFeXo7FYrlE/2qwWik49gvRDekcLPHBv1svdpxYyOGSWGIMUsYPDwFgdcoKnC0ig/q8dNm45/Tkf43qiKLIe9nFeMglTD81F71VyRqHmeRU6ZgS8jPmkvHIVf6szmk/FnVxp8WvCsqwiCLPlqxEYtTxtXEyIlKeGdmJ/OQqpAoJRxqaGB/tzaa0X7G1WukX99gVx3bSKHhiaBjxmZUccp6NzsGJCcVb8akv5eOcYszXGS3XJbQUeSoDHS95fODAgTQ2NnLq1Kk2j3Xuyl+9NoC7egVcFyFPLj/N18kLGdGkZ9KkH0Djcu2TgNeztOyraWReiBuxmx+ApgoMk5ew+osFnMipZKPfZNzsZTwV/R5udjJiuv2EKLY+L51OR1FRUavSldzaanqf+oI81674Rk9l3+kf2JHfjWhLIuPH3dyOdlqttlU9efaZZEJcanAz1aDs+yQG+TeszxmJXCoSbrMGiyCQLs3neLOBHnd1YsCMDkilEkRR5PUNyezLqOC9SV0Y2OHSFH96dToPbJmNg9nEoq5P4xY+9mYtFUGlYse783g5r5wRLvYsiQzEcroCxelXUEkTESZ+CV0mQ+xsmia+RbFbCAuTZhNiU8NYp5/5pWw/YzZM4vkfrmxvedk1ZRI0sR54PBWDy+wIZG5q6jbnUjL3KPpcFR6vv0/Itq04TZ+OcFYI1bCrAD2QYLCy2wyesyLo8WDUVQl5TZOROatPM+P7wxjMVpbOjuPL27qhOhtVdujmwfQ4P9Y+0petTw3grl6BHMiuZOaSo/T/aDef78jEMcKJrsP8SN5TjF/kWGqKtRiL+9C90yye7fYu/g5V/LwxE5smI8ar2P+ZzWYKCgquKF3JPXWMHYOmIMolPCL7AIeKEJyNzZiRc/TVMbwxoTsBLhpS4rWc2V/MCRsLbh2duKfvpeNVJf/Ga7Un6CCz58nB81qfjGiBxFVQk3eZBe61IJUIjIjw5JcHerH5yf5M6OrdLhHrBtdkTkV8yd3v9eHRrwcT+XgEf/jAr7YGGrs50HNyCFGDfPEKdUCmkFJb3kzm8TKO/J7L7h/T2Ph1IqveP8ayFw7w7WN7WDJnf7s6qn64JR2NphPOzv0pLFqGxXIh6yKLnoGLuQ7XmiQqjKZrjiXBiFw0w2+z+MTfFpVEwlNphfTp14/q6mrOnDlzzTHaA+pIXwSFLc0n0q598N+EFXg9+1vc4t/H3OkWVuc9RWWJCbuxSl47mEqd0Z4nzcuZ6+iD+4AWQr7X7ginvY/x2eilyKX/TiHs/1XcVPcVQRDuBGKBizsKBIiiqBUEIRjYJQhCkiiK2a2c+wAt3YXb1JXuRkNvNIAUrFZLq/rXtUWlPJL5LZXqAM7UudMlSMdPa0NQCFYGObhg66SkovAI+6z1zHTqjFx1eQOXK/mT76xu4HBdE6s5jFR7nJ2lndjo0YWOLoX09m0g8edBFPhYcWinKnGDwUBlZSWdO3emzGDix+IqZjkJOPzxPflOdqwsHsUIDzO+Tmp2pVRhcFEgGJoZGm7HglQtQ+WuKG2uHu2+q1cAPx7O593N6awf+S52qx/l3aKPmW0/j3XlNUzzbHs6WJeYisy3F4qASwvBAgMD8fPz48CBA8TExCCTtf3t72Z3fe0dm03NvLjtIVzNZl6Pm4Pgc20rOoCl2kqWait52NeVW4+9CYVHMIz7hlXfryK5rIk//Sbjaifj6ej3cbcViOn2EyrVlR13srOzr2iFeGr7fKYYK6kZvRydoZT5OxtRCk5MdrTi6Ol1Xev9J6ivr6ehoaFVUr4yp4B7y9ZT7x5FSWM9hcoG0mo6MKGrN7vK9xGEhHzfbWz3Wce2XofPn/fN3mx+OVrIo4NDuLXHpfeLnLocHth4JyqznoUBU/GMe6Dd13gxtn38Je+WNzDa1YHvIgIQKnRY1r+JvXQX4sCXEKJvB8BorObA8Wf44tS92Kps+fHx0XjZ3kZpxiZ+Tl7Cb0059OPKjaBagyAIqMOdUYc7YyxqoCFeS+MBLY0HirHp6obzvU/B0gMApHjakpVag39nZ6bd3QmNw5U/A6Iosj5Byzt/plKnM/HgwGCeGtoB9Vl9uSLQAaQSZM4X3I/CPe14fXxnXhgdzraUMn49VsinOzL4bGcGA8NcGeCvIe0IuPiGcGj1L9z72fco5M48JXmP71OexlBtQVReue5Bq9W2GuQAMBuNbG0ykR7YkXH67XiLlYRnVeEsaeQZwxN8omi5N5Tl1rPv1wyqbSUc15jYPL0rkos25mJ9Ka8ffJ0mhYzFIxeilLbyGmlcaTBVc2zTY/iZzLirXZH49QC/nuDbA7y6grxtrlCdvOz56JauPPmDEp3579XHtAWCIDAgwoOYUBfmbkrlmyMFbG1oYN60KPoEXHovtpisNDcYaaoz0FxnpLnOQFO9keY6I2Juu02R1JJ6fj9dzIDABzl16k5KS9fi43Nby5OhwzFJ1Uys2MXawtE8GHL1VvWCYKFGbodjQzHuGx9j7tBveDi1kD1Bnri6uhIfH09ERMRNl2ioOrhSt7EAQ3Z1u13j3vI1zKpYj6nrbFYnzqCmUk9ubC2/7VPga1PLi8nL6TnwNhwm3U3ZNyfJVOWy0mslSyduQiP/97qe/l/FjYiUawG/i/7ve/axSyAIwjDgFWCCKIrnt7SiKGrP/psD7AFa9QIURfF7URRjRVGMdXO7MYUt1wOz9YJmt7i4GLVajZNTS+LUIopUHfgaP0MpSboo3AND2HlmAwkVkcTpFPTo0UJwNhx8H4sgMKX35VFyaEm1enh4XNLkxiqKvJ9dTITMSN/j86lXB7FMMpZ6k8C0sJVI6h9HtMrZWFfPw4NC2mXtJSUliKKIj48PXxeUYxJFni5cjmA28pXlHqSihceGhFFd0kRjtYGTJj19Q11JzVhGo0RgTOjEa15DIZPw0uiOZFc0sa6hH3U+/gyvOkZEbQ6f5ZViuY7IkKmkuWVM30tTzIIgMGDAAOrq6tpdJ/jBtkcoMDfwvlMcDnH3t+mcfdUNvJpZxHAXe14rWQmJv2Ls/Sy//LKf1PJmNvpNwclWxtPRc3G3tRLT7SfU6qslpVqkK2q1+jLCe7w4j+FpS8n0H45TSD9+2buUlKoO9Ko/St9RNzdKfqUiT1EUaWhKI0RXhKb/4xSVfcja9ElIEHkizsBxwcgol64gsaCXXyhU3JCg5aMt6UyM9ua5EZe6yBTWF3L/xjsRjE0scojDb9g77b/As7AKcNwvmHebYaybA99HBCIzizQv/RR7yc9YI25FGPRCy7FWM6cSn+LTo2OpNTjx/cyzenipHM9OE3lm2gZ23H7oH81H4WvXUhT6XBy2vb3QpVRS/sUpzpWg52bW0W96GOMe63pVQp5b2cSdi4/w9K+n8Xe24c/H+/HS6E7nCTmAqocbqkmtEyOlTMr4rt78eF9P4ucM5rHBoaSWNvBBXSW1UpG6xhgaqyo5vX0Tvr53ENv1Ix6J+gyp3ArmK98XrlY0n5iSzNZeo3ForGS68nu8U31xtjTyuWkKJ8wtMqbmeiNbvk/CqpTwk6SJtyd1wcfxInmV1cqv629nn1LGMxH3EurauoWrl18fyqUS7vHyYLi/Dz3cVExuOs0TCZ8xf/10Vn3VgUOLB6Dd+DSWlPXQcO0Cd4kgwE0giLZKGe9NjuSn+3piMFu55dtDvPvnGfSmC9+HUrkEO2cVnkEOBEe70WWgLz3HBzP4zo7tNi9BCmFOMj7eno7Gtgf2dlHkFyxEFM/OS67CHDKSsRV7+aOwbe4lxSpXMoJtIXMrkzKXM9bNgfl5Zfj07kdZWRkZGRnttp4rQeZmA5iw1EvaTc/fvTGZVHUwv52egba6kT/8S/gtTUFfp2N8vvVz4gbchvNd91O+LJFqavjM+1u+HrkAV83lncz/wz/HjSDlx4AwQRCCBEFQALcCl7ioCILQDfiOFkJeftHjToIgKM/+7gr05SIt+v8qLpZyAGwvzOOurGWU+g7kVHo9fr3k/JwcjVIw0V2vIDDKDWtDGWsaMoiVORLoefm+45ye/K9WiOvKajjTpOe7il+gqZLfyyNJcOxKb+9j9OrQg+xDHtTYSlA7KLi7d+Bl496o9QLIXN35obiSWQ4ijqeWk+vkzG/lPYlpTiUiskW6AnDCqGtxXcn6HWeLlR4xD7bpOsM7e9A72IVPt2egH/IpElHkg7y5ZOuM/FFe2+b5Smx9ARGF7+U60tDQULy8vIiPj8diaR+HjW2Jy1lXeYL7rBriJixs0znZzXruT8kjzEbF98JpJLvewdhhAj9uLiSrxswffpNxsJHyTLcPcbc1ExPzM2r11aM/VquVrKwsQkNDL9FDWkUR7bb3UFsN+I59j8rqk3x7xAsPRQ09qSKo283RVp+DVqtFEAQ8PT0veXxHYQm3V/5JjdKDQk05SbUOZDf4ERfkwpEz3yEKAqNiHr7knKO51Tz/WyI9gpz56JaoSyJbJY0l3LfpToz6OhZKfQmatOimEJtzSPDyIj60ExPcHfm2cyAyARpX/IS97hMsnv2QTPnq/Hyysj5iwWFf0mtC+OiWaLr5X66c1ihaby52vZA5q3AcH4LXiz2wHxXIOdHWtJdi6TrE77yt4V9hNFv5alcmIz/bR2JhHe9MjGDNw30u0+5X6iq5Y9Md9Py5J+nV6Vedi5+zDc+OCOfAC0P4dnYsJZF2mCW+mOX+bP/5J1YfysTeaTSx0d8ilV7dHSg3NxcvL6/LOvmKosib2lqMCiUPSb7CsciGLg0H2SGE8bllMr3NBqwWK9sWJ9PcYOQnWTNDo72YGH3ppjE7/gPmW8roZxvIbbFPXnEez8U+x9apW1k4YiGv9XqN2yLuxj9wCIVenVnp6Mw7zg48IKthVOUOYo+9yviVg3h0YSQf/jycn7c8xv6kHyiozcFkvbYMo73QN9SVrU8P4PYe/izan8uYz+M5kd9+0du2YLiYSWG1jl+OFuAf8AA6XT7lFdvOP6+KvQMHSxMuFSeoNF69aF0UAatARaAvlZ5OsOsdPlHmYyeT8rVVhZ2jE/Hx8Te90FWQCEjsrEhsfTHl57fbdXSCkmR9KT841JFTq+J+54288sNKrKNm4/7gQ5QvT8LQqOM9nwXM7TYTf58e1x70P/wt/GNSLoqiGXgM2AqkAqtEUUwRBOFtQRDOuanMA2yB3/5ifdgJOC4IwmlgN/CBKIr/06TcbDZTVlZ2PqoniiLNuz7A1tJMk/8MwEySuZSMmlBirDa4OKtx8dFwbP97FMllTO1yd6vjarVazGbzJalWo9XKh7mljBWLCUlajj58Kj8YYpBIrEzvuA972SPUV+g4ZNHz+NCwSyJTNxI6nQ5BEFhe1YRJFHki7yskFjNfCU+hEo1M9LUikUopSK7CbCfDqJDQL0jKXlMlI9S+yBRtS3EJgsCr4zpRqzOxKM2byg6RxNVlMLT6JJ/ml2Ft4w1R6hSI1FmJRHW5POVctLympoaUlJTreh3agtLqLN48OZ9Ik4WHJ/8KsmvLXs45rUgF+MWtHvWGhzF7RPPjQSm5jRJ+95uMrUrKMzHz8LA1nI2Q+11z3JKSEpqami5zXdmecYox+WvI63QbKvcwPt+8nvJmd3pp99Nt6EgkbShGvZEoLi7G3d0dxV9aSe8+tYXYhjOYIqaQk/cNa85MQ2GFl0d3ZEvFCTqIcoJ9e58/Pruikft/OI6vs5rv7+p+iTtGeXM5922+mwZdFd/pVYTN+BVkN9eDOd/JCbXRwIJOAcglArpde7EtmINVE4x01s9wVptZWvo7yw5msLeoLw8PCmFSt6tnQ24UzhWFniMeLj5XJv3H8qoZ+0U887dlMLyTBzueHchdvQMvq7nYWbCTKRumcKaq5bY+e+tsTlecvuZcZFIJQzp68NWDPRj5QBds1P2Qm3X8tvQnery/g8/inRCvaAIKRqORoqKiVqUrG8prOapxZlDJTnqJp4jOKaUWex7XvUSoUIOTaOXQ+hy06bUccwWzvZz3JnW5ZINnLEnghYwf0EjkvDN6yVVlDYIg4G3rTS+vXkwPn86zsc/y+ZDPWTf5D47edYIdt+xgycglvNnzVWYGjCHMuQNlShVrjCXMLdvLwyfnMXbDROJWxDDmp948tOEWUqxN13wNbzRai5q/t/HSqPnNhCxxBz0DHPhyVxY29kNQqwPJz//u/PtXCBmMXmbLhIpd/FladdWxjI0STE0CHgEfkxwsxWhrh8P6+/nCV0Fyo56i2H4UFRWdl5jeTCiDnZHY+9B8qv2yu1ajyC/IsFPU8almC1OW7GZfn2nEvvoMlb+lY9E2M997CU95uBMR9/C1B/wPfxs3pGRWFMVNoih2EEUxRBTF984+9rooir+f/X2YKIoef7U+FEXxoCiKkaIodj377+IbMZ/2wFq1Lz9aYikqKUUUxfOk/GhuEuPzfyOn43Qysypw76rjt4z+yCVG+jTJCOzqimDSsSZ/G3ZIGBbRuvHMuQ/7xXr5FcVVFOgMzMv5CkFpx/qGnmTYdmBE4E56dnmErGN6LALoPBTMiL02SfsnaJYrW6LkdmZck9aS7ezN2uJQutWcpFNUF4w6MyVZdaRiYki4O8eSv8MgCIwOn3Zd14nwdmBad1+WHcyjuscnGBQS3sv6gIzGZjZX1l313Cqlkkw3byTOIZcVeV6M8PBw3N3d2bdvH9Z/0KDor7BYzLy08S4sopUPer+N3CnwmueYrCL3n3Va+TFQhdfamVhUjvyc7Em+Uc3vPpOxUUp4tvvHeNjqiOn2EzY2l6fjW0NWVhZwqRWi3mJFuuttzBIFwaNf50z2OlanRhFlX06grpTIIVd2yWkPiKLYapFnTrOBgQW/USfYUOZbzYnyzhTqXfFzUOFhOk6CTGSUR89Lzpm99BgyicCyWT1wtLlAuKv11dy/5R4qm0r4ptZA51tXg/pqnh3tB6nVikwiYMzIQLHvHkSpBskD60HVUv/Q0HCG1fsXszJ9KkM7uvH8iJvbxKk8L+eqz9c1m3hpbSLTvj1Es9HC4rtj+fqOGDzsL9VENxobee3Aazy1+yk8ZTasLypmax04Khy4f9v9HCk50uY5denmweA7ByCRh9GzMZERwbasOl541XrJwsJCLBbLZaS83GDihfQCvMsLuNNpGZGJRixWBXebHkUv19GNatQGFxK2F6APsGGXvqVB2MXvJ0x6vth4D+kKOW/3eQdXm78vp5QIEjw0HsR5xjG14wyeHvwRn0z9ndUzj3FkZiK7R6xgedgs3rHtwj0mJRF15dSUJdJgNRJq/XccLy6Omi+MPxc1bz/LvitBtJiZ4lRFVZORRfH5BPjfR0NDEjU1Z2VdUjmGoBGMqtzPn3nXiDKLAljh+d+teAY+yakOAqKhlqF7nmG6mx2rTFIa3b3Yt29f+y/sL7Dp6o8gSGhOaJ9IucUgYjHCQP80FhlOEPRDPMsixjD03TnU7czHkFjFUrcNjFWk0Wfcd+0yh/9wAf/52LQRlWoJZpOAtvhSP2XrjjcxSRT4jXyNvOQjFHh7UdDgR2e1PRIzBEW5UnNiCTtUMsb7DEQla72gJzc3F09Pz/Op1iazhU/zyni2+TDORQewDn6FBdlKHBT13Nq1FnfXyaQdLSVdZuaJkeEoZOf+lO2TXkvwDcVgFXk06wMEq5WPrc/ipICu9Un4R0ZTmFaN1SqSLBqZEO3N5vxteFpEoru2nhm4Gp4bEY5cKuGzg1JKu/QkUFfG7LKtfJpXdtX0Yby3J9siYnkl1hVzK9KVc5BIJAwYMIDKykpSU6/dprutWLrpAY5bG3nJcxD+Ebe06ZzXsrTE1zTySbALMRvvw6qrY3VOB/KsrmzwnohKIfBszMd4aBqI6fYjNjaBbZ5PZmYmPj4+l3je/35yO8PKdlMe9whWtYZ5W89gtCiJzTlAh159sXFwvM5V/zNUV1ej1+sv05P/nnKYkVUHybMNp7RmF2tTp2FvEZg9NJStCS2SoFGxlzr6lDfoWTwrDn+XC3KFOkMdD2y9D219Pl9V1ND1lp/Buf29yK8Ga101wsoZSIRmuHMVgmOLDMlkqmHboZdZcPouQt00fH5bzCVFhe2NlL07+eXV51p9ThRFNiRoGfrJHlYdL+L+/kFse3oAQzt5XHbsibIT3PLHLfye9Tv3K3z4KfkQISYz3tUFLG9W4KPx5pEdj7CncE+b59ZloC+dBkxGtJjooz3G0ZeHXSVO3nI/lUgklwQ5RFFkTkYhzWYrs2q+Iy6rErXBwBLJIyRauuAfeBBbBKSiDI23DV/XVjGrTyAD/uLcc2jTYyyXm5jh2ZeBYdfuYFhX0UxFweXNma4FQSLB1SuamD7PMmnqLzxx33Hm3XuaX4cv4mDw3czr++51j3mj8Neo+bRvD/L+ptSbGjX3Cg1Hd2wrYyI9WRifg8x2LAqFK/kF31+YZ6+70Vj1OJccoNp07b4LCYW1fHuyHzLvPqSF2kJePB8Vr8BNIWdv5zgy8/IpKro5HTbPQRnYsmE3FTe3zwWsIhKpyDs5RfDbbpZGjEU5czY+5XoadxSy0/4I/pLVjJu4HBQ21x7vP/wj/EfK2whB3lKbWlpWiq2tLfb29qSn7aF38U5Sou6nrkaP2j+PDXnDkUuMzHByRqGS4h1izx+nF2ISBKbEPNrq2GazmaKiokv05N8XVdCsb+DJ9C/AM5JVDd0pFFyZFLKJbl3eICepEqvBSr2HggldWwjN8dLj7bL2OgRSvAOZZduMR/oOslzD2FzqxQh1CY4Odrj4+pOfXIVVJlCnFojxMnDIUs9ouxAkf8Muyd1excMDQ9iSUkpuyAfU2cqYk/0lOXVVbL9K6+Rz6ewdnjJuFevI1125E1rnzp1xcXFh3759N0QnmJy4gq+rjjJS4sjEkV+26ZwlRRUs01byiK8r0w69hFhyms0lncjCn3We41HIBZ7r/hmetvVnI+RtJ5NNTU2XWSFWGkwE7X+XWqUrAYOfYfuJpewtjGaMXxOahlKiR9w8W8BzOFevcHGkvM5kxvvkt+iR09C5kdPVwykxaPC3SpjU1ZMtNSl0FtT4ubW48p8jZ5/f2o1oP8fz4zQaG3lo+4Pk1GbxRVk5cWO+Ar+4m7W0ViGzmjF/dysySx7mYd8jDW7R71utZo6cfI55RyailGlYPKsXtsqbY45lNpnYvvArtiz4FK8OHeEvnsMFVc3cvfQYT65MwMdRzYZH+/LK2M5o/jI/o8XIpyc+ZfaW2UhMOpZX63gi8xjygS/CqxUw4UvcsvewVK+mg1MYT+9+ms25m2krht/bDzu3buQl7KbizNWjhrm5ufj4+KBUXpCPrS2rYUtlPRNKjjFRchzXWiNb6h/gC31n5LYpTIoOwyLVoZfX8YPQRJC7hhdGXVqsWHtmA69WHiBYasuzQz+95pytVpGNXyeya8UN2vwrbSFoAMLAOdDx5n9e/4pzUfNbe/jz/b4cxnxx86LmXYYMp6qogLvDFRjMVhbsKcDPdzbV1fE0NLTIpaRB/WmUOTChYhdbKmqvOp4ghWeGd2B9QgkHq+dQ7u1Mua8nqoOfslyVSaEo4VRoF+Lj42/C6i5AYiMHqQ7RbIvV0H7dPRv/3MaugdPZEjmcJyJ8qFh5hlR1DlWab7m7z8vg2aXdrv0fLuA/Ut5GDDYcZ7F8HqUlZ4s8Aem21yhXuNBp+PNkJ+whyz2UsmZ3Al2d0Oc3EtDFBUn2FtZK9UTa+BDu3Hoquri4GLPZfJ6UVxnNfF1QzueVq1E0FGMc8SEf78vD11bLjNjOaDSh7NmaR6MgMnNSx/PRtEXHP2mXte9DiVkq46H01xGsIh8YnsTPSY1f7j78IqIAyE+qIldmYVgXT+ITvsYsCIzuMvNvX/P+AcF4O6iYv6uBvE79cDQ38WLhz3xylWi5IFpRmfR8dkqH1mph1PEM4qtbj1BJJBL69+9/Q6rqm6uyeOHYB7iKAq9NWonQxiYTr2VpGeFiz6sFSyH1dw5UdyBREslaz/FIpfBc9y/wtK0mpttPaDTBVxynNLfusgRJdnaLq+jFpHzTgV+Iq0vEMPAFmsyVfLoH7JRmuuQfxc0/EO/wThfWVG9sr6TLJdBqtchkMtzdL1Tyb8hOZWLpdlKUnjTL61iXPhZXi0BMBxdqcjaQLJcwyudCIw0nGwUSQWBkxIVC0WZTM4/ufJS0qjN8UlpOn34vQ8Sk9l/Q1SCKvJ33FYrmIxg6voGi34UGxplZH/PBvk5U6tz49q4e+DnfnIhUfWU5v74xh8QdW4iZeAtODz+PWWjR4pssVhbsyWL4p3s5kVfNm+M7s/aRvnTxcbhsnMyaTG7feDtLkpcwVebK6vTTRKvd4f7dMPilFv1+zEwYORfHtE0sNNnT1a0rL+x7gdUZq9s0V6lUwuQ5D4EAmxdcWemo1+spLi6+RLpSajDxSqaWWDs1s2s+IqBYzynFGD6TDETEgsLzDwb5DMIka6TA5QgFOgOfzoi+pE5HbKzgzfiXqJbK+HDEt6jb0FE0+0Q5NaXNWK7iEvP/OmyVMt6fHMmP9/bEYLp5UfPw3gOQKZXUndjNjDg/fj5agFk9GanU9kK0XCJFFzCM4VWH2JRzdWkWwONDQhnf1ZtPdxVTIX+flAATeic3uu54isfsjZz0DmJvSQVlf+l8296QuyuQOAaha4c6qHOon/Uw85x68HzfYOp/Pk2VUMtB5895yrU79Gibg9h/+Of4j5S3ET7WCoZKT1FdU423tzclp1YTWp3Iie5PY2tjT3HtGv7IH4VcYuT57oHoGkwEdnXl9KGPyVYomBp5zxXHzi9saQV8zrrri4Iy3BsLGJv5A0TNYGmhKxVGFbcEbSW849PU1urRFzRS5SJjWERL+jilKoUDVUntsnadIOCtL8M3+xgZbjHsqnDmvhhnDHXVBERGU1nUSHO9kXTBzISu3mzW7iHQAh3DJ//ta6rkUuaM6kiytp4kx9cocVMyu+Bnqiqy2XMFoj2sYQephycwxvonm2NCcVPIuTUxm+8Ly1sl8pGRkTg6Ov6zaLnZwNwNt1EkFZjb520c7NpelNfBRsX3lqNI4ueTUu/NAUkf1riPBUHk+div8NRU0K3bj2g0rVtdWi1Wjv6Rw9p5Jy97LjMzExsbG7y8Wuw4Mxoa6XNsHuX2wXj0vIflu5eTURPM/TEONOZl0HXE2EuK1U5tL7gZnJzi4mI8PT2RSlvIj9kqYj3yLTLRgi6imZTGu9E2CvTUy5g8MoStST8AMLL7hayT7C+dA/VmPU/sfoKE8lN8UFbOoM63Qp8nbsJqro7R9buYXrGFZodZKGdccOsoK/uT+TsqSK7qxHuTo+gZ3LYmU/8UeadPsuLFp8ho0qN9/A2eCojlruR8BKwIiIz7Yj8fbUlnULgbO54dyKy+QZcVclpFK8tTljPjzxlUNBTxVa2BN7ITsRn0cgsh94q69KK9H4FBL2N7+le+sbrQx7sPbx16i+Upy9s0Zzd/byIGjsLYlHzFY/Lz8xFF8TwpF0WR59MLMVitvFqxkpiqCjJk7qyqv49MuZUODlvwVWjI/0XEu3Qo3jVdeXJoGFG+jhcGFUXWrb+TnSopT3a8g47uXa85V6tV5NimvDat638GohWarl4UeSX0C7s8at6eUNrYEN67P2kH43mknx8yiYQvdhXj43MrZWUb0elaehra9ZqFUjThXLibumtIWARBYN4tUUT6OPD6ZhG93cOcDDVjNet56eSLBMhhd8fu7Ijf365r+ytUEd5IlHboTtw4ueVf8bI8ig4uGnollWDRmVnv/R0vG5qQTFpwU12q/v+O/0h5m3HhTenj6Y5s11ukaYKIG/gANRVpHLb6UmtwJNjNGdtqMxKJgL9jIaub87AR5IwOGXfFkfPzC/Dy8kKtVlOkN7K0qJLvi75HIlVQ0/dVvtiRRqRrCv28+iOVqvhlTRpSBEaNDTlPpBYf/hA7y40rWvwrnij4EYA3Gx+gg4ctnQwt6WP/yK4UpLTcxGvsJXRwLOe4qGOMU0SbI8ZXwoSu3nT1c+TLvbWk+PVHEKy8n/vtFaPlztSjthqwa/qa4F8nszlIwkgXB17PKubx1AJ0f3l9pFIp/fv3R6vVknOFKEqiuo57vJ1pNDa2+vzWDbNZL9Vzr/cgYtu4CZGd9dL9xbkSxR+PUaRzZJswitWuYxCxMid2AV6aMmK6rcBWc3nTH4DasmbWzDvJsY15hMVd6hfbmhXigZ0LCNUVoBrxNsWVh1l0PJgQFyPBBadQqNV06j/o/PnN9UaS97a/btJisVBSUnKJdGVHiZbJBetJtfOhUaVkTVpP3CwCjioZ0d4qtjZkEyW1w9uxdSmPyWLimT3PcLTkKO9WVDHSuy+Mmf8/8aXSwZBFpcwR1QPzztsMNjSm8c22NWwvGMysPv7MiGv/xmii1cqOtat4bf0fLBtzN99NepBfzXLGi0UkFLzLJON+akRb6vUmvr+rO9/dFdvikf4XFDcWc9+2+5h/fD79BQ3rstMZqPKEB/bAwDnn3WQuw8A50Psx1McW8aXgyfCA4cw/Pp9vEr5p0+Z4wB23I1NcxTc9NxepVIqvb4tWf1VpDdur6nnXzUq3k5+jk0uZo3+LTRYDfpImBJtKxp56krKceoyKGhC4rOdD/oGP+cBURE8bH2b2nHPNOQJknyynpqQJhermuhn9bShswGyE+WGwYgqc+hF0tdc1xF+j5u2NyMEjMOl11CYf455+gfx+upgG2QwEQUpBQUs2RRXan1qZCxMqdrHtKvLHc1DJpSycGYudSsY7e2JotIsjraMDUu0J1lb+QJ1awzK9QFXV39u8/B2oI1rukfr08msc+feRXdHEu2oBdbnASr+VvFBxCPmU79rcifo/3Bj8R8r/BhyLt+DWWMjhuBdwVSk5kTCPzXnDsaGJV8d1Ji+xCq8wR0wnP2erRsPooNHYyK+cjtZqteelK/NzSxladYguxXth4AvMP6BFZxYYpd5JRI97qdebKEmoolktYXCvlg9qTk02OypOcZuhfWKbTvpUbi/dRKr7AA7X2PPciHC0KQk4enph7+pObmIl5TIrg6K92Hnqa0RBYHT0P++SKJEIvD6uE2X1Bg6YHiffT83w8j3ICg5woPZykiwioBfkGGLmQfkZNN8PYFHjJl4McGN1WQ0TT2ZSpL+0C17Xrl2xt7dn7969rc6hUm7kjErOvOOXt88uObKAt+pOEyV34uFh19aXnoOtpQElRlxX3UGdXsYfTGal8xjMVivPxX6Ll20JMd1+xNb2crmTKIok79Py63tHqStvZsR9EQyfHXHJMcXFxeh0uvPSlYNlpYxN+QatRyy2nUbx2ZYtVOudeWVEJJmH4+k8YCgK1QXSlbCjALPJetVCuhuByspKTCbTJUWexQcX4mBppCm0keMl91BUa2SATk5QpCt5iT+SppAxKuAvDjGigNSiwGw1M2ffHOK18bxW08h4mwC4ZSlcpRX7zYQFKyZBikTT4uRhMtXy2+53WXFmMv1C7Hl1bMQ1RrgcZrM9OkvbnGQsosg2bTnj125ill0Q2wdMxMbbn8+dm8gu/YR3d8zAIW8vn5kn87z4GNufGciICM/LxhFFkd+zf2fq71M5U57IO3UGPstJxXnQK3DfzmtrTwUBRrwLMXcj3/8pH0l9mBgykQWnFzD/+PxrEnMbewfiJky54vO5ubn4+/sjl8sp1ht5LauIARopt+y8C6nVys+GHljlntRJRG41pTIi9WHUaiW3vBiLyb6lkP/i7IupLIUXzyxCLpHx3uilSIRrf22KVpFjG/Nw8tLg27Ht3Yj/Vbh3otzWhZVdx5Jam4l5w6MtBP3nWyHxNzC0vVi1X5grW57q346TbYF3eCecvH1J2rWNBweG4Ggj59OdFXh6TqK45DeMxioQBBp9BzOw5hjb8zLbNK6HvYqFM2OpbjLyTdLDaJ3UlAUH4p2whHmGIyT5BLP4cPvUcLUGuYcNiCbMVRasTe1jh/mSsxTvIglrvbbxSOUaNH2fhOBB7XKt/3Bl/EfK2wjxbDLf3VaJ5vBn7HWKZWjPKTQ2ZrA+R0OTWYO/hweR9jbUlDQRFCZhs3YPeonA1I63XnVsi9VCYGAg6U161heXMj/va3AJIyv4DlYeq6S/12G8dV1R29qxeFMGHiaBLn28LkTJD72DSrRyZ7fWC0n/KXqV70Qhmnml5g6i/RwZ0sGFotRk/Lt0Rd9koiy3niyphfFR3mwuPUwnq4TAoCE35NrdA5wZG+XFLwk6DqkH0KyUMjf7Sz7LLb7s2AadHqzwszIAHjkCwQORbH2Zp3bfw2o/yNUZGHk8g0MXEXqZTEbfvn0pKCi4qgft2sy1l7hFWLQneSnhcyxSKR+MWY5ccn0FrQrBglnXwEamsNx+HAazhTlx3+GtKaRb9A+tEvLmeiObFiSy9+d0PIMduPW1noTFXu5+kZmZiSAIhISEYBVFMnfMx91UjevYuSRk/sr69BiGhAnY5iVgMZuJHjHm/Lm6RiNJe7WtjnujodW2EKBzkfLE2jpGZv1EloMPpWZbfi/siodMRpBZwtgRIWxJ+xVBFBnR7cKGz6gzY59wK0PPPMMr+19hR8EOXmiyMs2igDtWger62tDfLIiihV1HXuaTo+PxdVLw9Z29LpPhtHqeVaQ0p47D67NZ+c4RSksf5FDN1aU5Oc0G5uaUEBOfyMyMYpI1LowWDOwOlrBH+zHT141FmrmJpcIweuq+YqtlLP664FYLTWv0NTy791le2f8KHcwiq/NzmKTyRnhwHwx47srR8b9CEGDcp9DlFmQ73+ZtuT93dLqDH878wFuH3sJivboeOXbcpFYfb2pqoqysjKCgIERR5Nn0QkwWkcXZH6CoKuS4uyu/Vo0ks0nHrCYFNPSnwDWF217u1bovu9nAN3/cTbJSzps9X8XD1qtNy8s6GyWPGxv417rZ/1kM8B2ARKrgvboEpttDn5BQZodE8GldEru2PE7lx2GwaiakrAfjtZ1A7FTXX+R/vRAEgcjBwynOSMVUWcpjg0OJz6ykxHI7VqueoqIVAGh6zkQuWnDM2UaDuW1a9yhfR+ZP68qpQh3rC98i2asBvZsfd558hx6NuSyU2KGtvjlFrYJEQGJjQlB6kt49lvS4HuSMH0/B/Q9Q8trrVCxYQO3adTQdOoQhNxerXn/d1xhbrSHe6SSTDStw8eoGg19ph5X8h2vhfyOE9P8AzsVuBigSUDXVc3DQCwxUK9l75Cu25w/Cy1jCi2MmkJfUktIK0q/jPVsNHeyD6OJ69ciRIAgEBATwcGYJj2l/w6WhAO5cy1t/HEQuMRJXfYywQS9Q2Wjg9P5iYpHSf1ggANr6QjaWn+B2oxSnuAdgT+sR338ChcWEGQkJ9Xb8PD2cspwsjDodAZHRFKZWgwi1jlI85WkkS8w843xjHS5eHNWR7WfK2F4zk6igA0SlZRGQtorDwU/Ty/HCF6kotqRL39ptJrl8He/e8jXqjB2weQ79Vo7kYP+XmCobxrSELN4K9eEeH1cEQSAmJoZ9+/axb9++yzqqAiitIgEu4bxx8A3WTVyHsxWW/H43J2wUvBs7B78rSCmuBCMyzKKEbcJEFthNQWc080LcQrw1+cR0+xE7u06XnZOTUMHuH9Mw6S30mx5G1CDfK3ZazMzMxNfXFxsbGzZkp3NL9o8UhYzFwyuM+d9sRySS1yf0Y8fbT+PXORIX3wuSiYQdhZiNFmLHBLJj6XUt67qh1WpRKpU4O7dEEhMOrWCmoYIjYW5sS7yVcoOJYTo5BjsZXvYGtuq0xGg88bBtiawbmk38/sVp5HV+yOX1bMrdxJMmNXfWFME9m8Hh6h1P/00kpX3GO3uiESQals7uh4P6ygTGqDdTlFpDblIl+UmV6BpMCBIBrxAHZLIKTNbLpSUNZgu/l9fya2k1R+uakCASVJjFwMJ05ozqiW/hOsRlvyBKZGxWx/Bqzf2IMgXD9RoUnnbEc7nLQ3xRPK8ffJ1afTVPNxi4u6YU6aBXW/T6fycbIZHC5G/B2IRk8/O8MOlbNFEP8H3i9zSZmni///tX3Owq1K1nHs9trIOCgvilpJrd1Q382bQBu/Q/yQzUcOJoIHp1KHc1KHEQ4VTAahx6qbG1bX2845ufYpFMz2S3OIZ3bFvPBdEqcnxTHk6eNoTEuJN98sZLDhYnLeZM1RnmD5x/1cZF14NbOtzC1LCpFDcVc7r8NImViZwuP80P5jrMZ73YfRpPELVnP123Q1fvHoR3uR15h5FtapLWXug8YAj7V/5A8p7t3Dnjbpbsz+XzPfW83X8YhUUrCAh4AKeOA6iQuTO+fBc7qh5jskfbskvjorzJKGvki52ZeKifQBn0BX0S4efc94nq9AVPn0hl1fA+7bzCFigC7bE0KUGqwGHCBEylpZhLStCnpGCpvry7qtTREZmXF3JPT+Rensg8vZB7eiDz9ETu5YXMwwPJRQ3b0mzy6OqyEb9yM0xd1PYN9n+4ofiPlF8nImr3sMpjJJOi+lNXd4ofTqgwWeUEaiQM7ODG+j9P4eKloihnMakejrzU8dZr3jQ9PTxJMVhI0GbyfcEK6DiOeEsI8TkpTA06jGmvDaHP9+KjnVmE6QVcQ+yxdWq5CS6Nfx0Bkbu7P9VuHyKrCIjQL9SVPqGuHFqzHQQBv4go9vxagE4Q6RXrxbZTHwAwqvsjN/T6fs423NM3iG/3ZhOpHISP/TZezl3Es5nj6RUXff64c9mMcR0qWZMSQHbFD3w8NZTgR44g/Pk0brvfYJfvJl7q9BKvZEJyo465Yb6o5HL69OnD9u3bKSwsxM/v0kZMEkTe7/c+t268lXcOvc3sgjQWqFua10zofMd1r2ejvCeL9BOose9Mk97EnJ6L8dHk0K3bCuzsOl9yrFFvZv9vmaQeKMHVz5bhsyNw9r5yh9TGxkaKi4sZMmQIzRYrxt1zUYpGfMa8w4YjizhYHM39fZ2wFqVTV15G/9tnnz9X32giaXcRod3dcfbSIIoSjNb2cwEpLm5xMpJIJJTrjcQlL6ZQ40ZevTP7zD0IcdHQNduCX6wrmScXka2Q88rZ2gx9o4nfv0igStuI2aYCTEoelLhxn/YU3PoLeF27EO/fQknZRl7fZKK4yZvl9/Qk2O3yCG1DtZ68xErykirRptdiMVtRqGUERDgTGOWKf4QLKo2cpc/EI+rP9kwQRQ7WNrKypJqNFbXorCKhagUzKnNx3rSK7oEujIowI9v4KaIgIcGlE89UzCSvyYc40cxQsxungiSsKam5pKV8s6mZT058wq/pvxIqqPi2SEu4WxQ8+Du4d7xs7tcFqRymLYOfpyFseJTHpy9H0/1pPj3xKTqzjo8HfYxS2nbCl5ubi0KhQHR25fUTmTypO07s8U8odVeRIe9MrmUq05pssAIhLov51juJDwI+OH++GfF8+rg+YzMvl+/BT2HHi8O/bvMcsk9VUF3cxIh7I9rNZz4rtZjU4gL+9PuT8SHX9kpvKwRBwMfWBx9bH8YEt2TQ9GY9qdWpJFYkcro8gROlx9hsrANdCsojL9F5/wt0tQsgKmg4XSNuw93O+xpXubHQODoRHNODM/t20e/Wu3hmRDjP/XaaTN1MnM070Bb/ir/fbGo9B9C3aA1P56Uz2aNXm8d/amgYWeUNLD0Fzj2G4NTpKBGnMliWMY/pnV/nz6Iyxvm2f2bRJjoQfWoWNgNeQDN4IDJnFTJXNTInFaLVhLm0FFNJKabSkvO/m0tLMRUX03zyJNa6y5vvSV1d4awa0DYqkc4JR2Dy9+B8Zbev/9C++I+UXydMgpRD3Z5ihkbF5vgF7CkcR6fGVO655xYMTWZKsuuI6VTCWqQoJXLGBl/bS9Y/wJ93c4p5P/dbZIhYR7zHm4uO4KIy0jG3ENeuMVSZpOzaX8g0q4Ju/VvS/RUNxayrOM5EswKPmNnXuMrfR0N9y9vk+ZEtkoqC5NO4BwSj0tiRm9xihXh/V2/e3JlIjKDAyzv2hs/h0cEh/Ha8kM2lU+nXOZ4eCXX0PL2Akx0+JcbhLEk9m84Yb6wlelQn3t9q5a4fSnl98HsMnDQfdeZkZJvn8NHuWxkd/SR3Fo8kvUnP4i6BxMbGsn//fuLj47n99tsvu364cziPRT/GZyc/46TZjJvaideGfPq3olRNUg3J1mDs9Sbm9FiKryaTbtErsLe7NKNSmlPH9iUp1FfpiRkZQI/xQUhlV8+Fn+viGRYWxqqkQ9xZ9DuV0XdjozDxebwGZ7WRp0b0YNtn76FxdCI07sKXU8LOAkwGC7GjAwForo9jY8Md3G2xIm2DtOJ6YDKZKCsro0+flijT3uPrmdaUw8HwAP48OJQGjZQInYgEgV79fPltz3okAgyLnEVzvZHfP0+gtqyZ0Q9FkrBhDSUlbjyUfQJGz4PwUTd0rjcSggDvbthNQsVg3hwfTv+wlgikaBUpz28gL6mS3MRKqopaJFYObmq6DPQhMMoVr1CHK/4dPsotYVVpNUV6E/YyCdM8nRmvFsj/9mOa8pMZH6vAq2E7pAoUB0TzSllvdhf1xldl4M4GFZ5etnzVXItYLeHtiRHc0bPFCSqxIpGX41+moCGfWU1GHqsqQznkNej16HVHx0VRbP3zIle1bKRWTILV93DPbSvR9HyV9468x6M7HuWLIV9ctSbnYuTm5uIfEMDzmcWENWbzQsLrNDs5cybEgaw1UwmShKOVWwmWipxxO4hMcKC/7wXtc6NowQYoq0rn493PUa6UsWLY122+fouWPLclSt7d/don/A3kJVXis6cXKlUgHx//mEF+g7BT2LXLtQBUMhXd3LvRzb0bRLQ0gyttKuV02UlOZ20isfwkPxmKWJa+DNKX4SlR0tUlgij/wdysXFXkkBFkHTtEzoljTI7rzcJ9OSzYb+KDgT0oLFiCr8+d2MTejqRoNQ6ZG2nqHodG1rYCXIlE4ONp0RRUH2TBqSnYx2bhGq5hQPpO7snvwnPiRPp6uOAkb186pQx1BbKQOvhR9+dFxgQCSO0VSJ3VyFyckDl7YROkQuasRuaiavE5B6xNTZjKyjCVlFxC4KvZAUCv04sg6lboOqNd1/F3cczGghXo/W9PpJ3xHylvI85FYb/1mcZdnaKoro7nx1NeIEJHUzHDugWRcbQM0SriVbeMjX4ODA8ciYPyck/fv6Lcww8hbz+jy3bCoJdYkVJIdrUtz8SdoX5VI33H9OfzHRl0NEiRyiUERbd8ka/Y9ypmRO6NfRr+odPJ1XDOtKSrnyMmvZ6SjDS6jZ5ARWEDot5CvbsMteEg2RIrr3i0TyrPTiXnmREdeGVdMhtKxuLtuYH7tKt5Kfk2YvoOvuTY5N3buX3YKDrdG8hDK47w3FYHHi1/lLFxk/B75CDCn88y5PiHJHvuYFrgM4w8bmRRRCC9e/dm165dlJSUnLcSvBizZO78YLFQLZPxSd+3sFf8Pb2yRqbHRtbM83Fr8dWktRBy+8jzz1ssVo5vzOPE5jxsnVVMfiYG7zDHVscyW6zsSC07L6/KzMzE1tYWiZMLXmvuxyRT4THsZT7Z9jm5db35aEoo5rpKck4dp9eUW5HKWm4B+iYTibuLCIlxw8XHlpVHC7BaVOitzmjTa/DvfGMr8MvKyrBarXh7e6O3WPE78Q2VCgcaVL04qool1s8OlzQ9qBS429ew1VJNnJ0fapMd6z87RUOljrGPROHX2Zm8P+RUiyJCr0eg5z8vMG4/iGAR+TNnMDO6u3J790ByEirIS6okP6mK5nojggCeIQ70nhJCUJQrjh42bdr4fZpXxkAnO14J9maUqwNlyQns/vhdutlmEhVegqRBpLnjIL5ucmJRxhhAxkiJhMgKR5JdJaxoqGZUF0/enBCBp4MKk9XEtwnfszDxe9xFKYtLyohzjYKH/gC3Dte1aqvFyo5lqZj0ZsY+eoUMhtIW7vgNlo2HlXcw46512PR7j9cOvMb92+9nwdAF17yX1tfXU1VVRVV0D5LKCzmS+hrIlRz09KJg14tIJRrilUY6SxQEOeXwmZ0NsR5xl3yOz93nn9k4k0SVhMdDbiHSq+1yvHNR8uH3dj4fJS9vrqBRb7zypuQ6UJBSxebvkhCsUqRIqdZX83XC17zY48V/NO71wlPjiWfwGEaejaYb9fWkJf/E6cw/SazN5LTxKFsrTvI5N6fINbBrDLZOziTt3kZYzz7MGRXOvcuPk1A/m1DhYcrK/sQzcgJFf3gxrnwXO6ufZYK7Y5vHVytaHFkmfHWABUnPYB/zKqO8O/BW/gKOOEfyYpoj30Ve6thTVFSE0WgkOPjGRJ2lmguZcK9Xe2Ku1mOp0mOu0mGu1mOu0qNPr8baYLrkPEElQ+aiavlxViNzCUHdLQLbYWqkdgoK3m0h5TgGwNj5N2Su7YHt9makopX2qZz738F/pLyNyJN4kGwN5FCn2Txlr2b1jkUcKplOt7oEYmKiEASB3NOV2NhYOKlMoRFnpoZNbdPYP+pFvsv+AtHRn6buD/Dpx9sJcayjS5MNiTIZQkAX1m06xhMWG0K6u6FQyahrLOPXiqOMEtX4db2z/RYuithbL1R7a9NSsJjNBHTpypkTZYiIRMd5sSXxdaSiyIi46/GDFjGbTMjkbZPdzIj144eDeWzWDmNY7224V5oZceJDEqN6EmV3IZKlcXRi99Lvue2defzx+BDuWXaI+cfuo6RxFeM7/U7H8e9jlzsF503Ps/34vXwZ8gDTjJN5I7gDSuUB9u3bx4wZf4kWVGaxfcuTVDtrkElkrEpfxVD/oW1yYvgr+rskMKnLKjRKBd2il2Nvf8HLuaa0ie1LzlBR0EDH3p70n94Bhfryj2l1k5Ffjhbw0+F8iuv0zD3LK7Kzs+nYsSO/HdvMY5XxVPd/mfK6k/xwujOdPEzcEtuB/SuXIwgCUUNHnh/v9K5CTHoLcWOD2JNezivrk3n57HPZpypuOCm/uMhzT/IeRtWc5FBYV1afjMIgVeHpoCHIbCKoqyvppxaSL5dzl88M1n9yisZaA+Me64pP+FldqFMghkIr8XWzCMmqxSvY4Yp6+38TgmCmyeDEeI2CvqVKljy/H4vJilwlxb+zC0FdXQmIcEFl23YZmlS0YAaO9+6Mj0qBaLVy4rfFiPs/4y6vEqQSsHSZyHa1kvdPdSW/3p9uLtAjT4WNQsqPNs0IKiULZ8QyvHNLCl7bqOW5Pc+RXJXMhGYjL1bXYTf4dej1cIsO/DogWkV2/ZBG5rEy7N2u0WxH7QR3rYOlo+Hn6Yy/+w9sBn3M83uf556t9/Dd8O9wVbte8fTc3FzqlTb8aZaxNuNtbJvL2eU1ncx947Ai4VeNAYuNhP4VoLbfTJ5Myu0BQ1sdK1FsJkzuxL19Xr2utZ6Lkod2vyBnKGkqxqgX+C3jN6aHT2/zeH9FYWo1m75JwtlLQ4EhD3mzjOnh0/kl7Rcmh06+YnO6mwGFyp6o2IeJin24pQg0cyvlSStJpvSmXF8ilRIxaDhH1/9GQ3UlQzq6ExfoxKLDzcwb1Jn8gu/x9JxEjWsfepSt4YXcFCa49z1/flt8y7wc1Hx/V3dmfH+YhWeexSniA/rW2PFD4ssMVC9jo6cLY90czx+/Z88esrOzue222+jQ4fo2sleC820dQRSR2iqQ2irA//LAkNVowVJ9lqxX6c8Sdh1GbSO65Eq42KlSJsA5Wfkti0HZfhmX/9A2/D9SF/7vI14RxTjj+9zl50NZ+UZ+SuyETDATU3uKYSMGYjFZKThTRaDqJGtdXAm0D6S7R/c2jd07ZxWhjTkII9/n461bqNHb8tKoADIPHyMwujtf7i+ko1WGxCzSsWdLBPfnPS/SLAjcF/ds+3gw15dA/MeIX8YwoXkvRbRE5/OTTyORyvDpGEHqyXJKpCLjYn3YXJdOL0GDs0vrvtp/hdXGERBJ2rW1zVOSSSW8Oq4ztWYlv2XdQo6/DSOqD7H98NpLjut/+yxKstI5E7+bQFcN6x8bSP8wD344cyvfn4jk8NEpZGsKsDwUjyRkCE+mf8G2pKdYnHyU5J6DSU5Lo7z80uKsklW387ajDVFO4cyJm8PhksP8mv5rm+d+MSxmFXJRoFv0UhwcooGW1H7SniJWvXeMhio9ox7owtC7O19GyJOK6nh21Wl6zd3JvK3pBLpq+O6u7uftC/V6PbLAEHod/YB6tTsOfR/gky37qTM48O7kfljNJpJ3bSOke0/sXFoIjqHZROKuIoK7uVEqWHj0p5N09Lxwc85NqMBqvbF2m8XFxWg0Guzs7JAf/JRGqRqXmCfZa/Ahxk5PxpkqVKJAh27ubMndjIPeCf2WTjTVGZjw+EWEHIgYF4d/pDsp8SWsm3+SZS8dYN8v6WjTa274vP8Jqsp7sKVyPh21UurKmono582EJ6O5d35/Rj3QhfCentdFyAEkWAERH5UCfUUhGe+PJCplDrEuWoQuk8ieMIdHyz14aO9Y6k0+zHZ2YGi2imoFfKtoYvSAALY/M/A8Icdi5uMNd5JclczHZRW8pwjE7sH90Oex6yfkokj8qkzSj5S23avb1g1mrgeVI6yYzFCVD18N/YrChkJmb5lNSWPJFU/NycsjvlN3Xs/6ko4ViWxTf0ja8Sk4+UhZraygXKJjkr0jEgmk2CcCMNhvcKtjCYBRZY+Vtntt5yS0RMljxwS2qiWfe2QuJ8pOtHm8i1GUVs3GBYk4etgw8cluWBUt0dDHuz2Og8KB9468h1X8Z77gS04v5dkdz6E3X79zxyVQ2EDEZNxv/Xv3x7+LLoOHI4pWUvbsRBAEXhzdkYoGA4cq76OpKYOqqj0ourUEWxzTf6f54r4VYgsxL6i6uqtMN38n5t0SRUqFK0uy7yCtizte5kq+PvMec9IKqDBeiFLL5Xk4OhWyatUqCgsLb8gabbq6YRN9dVmURCFF7qlBHeGK3QBfnCaF4nZvJF7Px+HzTl88n4/F9Z4uOE4Kwbb3Rfp/n7bxlf/QvviPlLcRHvoWktbfXs7W47+QUBFFYEMedjYq3AOD0WbWYNJbUEl2/H/svXV4VNfa/v/Zo5lkkkzc3SCuuLtroVClAnV3l1N36kYLRUrR4h5cQzwhJBB392R8//4YpBQLbc/3Pe/7O/d1zTWy916z9t4za93rkfshQ2pmZsjMHrsqny/9GTFoBKWO4SxPVzHAt4reKl86GhuwDk1ga3YNo21ssbFX4NXLgc6OGpbVpzAca0Iiry23eEMwGSBvM6blszF/GgF73iTVbMtjmicYp7ckQ5XlZOIZ2gujQYKpQUe7gwxt41YqpTDep+cyiGYbewSZJ8fX/YZB1/NJYHCIC0OCHUmu7s8ZJzsarF2ZnP4+p1ovFoUIHzwcj5AwDiz/GV1XF3ZWchbNS2L+4AB2lfTlq5yXyD27mON5d9E89jGY8QOhXaXsS7uXkIoNbI0ZwOZDRy753uelLZjkVrw37FPmhM1hoNdAPjn5CSWtJT3u+3lUlcWQt+VN7O3jAehs1bH5y0wOrCzAM1TDnFf7EBR/ceDVG81syKhk+teHmfzlIbblVDM70ZtdTwxhxfx+l5SXFwSB/IrDJLafQjriZU4UrGFLYQITwuUk+DtTcPww3e1txI65mOuQmVyBvtuI32AP7l6cgr1Kzk/zLrrsu9sNVJ9pueHzvBYqKyvx8vLieOFRhtUeIsc3jsUpzugFOQN9rHHrFEEC3o7VHNBbMzPvCfSdJqY8FotHsOaStlx8bJn4YDR3fziI0feE4xFoT96Ran7/NJ3Fzx1i7/LTlJ9qwvRvLK7VExgNzsiFTua82ofb/tWfwTeH4tPb8bp5AteDAHSufxbJF7GEGk7Q6dKX9jsW84PSips3eLKjZDATQ+25t8sBx2I9e1QGcv3k/PbIQF6bHHFB+lDUdfDdijHsMjYwrqOTMYNfhbu2gnPwX+rX8Y1FZO+rIHaUD35RV7dwXwZ7bwsxl8ph6TQGWHnw3ejvaOhu4M7td1LWVnbFw9a36RjeeYjJpUdYq/uRs2f98IhOozHKgWKFBhddA84tJrycGthnKyXCsTfuNn/WYbeM2bcFzaC0vZSVp1f2qMvnreQaN2uCryAnKpPI8LL14sl9T1LTeWPW48qCZrZ8lYW9i4qpj8daFm7dTaBvwl5pzxMJT5Bel86mwk031O4fUVfaRutSJxS7gnhi3xPoTfrrH/T/GFqtlpSUlKtu17i54xMRTc7enYhmMwl+jowOd2N5mhV6IZDSsu/xix1KsdSbCXXJ7Gu6vJDQS79nX1cnf2qsFw8PD2Z/eRzL6iKp7BXD2ObDzChdzfMFFReO19tm4RKRi7dPNcuXL7/M0PM/AUEqQeakwirUAXU/TzQT/5vQ+Z+G/5LyHkJtsiRe1ddvYEVOHxQSI0Oaj9Irqc+F0BWZxMBBjzpkEtkNZcRbm3Uw7j3e3LANs1nC69NGU3D0IFK5nOU1ajyUcmS1OkL6uCORCKxJfp42yTkr+T+BhrO0bXuJro96wW+30liawpfecxjZdwVP+b/KKYkPeuR0t7dRV1KEb2QMGSk1CEBYrAvbTi1HIYqMSHyk598pCEhU/elsaSZj59Yb6u6rUyIxImVl3lwKA6SEdpWRtfeLi01LJIyYdx9dba0cW2eZVKUSgZcmhvPBTdHk1jnyUcaHVLXbk5ZxK3nydIz37UYePIrXi77mu6LXWCHo2VtexXnHZpqVkpf6v4qPnQ+CIPDmgDdRSBW8dOgljOZrl26+HBLMRosrvzC9jpVvnqCyoIUhc0KZ9HAMNvYWtYnaNi2f7CpgwHvJPLYyg5YuA69OCufYiyN5a1oUIW6Xuxr1IWFMz/2cJk0IssjRfLynEakg8OrUIQBk7NyCg4cXvpGWkBldt5Gs5HK8I514YscpunQmfr6rD252VgDI0CIIRgoO5FgWbf8AtFotDQ0NeHl50XzgE0yCBLfBr7Emr53QrkJS2q3pJcrxCtaQeWIF/fKfQIktUx+PxT3g6nHFCpWM0CR3xt0Xxd0fDWbs/Ei8whwoOFHLxs8z+PnZQyT/kkdJdgMm4/8MQZcKOpw81f+YjB1YrOU2md9RoXeldvyP5A0axD0bsnnvyERsrZ14M86f3ilGWtv1rLY3MGF6KBsfGXRJGXlDawUvLx/Kl+Z6JtuG8s68FOj/4A1bx88jbWcpqdtKCR/owYCZwTfuzHMKgtt/B6MWfplKnJUbi8YuQmvUcuf2OznTfGkRmKyaOrpVbSzIOcKq5oW0dFvjPegLYqYO56tjNXh3V2Bv60p3ow5nYS9ZSjnDfS8PXVEpbZEKEp4Z+DqDvAbxdcbXNHQ3XLe7RRn1NFZe3UouESR8PvxzdCYdj+99HJ3pcsnJK6HqTAubv8rC1lnF1MfjkClF9v3yI7KzO5DVbkav7WZq8FRiXGL4JPUT2vTXr1j5R4hmkYzdZaz9IBVFhxqV0ZZDlYd4ev/TGMx///+u1btR2x33lxfEoihSWVnJhg0b+Pjjj9myZcs1948aMYbWulrKT2UD8OzYMLr0RvbWLKCl5QQ6XR519knEdBRwoijzsuMPnmlgQ8blNTD+jCdHhzI2wo1VBdNZiw2Vah9eO/sVVYVHWV/XAsDXjTfxQvHbNHg34OhUztKlS2lpabnha/C/Gf8JC5H/bfgvKb9BbM/cQ35zCFa6DqyNnQTGJSGKIiXp1XjJU9lkJ2e4z3CcVNePwVUbLUTfnHQfh+rOklzkx8wYPSHuvhQcO4R9SDT7i9u509sV0SzSq587uvZqFjek0FdQEx3+1+MTDdoOzhz+ibKvRsCXCVgf/4YD1mE8E/8BX8/cR8y095jfpWVE5mGi7U2ASHluFogivlGxpB2volMQmTDYgx0dJQyWarC1uzEpLIncC/+YeE5sWIOu6/rFKM4j2NWWSb01HGuIoEDhTL5zb8blfI0N3Rf2cQ8OJXLYaNK2bqCx8qLrcHaiD7/O70enXsYbR+6jVvIE1TVrOZZ7O3Ujbkec8QOxuko2Zz3EoeSFmLCQkvH+45gceHGh5Wrtyiv9XiGrIYufcn66ofMGkCBlz5JTbP8uB1snK25+KYmoYRatgpMlTTy8Io2B7yXzRfIZor3tWXJ3H/Y8OZS7BwVgd42iHPbmXAK7K7Ed/xbrj/7Mydoo7hvsibu9FXUlRVQXnCZm9ASEBJvJGwAAxuVJREFUc4nB2XvL0XUZ2WrqpLC+g29vTyDM3ZYuQxeNnU3oOvcQoDhJSXot5nd8YNFY2P4i5KyF5lLoQVn0P6O62hKCYLYqY3jlQTK9+7M01w6DCGPUDeSWdqLRg4uvLScO9kNqljPhsUhc/XqeWCtXSglOcGXsvZHc8+Egxt8fhV+kE4VpdWz5KoufnjnE7p9PUZxZj9HQs2Ii/4loEOzoRskuySwkC97gu8Jk7l0bRkZ9LA8O9uYewZX2vbWclhkpjFOz/NnBzB8SeEmhotbKk9y/ejwbpXoe9B7D29PXIP8bpbVzD1ZydF0hwQmuDL21119fgLiFw21roasJfplGuJUri8ctRoKEu3ZcVJsyiyIfpp/k/mOn2dH8HHYeavxHv0lQnD9fHJSgM4nEtmUxwNkyPpVaHwVghO/lnj0rmQqJRGoJf+jzPDqTjk9Tr12t93z1To2bNSFJV5fGC9QE8s6gd8htzOXNo29e1yJbXdjK5i8zUWuUTH08lpaaQpY++yipW35HtNIAcHjlUiSChJf7vUyLroUv07+8Zpt/RFebns1fZXF4zVn8Ip3ocmlAIVHwQp8X2Fu+l+cPPP8XDA6XoqY5iVPN01nx2jFOHa7qMTk/bxX/7rvv+PGH72jK2skM50Je8DjEQFMOhqukwwX36Y/Sxobs5J0AhLjZMjPem/U5NrQYfCkt/Q5Z1EzMCNif3oD2Qn9EBCDOx543N5+iqfPangKJROCT2bGEudvxfc69HA5ypAMVi0+9xvu5udToDLhU1hFfmMXC0/dTGiRiZVXM0qVL6fw3VeT8T8Ty5ctpb+95Jdj/4r+k/Iax6vRQlFIjA8zFSKRSfKNiaSjvoKPNTJfmFC1mHTeF3NSjtmqxJ8MchL7fAt7bVoxaoeOFyZOoLMijo7mJI6I37nZWODYYcPJW4+SlZsPuZ2iQSpif9OQN971RZ2B3ZjIHfrkb3YchhOx6AmNHLcvCH+HXuQcIuWcdH065j9fD/FCXnOF0djbDhw/HSmmx3JblZCK3UuEaEIy+ootWjZTa8t9okAqMDxh/w/0BGHjz7Wjb20jbtuGGjnt1RiJyQeTX07dT4d+N2tTNBO3RS/YZPPcOZAol+5b8cMkEmOjvyIaHB+KlUfHyjgBOmxejkLuSnfswWezBuGAzjZpoXin+lt6mUgBe7v/KZeRiXMA4xvuP55uMb8hrzLuh/svMCvKP1ZA4wZ+ZzyWgcrJiVUo5Ez8/xE3fHuVAQT3zBviz7+lh/DQviaGhLlfVPK7rqkNERIGBu0t/ocGrP+2ubnx11Bk3tZ4HR1rCZDJ3bkWmUBIx1GIh1HcbydhdTqeTnB3Vzbw3M5qBwZYwg4VrXkDSlIneUMraiHi6zI78rL6TSq0O8eQiWHM3LIyGj0ItZbgPfAiFe0F7uRbun1FZWYkgmGk9vQ6VWYe6/0ssO1ZCr/Z8jLbOhBgtC6G8Q+XoEajuuwn/gMvLvff4WiukBMa6MPquCO7+cDATH4omMNaZkuwGtn6TzU9PH2LnjzkUptVh0P+bCLrJiJXYM+vojaBB0NCKDd1DVMxfVcPP2ZMI93TghylxqHY101TYxlGNmdH3RPDjvX3wcbxU2q/81Hpu33YH6TKRdyLv44GRH/8tK/6ZlFr2rcjHN8KJUXeF/32dbq8EuOU3aCmDpdMJtHJiyfglqOUXtd2XZJ1l7I4qTndMILKvmt6T16FQN9Eg3M/vGVXEt6TTJHfEsxMc7brYb9+Jj40nwZprh+X42fkxL2IeGws3kl6XftX9ijLraazsuKqV/I8Y4TuCB2MeZGPhRlacXnHV/WqKWtn0RQbW9gomPRTOyU3LWfnqcxgNem56+S1MIeMxq8NI276J6jP59HLsxZywOfyW/xunGk9dsw9gSRr97a0TVOY3M2ROKOPvj8Ikt1jGb+l9C08nPs3O0p28evjVG45VF0WLAWf9B2/SXL8fY+cmlNZy9i49zYrXjpF35OrkvLKyko0bNvDTRy9Tu+UdxjT/wkuyRdxlWkbv6nUo0fOLfCwvSe++4vFyhZLeg4Zx5sQRtB0Wo9cTo0MRBIEdlfOpb9iNR5gXZ2R+TKzdzYE/hbA8EthFW7eBt7dcfzy3Ucr48c4krJXWfJR9LymhPjjpGnkv502eyivhSf0q1ipe5/nqn1ieM52s3s6YzAUsX74cne6fHwv+E9HV1cWKFSvQ6//zwqH+U/FfUn6DKG/3RmeSEWmswCssHKW1NcUpxYCZ5IAmPG086efZs8IEaZIgpun/xaqUteQ2BPDQUA80NiryjxxEkMnZ1+XCw0l+1Je2E9bXHWNLBT81pREtUdOn1/WJvyiK5LR38c3pPL5b/Qa1n/dh1PrpJJVs5pTPKI5OX4XLk5ncNvstbg+LJMjaErJQU1PD1q1bCQwMZNCgQRfaK8vJxCc8ksysBhQm8I9wYlvBWqzNIkMT/ppQkXtQCMFJ/Ti5aT3dHT1fUTvbWjE9RMmpZm9yu/w47DsUBRarTmWBpfSxtb2GAbNupSQzjaK0E5cc7+1gzdoHBjCqtxsf7GpmXfmb+AU8T1PTIY7l3EbXhDmsFSZiRIqIcFX5w5f6vYSDlQMvHnqxxy5pnaqeZlUl059OwHOQOx/szKffu3t4dm0WJrPIO9OjOPbiSF6eFI6f09ULBVV3VPPWsbcYv9ayILISDDgbWnAc/xbf7lpNebs3L02KxUouRdfVyalDe+k1cChWaguhyd5fga7LyFpdO0+MCuWmBIul/mDuDkxbCxDOWY8+v3UEokQktXsUieGfETBgC2+P+pWS4W8jBo+AxrOQ/JZFZ/o9P/iyD/z+IKQsgupMMF1qbauqqsI3sJzBFSfJcOvL8gI1ZrNIn5aT7G2zp6/UCkEAs9jJ+sgvGNH3ry34rgSpXIJ/lDMj7wznrg8HMfnRGEKS3Cg/3cz273P46emDbP8+m+6uMIzmf6hKYWMhzd+Pwk1sRofi+vvfCAQBMxKe2DGKmu4A3psewWxbd7IXF9CqN9LYz4GvXh3KlFivy8h25pGPue3YSzTKpHw/6AMmJzz8t7pSkt3A7p9P4RmsYdx9kX87Vv4C/AfCzcugLg+Wz8Zb6cCScUsAaNSFofs+n06dBz7Bp4mdIaO+cSMeXvN5c1s1HjYSEltSqVf7013VhacyhRMqK0b4je7R4uPeqHtxt3Hn7WNvYzJfvmDrqZX8j7gv5j6G+wznw5QPOVF94rLttSVtbPo8A5Wtgv7T1Kx791lOblpH1Igx3PnhV/hFxQJgto9D7ejEzu8+x2Q08FDcQ2iUmmsmfZpMZo6uL2Tj5xkorWXc9HwiUcO8L7sWd0bcySNxj7CpaBNvHn2zR8TcZDRw6kAyS59/jFVvvkh1wWkkEiWgZdYLiUx8MBqltZzkXy4l5zqdjowje9j12YPU/DCbIekP86DxByaRTIBVG7LoGXDTT/BMIdx3gI/lszkj+NDVdmWiFzl8DCaDgbxDewHw1KiYN8CfXWfsqez0pbV1NZVWsYR2lXLy7KUx6vnrf+H+fh6sTavg0Jnrhy15aVR8d0cfmnVOfFQ+hxTHQIY3HSci41sEAYyChIdkG1nb8AKZGb04GBlGc/spVq1ahdH497wQ/xtw0003UVNTw5o1azCb/2dzev634L+kvIcQzZZBSyUzEmEnoqurICDOUiSnJKUYB0UBh4VypodMv2GZvG+POeBt1809w/pjNpsoOH6YGrsAvF01BHZaxFVC+7ixbc/TVMqkzE984roTyjN5pTy46WcKf7mFu38bzH25n+BgZUP5qPdRPlNAn3lL6R8zFts/FTzQ6XSsXr0aa2sFY8aEUlm1nG6tJbGquboK38hYDh+qwIzIyEGO7NJVM0LphpVKc0Pn/EcMmH0bem03Jzetu/7Of8ATkxKwFbSszJ9Ls0clzYIlxjr5lzz0WsuAFzt2Io5ePuxd8gPGP63WbZQyvr0tgUdGBPPbyUpe3BFJSMRG7O1iKCt/D9sBdRyUh6PjGuEiSnveGPAGZ1vO9th13O6czabo93j18BmGfriXHw8WMyDIiZUL+rH98cHc0tcXa8XV1Uor2it44+gbTFg3gbX5q5ncrUc4F/veFDaNs8YKVmTHEOtpZnKMPwC5+5Mx6nTEjjmvK2zk+LYSCmUmBvf14tGRFqthe3cbO7/4BLlJwKC0kAxrGwV+vZ2IqDZze9o+Zjvb84voQz/zIEZ7P8mKmTvoeroYblsHw18EB38o2A5bnoTvhsC73vDTONjxEuSup7U6HTuqcTK0oYt/nN9Syhlk1469oKfT4Iy63YRMIaHJ/z20qnqGBYy97Br8E5BKJfiGOzH8tl7c9f5Apj4eS69+HlSdbaWlcSL7mv+m9rMo0nX0O3RfD0BoPMNxWTjtXEcW8AZhNkkRRZgQ6cLyOwZQ8nsZ9YfrqFYLjHw0hjfnxWNv/affryiyY+tD3JP/EzYSJcvGLyMxeMKFzc3aZgpbCm+oH5X5lkWNk7eaiQ9GI1f8tVj0qyJklEWyreIErLwVN6WGjq7eHG9+FDuhASeX9XgN70PBmbdRKFzZWTqWovpObrKpwCzIiPMMQzSLNMn3YRBguO+VVVf+DGu5Nc8kPkN+cz6rClZdtr0401LoqSdW8vOQCBLeGfQOfnZ+PLX/KSo7Ki9sqyu1EHKltYCHfw4bPngJg07HzBffZPSCh1Fa/8HTIVEw6p4HaSgvJWXjOuwUdjyV+BRZ9VlsOHu557GtoZv1H6WRtqOU8IGezHohCWfvy6vJnseC6AXMj5rP2jNree/Ee1cNt+lub+PYut/44eF72PbVJ5iNRkYveIT5X/+MTG7JAREEAe9IJyY8E8eg+REISgnJv5zm5yc2cvK1+4ncMYvRLcuJlBXT4deXlEFvsnb2br6fuYeF0S/zvvUA3qjW8mJBBVrBYjw6su7sFfvjFhCEa0AQ2Xt3XfjswWFBqJUytpTdTXXN70jCh2JCgub0BvR/IIvdbW1EVB0iwNmGF9dn090Dz1mCnwPvz4whvzmEb4VRFFoH8VzJT/Qyl5ErBMDMRUTJq9jR+gSOqa3siE2ipC6L33///f88UQ0LC2P8+PEUFBSwbdu264Zs/Rf/1SnvMTpb7EEGOr3InOBO6jIhIC6RjtpG6ltsMflXIREkTAuedsNt13S58e2tEcilEspPZdPV0kyaSyJPjArh7KpSfHo7ojKW82NTBiEqB4Zcw0ouQUQiiDy2YQze2hp0Sg2mhLsg8U483COveIwoinR3l9DamkFa+jq8fQqws2slM2cRZW3eFDZN5rwqgU9kNG07i5HZSCmtXEq7RML4kBs/5z/CxdefXgOGkLZtI/Hjp2Cjcbj+QYC7qzMTPfWsrLQjtS6CDLs+RDUV09ao5dj6QobMDUMqkzF83gLWvv0KqVt+p+/0S+PwJRKBp8aEEeyq5tk1Wcz5qZsf7viCcPfd5Be8jVluhfk6a9fB3oOZFTqLJblLGOo9lET3a1c0Pb+gSitt5sFhwdzS1xdPzfXJWllbGT9kfc+mwk1IEJnZ1s49La04eAxkcamBVfooZjz0PC+tX0GnoS9vzRyIIAiIokjmzi14BIfhFmgh35vXFiDqzHT1suGLGVEX+vT1BwvQNMuJ6GdDao4dcr0lHCU4wY2y3CbcuhXI9m7l8N33sK1dy08VDTyZX86/ZFLmevTmzj6D8BuqtMSaN5dAZSpUnITKk3DiBzj6JXPkSpq7NZzWhLOm1BNBqCa27hjtttHM6rKQjkFDuniopZkhjnHYyK/uLfinIJFK8O7liHcvRwbPCeXnp75Fq/sbFRlbK2lacx+O5QfZ59CH0yM/omNxHn+t3NTVoTGZUYoiibaObPs4A5UZzPGOvHZXNEr55cRYNOr5ee1NfKotJlZmz+fT1+Ogtiy+DHoTpw6WsWfZp2jFdrru9eLJxCdxtLp2AZjakja2fJ2FnZMVkx+NuaKuvkk0/23JPsKnwtSv4PcHYM3ddHX3w1rSQq/I3WysCSJWU0BpaQb2nh/w1bJSxkW6o9y/kjMqbxJRIii7OOpYgYPCnViX2B5/7Wi/0fT16MsX6V8w1n/sheshiiIpW4uxd1URknhjvxW1Qs3C4Qu5ZcstPL73cX4Z/wsdVUY2LsxAoA5D5y4yd1YSNWIMQ2+/B6X1lf8DQQl9COs/mGNrfyWk7wAmB05mbcFaPk39lBG+Iy4UXDpzspZ9y06DIDDm3ghCrqAQcyU8EvcIepOeJaeWoJAoeCrxqQtjRWNlOWlbN3DqwF6Meh3+MfGMu/8x/GLiLzMaeSWfpHdHEUObTzKk+SQzzNnUaqI50TGXjJbbSVPOICvUyLYwb4zSc4vIWqD2ogSmSiKglEhAELASteQfqyF8oAeeIZfPF1HDx7Dnp2+oLTqLW2AwGmsFDwwL4oPtRoa7+9An4Cyn5MFMqN3Dwab2C2aX+AlTSN3yO88tSOD+Xc18nnyG58b1uu51mhHvTX5NC98dgMWB1Twv0eHWUUGV4ARRN6Hwiqf151v5of0Dlhwbx3dJs9HmZGC93Zrx48f/o4nf/wmo7hiC+ZxXsE+fPrS0tHDkyBEcHBwuVHH+L66M/5LyHiJQX4OsrYXaoEHY1ufQ7eyCk7cvuUtWAm7sds5hsNfgK0hsXR8J3iJjIy1lrfMOH8QokWEVGEm8ypoNTVr6Tg1k7+6HKFLI+SD+0Wta4sVzoQKeHr0g4R2UYRMtZaz/AJ2+gba2zHOPLNraMjEa2+gyWHGmLYii1gmUlfQiv0GN7pyHLVjRibW9htIuGxx1oIrUsK1oCxqzSP/Ye2/4nP+M/jfdQv7Rg5z4fTXD5/W8KuPcIeHsXXmKDYWTiXNJYblpPj8P9yEzuZzAeFe8wxzwj44jOKk/x9evInzoCGwdL5dnmxrrhb+TDfN/OclN3xzlszmDGNp/J8ZTC6AHRr+nE5/maNVRXj78MmunrL0mkXS2USB0w+HnR2B1BeL0ZxS1FvHDyYVsrdiLXDQzp62Duwwy3KLvoMSqD0tWrKKzpZFWiTOHynaxsziJ6THWRHpZJqvy3GyaqioY9+ATAOSUNlN0qJp2Gwkf3J+E/FzS3+Z1nyE71YHo28m4h1eTer+lfJAoigTEOCORCET69OdE2Wa2rFvLbbfdxm0eThxr7WRRRT3fVdTxTXkdo53suMfbhSEO/giOARB1bhFp1NO8ZDIO5cewNdSyO/FF1u6p5NYEd8zru7GznYhULiAF2rQ/0SCTMjbi31gY6yqQSAQEia5HBUUugyiizViJuPUZrEwGPop4jtFjH+N+Oxte4sbyDnoCGSJSJLRtrUSqlDDk7nDiYq5MuAxdTby9ejJraWOcyoe3ZqxDKbOis1VH9r4KsvadpaN2LaKpCoVUzeqiLeyr2MeTCU8yLXjaFcedxqoONn2RgcpWzpTH4lCprxyec7rpNF0dZh5JfoSbw25mgOeAv1R4i9hbQNcB256hXRiOUhA5az8OjbaKmpqvUKsj+PqoD1JJEw/Fqtm5qZky51gSqrrxtT3Nj2prRvuORHoDqjKCIPBinxeZuXEmC9MW8saANwCLlbyhvINR83ojkd74ufjb+/PekPd4eM/DvLXlI/z3D8TQeRRt6zFsHJ2Y+cIb+MdeXzt6+LwFlGals+v7L7n5tXd5se+L3Lz5Zr5I/4Ln4l7g0KoCTh2uxi3AjjH3RGDn3HNvjSAIPJX4FDqTzkLMpQqmyoaQuvV3itNPIpXLCR88nPgJU3H28bu8AdFiKDp9dBK2Bksifo1Kw0nXcKrdYhHCw/Fq8KQpuYbY7C76VekJGu2Gf6Ir1nIpVlIJSomAQhAuENeJB/bQZrbG1tGL/b8WMPulJKR/uv69Bg1l/9JFZCfvvGCIuGtAAEuOlLCh5A7CnD6gSxrORO021uUf5rwZZcDsWyk4fpjqLUuZ3fdevj9QxORoT8I9r7+cfm5cBPnVDSw/O5PAoHbmdtQi5Zyl3TEQl8f2k7vsKe4s+YU+x/J4MuZpugvSUavVDBkypEf3o66ujra2NgIDA5H8G6t4/1206nrRrvejtb4bexcVo0aNoqWlhZ07d6LRaAgPD7/hNv9vLVuujv/cu/ofBgexk4TWDB4Y4k9ZTiaBcYkIZhPFWU0olI0UywqZETLjhtrUt1oDIq9M7ocgCJjNJnKOHKRY5cdTE6MoOFGDTCklwKOB71tz8JXaMKbXtRVX9kmiidZ+j+TODRA5E5PETHNLCqVlP5Kd8wiHjwzh0KG+ZGUtIDXvV/YWalhd9BBvpXzMI3vf5/OM+9hWmgQyL27tG8A3t8Zz4sWR3FS7CZ+IaPbus4SyDOijZp+xmdHWvsjlf98l7+jpRcTQkWTu2kpbQ32PjwsPD2eQTS3tOgVHq/oAIn2nBWLvqrokjGXYHfdgNps4uHzxVduK8dGw8eFBBLmqWbD0JD8eaUHXYdWjcm/WcmveGfwOVR1VfJjy4TX3tShfCNcl5Gcb83l28+1M+30qe8p2c3trK9slATw/8jMc70tjd6kba7/8BoXKmja1HSYEPt2nQykTeWHSxWp1mTu3YKW2Jaz/YGpatXzyTRoqUWDWnREXlFzKC3PJXbOTVo2WB55YCHLVhfM+eKgP+YUP4+TXQU1BCxMnjqG4uJgdO3YgCAL9NWp+jAwgpV84j/u5kdbWxc2ZhQw+cZofK+ppN56bmGQKOo2We1um8mZjbQRKmZSBumYU6hl0CGZU1nJ8w+zY2ZyOCilDfIdd/+L/p6Czgcblt2C14X6yVX4smvw7D894nhi7f6OlXwABAVWgLY+8O+iqhLy9oYCHVo5gLW3Md+nH+7M2015jYM/iU/zy4hFObslB3/IbAnWISktIw+rJqwmyD+K1I68xb/s8CpoLLmmztb6bjQszkMokTHksDrXD1WPw9SYdAgJZ9Vk8sPsBJqybwKLsRTR2N974OfddACNfpRYNDdhRVFpBaGgpOl0NleIzJOfX88SoULrOWCTvvD3D0XcZMUj20CFcWXXlegjUBHJb+G2sO7OO7HqLlnXKlnNW8h7Gkl8JQ7yH8LDfUzhs9aS9djHdLUeJGDaKeR991SNCDpYKxkPvuJfK07lk7dlBmGMYc3vNZXfaQZa9dYhTR6qJH+fH9Kfjb4iQn4cgCDwT9xQ364dS+/Vm1rz9MrVFZxkw+1YWfL2YMfc9emVCDpiQICJwRBvFJ+IcXnJ6gZ8D7ifTLYAOIRWh6BHsTHNImPYLfWbVY21lJnflWQ6+n05TWgNqwWIdv5IledDsEJqqOslKrrhsm5WNmpC+Azh9eD8GvSXXR6WQ8vioUPLqHUitCUQWbo9ekOGQ/zvnKZ/CSsWoex+kqbKc8WIeDtZyXlhnyfW5HiQSgS9vG4SX2sAHJXN5TLiPnyR/CL2TKYiY9wUHkr7C1dTE2vSnkTgbWZGZQmpqz4pK7dy5k2XLlvHVV1+RkpLyH55AKSVtp0UoQSKRMH36dLy9vVm3bl3Piym1VcOxb2DRGFy6HVB1//WE//8t+K+lvIeQSyWIQIy8lVJtNwFxiegzN1LRFUx9QC4u1i4M8e7Zavc8wrqq8Ww9S6Sn5Y9blJWF2NWOGDGaQf6OLP4mj+A4F04eep5TSgWvxz54XQuPKAi0Y03e6Rdpa8uko6MAMGMWBer1sZR1TeJMSyC5tTbUtFncydYKKS5CO32sW7hv+kj6hXpgo7z402goL6WzpRnfyBj2b2lFIZdQ1LiYbonA+N5zb+icr4X+M+dy6sBejq/7jdELepZ0JpfLGREXQtbRRs4YnZBLDMgVUkbe0Zt1H6dxdF0hQ28Jw97VnaTJMzi27jdiRk/Aq9eVV+ru9lasuq8/z6zJ4oPt+ahc7XpiKAcgzjWOuyLv4qecnxjhO+KGfw/nkV+6n++Ov8+u7nKszWbu0pq5I2g6TonzwTGAyvw8tr/0FC21NSRMnMbAObfz0hMPouzSklkfzjNjvHCxtRCkjqZGzqQcJWHiNLSihHt+OsawNnAItCMy2uJy13d3sfLd5zBIRSbMGomNp0XD3GyyrNmdnYbT0pqK1HEtHcV3UFPyIoMGCVRWpnL0WAnx8bNRKpzxtFLwXKAHj/u7sbmuhUWVDbx8ppJ3i6qZ7e7IXV7OGEQF3kBWyJ1sSqnj4d5eFB1qwGxup7a3J5rTWryja3hXp2SYWyIq2T8bg/3vgu7UZgwbH0Wta+PL0IfoM+45HnG8qKne3HwCieSfV3YR1Q3oTEoefGb4VV3g1cX7eDD5YUqk8EbQXOLt72PTwkwqTjcjU0oJjJVSfHIdBrGbmS++yaqvvofWBoIdglk8bjEbCjfw8cmPuXnTzdwecTv3R9+PuUPKxoXpmIxmpj8Vj73L9e+TVJCy+6bd7Cnbw6qCVXyW9hlfZnzJaL/RzA6dTYJbQs/d+IOfgvVrADCbm1Ba7UWtmcgrO/T0crdl3kB/fn31a+oUzsTYOCORtJHumI9KYkM/j54l4v8Z98fcz5aiLbx9/G3e8lpIQ3kHI/+ilfw86staMCyvQGg7RpfCTNz8mxk76o4bbidi6EjyDu7lwPKfCYhPYkTbTFQ5cbTI25n5aH98e/81icuu1hYydm4lc9dWVK0tyJ3sOBRdwdRJM+gfc/2xXy/KEUQTb1o9RYdBoLXSCJUA0Zfsp5Z3Y6dowU6RQpCPisBGX/Ys6WbvutN4DvQkJMkdN3srHKwvemICYpzxi3IiZXMxIYluly0Ko0aMIe/QPs4cP0L4YEsOwawEb344WMSGotnE9vuMHFkoY2uSOSN4XjBCBMYlEdp/MJmb1/L83a/y9M4qlhwp4e5BAdc9X7VSxi/zRzPp8x3s6B5AgG3lZfsMmXgb2xzCsd/+EB+d/YS1ziP5JkXGkyrVdS3IJpMJOzs7lEolW7ZsITk5maSkJJKSkrC1vbxuxf808g6X49RrAx6+cWg0fZg7dy4//vgjv/76K/feey+OjlcIjWuvhVMbIHc9YtlRBETanMPxKJ+P7u+qOf0vwH9JeQ8hlQgYgbKsdKQyGb7h0ZR+vgQzN3HY+iDTgqchk9zY5VRiwEZXe+H9lg3b0Qsy7poznpLsRvRaE6FBbbyam4eb2pEpPSDAJrOFQpZX76FWP4Si9tnkN7iSVS3QobOQAjc7JYn+jiT5OZDo70Dukd2cPnWKO++4E39/n8vaLMuxlKRusvPFvasK+152bCvfjasZEiJvuaFzvhbsXFyJHjWOrN3bSJoyE427R4+Oi4+PJ+7ETxQbNZjNlgnSI1hDzEgfMneXExjvgk8vR/pMnUXO/j0k//wdt777CZKrLHCs5FI+nxNLL3dbPk/f0mNSDvBQ7EMcrDzIq4dfZf3U9ThY9Sw+HpOR3IxFfJe7mL1iB2qzmQVSZ25PeBBNxAyQyjEaDBz9dQkpG9Zi6+zM7FffwSc86pJmvO0NzB9yccLL2rMDURQJHzGWB5enYV3WjbVZzvAZFpeuKIqseOcRaBdRDZbSb9QLF44Vz6WPZnU8jKuDEu8BndSkFUPrPDS+m0DIpKvrFIcOfYzKyhd7TTz29glo7BOY4RbMTHdH0tu6+LmynuVVjfxc2cDTyr5olA1sah1AuNiF9fFmTOZm8k0nGOJ4Jw1oaexcRotSyth/cMF3ozAZuzDpL59QL4O2jcZNz+CUu5IzNsHsGv8jCxKGYiO1/Gra2rIoLPqEqrrjaE1vof6H85zMMi1I9Fcls7npP/Nw+kcYRQVvql6jbZc7W2qzsNEo6T89CAf3NrYufBupXM7Nr7+Hq/+lFf4EQWBa8DSGeQ/js7TP+DnnZ5Lz9zPt1GOY26VMfSIOJ8+rJwv+GXKpnHEB4xgXMI6iliJWF6xmw9kNbCveRpB9ELPCZjElaAq2ip4TDD//DATBzM6KW6lqbeDzuXGYuruoLyygxD6O3o0GNHZVrLGTMcB7MFYyq+s3egXYyG14KvEpnj/wPHtOZGLvYktoD6zkMp0Jic6MKIqX3KczKdlsXvgJZkM9gUmDWO53jG313xHdPhwf28vH4WtBEARGz3+YxU8/xK+vvI/BNA51kMA3jm/hI30aX3om03seDeWlpG7ZQN6hvZgMBgLjk4ifMBXP8AheOPQCH2d8ilKpYm6vK/9H2xq6yTtSjVyUYhZNHH5pHAA6o4mGDj0N7Trq23XUd5x7btdR09pCTUsTqe16dlkZ8BUkDOiSY95eSfbOco5aGclXmDATiJd1DYIgMHh2KL++eZzDa84wdv6lOVPe4VFo3DzITt5xgZTLpBKeHRvG/cs6OVQZQn91LfHNp7Cmi1LhohV2xLwFlGamYT60mmGhU/loZz5jI93x6kHuT4CrHU/11fDNQS0O+it7j8YPiGeLzWo+Xf0ajzasJc7qNF8e6uJhKysCA69eZdPU3YlaLmP+/PmUlpZy9OhRDhw4wOHDh4mKiqJ///64uf11z80/BhEU0kYMogO5+zuoj30AEFCrwxg2PIZjR5v49dcfmDfvYbRyJZWNlZhObcD5zCa8alKQIHJGHcg6/7vY5DKMs9Z+3FOSjcj/3poSPcV/SfkNoiQzDe/wKOS1aZRUO4FcR7VtEdNDPv9b7TZ3aGnPT0PnFka/UA82f5WJjUZJfeFrnFRZ8Vz0fOTSq6uAnEdnqwOiIOHBXa9hPOdyC3OzYUqsA0n+DiT6OeLtoLowOaSmppKXm8OIESPw9/e/YptdrS0IgoT92V04IxAVLeXzsg7m2oVeldj2BAICje06nGwvDlx9p88mZ+8ujq5ZwfiHe1ax1MPDg0APJ+IrKig1OVyY/PpNCaQ0u5G9v5xmzqt9UFhZMfS2u9my8ANykncRPWrc1fsmCDw0PJhNJ6qpvoGBQCFV8O6gd5mzZQ7/OvYvPh56Hd3n5lIyj33KdxW7OKiQYGsWeVATxa0DX8bONeLCbvWlxWz78mPqy0qIHD6GYXfce4kSw3mr9quTE1Cck6IzGY1k79mOf0w8Hx9t5Eh+PU+ixjPM7kKp+mOrf6CxoJbi0FY+uffSankyLJ6U59dlX/jsZqmCxhQPNlUtwNlGhqGtHFt5E0GeRqwlhdjKVmOvXISjtRFflyCcHeN43S2el/wi+a1eywfm21hrOwCbI+1M61ai8VBQdeo3mrwGIKvV4eypJFmfidrKgUHeg/ifgq69DF1nFV2td2Btr7niPoaiA3StvQ9NZw2LAu4gZMLrPOFisUh2dORTWPQJDQ27OdMaz+JT7xGjV+HO/zu1heR9r/J6/k5iaycR2TyWsm5w8ZUy+u5wghJcKclIYeOH72Pr7MzMF9/E3vXqrmGNlYbXB7zORO8p7P4yn852PVVDT2B2DoW/mL4aqAnkuT7P8Wj8o2wv3s6q/FW8d+I9FqYtZELABGaFzSLCKeK67bi7F2K0eZgluxqZnehNor8j+UcPgmhGcAqhs16Lu9Ne6qTCXwpd+SMmBExg1/6jGOtkhN/q1iMruUNVOxKdjNJbb8PtuWdRRISz75dlZOxYhyC1YfSC54geOZjEtnLmbJnDY3sfY9n4ZVjLra/b9h/R1W6F0nYgHY17iRo1iFF3T+bAruV8lvYZo3xHoTlXcOiqEEWE7krWvP0KpVnpyBRKIoeNIm78FJy8Li4S3h38LnqTnneOv4NComBm6EwAjHoTRRn1nDpcTWV+MwggogfxYrEcpUyKl0Z1XXIriiKNrWUUVqZSkF6DOcONCR0OjDR1UOZchr3zSWAB9i4qEsb5cWJTMb0HNuIbftEjIAgCkcNHc2jlLzTXVOHgbikeNTbCnVgfDZuKptAn4RO605RozJ2UnvteQRCw0Tgw+JZ57P7xK+5JGMTxYgmv/J7DojsTe+TNuW3sUOqTt2LT7kXF6Sa8e11uEZ4Y441c9ja3rgjnU77gveqP+GF7OVOmvoSPl9cV2207eRhBoUQQBPz9/fH396ehoYHjx4+Tnp5ORkYGgYGBDBgwgKCgoP/nCaSiKNKobaRbAnKhhcCECM6cHEnY1Mmc0eVztK2G0kYtNSEx6AzWVP7+HuPqDzOwJR0pZgqsffk+8C5yfMciceuNv0rJE1YK/FVKft+cCf8Px8//KfyXlN8gWmqqiBs7EfORryjRz6Hc9Qx9PJNu2LLxZ/y4aicqUzcDxo+mq01PWW4TcUkiP3YX4mDrwIzePbNIe4ot1EpamTokniR/B+J9HdBYXzn56mp65FeEABWnmnESJJR0LcUoCEyImneDZ3kRMvsmJDVSHn33EI8viCPJ3zJoqR0ciR07kZOb19Nn2iycvH171F58fDw1NVsJl9QQ9OJW7FRy7FVyfG2k9C0y8v77x+iOtsfeygWFZxB7lv5MqV0wTo6aC/vaW8tRK2SXSJvZmbuovUHViDDHMB6KfYiFaQvZWryViYETr7CXSNrSCXzXUcARaxUahZzHvEcxZ8DLqP8gL2k2mzi5aT1HVi1DaaNm2rOvEJTQ97LWNN0CcrOZ0RHeFz4rTD1OR3MTun4zWZlSzuN+7ohZrfSZ5A9AZW4mh9dtoNytiwV3voiV1cVwC4POhMosxYzIoeeGU9euo65NR+WJWrQnGhnjpaFKNFJl9ia/3paMVhkil6sU2Mg7sVecQqM8jrNaYILQQMmZQUzuUuDiZ4tzcCVVuVoSE5KoPdRGbHgNC62tGe45EKX0H9IJ/wsQEQEz2ck7L1PswdBN4/ZXcUr9ngaVN4tGLuGefhOwl8vo6iqmqOgzauu2oBcd2Fb5FhtP2RHgbIO/LgWhq4y0bRalCgePy7XD/5G+m80sWf44aQXuzGp4EwkyvKOdiR3lg0ewBkEQyE7eya4fvsTVP4gZL7yOtZ39dds16k1UrAb7DncUE2vZ27qZvRs280DMA9wWfhtyyfWNBleCSqZiesh0podMJ7cxl9X5q9lavJW1Z9YS6RTJ7LDZjAsYd8VQJgEwm9X8kJqI2qqb58f3BuDMyRNoJUri3UKgqZMCTSZSJAzx+mshZX9EfPlYKqyq2So9QjwvX3d/QQSzAPqyMrLuvIPMiBDajVoUNpHMfPFxPIMtiyEfOx8+HPIhD+x5gJcPv3z9Bf05mE1mTm4t4eTWEmyd+mFlVUzRyTXo547kpb4vMWvTLBamL+S1/q9dsx1JTTrSpnwajI4MmnMHUSPGoJTKMLe3oy0owNzejqm9HXN7B6+09SE69ywFe18lWXMErTGCCoMnBkGBythKUHM6HlWHybI306668f+xIAg4a/xw1vjRNwLEW0XyU/I5ubUMZWU4sqaLxqC4Mb7kH6vhwMoC5r7SF6n84kIpYuhIDv+2jJy9uxg8984LbT83rhdzf2hhb100ripI7DwNQM7+yguVlaNHjuXUwb1krVvKEzc/zzvJFWzJrmZS9PUrVysUCvzdXGko0bLlm2ymPBqLR9Dl/7ExEe7I77idqb948p7iGx6qW87B3/KR3PQNXr6hl+zbUFaCqb0VqeZSgu/s7MzEiRMZPnw4J0+e5MSJEyxbtgwXFxf69+9PVFQUcvnV/5tGk4DZ3PNxyGA2UN1RTXl7+SWPio4KKtoq8agLZbBpFjqrKla46JlmMPPRJiPJMVFoDH5MajzEPQ1rSWpKRSqaqVfZcdw3gHoXORpnV4Y72TNdI+KgUaNQXFxk/d7jHv7vxn9J+V+Av58zNYeK0ZnV5Nmd4IGQv6cQUd+ho+DYIUJlCoaMGELuoVpEs4i84ysO2ql4JOKuHltNPGjBRZHPc+OuTeLP65GrVCpmzJhxzUzu1roaRLMZzy6w9rRme/0+fBCICJl81WOuB6VPMTVVhSS0BDHv22M8PC6M+4YEIpEIJE2ZSdbubRxZtZzJT75w/caAqKgotm7ZCsCDw4Jp7TZceJS2deNfrWe7voY80YCGeG7WrmH1D4s44HTpYkQicJGkq+Qo/6Ku6l0Rd7G/fD9vH3+bBLeES1V5JDI6JRLuNJfjqNbwZK9buTn2vsvucUtNNdu+/pSq/FOE9BnAqPkPXZU8qUQFcGlCVObOLcjsnPg0T8KMGE/sMztxCNXgGeJAZ0szaz98hXaVEd8xvYj9g0612Syyc1EuoADRgLeDNd4Olr51ejuw+MRhprk4kDTREmN59uxZli5bjk9wb/oOG01Dh4G6di11bTpqWtupaq6nprWdvAYz6tZezOhSIHG2YvoTcXzx6jraZGrGufuSZi6kVb+OdlsJ43rN+kvX/Z9G5q5tJE2decEjZKpMo3XVPTi1FrHceyYuE97iSU9PursrOHX2C6qr1yGRKGmQPsXCIyFUt+mYPziAp8aE8dW9axENxexd/D0Adi5uBMTG4xcTj29EzKUa1H8BolmkOKuKjSu3I2+ZRohET8QgT+JHB6JxtbQtiiLH1v3G4d+W4h8Tz+QnX0BhdX2XvMloZvv3OVSdbWHM3RGEJA1nQscQ3jvxHp+kfsLGwo282v9V4lzj/tY5RDhFEDEggqcSn2JT4SZW5a/i1SOv8uHJD5kaNJVZobMI1Fzq3s9oeZiU0jbemxGFo40C0WymMD2VUpUPAzsF5DZtrHboJt6t7/WtxddBSXYj7VUGlIPbWHJmFTPCZhDudH0lCZNgpu6BezixaS0YBVRWYxkVAG5/isUf4DWAJ+Kf4OPUj1mUs4h7o66tbNXepGXXT7lUn20lrJ87Q+aE0lzlxvKXnuTA8p8Yc9+j3Nr7VpaeWsqM4BlEuURdtS15ZysItowoqERM/YjSF1+3SJteAQaZCj+3Psg9biZP64NgNuCuL8ZPUoqrdSfSMFukiaNIO7QbyT+gxS0IAr369CIsKYyvH1iDofOigpZMLmXInFA2fZFJ+q4yEif4X9imdnQiIC6B3P17GDj7NiTnwsr6BzkxLNSZrcVjGR+QCueM+YfWnMEtwA5XPzsEiYQxCx7ml2cfxT9/F1Fe/Xh94ykGB7tcrv1/BaisrdG4nVO2+iKDqU/E4ep3uVdpeJgrn941mrsXq7lLvokn2tfRsnQcVVO+xjPqojf39JEDAHTrTZypbSfE7dIQL2tra4YMGcKAAQPIycnh6NGjbNy4kT179tCnTx8SExOxsbk86fxslZqmdgXt335O0pQZOHp602novIx0l7eXU9FeQU1nDSbxovdYKVXibeNNr85EhuXdhbTRhnarGorcdnP2gA/FSin984080v42fUxHkWKiTeVNcci9ZEt6czivkhFersSEmWhuOUFV1RoqKpYCYGMTgoOmHxqHPte93v9X8F9SfoOwd3XHoXAVh/X9ESUm2lyr/7JLVN3RibJTyze78/FrL8IvoQ8yhaX8urOLmZWSdNQSB+b8w7JwoiiyadMmmpqauPPOO1Grrx4TajIaKU4/iQi4miUEhplZ2KXjXoeYv2flE+CI/2pm5j7PXCs73t9+muPFjXwyOxZHO3viJ0zj2NpfqS0uxC0g6LrNqVQqZHoBo8zM02PDLtlm1JtY9U4KN+lMzHmlD0apwJ5FbUgP7uLOu27GaO9Oa7eBtj8Q+fOPzrarfOF1IJVIeXvQ29y06SZePfwq343+7sL1Cuk1Hd/cn5gTfic39Zp9mQVQFEWydm9j/9KfkEiljH/4KXoPGnZD17uxopyynCyOO/alb5Azt7k6cbS1mTF3R2A2mdjw9lNodUbODO7k5/GfXXLs4TVnKMlqwEw9f3YX2miUuAfaU5hef4GUBwcHM3bMaHbu3EmwtyvDhw27ar9ef3EHhk6457lEBBnoKwowuPemo7QDK2sJBxRp2Ekc6O/Rv8fn+u9Ee2M9RakpBMcn0LznPeyOfkq3wpGPBn/LvMGzsBUbOZ3/GlVVvyEIAo5ud/HrqVGsSq0n0EXGmvsTSPD7Q16BxIZ7Fy6kJDON4ow0Th3cR+aubUikUjxDe+MfE49/bAKufgEIPZA8axON2IpSnvn2bXyKo5G22qCXO0DIMRYseBJr24vx02azib2LvydjxxZ6Dx7O2PsfRSq7Prkwm0V2Lz5FaU4jw24Nu6A24qn25PMRn5Nclsy7J97ljm13MDNkJo/HP/63ya+twpZbet/C3F5zSatL47f831iZv5JlectIck/iZu8p2HR3IxFtWHHKl3hfNbMTLd7KupIijJ1tNLr3pbOik0C7w5yVS3nOd+Tf6pMoiqRsLsbORcWtM2axceNS3jn+Dr+M/+Wa8o4mcycduuMc39iMUh2BQj2cwVbpmFYs5ezm5Tg/cD8Ot9yCRGHxaN4ZcSenmk7xedrnhDqEXjFh3KGyHbPBm19f2IsolTNklIbI6WEIUilugcEkTppOysa19B40jAdiHmBb8TbePv42yycsv6pYgNQoYkaKuk8fJLa2SG3VSNS2SGzVSG1tEdRq6tqsOHPGRMmZLkxGEUcva0oc93LAahPvjP4XCb73X3ruk/f+jSt+OSxjoJE/UxffCCeC4l04ua2E0D5ul6jMRI4YQ9FHb1OccfISL+Oz43oz8fN6ftcPIIlKBMxYy7vZ8UMOs19MQmktx8nblz5TZ3Js3W88dV8/7tmt591tebw389JE1atBaS1j3IJI1n2UxsbPM5j+ZDxOXpfPtwODnfnl7gHM+xnSZUG8J1mM79q51FY8jtvYlxEFyQVSbhJFJn5xiKdGh3Lv4ECkf0p+lMlkxMbGEhMTQ1FREUePHmXv3r0cPHiQmJgY+vXrh4uLy4X9O8wCJolI9oFdZO/dSY2ngVT/Bho0F5VdNEoNPrY+RLtEMzFwIj62Phce+nIZJzYWU13Yip2zFUnzAng99VHkEiN7ld9gXVfJmoaP0baF8qudC2u0iWRo/aH5fL/dWLMX1IcEPBwicLW7D0erbtSyWqwlhVgV52IrP4TEfPv/L3QR/0vKbxD+Eb0h8wMKzd9TYVfA+LCxKKQ9L51tqKykdetW2rZsZcTp05gEgeWHjjPJrCV+2HCaqjupL2unt+dWdtrYcE/v265a4v2vIi0tjZyca8eRn0fuvt3oui7GBJYZ12AWBCbE3fe3+9FsU0X0CB8y95Tz2vhg3j1exISFB/niljgSJ00jY/smjqxaxvTnru12PQ+rDiPm5vzLPpcppIy4szfrPkjlyNqzDL+9N6Nvv5Py1CM07l7FrFfevirhnfP+Xx8FfO18eTrxaf517F/8lv8bc3rNAWB6xG1Mv8pCq72pgZ3ffUFJRiq+UbGMvf8x7JxdrrjvtXBg4wZMSOj0T2DpzfFsfCcFj2B7PEM1HFz0GdVldRyNbuLNmd9cEiaStbecrOQKokd4c2xTCxKgU2e8RI0nKN6Fw2vO0lLXdcEC279/f2pra9m3bx+urq5XVREItDbR1gL2tko27zmOwqQjMjGBstQmvJ2r+cHGirE+I3qUP/HvhiBYYeOoJn3zb9gffwqXhhx+dx+LdMIHPOJmS1nZh2RXLEUUTXh6zKLccBsPbqyktq2e+4YG8sSo0CvKXtq7uhMzegIxoydgMhqoKjhNSUYqxZlpHFr5C4dW/oK1vQb/6Dj8YxPwi467qofEIIrYGOyxyehPvU05WcFrKXTKwMbKmpyjRUQ6RRLhHEEvu1DSf17BmeOHSZg0naG33tUj0i+KIvuXn+bsyTr6zwgiYvDlsa4jfEfQz6Mf32Z+yy+nfiG5LJknE59katDUvx2eIwgC8a7xRBnceawhjvz9GzFlncSz5ijtvebRpFHSplXz1rSoC2FnhWkpiEAvnyjEsyKVaovcXE+qeFqXFWNqr2P748k49I7AMToGW1c31I5O1JUZqS9rZ8QdvdGo7Hky4UlePvwyGws3XrNoXLe+ELPYjp37TARpEFMfj8PFdxzau2dQ98GH1L33Ps3LV+D61JPYjh2LIAi8MeANiluLef7A86yYuAJ/e/9L2pTrTHQprLHR1xB+4ltkyfUUvG+LdVISNn37EBefSMHxw+z64Utu/+ALnkl6hmcPPMvaM2uZHXZ1WV0R8Hzv3Us+a2/ScvpoNae3V9PW0IbSWkb4QE96D/TExdeWyfpI7tuVw9P7n+bz4Z8z2Hvwda/zvwODZoVQmtvEwVVnmPjgRdIcGJeEtb2G7ORdl5DycE87psZ6sDVrJOFWDShEIxNUr7O+6T2SfznNuPsiEQSBvtNvJv/oQc7+vph7Rz3Cd0fKmRbnRb/AninaqB2smPp4HOs/SmXDwgxmPBWPxu1yr1jfQCeWzx/E7T+K3KJ7huccf2fa8U9oLT9CV59XaK2tAUAiCAwPc+HdbafZnlvDR7NiCHK5nOgLgkBQUBBBQUHU1dVx7NgxMjIySE1NJTQ0lP79++Pv70+9zEy3nZ68QVIiyzS4n9YyqcoDm0Aveo8fS1zfUdgpL+cgtSVtHFtZSHleMzb2CobeEkbvAR5IZRJIE5ELJgKMxTB4Gv65MgorpnPHMwO4VSmlucviTa1t01HT0sWuwylUNLTjpAqkU2empAHq2u0xmOIAi/ftxcZq+G+i53/xZ/gpq2jWOdPRZUuxWzYLQp697jHGpibatm+nbfMWutPSALCKiaZRY49TSyvBHYXIrazxj44jZWs5giCy324PSomc2yJuXB7rWriROHKjXs/RdSsvvJfbytnRvYdQqYwg378fmwnQZ1IAZ1NqUWW3svb+/jy8Mp053x/j6TFhJEyeweGVv1BVkIdnaO/rtiV01iE1dNPd0Y5Kfalrzz3AnrgxvqTtKCMo3hXfCCcG3nw7exZ9zZnjhwnt9+9JKpwVOovksmQ+Pvkx/T3742d3ZT1fgNOH97Nn0TcYDQZG3H0/saMn9Ig4/RmVDS3kH0ymUhPCdwuGUZleT2ernpF3hXP22AFSdu3htG87Q4dPJMrtYrhBcVoNh1adwdsLencf50xrG61KKQ8sT2PRnYkXigwFxllIeVF6PfFjLecjCAKTJk2ioaGB9evX4+joiJubG4bKSrrT0+lKS6M7PQM7Uwzdrhb95UMHjuICJIbFsutAMV2O2+iUSBgbOu2Gz/nfA4HQYA1px8/QLtayrN+HzBo6C13tYo4e+xmTqQt396k4uT/EJ8ntrDpZSIirmq8fGECc7+WqOyLiZYYeqUyOT3gUPuFRDL5lHp0tzZRkplGSmUZRRiqnDu4FQcAtIPhCqItnSK8Lbvhax1y0Zqh2OUKx3VmeCL0ZhetkchtzyW3MZcmpJQg6EyPSXPFotKK+rz3ZkV2YK/YR4RSBq7XrVYmzKIocWXuWU4erSRjvR/yYq/92reXWPJn4JJOCJvGvo//ilcOv8PvZ33ml3ysEWPsg7zZi6mEkmKjXoz19+sJvpjs9HWNdHQBe1tZYxSTSMNqZthwJiGbmDfC/pLhL7vHj1CpdCZfYYZI3cMC5ml6a3nipr5w8d8l3t5diNNZyqtKMWF0Gydv+sFWCRKYmfZsnZ0+4YOfgyKi6MH7b8AURY71xc/PFxsERqezSaVUUTQgSe5AEMeWxWFx8LWOTVVgYvot+pOPgIeo+/JDKx59AFRuL67PPYh0fx8LhC5mz2ZL4uXzCctSKi8RLrc/EprWEmb+9j7lpFF0nUug6fpzO48fpSE4GINzdmaNu9ux78xWGz1tAH7ckFqYtZJTfqOtWaTUZzBRnNZB3uIqyvCYQwSvMgb5TAgmMdUGmuLjYVCvUfDP6G+7dcS9P7HuCL0d++ZdlJ/8O1A5WJE305+i6QoqzGgiItoS4SGUyIoaO5OTm9XS2NF9SMfqpMb3ZnFXFe12342tTQbjX1/SXruNwxgyykiuIGemDTKFg1L0Ps/pfL9K3NY2tjn68uD6brY8O7lHxNwB7FxVTn4hj/cdpbPgsnelPXVkzPt7XgV8XDOHW7/fzWuPNnPCL5OWKReT8+AxSmStauTUSUeSbW+PZlFXNqxtymbDwIM+MDeOugQGXWc3Pw9XVlSlTpjBixAhSUlJISUlhyZIluLu7IwJWZth02w7AIpGbtWcHqVt+5+RXP1G6KZmkKTMJGzAEiVRKY2UHxzcWUZzZgJWNnAEzg4ka6nXJb6LZYEMb1vD4cZBISAxtY837J8nZX0n8WD8cbRQ42ijodS6qc1qMOz///DNNTYe566678PDwwGwWae7SU9umo65dy5m3N9KjoiH/y/FfUt5DCAolCDZ4V//OKfU90AC2IVwW33gepo5OOvbspnXzFjqPHAGTCWVIMC6PP45y7EiOCIXkvfwSY09CqK6EkH4DkMrkFByvwdUmjx80Zm4Om4OT6i/oy14lDvBG4sjBIqfX0diAqLJD6GrDI8BAlszMYy6XJxr+VSisZAyaHcqOH3IQz7az+ZFBPL82m/e3n2Z4kCeJdvYc/m0ps15557ptGUUtMmDX/t+YMvHyWMykSQEUZzWyd9lp5rzal+hRY8navY19SxcREJeIXGlx9Zs6OulOS6Xz2HHmb6yh3tYI9/y18ztv9ZqxcQYvHnqRJeOWXCad2d3exp5F35B/9CAewWGMe+hJHD2vTyCuhE6dkTc+XUaYWc+s227GQ23Fnh2leATZY2PXzfp/fUSntRY3lYm5uW5Ub38NfXkZjTU6TnjfjrqrlsADn1Fv0mHn5UyHXM2BgnqeW5PFR7NikEgE7JxUuPrZUphWd4GUA8hEkRlRUez79lvy7r6btrZ2TA0NAEhsbFDFxGDqtBTMqmvToi09jVnjRlO5GUGAo7apOMrU9HH/z4kf7NO0jHShL7sd72ZabxOFqSMxGltxdZ1AQMCjpJTbc8+32dR36HhwWBCPjgy5ZKLu6OigoqKC8vJydDIDSr3IrVtuZYz/GEb5jbqMKNpoHIgYOpKIoSMxm03UFRVSnJlKSWY6x9ev5ti631Ba2+AbFYN/TDwt1qc5GZqGqxmWDv6IsGBLDOpMLIoYzQ01rH7nFdqba+ga48sZlxq2Zy+6EBPqrHK2xHE7RRDhHHFJfHTqtlIydpcTNcybvlOuLtMGYO7qQl9egXtZKZ9WDaUgW6C6II3K1yahawOfXnfS5HDl2HVjc/MF8t2VnoY2OwdRZyn4IvfywrpvX1RxsVjHx6MMCUGQSvEDUu74BAnwxOiLCXFdba20lhVS7pBIWGUX7qos0lUy7vcb1bMbDkgEWx5Z9C0Ne5NpPHSQpswMarGjwiMOjbYAsaaW2vp6iro68Nbp8EbFxhOvWw4WBGzsNagdnbF1ckLt6ITZ3A6CkimPxl4xplg9eBA2A/rT+vvv1H+2kNJbbsF27Fhcn3yCj4Z+xIJdC3jx0It8NvyzC2EyNsYCVI0tSGUfInV1xX7SROwnWRLKDdXVdB4/jv2x41SeSie7IBe7m2bytI0Nh91a2VTyKHNvfQe5j8/lCzJB4NCqM+Qfr0HbacBGoyRxvD+9+ntcU4veTmHH96O/5+6dd/No8qN8M+obEtx6Vvzon0TMSB9OH63h4G8FePdyQH6OKEYOH03KxrXk7t9Dn6kX5SF9HK2Zm+TF0uPVALzoaMfqxpUEuCRxZK2AW4Ad7oH2+EZGEzF0FJnbfuflB17jvi3VfL33LE+OCbtiP64EB3cbpjwWy++fpJ8j5glXLLgV7a1h5f3DuOX7ZDaXRJEf8jrD8jcSqKql3mxLh1TByg/GE9pnNOvv6svnB5r4eEcqO3Kr+fCmWPydr16sTK1WM3z4cAYNGkRWVhYnD+9F4FKqq1BZkzhpOnHjJpF3cB8pG9ey9cuPObDiF+xc+9NY64fSyoo+kwOIGeGDQnU5jTSJ52qZnuMYbgF2+IQ7krG7jOjh3pcQeAClUsktt9zCjz/+yIoVK7j33nuxt7fHSa3ESa0kHDvO/v+AkMN/SXmPIXNxR9I8HpluJznEUm9TzuTo8ZfsY9bp6DhwgLYtW+nYuxdRp0Pu6YnT3XdjM3EcmXYtLCrawp6jt9Fp6GSWlSVeV9B3E9p/MJVnWuho1lHndRAkEuZF3nXV/oiiiLGmBl1hEfqiQnRFRegLi5iYmYlWpYI337xs/x7HkXd00J6ayrEVi3GRKrApr6DEyZYq6U4Axif0rLDPtdBi1mECjlcfJy4mDp9wR45vKCIo3pUvb4mj33En/rXpFAZ1LHE5+ynLycQ3MubajYoGALYlL6PFT87tEXdcMunI5JaiQms/OMnh1WcYcUdvRsy7j9WvPUv6px/ir7Sl69gxunNywGRCkMvRSEw4tv29wcDNxo2X+73MsweeZUna99zhMxOJjQ1StZri9JPs+O5zuttaGXjz7fSZetMFK2hPIIoi+sJClHoDOuDRFWl4FR3DxcqOmNY6Tr/8IT7H8nB37GLNkVaQSJiUVYvqqJEmPkWq0WD07026/20opQKjRjqgeepnFH6+HL3rVgCeGh3Kx7sKcLFV8sIEi8ciKN6Vo+sLqd6cjDTfQqi6s7MRdTrCgU4bG2r9fOl9/32oExJQhoYiSKUcm/8tmGHViRLctTWE9B1NSU4jrg4NLLYVmOw35ob1/v8dMJ8rdrwo8QWcVIU0px7iTO8CXN2HERT4BGZpKK9tPsXatALC3Gz5/o4EIjxsqauro7y8/AIRb25uBiwV7STnJhWD2cBHJz/io5MfEekUyRj/MYz2G423rfclfZBIpLgHh+IeHEr/mXPRdnRQlpNhiUfPTOPM8SMMwgUf905eeukL3Fwv1Wlurq5kzduvom1rZcZzrxNwrkJkt7Gb/KZ8chtzOdV4ityGXA5UHDinOAM3GZNQixKObywirK87g2eHIAgCprY29GXlGMpK0ZeVoS8tQ19ehqG0DGP9pVV4nR0ccPUJpcCtnb2yCrw7DYimdkSzGX1x8UUreFoa+pISy0FyOVbhvXGYMwdVfDyq2Fjkbq5XvUcS0YyApWDLeZRmpSMg4uoZjq7KSKvbUURuvIqnzM4O96nTcJ86DbPZzOo3DqNp7mKouRDtkVTL+GBri6JfX/Y7t7BVks+CmIew0clob2yko7mRlppqyk9lYxK7UOvacAu4ehiiIJWimTkTu/Hjafz5ZxoX/UR7cjK+c+fw/MiHePv053yX+R0PxD5w3b7LPTzQTJuGZto0Jra3sfjx+zjdL5YRNi4kHErG6lQqhUvGIvPwwKZPH6z79cOmr6UasijIyN5fQUC0M70HeuIT7niJGtW1oLHSWIj5jrt5cPeDfD/m+55e7n8MUqmEoXND+f2TdNK2l15YTDp6euPVK5ycvbtImjLzknnh8dER/Ha8FKNWQYexk9d7JfFBzgusUS9hx4853PxiH6zUcobefjdFaSdo3L6cGbG38s3+QibFeBLq1nNNfWdvWyY/EsuGhelsXJjOtCfjsba7PPw1wtOe1feP4Obv9tCWrkVvlFLlH4BTYRkCJrpiBTLM29CfTcbPU8UdnlZ0idZ8kmaPWe6ITOmIQWKPTmKDDmv0ohxNZxNebSX4thXj315IcHsh92mreZN4jFegglKZnMjho/GLHsjuxdsoSdtBR9NGZAobwgZPJnJI3BUJ+dWQON6P9R+nc+pwFdHDL1ers7Oz49Zbb+Wnn35i+fLlzJs7FwoL6c7Kpjs7C4WhN7r/+ajGfzv+52e//0UQBAndLv1pz1FS5VfAs34vIZpMdB0/TuvmLbTv2oW5vR2poyOam27CduIEirxlrC3ZxrbMB2nUNqKWqxnjN4YJgRPI2vYk0IzS2gb/mDj2LTuNTNLNGs8zTA6airuNO6Jej768HF1hIfqiogvkW1dcjNjVdaFvEjs7lIGB6JUK7FtbL+t7amrqFePIz0+S3RkZ5x6Z6M6epcjZjm5PZxK1UCKRIQB7hN1Eo8TLrWdJLtfCWUMbZkHg3p33Yi2zJjG0D5ImDzRrJMy6ZzC39/MjzkfDI8tkhNSeZO33P/Dop58jvYYusOScdGFAnZIPT35EfvEuXh33A0r5RQuPW4AdcSM9KVqznzNnNiEvzmJsbilCdjGNUimqqCic7r0Xm359UcXG8vNtQ4kvaL/ke0RRROzqwtTaevHR8ofXrS3nPmtB39yCrq0V9452vu2QgfkHjkgWoXJyonXGFLL2bMfZx4/pz73Wo4RWANFkojsjg/Y9yXTs2YO+tBSr8L7o5HD/J/ehNmgBqDqejgRwsnYg192ZdlFGp7qWM/cPY8rQ+1H4+mBSWLPuozRMDd1MfToBZ+/LF2sPjwimvl3Lli3HiMjcT2JHObLsEvC8h6zP1uBbcxCr8HAc5tyMKi4eVVwcebU1bF63jhZ7eyb16nWZRW7P/uMMEo0E945m/8oOHF330y0RGBc8pUfX4N+NdqywQkKs0zqa/VtpyPLH3vAssTEL2H2qlhfX76exQ88tMY4Mce4kbffvbKqsxGCwLAxtbGzw8fEhMTERHx8fPDw8+OC+BwFYNXkV5e3l7Crdxc6SnXyS+gmfpH5CuFM4Y/zGMMZ/zBUlVq3UakL7DSK03yCLHnBFGT9+8iyuLeJlhLym8Azr3nsdRJHZr76De/BFa7JKpiLWNZZY19gLn3UZushryiO3IZe6I8cR0OJl20ZY7g5K5pZgKC3D1NJyyXfIXF1R+PpiM2QwCh9fFH6+yH19Ufj6Ij1XXTAYcK05yZGnvsOgTSd5/AE8SlMQAKlGgyouDvuZM7COi8MqMhKJ1V8r7HMeOceO0SWxorfGH6pbOe5yFk9rN8Icrm3RbNI2sSR3CYJ4ecxqWW4TDbUGht8eRcDAJZja2+k8cpSOgwfoPHCQfnV19ANq931O8MRbUQ8diiomBuFcGMumucNRNzb1qP8Sa2tcHnoIzaxZNHzxJc3LlhO33obnxvXiE+NXhDmG3dACw9rWjpH3Psjmz96ndtI0er37Ogt+nEBcuZw5nZF0HDhA64YNANiGBNJupWDeewNR2fY8T+qPcFY58+OYH5m3fR4P7HqAeYINfzc777zhoeHgUcr2HcahO4JOa9fLijGdh1eoA6F93UjbWUpYX/cL8duRw8ew45vPqDydi3fvi/8XJ7WSEU0nEUUzg299kvdT3me9fwBjy95kbf0b7F5yiokPRKOytWPYnfPZ9uXHzOhbxl6lNS+sy2b1ff17vHAByxw06aEYNn2ewcbPM5j2RBxWNpezzVB3e9Y8MIKPX3kDvUTObs9RzCxahWgQeXvfY5ZrIxVAJiDKJCCXIMoE7CVd9BZKCRdTCDeV0NtQTIihApVoSdw0IaFS5US52oWTnmF01egQxcvn1a42PWnbS8k5UIkoOpIw+Wk8g7vI3rOBlI0rSd+xnqgRY0icOB07l6svns/DM8QBj2B70neWETHYyxJ7fg6i0YiusBBFVhYzampp2rCRki++RDjn9Zd7etLlF0Grzf/9TM//kvIewisnF9+09eQPegJBhHh7E20ffEbFtm2YGhqQ2NhgO3o0dpMmUd/bnXXlO9ha/Cql2aXIJXKGeg9lYuBEBnsPvpBYl3Wu7aDEvhjbuqhNPo6T4SDTDumYcaKCwrcmoC8vB6PxQj9k7u4oAwPRzJyJMjAARWAQyqBApE5OCIJA2pTJ9Go/e0nfa2pq2LZtG0FBQfSPiqLj4CELAc/MpDsrC3ObRWJEYmeHKiYGq1EjKUk7hG9gMH1ee5fMGZMBM3lKHY+7D/tHrqcIYBZZOPJzDlUe4kDFAWoD9rGPX1m+OoQRQcMY4j2E9Y8M5r1Pi1FnbeTxj1bwxsOzcbS59oQh1cu5v9GKb4VMipb249OIh7GTxdGVcpLO48dxSEsnXqfDkCEgDQ/Hds7NHDh5CLsBA5n8/KVJpSICLSprDsydjb6rC72uG4NejxERk0SCUSJglErOvZZgkggYZVLLe0GwzEfWgLUaXP9EeJN3kDh5BgNn34ZMce1zMmu1dB45QvuePXTs3YepqQnkcmz69sVx3p10b9wP5jYavL2oMncy5PFnqWq148CedsL6N1G2YwUFwS3UJXnw/JSPUUgVmE1mdn6TTVNVJ5Meir4iIQeoePAhbk1PZ+45UtaktsUhMQGNSkfbgNmEvfAxEtWlru1oN1fq6uo4dOgQbm5u9OlzaUiKoq4IBAGj0QMoI12ThbPclnjX+Gteh/9XsNFqETHj/EAzrk4O1LsJZC7bQuFPR8k32jBKZYWbqgNZq4RTKhX2vr7Excbi7eODj48PGo3mmkmOPrY+3B15N3dH3k1Fe8UFgv5Z2md8lvYZvR17M8Z/DGP8xuBrd7lWvyAIOPv4YbZXQkvHJdtKMtPY+PE7qOzsmfnimz0KhbKWW5PglkCCWwJLDYdpMukI3voaOncX5L4+2I4di8L3D8Tbx+eye341JLonctbpFypr9WQ521Mb/Rl9x3kTMLz3dUPobgRms4ny7AzKrH3xazBiY1PCj2qY7Tf6qveisbuRJblLWJm/Eq1Ry3yhD8Y/bL+guOJsRVg/SwCs1NYWu7FjsBs7BlEU0eXnc2zd1zTu3UXDj4to/P4HJHZ22AwYgHrwYKy6DTdMS+Wurnj8600cbr+Nuo8+ImH1Qb50ULCy8Gn8nll9Q22F9htEYMJeDv+2jOCk/twx4UWe2f8MPn37c3Pop+jOnKHr+HH0m5djkJv/MiE/D1drVxaNWcS87fPQy/VITTdm3hTNZnRnztKVkkLzkaN0ppxE3m4xNBmt7NG4yml2jODI2rMMmBl8xXs7YEYwJZkNHFiZz+RHYxEEgbB+g9i7+Dty9u66hJQDBGorket13BL0OkerjvBx9TESrBsZ5L2bA9mjSN9VRvxYP3oPGsapA8mkr1vO8/Ne5bntZSw/Ucbt/a6eb3EleIZomPBANJu/zmTTF5lMfSz2ilZnPwcbeukqKbDzoaTI7kJoqnXAWYxd3fTrhJCuZvwNRQRoKwiWVuMuab5wfJOoJs/sx3JxJKdFX/LMvpwVvdBpFdAMEsHMdPE7pH9Q2dJ1GUjfVUZmcgUmvYmw/h4kTfC/EAMfnBhLQ1kJKZvWkblzq0XNaeBQkqbMxNnX/5rnnTjen01fZJK7LQ9/WdkFK7g29xRidzcAEnt7bP38OGUyoklKYug99yB3cWHlA29hvsLi4f8a/kvKewiZWYKVrpmyDfvoezYdm/3NtCgUqIcNw27iRLRJ4WyvTmZr8Rfkbs5FQKCPex/uibyHkX4jr6igYhDlZPq4Er18HUVfLuJ8yl1viYDMvxZlcBC2Y8ZcIN+KgACk6qvHi/0ZoslER14eh7/8kr5V1QQcOcrZt8/FZgsCypAQ7MaNQxUbiyo2BoW/P4JEwvH1q9Ae6WbQLfPYkVtDp1QLWAbqz2sOsGPTbOLd4ol3jSfeLR5nlfPVO3GlfokiwTnWBNQqyY7J5tX+ryKKIqfr8/ly6QqK1Tn81P0TP2T/gL3SngH9+1PVIuKQtZH5r5l5cYQfYWoBc0cHpvYOy3NHO/atjbQpFQgIqPR9eSu3mO6cYqo//YRmiwETZVgYDnNuxhAQxdY9AkGDAhh5ZzhB57Sb/xwmU2tnR2uAEsxdYAVYqQAVMqkUuVyBXKFEYWWFlbU1Cms1Clu15VmlQqFSIVdaoVBZo7CyQq5Skd9+ltM//IBSZ03VrECq4lQUdhQT4hBymayasbmZjr37aE/eQ+ehw4haLRK1GvXQodiOHIHN4MEXLJKGbUdAB/mOMqJG3ozdmLFsevUYtu5asnatQO/QzvHQDpYP+R6FVIEoihxcdYbSnEaG3hKGb8TluQsmqRQw01WQj+3IEcijY3i9WMbOVgWL7upL6JkOTmwqpksrQX0FfjZixAjq6urYtm0bzs7Ol5SP9tdV4hYYQmVBFzZWHexxaOamwDlXlWu7FkrbSkkuS8ZeaY+D0gFHlSOOSkccrBywkdv8JQUQiVnEhEDnsJFoa2uwbm+n2k6Gb1UBs1qbkV4hb0OQy5E6OdHi7EyHkxNSZydkTs7InJ2QOTsjN145DMrb1pu7Iu/irsi7qOqoukDQF6YtZGHaQno59rpgQb9WojBA3sG9bP/mM5y8fZnxwhuoHa6d0HclWNNJi6jFfct6nP2vHUveU9iF+FJZW4TZWEyHtpTtq+V4pGvpOyUQr9DLk2J7Ar2pAoMhkxMbZPQePIyOxkZEbQeifyjtdd1YOR5GL8Bwn8tVVxq6G1ics5hVBavQmXSMDxjPgugF7Nr9IcY/GMtLcxqpK21n+O29ruilEwQBq169GPLCZ9wafSttjdX87PQExqMn6DxwkPbt2/EGatz+GtG1Cg3F9/vv6Th8GOn77/LAukLOnpiJjVna49qGgiAw6p4HWfzUA+z+8StmvPAGaz3W8nn654z2G41TWBhWYWHU5W5GbO3+S/38MzzUHvw49kc2/HoHZuHa4X+i2YyuoMCSrJpygo4TKYjnvL11Kg1ZzsHUxIXjObQ/Q4fG0XbLGDQNTmTsHkKVqYKBE8PwsPG45H9uY6+k79RADv52hsK0eoITXJFbWdFrwFBOHdzL8HkLUMjkaPPy6EpPZ1zqSeQmE/kxsTwslXKv1EybzAZ7VjNYfgjtSSsKvtWg1NgQLwiU5pei+vh53rL2o+qdzRQPDMbW3gZBaYVEZYWgtMJYr0ZUXL32gE+4I+PmR7L9uxw2f5XJ5EdjL8TAn0dxxkkM3V3cec8MTu6vRkRAhZYccTXm9jxkZiMowCxKaDJ60NDpREG3hgadmny7eFYLCQSHhvL46BDi5VLatUbaug2WZ62Bdq2B+rVmpKIZg85E1t5y0neWoesyEpzgSp/JATi4X845nH39Gf/Qkwy8+TZSN/9OVvIOTh3cS2B8EklTZlqsbuduh6mlhe7sHLqzsyAzC7vuAaSsqUd64k2kchlWvXujuekmVNHRqKKjkPv6IggCdcnJHDhwAEVeHoGNdVg1HcekvDGu8b8R/yXlPYSotPwwvXP2Ue3hRfCrzyIM6Uty0zG2FK8iZXMKZtFMuFM4Tyc+zfiA8bhaX92lU56bRTdqKh0FBkSHUVZuoBInfuq7hoW3ryTI9frlpa8GASi96y60WdmYOzsJB7CzwyouDtXUKRZreFT0FQm+trODlE1rCYxPolvjxdNfHmY+FrXqXoIVw6PvIq02jbUFa1metxwAPzs/4l3jSXBLIN4tHm+19yUDpFmvR19YiDY/H11+AWnZqdgZpEjMEpq/+Z6jLqfwl7pi29HBo9VNNBdpsVG5gKkDc0crCu3mP/QwGzZD+WUnLeDi7kCnsxyVXo/kYB6hRVVUOMG+KIFcX4FODyPhqmJ8/f3wCU3ESSEjZ7dFjSVx0nRy9u4k+efvuOODLy7EdbeoZThrzcz/+AcL0bayQq60+kuqKAAh9Kd9zTJCD5XyrMzA5uMHAYsuc7xrPP3FAKLzdKiPn0Kblg5mMzJ3dzQzZqAeOQKbpCSEa1jVTUYjsWMmkH+shrb6ZqSGX5HKdKxJaOGemHsvlC3PSq4gZ38lsaN9iRxyZUtqlac9yuYW3h4tMGFSBCEuQTw71ofCJae5f1kqi6ZbFi9FGfVED/e+7HiJRMKMGTP48ccfWb16NfPnz8csmhEQSazIxk0eQnPOz7gqKxhmFpmIDa31mxGUCiRKJYJSiaBQICiUSJQKy/tzn0nOb5PJWHpqKb/l/3bFc5BL5DhYOeBo5XiBsDsoz723crhsm63c9pLf7jpndzJcB3OmQ8G95b9QO2kMY154GXNrK8aGBkyNjRgbGjA2NGJqtDwbGxsx1NWhPXUKY1MTmCwszz6iH53XMRp6qj25M+JO7oy4k+qOagtBL93J5+mf83m6Rbf6PEEPsA+45NiTm9ezf+kifMKjmPrMyyite76A/yMcFFaUCLDkuUdx8Q+k14Ah9BowpEcu6mvBzsUNGwcHmqv20u+mQWTva+L3T9Lx7mVR9XAPvH5V0T/CJLZhFps5uGIxh35dgtrZFTPQ2zUEWiHbKQ87uZp4t4vel4buBn7K+YnV+avRm/VMDJjI/Oj5l11LuGglt3W6aCW/GiSChBf7vsitW2/lF7czPP322xYr+unT/LbkeQpsOri+IOPVoR44kJD1G8hc9jk2X36PUzvUuPe8UqatkzOD585jz0/fkHdwLy/0fYGZG2fyaeqnvDXorb/Rs6vDx9YHiVm4LD1PNJnQ5efTlZJC54kUuk+exHSOhDfZOnHSIYTswCC6wmPoNyCS8ZHulxTKOa3UYdewipQwG9ibwOOlr1PunU2IQwghmhBCHUIJcQghqF8QeUfUHFp9Bt8IRyRdbYTZ2KMrqeLsTbOQVlZdSCg2KJV0WFkROv9ezFotlY3FHDm7i1CTmojmKioN8TTVG3GVa8Gow0WmRF9SRpyyjnCtga4z+9H+aaGui34Is+bacrYBMS6MujucXYty2fZtNhMfiL6kIunpQ/tR2dmTMGAwayOaWffUcqzQIbF2RtL3furt3Pm29hDrW3LppfdhYt5wmo1hSCSpqOpzudVQRHmLH68UJjB/1khuTvK9zEjx4moTKqMdS185SnebHr8oJ/pOCcTF5/qx8nbOrgyft4B+M+eQsXML6ds28dvrzzNMYYtHaxNnt43FUFpm2VkQUAQF0juskeOdMZjfWkL45OirzmfDhw+npaWFvTt3kFVTzOW/pP+b+EdIuSAI44CFgBT4URTF9/60XQn8AiQAjcDNoiiWnNv2AhZtCxPwqCiKO/6JPv3TqI6MQ1vnRb1TMNVT89lqd4D9W/+F3qzHx9aH+VHzmRA4gUD761uWGivK2fDx2wjnlpKaxx9n89unyfXaS3DsEHr9DULeaW2NWRAwtbSi69ePtI52QiZNYsBNN/XIYpi6ZQO6zk7ip81l/rJU5DIJUomIUYS5fuOYEWuJizWYDeQ15pFam0pabRp7yvaw/sw6nNohqtWePp2uBDXIcKhsg9LKC8SkzNWBUx6OSE1mREHg5oNmtPIDNNtqUNo7oFCrUWjUNGul+PWNR+lkj0StppY29mbuoMy+ixpbLV1KAYNCTVLwQAaGDadv0DDW3zsdKy34eviS31pP12+fo1VrEZvPUFi4iQZtA2dEM7rqZKi2yIbRF1YedyCsPAiHUSqaj2Wj2/gBw4bOuBDXKwr8ZTWUK2G4z3Ba5WvYfdNuKtoryD20gY7kZBxTDuJRuweAAlcJlaM9kQ0dSGi/sXi5xFynqqtlwLKPCqbTFnbsOoJo3gHd7SQPaMbV0ZNYl1gOVBygKc9A5VpQhZioicpiVX4aBrMBg8lgeT73qLNqwFMiJcu1jvTUi9rFti72KKwduO+IK/PtbyL1aAG28Qa8bb0vK7VuZWXF3Llz+eGHH/j111/RK3RY6yC0pg1FRSrnp6x7s4Gd31N1g9dSlEiYLBMICpQydNk2mrRNNGmbaNY206xtpklneX3+s7L2Mpq1zXQZu67Ynkwiw0HpwBRJAJhhh7w37V1KHh0bSnjpWLJ3b6O7vQ0bR0dkjte3QotmsyW/oKGBPS9brqGuqBi5myuSK1TX+yM81B7cEXEHd0TcQU1nzQUL+pcZX/JlxpeEOISQWNWJbbvA5jvmkq9rx8/JjaHBkeiPHsPs4oLMxQWZszPCNcps/xm97J1xKSxB//gjnD6yn4MrFnNwxWI8Q3vTa+AQQvsNukRWrqeQSCSMve8xlj73CFV5G7jtX8+Sc6CStB2lrP0gFf8oJ/pMDrwgGXg9iIJFKWXwqRwqHWyp0BmQKGRIj3+GjdEao0zPTMckaGmjVmlgce5iVhesxmg2MjFwIguiF1zT81CW23RNK/mfEeUSxYyQGSzPW870kOkEaYKw6t2bzHFBFLUU9fg6XQ2CVErsnU+wKtaZrd++h5WL4w0R/ZjR48k7tI99v/zIXbHfcGf4nSzKWcTM0Jl/uxLr9dCdk0tXSgpdJ07QlZp6IWSyy9mdLPdIDgX5kO0ciEdYIOMj3Xk5wv2aKiJyk8AbL93Hlm8yGXr2Zjp948jlGNuKt7GqYBWCKOLdAInNtoQUCKSNMGDfZAnzChAEuo0iPnPnooqLQxUby6fPPodgMjLgfkvxI1dgb+onPJvzM5+2KYjp7mZt2ZN4hjow+eEYzGYTy154HG1HO+YZz/L+7mK+nRPD6GANolaLWasl6429mHtQzTQk0Q2j3kzyL3ns+DGHsQsikUol6Lu7KEo9QeSI0QhmM+4SGYYuKbWCPdzxOwAuwMviwwwq38f7Ke/zXuxSpjX0IqR4Em1CX+zVeSiaU/EpW8fJLw9zLHQgT00ZgGNXK4bqagzVVbh0uiBKbHB0t6bvfVF4BN3Y4hhAZWtH/5lzLcatfbvZ9+NXCCY7KlylOI2bi3+/0VhHRSFVqxHNImfeOkF2tpHI6VcflwRBYPKkSVQkb0Xb0Y4o+Xv5Jv9b8LdJuSAIUuArYDRQAaQIgrBRFMVTf9jtHqBZFMVgQRDmAO8DNwuCEA7MASIAT2C3IAihoniFbJv/YTTbmNk5oJAip7Xom7U4djtyU+hNTAycSJRzVI9d5F2tLax//3WkMjnNbnIcag2cWb8Rkd5kOZ/gi6iPrnqsyWy6QJj0Jv0lBOo8oToSrmRPfCIjRo5i/779uLh44ByvYlvxNkt4hAACAhJBgoCAIAgX3ps6tWRtXotDdCgvpByluKOJ58aH05FjBJSMTLyouiLVGgipEvHJt2F8vhva/EC68/OgvRNoApqos4eTLgI1A5TIQ3pjaxdAy748AuISKZHWYTxZgvuzgdxiLqJbJbJy2k+427jj3KRlxRvH6Qh2YMIDlqRSV0B5fDibPnmX6ffdy0ZDE5vO7KGk+QCrT+xEdlJGvIcdoWVyIh9+jLx/vYi9wY6EoNEAPBr/KJ+kfsLSU0uJt/Xn/oZ6WlpLyVMFckQbTKOslWJVEU29WkhtW8GXm1YAkGTtgFPj1ZVq/goEQDQYqHnzTbTJe/GrrQWJBOvERITb+3ImQkO6tIzU2lTym9Yh7lqLTJAR7hR+SdiQvfLi4KmVG1DqYaHPHhb+vodYgz2x7RoORzZTaq+Djgoe3PMgLh0+TMl9hGabGjY6fIHxqOGKfZRJZCRK7JGIar62f4GdmxYTfPMkRD8Nxa3F5DWcJac+jzT1XuLLxjB79S0YFVq8bb3xt/cnwD6AALsAy7N9ALNmzWLZsmV02dvh0i7w8xhvPGKnUXG2ipOem4jUhBFl1wtddwd6bSfG7i4M2k5MWi0mnRajTouo0yLq9ciNIDeCwggyk0jCWTNB5SIeNh54qj17dA+0Ri0tuhYatY0XCfx5Mq9rRqQMEDF4v4ajTM3Rbn9qnd1xNBlZu/ZLkqbdhJ+d33UWSiBIJMgcHJA5OGCUCmCGogkTAJDY2iJ3d0Pm5o7M3Q35+Wd3d2RulmeJrcVy727jzu3ht3N7+O3Udtayu2w3O0t2Yt3SiFFqS76uHf8OHb2zjtKQfOSyfkgdHCwE3dXV8vzHh+vF1+cTLVVmiJo4lYSJU2mprSH/yAFOH95P8s/fsXfxD/hERtNr4BBCkgZgdQ0lpz/DyduH/jfdwqGVvxA28BixowYSPsiT7H0VpO8sY9U7KQTFuZA0OQAnz2u3262QINdDry++xOt0HvJffqZDaYtBIaFebcK53hPVhmK2/jwJp852Im1NxPh4ERw1BGe7KBRnmzD62yJ1cLhs/BZFkRM9tJL/EY/GP8rO0p28e/xdfhjzw98unnQlzIq+jYp769Gb9Nff+Q8QJBLG3PcIS597lL1LfmDBAw+xpXgLbx97m5WTVl6/gb8IhRFKbrLIEIpePpSF9yHZyodkpReN1hqS/B0ZH+nOvyLc8dT0LE8BoKJFZNYjA9j4WQZ1B3vx8ogoNM1ZtKQeR5+ZjaSzG2ih3VrCaS+R/BgJ+V4CZe5SVF16EkIrifZyI8RoQ5dCj2AyUdNZg1k0YxbNTA2aysGKg7wsreDTzuP4RiRz4mwwuk11hA1wx3POaHb9+CWB5SsJ8PXj5eRSpJpIlHIBM2aMmC1CCmVlmDs6MHd2YursxNzRibnzD4+ODjRdnUTLncnKjGLjgp+IbtxKmaELo1qG6rufOP3B5wA4Bnqg/dMCWxAEhvsOp59HP5Yf+ZodtctotP2ECcWeWBX7IO82oxY7kbadQHniCB3L4I9ZKLKYPphELVOfiPvbv1e50oq4sZM4/vVCtAqBx0dXYRJXY1+6k4GGgQz2HsxAz4Ekjvdn56JcijLqCYq/ugcufdtGDPU1yIPC6a7uQPy/n+f5j1jK+wBnRVEsAhAEYSUwFfgjKZ8KvH7u9RrgS8Fy96cCK0VR1AHFgiCcPdfe0X+gX/8o8oUsTrsdI7ArkmfHPUxfj743LN1m0Ov4/YN/0dnSwuzX3uHT718CDLws2UBnzHp0dm28euTVC4TbaDZiMBnQmy3vzWIPogjPGX5Sc9LBGRBhy6EtPepfwmkNkTo7frbfR4tpF1a+sDAXbpXbodCD/uc1VOTnoy3Ix1BWfiHpRGJtjTIsDM3ESShDQ7EKC0MREoKt0EZrXRqFtWkUZp0kan8uDRodq902E1uoIVBQ4HD7Gr5cMYNb9WU8uuU2Fk/fiK2jNUkT/Dm6/tIiECFJ/XH1DyJv/Sbe+fQ7bo+cyYMrUqjWnqZ/ZB0y0yEEUcCrV2/kSitKMlIJTrRoqsskMp5NepZejr1448gbvOHkzMKkdxif8gsDixWcPPsQE0bXIB0UxfcfPIN9Um8c+kZwKnU1EvM/OxIIVlaIej2tv29APWgQ6pEjUA8diszBYn30Bc4XBG/Xt5NRl2HxSNSlsTxvOYtzFwMQrAm+kJxnlIgogVeSXiZ7eSaas1ng0swZnw4mBkxkRsgMzO1Ssr9vR2InMPahgdxrPwq5VI5MIkMukVseUjkyQYYgCHz8wH1gaqDf9NmUZ2dSu/IAd7z/OZpwDwAyy1t4+Nv9JCLhYbuXaAkupKS1hOLWYg5XHsZgvkj4HZQOOPV2wic7CYCBDn3Qno7GSadln0rksVGvEel8afLVlWAWzWiNWrqMXXQZuug0dGJY+APyVds4M3gINgP6YzNgADYDBiB3vfpgbyWzwl3mjrvNlQnXlwvnoxf+v/buOjyqowvg8G9W4+4kxCCCJCEhuLtL8QrQlpZ+hdKWQt2pUmrUqTtQpLi7e/AAAUIIEiXuu/f7YxeKJBBIICTM+zx5stm99+7ZycrZuTNnBBMbP8/p7AROZZ1iR9ZBGjobyF2/iSmqmSgqcLN0w8/eD187X3ztfPG398fXzhcvG69rzhrk6lVYFIDX5A8pPp9EyfnzFCcnUXI+iYIjsRhS065ZY0BYWaF1c0Pj4YHW3R2Nhwc6D3f6uHsxwPcFFlq+xamCXFoOfpCm9w0Bg4GStDRKklMoSSn9pzAujpLU1CsmkF+ksrVFMRguPRcBHNw9aNp/ME37DyY1IZ7YzRuI3byO5d9OZdUPX+MXEUVIizYERjVFW47qKY1738fRrZtY9eM3+NRriKWtHVHd/GjQ1pu9KxOIWXWa4zEpBEW7E93Tv9TVD+G/2so2bdtywljMYW9Xcho9hku8LVm13uFkXj5+563J0ztxDCecVRpqpxeQ/9sMzpX89d9jtrFB5+uLzrc2RnObJBxKJzk+i/YPlq+X/CInCyfGNRrHu9veZfmp5XT161rufctLCMH4qPG3tK+zd22a9h/C5n/+JLR1O56Pfp7xa8eXOfyrojKtNOhKFD7vo+JQbUGaRR5KYRJeVlZ08/akf/06hHsE3tRnqRACfTFMeX4qvdWphGScJ9u2F6uWutBo7wJcPXQ49epjqm3fqBEGJ0/2vLURb+8smvVWcyjpAGu3zGX7+e2sSFpjOqh57bhZszqXep+Pe7oD/0IYzM4AFptvaIbpehvABsav/2+fscVPYFWk53iX6z8HhJUVamtrvKytKXLJJtamBRqPnmTnr8DaUETAgEFobG1RWVtT8s9vCAwsnToBq/Q8LFKz0aVmoUnJQJVygZZFxbS8dOR4ijTxGC1syNN6U+QegMpLT3x6Aooxj2xbBxr2G4Bh3nKEopD8wQcIC8tLY+Kv+G1hgcr8c/GysLQ0DSO0tDQNJbwsoVcpKlQl8E3gR2TWMrAhcQMbz2xk8cnFCAQNXcJoYf8gGxfE4hfhXOpcojOxh9g4/TeCmrWi5YjHmfrufBS5ome51OLKIb6JwNWry1zaRlGUEiFEJuBsvn7rVfuWOk5ACPE48DhA7drXViO47Qwl6Awqngh4ipa1Wtz07orRyJIvP+bc8aP0Gf8SnnWCsTPYAAUoJTYUa1MJdgzG3dr9UoKkU+suXdaoNGjVWnQq3aXk6epttCot//z0M+hssDSaFgjyquWFoigYMYJiWlXQqBhRUEyl/cx/F2RlsX7lh+jq1+V8ei+i7RyZ0DWI4sJ8ds97nXwNpH71FTpfXyxCQrHv2xeL4GD0wcFovbxKHWPtjR3ett40VdVn5rSDWHk60fCxXjhnHyI5YQuCEtBaEjhsNpP/7stTeed4ddFwpvSdaVoEYuuVi0AIlYqWQx9k7gdvcWDNCsI7d2fRU215cbYTi7ad43/JR1Aruag1Wmo3DOdkzK5rymb1CeyDv50/z6x5hocOfcO7Xd6hQxsVJ79LYu0qHcNOPEynwJbsWhlH7w5jyMxaCUrONY+tIpwfHol182ZYRkTcsAScrc6W1t6tLy1dXVBSwP7U/exO2s3u5N3MPz6fGUdm0FfdGGugzul6nD4+E1udwozoYoIdg5nUchJKkWD297ugRNBvfNQNeyEvpyoppPvY8fz2/FMs/mIKQ976ELVGQ7iPA5OGN2fT5/u4sMOGifeNRa8xvbmWGEs4m3OW+CxTkn7xxygUVIrA1a8eBzcVk1jrIN6W7pfGut8wFqHCSmtl6qE2d6oZnp9EdqM25G7aRO7GTWTNXwCAPijIlKC3bIlV46hyVwuB/4q4Da//0BXXH/Jez5JPJ/Oa65Nk1NYQnxXPqaxTLD+1nMzC/0qRaoTGdNbAzpSwF+Q7oqhMlcDt+5Re9lEpKqIkJYXiJHPCfj6JkqSkS3/nbt9uWtnS8N8Hk59Oi2ctD5oNGGq+Yw1ad3e07u7XfXyK0YghI8OUqJeSwFs2LP0LkkttP1rV9qPlkAdJOn6M2M3rOLJ5A8d3bkOj11OncTOCW7TBLzwSTRlDZtQaDV3/9zR/vvwsa3/9nu5jnwNAb6mhSe8Awtr7sGfFKfatTuTYzmRCmnvQuIcfds5l//92b9pMrtoKJ0s9mwKns981BSEEvr270surP+m7DnFo3Wr2GM+hjQwhsH4Ydbz9cCk2UpxwmqJTp8jffwAcaoFGmMaSO91cL/lFg4IGMfvYbD7a8RGta1XNkvPX06TfQI5s2cDK779mxJQvaeHVgi/3fEkngzuVXQZaY7TBoCphjcNjBNpm4W2fQq5ymoTs5cw7u5h5Z0Gv1hPoEEiwYzBBjkGXfhwsHEo9pqICjwwjz+/8izyNnv3OvjgFJJKuqsX+Vi9y38TGOHleOfSldb8Q1vwRS1CzUHq36E297SoSNsQw5POpnMyJ55sv3iBXV8CgYU+iFmpUQnXpZ0/yHmYcmUG3Yg2dc4rYUjCWkiJBu6EhaLWw4pvPsbCyIalhHxYdSOH9+8Ko7+nIooPbyck28ks/WwxWOkosdRgsdRgt9Rgt9SjWFggLSzQanemzXa1DqyrEfl8Cp/a4U1iQi6qpH/M62ps/+1Xkz1OwLgTfrxdhFJBuA2fsIM1OkOoNqXYqUu0h1U6QZgs5loAoQChx6Aw61EYLdEKHSqWiJPcc8859SndVfTQGyJg9B2N+/hXvL+UmxH/JuoUFGisVJWoV67/6hgfe/YRurbphVIwcTjvM+sT1bDizgbUus2h3/H4e+HY0dcI8aO3dmuZezbHT2ZGfncXCqZOxc3Wjy+in0FtZI4xGEOWd3lx9VZuJnoqiTAOmATRu3PiOj/ivfbaEeod8aDnt1mp0r//rF45t20zbhx6lbhNTUm9rtKaEVHocfoKdXf7m1+4/Vfj00YbcBZQoNnTo0IHmoc3Lvd+ahd9jLDYwqyQaHztXvh3cEhutirmT3yZPYwkCgnfvuqnEBiDj/DnmvP8GeisbBr/yLrbOLnSnNxvifmHXkX9NG+msaDNsHuP/7s6UzCN8s2wMY7p9c2kRiF1L4mnW11TD2z+iMZ5BIWydM536bTtia6G7tNjQma//u1+/8CiO79zGhXNnrxkP3tC1IdN7TeeZtc8wft1zjA4bzeBnHmL2h7vYcGEEbdRvcFjdhNVT37qpx1peagcHrJvd2jLUFhoLoj2iifYw9TiXGEs4kn6EeRu/BiWDDX9+hsBIfPNs0kUxX7V6BxVqFn2/j4zzefR6Krz8CbnaPAFn1iPYDfmDzo+NZeFnH7J19t+0HGJKVtsFu3EqzJnMmHQm/LGHz4ZHoVYJNCoNte1qU9uuNm2821w65MfrFqArFgiVD1DCerc4BgXeV6HnvdrGGof+/XDo389UyeHIEXI3bSJn0yYu/Pkn6b/8gtDpsIyKxKZlS6xbtEAfEnJLk3VDoluy0dkVYs7wWK8rJ8hlFGQQnxV/KVE/lXWKk5kn2XhmEyVKMQPU0dc9ttDp0NaqhbZW2fMXFIPBNJk06bw5WU9C53/tJMUbESoVmovj4oPLvyrhpf2FuLSwUZsHH+FM7CFiN63j6LbNxG5ah97amrpNWhLSog0+DRpes7+bXwBN+g1i6+zpBLdsQ0Cj/9rGwkZL8/51COvgw+5lpjrJR7aep34rL6K6+2HtcOUER6PBQPyp3WwMKyTF7kVAAQHPRj7Lww3NC7D5hdPsvqGcOXKIQ+tWcWTLRmJ3b8fO1Y16rdtT7/FHcfTwYu1TL5GfmkjSySzaPRB8RS3l8lKr1Lzc9GWGLxnO9/u/v+n9bze1RkuX0U/x9+vPs2nmH7x838v0n9efrKIsnLm1ycFlEQKEQbDrubFXLPJUZCjiROYJjl44ytH0oxy5cIR1ieuYGzf30jauFq74WXhTCxdcC21wyFChTy5iRYSWvb6CV579m7OOXqxedpTlh5IItoZ+6TD/8xjumxh5xZe40BaeHNp0lk2z4/ALc6Fhhy4c3bKBlL2H8HbzIPSkNWDLwKCBXK2Hfw9yinNYenIJ9xdmMNYphln7h5G9yI4+TzfCc6CO+R+/x+AwhV36EL5fYWDRuFAsDfvJ1hQQZ63GqDYgVAaEKEYYFSguRsnJQ8kXGNRgFEZKhNE0FNVxPc2tG+CaqRCXqmH9ni8v9RL0cHHDLk+D6+LZFDvZYSWKcSkpoNBQSH5JPoWGQgpKCi5dzi3OZdv5bew4t51iiggo0EOhBwWoUNkqJOuyKNEIjCoVwTt3AKahlcbCQpT8fIwFBZfGyBvz81EKC02/zdcpBQUY801DC435BRgL8lEKCimK3UeRzoIiRfDL268z9pMvcHC0p76LaeXg/0X8j5S2qcx+O4bos92Z4/AJ847PQy3URLiGE7lJiyHzAsPennLLE9arq8pIys8Al6904W2+rrRtEoUQGsAe04TP8ux7V3BwsqEEsLxBjezSxCxfzM4Fcwjv0pOonv3+u8F8yua042FGRD9YKeMPNYUFqHIzadWqVbn3yU5PZe+KxSS5N+CcYsu8h6Kws9Cy+ufviI/ZhbB3Qsm6cNMJeW7GBWa/9zpGg4HBb7yPrfN1yhnprBg+dDFx0zvxbdJGAte+Trd2bxPc1IM9yxMIbuqBo4epvF2rIcP5Z9LL7F2xhKiefRFC8FAzXz7+9r/28ws3VVyI37ur1Emarlau/Nz1ZyZtncR3+77jiM8RhnQdy94lENh/Dq10H7H8wAUQt1Zl5U7RqDTUd6nPcqMlRoopKUzCw8+Kn60v8GT4kwQ7BrPuryOcPpRO+wdD8Am9iRJ5anO/2dElsPg5gnt9xsm2u9g29x98wxpdqvXbrVsgs2IucGJvKm8tOMhbfeqX+VwWBTmAHemnBWpdAlkWF+jm362CrXDZ8VUqLEJDsQgNxXnUKIz5+eTt3GXqRd+0ieQpHwMfo3ZyutSLbt2ixXVXjrycSq0mrFM3Ns34nfSziTh5/Vd1xsHCgQiLKxfl+WXTSd7ccoCoABVWhQsQFRwUKdRqtO5uaN3duLlX4+2jUqnxqdcQn3oN6fDwEyTsjyF20zqObNnAgTXLsbJ3QKXRoNFc2Q/btP8Qjm3bzIrvv2LklK/RW105TMXaXk/rwUFEdKrNriXxHNxwlkObz9GgbS0iu5jG6SnAC8vGs6zFcRBq6iU1p1HJOf7yPkHfun2vOJ4QAu+Q+niH1Kf9yMeJ27GVg+tWsXXuTLbOmYFXcD0KclMBsHWyIKS55y23SSO3RvQJ7MMvB38h0L58i4LdSV5BoUR06cmepQsJadGWkfVHcnzHv7ft/i5PyMFUFclH5Y69URBU7EDrPF+yssI5k5bAydxTJBqTSLXOI872ALtsijGqAD2oawmEInAucsUiJIQAYNrwxmw+nso7Cw/zU1Y2D2RZ8M/Hu7n/pehLNdeFStB2WDD/vL+DrXOP4Rcm0FpYsuzrzzCUFKMCFFF6OVYhBK82fZW9yXt5wduKWcdn0KZZB1ZvMLJj4Uma9mlBYONm7Jo7g9eefJsn5sXz3brjWBg0qEuseK3pa+Skp5GTnkp2Wio56Wlkp6VSXFjAf4OwBKDGyt4ZG0dnMjOTMOgcCE3rRbecHgS2sKXIwoJly95AbQSXgHrlbvtHGz5KUm4SH+/6mCUnl+CtP8zDJxqTcXwQBnTkG2ZcMSxEaLWotVq4ibkiV8sePgIQ1B00koQ/PuGTV9/gpU8nY3lZpRVXGxda9ghh/fSj/NVoHunOp9mQuIG4FaspPlbC1nrpLN7zJK2TW9O6VutLKw7XdJWRlO8A6goh/DEl1EOB+6/aZj4wAtNY8YHAakVRFCHEfOAvIcQnmCZ61gW2V0JMle5Wc7MTe3aw+qdvCYiMpsPIx69MVnSmJ31W7dO093mqEqIElaEEbeq5m1qUY9ucmZSUGFiiacjkgWEEuduyZ9lC9ixdQFSv/uzZuQsl68KND3SZwrw85rz/JjkZ6Qx+7T2ca127QuHVhN6a1wYvIWFmJ149ORsfvSMtBozh5L5U1k8/Sp+nTYtA1G4QRu0G4Wz7dyYNO3ZBZ2FOTy5rWwd3Dxw9axG/dzeR3UsfLqBT63i7xduEOIXw0Y6PSLQ5w31e41m7Coa9Ooe9b40hKfH8TT3uqmZtFcz34dsItQ1lVMNRxKw4zcENZ4ns6ku9VuWbBPkf05tgfvRELHd8BHbedHh4DGdiD7L4y48ZPvkLLKxtcPO1xcZJT2eNns+2nMLNVs/YDnXLOKYRBTh/qpCzrgfxs6l1w9UWy4xOUTgfd5QDa1ZgYWND6/tHXrONytISm9atsGlt+pJanJRM7pbN5G7aTO7mzWQtNJXb1Netg3WLlli3bIFV48bXvd+GHbqwZdbfxCxfRIeRo0t/lEYjU1ce48tVcXQL9uD9fg34ecPiGv+xotZo8G/UGP9GjelUVMjJPTuJ3bSOE7t34OZ7ZWUqjVZL1yee5u/XJrL+z5/o/NjYUo9p62RBuwdCaNTFl52LT7Jvlek5rTdaYySXlcnrCEqwpYXTy1jEW7A+/AUiXMNxsij7C6hWb0Foq3aEtmpHdloqhzas4dC6VRTmJiPUrkR1972lXvLLPRv1LKsTVnPkwpG7MjFvPWw4cTu3svy7qTzy7ge8rV56qSJY5TKyY/5sMlOSyUo+b/qdkkxJUeEVW1na2mHn6k5j1wg6uLlj7+qOrbMrufk6Dpw+y77TR0g0xJNmfZYo5ytfoy0CXVjwVCtm707k1/lH6JxcwNdvbWHAhEj8PGwpKS4mOy0Wa9tN7Fywj53z8xEqNYrRQNuHHmXtH7/CdV6dNjobPmzzISOWjOBt31A+Ovk0ZyP/ZeeSeDzr2NPh4dH88tyT5K6ZQa+GfflidRzjjQoqtZqILj0uHUdRFPKLDaTlFJKankVKUhJpySlkpaWSl55GRmY66RkpWOTmYFBpsCg6RMKB+hzfvhhD4W40gCJuPm1zt3ZncpvJDAoaxHtb32WSdhttsnbTMb4n8cZcuE2VTYb2bsdP5xNRr5zO229+wltvP4/ustdVaEtPdi6OZ8/S0/R7thHuGRZMj1mJT1QUfv3CLo1D/+foP/TVjENT84eUVzwpN48RHwssw1QS8SdFUQ4KId4GdiqKMh/4EfjdPJEzHVPijnm7mZgmhZYAY+7Gyiu3Kjn+BAs/m4yrrz89n37+Uu3rS/Sm8VHd27e5ZuGYOyUrJZm9q5ZxwCaEQe3D6R3uRXzMLtb8Mo2AqCa0eWAke3buuqljlhQXM//jd0g9HU+/51/Hs275ky6dpQOf9P+X++f2YtyhafylsaFZ3+6sn36UuJ3J1I02jZVtOeQh/n5tAnuWLKBp/8GlHssvPJL9q5dTUlRU5oqZQggeCH2AOg51mLBuAn97fkLPPWPZ8E8cHUZP4O/XJtzUY68qwrIW6mILzjcuINOQy3ctJ5EQc4HNc+KoE+VGs743vwiMjauenCTBT7vDeaLh/ajXvIPOzose4yYw/fXnWfn9V/R8+nmEEAQ2cmP/ukTua+bJlOVHcbXVMyS67LkfRkXFNtcj9AnoddNniPKyMjm8YS37Vy8jLdFUA9fK3qHUpPxqWnc3HPr1w6Ffv0uLlph60Tdz4e+/Sf/1V4RWiya4MQUaweJv9mEoUTAajBgNpt+GEgW9TQgxy5Zz+mgwKFoMBgVjiWkbg3kbLfAslrA9m7+2b0GFLQZSbuqxVmdanZ6gpi0JatqSovzSS1B61g0msmdfdi2cS3Dz1lcs3HU1e1dLOo6oR2RXX3YsPMnBtRoU4L6YCC5c0OKqOKPVx3DQsogJvp3KHaetswtN+w2iSd+BLPl6JUmn8ivUS36Ri6ULT0Y8yeQdkyt8rNtBZ2lFp0ef5N/Jb7N/0SIiXCPISavs56dAoLD+z5+xsLbBzs0d51o++EdEYe/mjp2rO/aubti5uqGzNJ0pKSoo4fShdE7uTWXn8lQKc3NQaSxpGdwB/3AX/Bq6YON4bY12tUowuLEPPRt6Mm3GQTSbzvHTa39g53wW/fkjFOXnobWwRGvpj71bfXqObcevE8dSmJdn6tApZUGwy4W5hjGm0Rg+3/05Le1s6WV4hWSPd1n58yEGv9yEVkMfYs0v0xjepA3rj6nIyi9Gr9IwdNoWMvKKuZBXxIW8YopKShsXbQfYYauvS2N9DA04ydGWT2Dj4Ejt2Dz0qe3Q12tMzv4/4BaS8ouiPaL5p88sZhyZwawl33AoZQcWRi1G++t3RNwKoahQjAoPj3qAr88n4HJgI6984sn7zz2Exjx5WqNV06hLbTbNiuPUgTMs+3oydi6u9Bn7PHorawYEDaDYUMye5D2s3HlYJuXlpSjKYv6bj3zxutcvu1wADCpj33eBdysjjrtJdloqcz94E721Nf1feP2/3tzLePk6k3AYegZ1r4IITZb+8RslCpQ06MiL3UNIS0xgwWcf4uLjS89xE01fFgyll80rjdFoYMmXH5NwYB/dx4zHPyLqpmNytvPmi+6/8dCSB3l6zxR+irLkcO1g0yIQDZzRW2rwCgohIDKaHQtmE96lBxbW155q84uIZM/SBSTGHsQv7Pp1eJt6NuXvnn8zbs04dtRaDDt6ENCoAVjZQ17mdfe9GwgXD4ShPrOtJzA2bAz2mR78+/MePALs6DgiFKG6+R6wOl5+7Ik9AmesmeE2gGH+5xDzn8Lz/pm0GPQAG6f/hn+jxtRv25HASDf2rjrNqEBPUgqLeWnOfpyt9XSqd+WEQ0UxgmJAqLI5bxtPN7/yDV0xGg0k7Ith/5oVxO3YitFQgkedIDo/NpbTh/aTcGDvTT8+oVJhERKCRUgIzo8+irGgwDTUZfNmNJu2I9SQlVaAWi1QqVWo1AKtXo3eWoVbQEtO7TmAXn8cV/8WqNTCVKVDBeuOpRCbnEMjP0fah7qh1qhQqVWs+PFPUApvHFgNdDHhKk3LwQ9w3NxjO+Kjr25YwcXRw5ouoxqwd/UZVIZ8rM5lk+rdlqzz+Vi4mDoQSlvF80aEEHR9vCMlJcYK95JfNCxkGHOOzUGvLv9CP3dSYFQTglu0YducGTh4eGGhrtweU0VnC8U6nvr+h+uODc7NKOTojjOc3JtK4pF0jCUKemsNfg1c8A93waeeEzoLc7qSlw5FBihltcyC3BxO7d5BQPJmTuTsxL6kGEO2BbEOgTTp1pah/TsRH5POyp8PkRSvwS+sEQfXriz343mkwSNsPbuV91W7CU+IoVvD9cxc15TlPx6gz9PdObxhDTtn/MxLD73K6d/TKDEqGIwKPk5WhHnb42ilw8FKh6OV9tJvR2sdDlZaHCx16DQqfnthEZo6wTw31vTeaCgxsvS7/cTvB6GyRRHl/zwujaGgCJd1qbTa5oDB2YJMpybYWN7sWdTrK9HmYFHgyrYFJ2jWN5AnXprIF8+Nx3n3XF7+wY33H+uG2vyZVL91LXYujmfJV5+Qn3mBYZM+uuK5olVraeLZhK0Fx6Hc69hWX9VmomdV87XzJY6j5erVK8rPY+6Hb1FUkM/QtyZj43TtEuYAtWxqkQAcXrsKB3dP7N08sHV2ubZH/TY5fSqBU1vXccIlnE8ebUtxbjZzP3wLrV5Pv+fNXyR2/gwlBeU6nqIorPllGke3bqTtg49Qr02HW44tyC2MD1pP5un1E3lz6xuMj57M7DmObF9wgtaDgwBTb/nvL4xj16J/aTn4wWuO4RPaELVWS3zMrhsm5WBa7vyP7n/wqs1rpKSfZvFvhWDrCXm5t/w47hSjk4KSUkSocwiDvO7n38kxWNvr6PG/MDS6W38+Wej1JATugT2NWNPjJTrkp8LM4USPWED8vgas+ulbvIJD8fD3xNpex6m9qXz7cBT3f7+VMX/t5q/HmhLl60RmchL7Vy+D5PkUY026XyiB9n7Ucaxz3fvPTE7iwNqVHFy7kuy0FCxs7Yjo2pOG7TvjUtsPMJ2RysvK5Puxj6C3tsHSxga9tQ0W1v/9trCxxeKy6y9ep7eyujThU2VhgU2rlti0akn6g4MQxQUMfbVJqXEpShi/v7Ccopw9dHjoEYQQ5BcZGPPXblZnZzCxXzBPtgu84v1i+Y9Z3AsfKjdLq7eg6+inmfHWi2yc8TvtRzxWzj1LwDwWNsCzPsTBTtcj1LEPoLbdrVXoUmtVV6yoWFEalYbvu3xPfnHlLF9/O3QY+Tin9u0hLTEBV9+bnzR8XUIFQn1NQq4oCulnczm5N4WTe1NJPpUNgJ2rJQ3beeMf5oJnoD0qlYD0E3B4BZzeCglbIfUoBHaEh+YAprU/4nZu5dj2LSTs34vRUIKNoxNhHbug1tXlwAZwcNTwxp5cZiRt45WeIXjVdWDLv8dp2qsDy7+dglCZatUX5pegtyw7LVIJFe+1fo8B8wfwgm8Qf+57j/Zd5rNiQSY7FibQ+fGn+OOlZ3A6tJwzwg2NEPzzRPmrtaUlniYl/gRtHxxFVmo+uZlF5J47hxfbSVPbUWjUYVTd+ntIwoF9LPv2M7JTU2nSbxDNB97PzE+3V3iuy9WKtNmoDHp2LTmFk6c1QU08eOytt/l2/Fgs1//Gq7YOvDu0GSqVqaPD2fMYJ3YeIbrvCDwCyxr6eG+QSXk5uVm5EQc3HGZiNBhY8NmHpJ4+xX0vvHHdNzkXn9qo1BpWTPvy0nUqtRo7Fzfs3T2wd3PH3s0DB3cP7N08sHf3KLVH+FYYjQrff/YtVkLNiCcewclCzT+T3iX3wgUGv/k+di6ukHSQnIWTEUUDUMi44TG3zplOzLJFNO59H41731fhGNsHdOPprHg+2/sVAQefpUG9b9i/JpGQ5p64+tji5hdAULNW7Fo0j0bdel+zv9bCAu/QBsTv3V3u+7TSWjGl/Ud8xy8U/6NGlWtVLdIotUpNCYI3oyax9KuDGA0KvcaGX5rodKsEgmeeuJ+pH85BWRyM54hvCd06DNXfQ+j+wEx+e+9DFn8xhaFvTSYgwpVDm8+hVeCnkdEM+nojb0ydwWDbRFJi95nHq2pQyCXGOZZuAT1Lvc+SoiLidmxh/5oVl3rA/cIa0fahRwls3PSaUnvhXXqg1mgoyMmmIDeHgtxccs8kXvrbUHydniUh0FtZXZPAixsszCKEIKJrT1ZM+5IzRw5h6xvEqF93sPPUBd7r35D7m1ZB2dZqzLteA8K79GT3kvkENWtFreDQcu+bo7amjtEVg+44mx0yGOVb+nC2quJi6cJdMyu3FFb2DrQbPoqlX396W+/HYDBy7lgGJ/elEr8vlaxUU2ePu78dzfoF4B/miqObDpG0HxJWwJ4tpiQ8N9l0AAsHqN0MSgrJSk8nbsl8jm3bzJnYQyiKEXt3DyJ79KFukxZ41gm69GXbyv4EOxbF83ZELb7LSOeBH7bT28+F0HwDSadcsLC1ozBPBwjmfbqHPuMisLApuzikm5Ubk1pO4qnVT/GZZ22eP/okZ5r/xe5lp/CsE0ZUz37sXDAHS4fBqLVXvv8aDUbysorJzSgkN7Pwv9+ZReRlFHLu6DJAsHWBim2LLl+uJRAFUw19wc19aTQYjORm5LJpxm8cWrcEGyd3Wt3/ItaOvuxbc5aSTFHqcKCKKrRIJaiuA6t/i8Xe1Qp3f0ceePkN/nz9eU4v+5k3La14q18Y544dIX7PfDT6uuRm39r8oppEJuWVSFEUVv30DfExu+j8+Fj8bjB0I6hZK+pENycnPY2MpPNkJpt+Ll4+tm0z+dlZV+xjYW1jSthd3c2JuylZd3DzwNbFtYx7utZXczdhd3YflpEdad7An6VffcLZI4fo9cwLeNYJhqJcCqc/wbz0lzEa40Bcf7zdvpVL2TzzT+q16UCbcoztLa9HwkdzPPMEX7GEj849jYXFt6z76wgDJkYhVIIWgx7g2LbNbJ83q9T9/cIjWff7j2SlJmPnUs4KG0LF/zo8wsyk1ZxdUj2WEKvvXJ9j6hSOzcwjMyWfPuMicPSonFJSnrae9Hu8CUs/P8yKPw24jP4L18W9sVs8is7D32XhN1+xZdbfBEb2Yv+6M8RuPkpW8i4GxC2nIPMCp7Q2NOk5kObdu/Pj+HcwFp3ltMNhuvlfWXIy5dRJ9q9ZzuENaynIycbO1Y0WA++nfruO1/3fudb2o/3Ix8u8vbiokMKcHFPCnpNNQW4uhbk5FFx2XWGu+XJuDjkJFxfxuf6HX2jLdqz/42e2LZrPD5pWxCVn8+WwSHqGVXw88r2ozf0jOLF7O8u//ZyHPpxa5jyQq6Xa++N2Khsr250YgQ4+t36G7l5Vr00Hjm7diHKDcdW3QihqVvx0kFMH0ijMK0GtVeET4khUNz98gy2wzooxJeErtkDiTig2n5l0qA2B7aF2M4q9o9lRksW6M+uJP3iOoDgb2DwNFx9fmt43hLpNmuPq61/qmezoXv4U5BSzf90ZPu3rzw4LA1+viSNHp0LZmkKt+s05sSMGMJJ+Npe5n+ymz9MRWNuXnai282nHsJBh/B77N80z02ht+RXJPo+y8pdD3DfhPo5t20ReXgkII4u+2mvq8c4oJC+76Jr5pEKAlZ0OK3sdBTmHsHXwIdL3ABYZOzlqW8gSdwtiVGfQWqkZuLI+WqOW43uSKcwroSi/hMK8EgrzSyjMK6bo0mXTbQV5JRTlJlKcuxTFeAG1PoJiY2t2LC4AjpjuXyXwD79OZbRbJRS6jW7ArA92svibfQx6qTEedYLoNvopln79KTGLp/M+Jbis/BIbJxdC2z7C3tUppJ/LvabO/L1EJuWVaOeCOexbuZTovgMJ61i+sbIqtRo780QXuLYGemFe3qVkPTPpPBnJSWQmnyclIZ64ndswGv5blU8IFapyDK9ZfzSFg4v+IVCj4+EnHmb7v/9waMMaWg5+kODmpsUuDIteZOnx+7hQ7MkJ59kEnC07QTm2fTMrf/ga/0aN6TJ63C3Vfy6LEII3Wk3iVPZpXlcO8kH2Nxw+OYbDW85Rr6UXzt4+hLZux95li6CUVeH8I6JY9/uPxO/dXe7/yUUDB7fjuw0bySu6+xNznVqHoUghMfYCHUeEUivY8cY73YSmtaM5NuQ4Z3/PY+avZ3j4kb+xmtOP4LiPOdmmG9vmzkCt0VKSv4kV38WDgIBGjXFo1JpxGwtZn2LFP1YOCPOqtAFuPvja+VKYl0vspnXsX72CpBPHUGs01IluTsMOXandIKxSnktanR6tk77MYWSl+fCxx1DnXH8ugdbCgtrN2nJkzVKS/IP48eE2tAkq/xdj6Uo6Syu6PP4Us997nS2z/6b1sBHl2s+zVn2MiRDrdAg3CxfqOZe/XJxkIoSg78RXb8ORjQhFTcKhdPzDXfCvq8HH6iDac0vg4BZYtR8Uo2mYi3sDaPSgqTe8djPSdRZsSNzAusR1bF49jdziXPRqPa0y7ci2LMZqWHN6tB6Dq9X1X3NCCFoPCaIgr4Qd807S/sEQBk1sx6eLj5C1NoX0I26m6uyKgV5PhbP4633MmbKbvk9HYOdS9imO5xo/x86knbyq0jP7yEy6tuvKzNnOrP4tjvYP/49FX+3DaFDIvlCItb0eFx8brB30WNvrzb91WDvosbTVoVJKOL98Gn/uTaO5w1YO2gn+rO3AOUMutW1rM77e0/QN7Muv614iPzufpd8duOwBmhbe0ltp0Jl/O7hZobGA1JOrOJu0CgtrByK6jscrJAy9leaK7bV6daWUYy6NpY2OHk+GMfvDXSz+Zj/9J0RSv21Hkk8ehyXzSZ5zDn3JBe6fNBkHD38Obkhj99JTdHr43n0Ny6S8khzdupH1f/5MUPPWtB46vNKOq7eyws0vADe/a6tnGI0GctLTLyXsmcnn2TJvDlxnKdrEC3m8+fNyeuYeJ6rvIBIPH2Dj9N8IbdXOtEw3oOybxZp1DiQWhbOmzh+00wVQfDau1OOdPrSfRVM/wqNOXXo/8yJqTeU/pfRqPZ93/IJhC4fyXp3jPJ59iM0zjfiHu2Bpo6P5wPuJ3bQOiq8dcuBUywdbZ1fiY24+KVepVdSN9ODguru7VvnlGvfwq5TKEaV5IHoIb5+bjG5ZOH/PzmNEvx/Imz4KK2GLUKnY/M8faPR2aK2b8eA7j+LkZVoN8bvAVEb+tINHf915cTVrOqqiWfLlxxzdtpmSosJLvd2hrdphaWt3W+KvbEfOZ/P5WVd6KEZerZMlE/JK4BceSf12ndgxfzZBTVviHnD9OQcK4GNdhwL1BVa5nKGv7+DblmDUdKpSljqvqEKrZBCCZ1r8her0Zlgeb7pBYwnejaH1BFMS7h2NorfleMZx1iauZd3GF9ibshcFBVdLV7r5daOdTzuaejbl322DSdDk89f5OcyYvYD76t7How0fxcO67NVXhUrQcUQohXnFrP0zlq5WDXh/SDhrneM5OEtFISpA4B3sSJ9nIlj4xV5TYv5M2Wcc9Wo9H7X5iCELh/CKdwDfbHyGDvctZdlf5zl3wget3gFFUZc5LwWAgkzY8h1s/YYdxy1RhCfjw2zJUBcS5RLCi/WG09a77aVl6B09rbGyU9Pz6WhzAq5Fp1dfM5E/5dRJlnz1CSmnTlK/XSfaj3jszi/CoyhQlIuzlw1dHq3Pom/2sfrXw3QZVZ+2Dz3KiT074fxZ9tiFYXFazZg6Ouq3qcW+1YlE9/LD3rXsyeE1mUzKK8HZo7Es+fITvIJC6fbkM5XaU3w9KpUaOxdX7Fxc8alnWjVv89LFiLzSx9AWFBv43x+7aZi8Fa2lNQENI5g7+W28gkJNPdxCQNpxtv+xniMF/dhdezlOYWoi0iPYwbVJeXL8Cf6dPAl7V3f6v/DGDasmVISLpQtTO3zBiCXDWRGymEb7gtj640raP90DB3cPGrTvzL6VS6/ZTwiBX0QkRzZvwFBSctNfGjS3sRehMgU39cDaXk+jLrdvLLMQghd7PcNz598gaFsA074+SH56NFCEl6sl59KK8AhqSWpiKBnJapzME/pbBLrw2dAIxvy1mxYooBSQ8/sG4iytqN+2Aw3ad8E9oE61aOeLdidc4OGfd6DXOeIS3JCUnWsxjhx+xyZp12TtHhpFfMwuln3zGQ+8/ylqTenjexWtHmFUKD5ThIXFHvLVRjrUlkNX7iaK2oCiMqA6vsKUfDd5HHyagWcYqLUUG4rZkbSD9fu+Zu3ptZzJMa0dGOoUyhPhT9DWuy2hzqFXzOWycKhNrbw4Fpw+w4+OTsw6MoNZR/+hb2A/RoWNwtvWu9RY1BoV3UY3ZP5nMSz/6SC9rDS07ehL1qEM4rbpuNiZ5eFvT7/xkcyfGsPcj3fT+6kIXGvblnrMQIdAno9+nklbJ/G7tZYRxydytu3H7F15GqF2RFPWpOGM07DtW9j1K3tFIb96BOC415FUtwJa1OnI8HrDqe9S/9rHoBboLDW4eJcej9FgYMf82Wz+5y8sbGzoO/E16jRuWsZ/5/ZRa/TklORx+o9++DwwB78wF5r3D2TLnOM4eVnjHVxEVkoSGp2ehoUn+GrRbvQaFcM61ebA2jPsXpZA+wdD7njcd4Pq0wV4l8pIOs+/H03CxsmZvhNfRau7O0tfAbw5/yBJJ45RO+ckYR27sPjLKVjZO9B3wium8ZslRRz69gt2ZvXjTK39xAVs4f3W75e6oERm8nnmvP8GOisrBrzy9h3p3Qx1DuW91u+z1fo0WZ6bOHTYgvMr/gWg2X1Dy9zPPzyKovw8zh2Lve0xVhU3Xzsiu/re1sQ2KyWZnbNmUm93IsW588m/cJ5aDTrx2NAwhrmsoGUTXxL3L0OjUzi+J/mKfXs09OStPvVB44pKU5tuTz7LE9/9RqdRY/AIrFutEvINx1J44PttOFhpmf2/FrTs3Zec9DSO79xW1aHVCBY2NnQaNYaUhPgy54oACI0lKmFJfo6BBMf92GqsaOxR+fWWpQrQ24LGAiYcgyF/QPMxXHAJYH78EsavHU/rGa0ZvWI0s47OItAhkNeavcbKgSuZ2XsmT0Y8SX2X+tcWV7BxA7dQfEYs5c3aPVmclMmAzAzmH5tNrzk9eGX108RnxpcajlanpueYMBzcrFjyzX6ST2XTZoipmtflH3Mu3jbc91wkao2Kfz/dw/kTZQ9lGxQ0iE61O/GZgw0Hz22jpdcy3HxtUQyljM8/txdmj6Lk83CW7/uZB318eNDLg+PZeqwKNdzf/xk+bPNhqQn5jaSfPcP0N55n4/TfqNO4KSOmfFUlCTmAt0MAqNSMNiaS+kd/KMiiUefaBDfzYNu8w8z98D1snJwZ8PJbWFDMAzlreG/hAebEnie0hSexW86Rc6F8Vd9qGpmUV0B+TjZzPngTxWik/4tvYmVnX9UhlWn69gSm7zjNYHEACxtb4vftobiwgP4vvI6VvQMAp/78grWne1LkepZF3j/xfpv3TZUDrpKXmcGsd1/DUFzMgJfeKvcEysrQybcTYyPGMsNnIegyWTsvDePeWdg6u4BV6b0HtRuGI1Sqm6rCIpkoipG4HVuZ88GbfP/Uo2ydOxMP/zrUHzWUhDqNSDsTxrlaT0HYEKIzfsPbx4WivFhOxqRguGqRjOHN/VDrPNBa96R+245o9bfvzMrtsmjfOR75ZQd+Ltb880RzfJysCIiKxtbFlZjlC6/YtjAvj6STxzmyZSPb5s68qXr/97o60c0IbtGGrbNnkHr6VOkbiYu/jKxxP0lrn3ZoVWVXzZCqgmlYSFzGcX7c/yPDlwyn3cx2vLLxFWKSY+jm140vOnzBhqEb+KrjVwwOHoy7tfsNjwqATzT0/gzPZ2N5td0UlgpfhmVmsfzUSvrO7c3z84YQl7L/mt0srLX0GReBpa2WhV/sxWhUMKqLMIor368c3K24b2IUljZa5n0ew+nY9FLDEELwZos3cbZ05QVvPwrXv0PXPioMRfspzttvGsZxbAX82pucaW35PXE1vQLq8JybM+nWjrzU5CVGa/uhtbAkskXnm21gFKOR3UsW8PsL47hw9gw9xk2k17MvVmk+YqmxJMgphFS9Ff8zJpL9Rz9EYRbt7g9GLVaTn3WBlkOfwju0Ad2ffBaLC6e537CD1+bu56yHFhTYszyhyuKvSnL4yi0qKS5m/pR3yUo+z8BX38HJq1ZVh1SmfYkZvD7/IN1c8hA7jmDl7UP66QT6v/gGLj6+AKRsWMayrSFobTP4wf8zHg57mBZe19ZXLcrPY84Hb5GTns7AV9+5tP+d9HjY4xzPOM7yjNl0OfoI+//8iXAVCBt7lLxrVw7UW1njFRTKyZhdtKrE8f73gsLcXOZNeQcbRyea3TeEhu27mCclwwXP6Rz89TgrfjVi/+z7eOQk0f3YEn5Pd6C4MJSEg6n4h1/5hU0Icb3VrO9qf21L4JV/99PY15EfRkRjb6klPyebzPPn8KwbwtEtG/j3o0nkZ2WRkXSOvMyMKw8gVJgWPZbKo8PDo0nYH8Oybz9n2KSPyhzzbKM/SpIuTw5duUsVGAroP78/YBqW8njY47TzbnfNsJRbprWEhgNxaziQFzITeXT3T/x2bBbT0w+wZPH9dNa48Hj4E4TUH2wqdQJYO+jpPS6COVN2s2BqDABKKXOxbJ0s6D8hkgVTY1j45V66PdYA//Br547Y6+15v/X7PLrsUd5zc+PR2eMoznUEvQd83ZyzF47yl7MHswMCyDEWE+kSysT6w2nn3Q7FYOS7jx6iTnSzm+6oyEpJZtm3n5FwYB/+EVF0GT3upia03042Wms+6/AFY1Y9ybj8RL79vR8H3UaTlxGLtVNHdizKw7dhIUHNWtG0/xC2zZ1BvxAPXl4heL2uO4c2niWqux9WdhUr61vdyKT8FiiKwvLvppJ4+AA9npqAd2iDqg6pTOm5Rfzvj9242uhpnb2OVL2e9MTTdHh49KXVNrPi41k4PReNRuH30GnU8whhTKMx1xzLUFLMvI/fIzn+OH0nvHpTtYQrkxCCt1u+zciskSSmHGFL5gPU+WcMGNqVuY9/RBQbp/9GbsYFrB0qtzJJTRUYGU1eViYhLdsQGNnkmvHSQ+sP4a3u75A9z55/v4nhgQk/YJfbn475K1mZ3Zktc7fiH96niqKvHIqikJeZwU9Ld7Jow34G2xfTskCwcNI/ZJw/R0FuzhXbJxzYi0dAXQKjmuDg4YWDhycO7p44eHgyddw4yL77V4e9W1jZ2dPh4dEsmvoRuxfNK3PtgzT7vWiFhla1WpV6u1R1XKxcuJBXwmvNHqOtd9vy94LfKntvXNq/zvh2r/HI8ZX8vvMz/sqPZ8Wud2i39R1G1+5OgyZPgYMPDm5W9BkXztyP96A26CkRpQ+XsLbX0298JAu+2MuS7w7QaWQoQU2unVQa7RHN42GP88e2H3CJNZ21VYwFTLQoZIWPNwgVXXw7MbzecBq4/JczxO3eSUFuDiEt25T7YSqKwsG1K1nz6zQUBTo/PpaGHbredcMAW9Rqwbut3uOFDS/w2vlUPFf9TkBEJC0feJS5U3az5Nv99BvfiJaDHyDl1AlUe5fTMfx+vjyv4pESPXtXJdC8//Une9c0cvjKLdj8z18c3rCGlkMeIrRVu6oOp0wGo8LT0/eQklPIu031nI89QElhIRFde15abKcgp4CFn2+nxKhlQ5NFFFrmMrnN5GtPAyuw5KtPSdgfQ5fR4wiMus6M8jvAQmPB1I5TORi8iiLUrDaMh8vKQ17NLzwSgFP79typEKs9v4goej/zAnWjm5c6gVEIwcttX+B483XkFxQy57tYigZMJ6SWEVtVLOln1Zzat7cKIq8kxny+fHgw345+iKK5n9M5dTXuJzaRfPwIemsbglu0oe1Dj9J34muM/Phrglu0QQhBvxdep8vocTTpO5Cgpi1xsyxAt/gZMMrhKzcruEUbAhs3ZdOMP7hw7kyp22xxj6OpZzOstfdubeO7lYe1Bz42Pjc3LKUyCIFDnc48NXQRywatYoxHG3ZrVQw7t4Qn/m7Pnl+7wL6ZuLiZxpgrwkgpU6cusbDW0veZCLzq2LPi50Mc3FD6c3FUvUfpsc+XAqFC0VhTIASbLC0ZXn8kSwcsZXKbyVck5ACxm9ZhYWuHb8MbrzoNUJibw78fTWLZt5/j5hfIiI++IKxjt7suIb+oR0APnm84HqvDtSjRldDVZi1uLiV0ergeSSezWPNHLAhBj6cmYO/uSaNj8wnygCNaAzGrEynIvbfeN2VSfpMOrlvF1tl/06B9Z5r2v7tWjrvapyuOsuFYKm/3qUf8wj8BqN0gnPYjTAutGIqNLJ28lMx8ezKbbWGncQeTWk7Cy8brmmMpipEjm9fT+v6RNGjX6Y4+jrK4Wbnxfq+32Oe9moS0eoiSskvSufkFYGXvIMeVVzKdWse7vV9nW4PZZCUVsnhGEsb7Z9HMaQNCZcnir/8iPye7qsO8aQYbZ9B5c6FWBOucWpLXdiQjP/mWp/+YzagvfmTgK5PoNOpJGvfqT53GTXH2rk1k994U5edzeMMa00EStlL024MkT32QIzvTUBmrR6nHu4kQgk6PPolaq2XZt1NRjP+N+1VUJRhECYetk+ngK4euSKWzs/Hgia5fsfz+zTwTOpLDNg4M5xyPbn6F7V/Ux/Pga+RbJ1Coy7jucXQWGnqNDce3gTNr/zxS6pjnjX/8gnWagZ2NcinWWKJCsGLQCsY3Hl9qycaignyO79xGcLOW5a4MlpaYwKl9e2g3fBSDX38Pe7eyS0HeDRRFwX7NOWwLtSyJTOVHJRF+7U1gkIqmfQI4ui2J3ctOobeypt/EVzGWFNP13BLSa6kxFhtZOOtIVT+EO0om5Tdp5fdfUbtBOJ1Gjblrv5kCrDiUxJdr4hga7UO97FjSEhOwdnCkz3Mvo1KrTauPfrOOM8l2eNVbx68sYFjIMDrW7njNsS4+zMgefYnuM+AOP5Lrq+9Sn/sGtSNTn4IoLn2iJ4BQqfALa0T83t1XfLBLFedu7c4LA8ayxX8uZw5msmm9ioBHJqKmkOJCd1Z++/ltWSnwdjJaO4NDF34yRNBhwABe/d8AnGt5l1qeTzEqZKXmU1Tkiq2zD5v+nsHcCT/xywen+X7zI/yTNoWV6U8iSqwwqspeQ0AqnY2TM22HP8qZ2IPsXbHk0vVF1ufJ0WcghKC9T/sqjFAqixCCnAtppJ8tvWf5TrLWWvNok+dYMnQ9E6MmcMLejUddbBiRtIJcdS5GdeENj6HRqek+uiF1otzYPCeObQtOXHpvO7xxLXuXLyKqV39GDXgJACPKdc/gHN+5jZKiQkJati3XY3Dx8cUruB4PfTCVqJ797lj55YrYs3Qhx7Zvps2wkbRp0ptp9jb8WXgGfu1NVGsr6jZ2Y+u8E5yIScHJy5ueT08kLeEkA7Q7OG8Dp7Ymselw8o3vqIaQY8pvkqNnLXqPf+m2LJJTmcbPiCHM254X2vvw67g3EEIw6PX3Ly0gsHXWAY4dUqjvvphXXbcQYhPCc42fK/VYIa3aYWFjR2T33nflF5EedbtxsuMvFJddPQ0wDcc4tGENSSeP4xFY984Ed49o5NaIfn3bsvrvdbCqLU4ewfjVyeJUXABHd/zIgdXLaHiTizfdDd7sXY+RLf0BKMov4UJSHhnmnwvnc02Xk/MxFJu+6JUUhlCSt4JcfSreAU44hnpj7+VAoU0m0387gT7x3izzVVEN2nXmyOYNrP/rFwIio02TjYWCAoS5NCy1SpRU9SK69iLx8AF+e34sLQY9QONe/au8lr+V1orhDUYwJHQoc47N4cd9P+CsAgt1+SYUqjUqOj9aH61ezc5F8RTnGwhprmP5tC+oFVKP1sNGoNZoOKSZCyVlD6kE09AVG2cXagWXbwXL9iMfL9d2d4vzx4+x/o8fCYiMpnGv/kTSj4zCDD5gFY5pZ+nxW286DPuXzJR8Vvx8iAETowhoFE2rIQ+xcfpvtOhShxM7HPn6hxiqprjjnXf3f826Szh5+eDk5c19L76JhbVNVYdzQxq14MuhYcx771UMxcU07mvq6QM4sD6R3atSCLVayc+N4ikyFvNRm4/Qq0uvse5cy4eonn3v6m/l/+s9nGK73Otu4xvWCIQgPmbXHYrq3jI4eDAenQQJDodY+3csDnXrUIId7tZ2rPnpKy7cBb1l5aXXqNAaLPA7VcS/n+zm5xc28v2z65n1wU5W/nyIXUviST2dg42DloZBabRzn05/p1cY2WABer0ObUA2GX1LmGn3I6OPD2PolvtIzk9CI2T1lVshhKDL408BsHzaF6beSb1pOFB7WXXlruUX1oiRH3+Df0RjNvz1C3+9+hzJ8SeqOizAtCLnsJBhLBmwlCCHuriXMmyzLCqVoP2DIYR18CZm1XGmv/kWOr0lvZ5+4VKHnaXGEq267BKd+dlZxO/dTUiLNnf1Z+utKszLY+HnH2Jp70C3J59FqFSoVWo+bPMhjd0b84qLA5vyz6P5szc9HnRHb6Fm8df7yMsqokm/QQQ1b83hFb/i4KkiskDDvVK5quY9E26T4OatePjTby+Vg7vbfT40gsOzfibt9Cms7B1oNfghAOL3p7L+7yP46ndyqF0SuzOP8Fqz1/Cz96vagCtIJVRENwlFXdYKapiqObj71+GkHFd+27zc/GXON9/FBYskYlafQq0ReNbthNpYxKL3J1Bd6iEqujw0Rj1xO5MoKTZSu54TzfoF0H10Q4a93pTRH4bxYKcN9MofSIu0R7CufZxN3brybuNIYn3ySNi1m8lr3mH7+e1EuUXxWrPX6OzXGUcLWfnnVtm5utH6/hGc2reHg2tXgjnhkaUQ7242jk70ee5lej3zItlpqfz58rNsmvE7JcV3xwQ+rVqLm7U7Nrqb62wTKkHLgXWwtd9MYU4KbnUGYWlX/tf3sW2bMRoM5R66Ut0kxx8nKyWZXk+/cMXignq1nqkdplLHMYhn3V3ZV5CM9dx+9BjuSV52EUun7cdYotDtiadxqe3LhYS5WBhArb43zobJpLyGUZmHl1gd3cSBNSsAaDd8FCq1muRTWSybtg8XzQmcG29n2oUd9AnsQ+/A3lUZcqUxlBSVuvro5fwjIjl3NJaCnJzrbifdGp1ax5TOk9kaPos8Yx5CJUjIqEunpq4kJWdDYX5Vh1gueX4bmB/5Io9+3JqBLzSm44h6RHXzIyCgCMd975LwTQQzd37O8x6edAhuQG9NMm+fnM3OpJ3YNg1GpQjetHmc1YNWM7ntZAYHD8ZWKyd6VlRE5x7UCqnP2t9+wLJAhV6tx9/ev6rDkm5ACEFw81aM/PhrQlq0YeucGfzx4tOcPVq9V1mOWbaI1FO7CWjcm/MnbVny3X5Kiso3b+TwprU4eXnj5hdwm6OsOq2GDi+1dLKtzpZvOn2Ds5UrY2rV4kRBKm4rB9BxkDvn4jJZ+/cRNHo9fSe8ihApqFQpVRB91ZBJeQ1zccj3ut9/RGdhibN3bYJbtCYrNZ+FX8ZgSTotfH/iFV0qvna+vNL0laoNuBIoisKuRfOIWb4IrxvUTvcLj0JRjCQciLkzwd2DXK1ceaf76ywP+ZGi4hLyMouw7fYpDX0wrW5XHQgo1uQhhEBRFE6cXM3MGf2Z+Gdb2p/9lz4ejkxycWKXhQVNarXijeZvsKDfAlYNWsX7fT7HN6wRpzdsxWiQEzsrk1Cp6PrEOAzFxXA6A487WWZPqjBLWzu6j32O/i++QWF+Hn+/PpG1v31PcUH1m2tx9mgs6343jZfu99wo2j0QzKkDaSz8ci9FBdcfS56dlkri4YOEtGx7V87Tqij3gDqEtGxLdBlrCwC4WLowrfM01Go9o2v7c74gnbq7h9C4gyOxm8+xd9Vp7N3c6f3MixRkb7iD0VctmZTXUHau7hQV5NNi8AMU5RtZ+OVejPm59LR/i3eC/cgsymZK2ylYaa2qOtQKMRoMrPrxG9b+9j11o5vT7/nXrru9Z91g9FbWnIyRQ1hupwi3CEZ1foANfjMBWDfzBO1e/QHKWJXxbpSjgglLHqH9b5H0Xf80kwri2G3rQLPaHXmz+Zss7L+QlYNW8mGbDxkYNBA/e79LH7ARXXuRcyGd4zu3VvGjqHkcPWvRYsiDADUyobkXBDSKZuSUrwnv1J1di+bx6/NjSThQfdY0yMvKZOFnH2Lj5Ez3Mc8hVCrqt65F54frcTYuk3mfxWA0lN0BcWTzelCUm1owqDppN3wUPcdNvOFYeR87H77t/C05xiJGB4aSUZhJk8QRBDawZvPsOOL3p1K7QRhthnXBWJyIolS/L283SyblNY3GPINcUXDzC8Q/ogmLv9lHZnIuPezeZn6TKDalH2Bi9ESCnYKrNtYKKszLZc4Hb7J3xWKi+w6k97Mv3nCZYpVajW/DCOL37qp2Zfqqm4FBA2nYxodMfQrpZ3M5sK0QnHxAlD356W5hL7TkC0HM2S00z8vjLcdoFnf7g5UP7uCDTl8wIGgAvna+ZSaFAZGNsXN1I2b54jsc+b0hqmdfPOsEo7Os3p0K9zK9lRWdRj3J4DfeRwjBP5NeYfm0LyjMu/6E/apmNBpY/MUU8jIv0Gf8S1jY/DcWPaiJB90eb0BqYjZF+WX3lsduXo97QF0cPWvdiZDvaiFOIUztMJXE/FTGBEeSX5xJx4IncPbQseLHg6SfzSWye2/yVfso1Byr6nBvO5mU1zAq84dUVmoyLQbdz+rfj3AuLpNODl+SEmzH1Iy9dPbtzJDgIVUcacVkJifx92sTOX1wH11Gj6PN/SPLPYPdLyKKnPQ00k6fus1RSi82eZG0UNPiD1vmHkdVZA3VoALJGN+erMhSsyJ0DO8/sov7+vyEj3t4uXtmVSo1YZ26c/rgPtISr11kRKoYlUrNwNfeof8Lb1R1KFIF+dRryPDJX9C4930cWL2CX557kuO7tld1WGXaOnsGp/btocPDT+AecO0S8AERrvQaE45QlT7DKf3sGZJOxBHaqmZO8LwV0R7RTG4zmQNZJ3iuQWswZNBD/zxqjcKib/ZRmFuC0SEEo13NHX9/kUzKayjPOsGcj3cibmcyzT2W4O60nxesjLhZufFmizer9Wnfs0dj+evV58i5kMaAl9+mYYcuN7W/X3gkgKzCcgdo1VrGD3wcI0bydTmoiu7+XnIAXfMn8XgqBtFiLOhvrQRqww5dUGs0xCxfVMnRSQA6C0usHWQ1m5pAq7eg7YOPcP87U7CwtuHfyW+zaOpH5GVlVnVoV4iP2cWW2X9Tr00HGnbsWuZ2PqFOuPvbYediec1tsZvWgRAEN299O0Otdjr6duS1Zq+xMXUvr0d2w1qVRA/7D8hJz2fptP0I5e7vzKkMMimvcUzJtldIV2JWnqaB70kilGm8GdKMpPxUJredjJ2u+laBiN28nplvv4TOwpJhk6ZQu0H4TR/D1tkFFx9fWa/8Dqnl4oFToJ5iUUixqoDqUhaxoqzs7Alq3ppD61dTlJ9X1eFI0l3Po04QD37wGc0H3s/RrZv4Zfz/iN207q4YapiVmsyiLz/GxceXTqOevGHHllavRqO7MsVSFIXYTevwCW2AjZPz7Qy3WhoYNJBxjcax8OxGpjQdhLtFHB2cf+LM0QxscnyrOrw7QiblNYzK0RWNZTsOblLj51dM64IJzGrUhxVpe3kq8inCXW8+ib0bKIrC1jkzWPT5ZDwC6zLsnSk41/K55eP5RURxJvZgtZz1Xx2FNw3ArtCZC5ZJFKuLqjqcOyaiS0+K8vM5tH5NVYciSdWCWqOlxaD7eeiDz7B3c2fR1I+YN+UdctLTqiwmQ0kxCz/9EGNJMb2ffemGc5fKknzyOBfOnSFEDl0p06iGo3gg9AF+j1/ET61HEWy3nUiHJVUd1h0jk/IaRmVpjcYiEjdvPV0MT3LMJ4wPsw/R0qslI+uPrOrwbklJcTFLv/6UTTN+J7R1ewa++i5WdvYVOqZfeCSGkhJOH9pfSVFK1+Mf7gICXHNrV6cCLBXmWTcYN/9A8xCWqu/tk6TqwqW2H8PemULbBx/h1N49/PLck+xfvbxKes3X/f4T5+KO0PWJp3HyuvXJmYc3rUOl1lC3actKjK5mEULwfPTzdPfvzmdH/mROh2dp6rKQFKfN5NidrOrwbjtNVQcgVTK7NM7bnOBhp38pzi5moqMVdgYV77Z6F5Woft/B8rOzmDflXc7EHqTF4Adodt/QShkPXyukPhq9npMxuwiIjK6ESKXrsbbX41XHgbPHMrDR2VZ1OHeMEIKIrj1Z/u1UjIbr1y6WJOlKKpWaxr3vIzC6Gcu/m8ry76YihAo3/zs34S920zr2LF1AVM++BDVrdcvHUYxGjmxej19EJJY298574K1QCRXvtnyXrMIs3jrwLQ7dX+PklvfQ6mt+u1W/LE26Pvd45jX4DKvkDbzXoB3xOWd4v/X7OFtWv/Fr6WcT+evV5zh//Cg9x02k+YBhlTZBVaPVUrt+GPF75bjyOyWgkWtVh1AlQlq0wcLahgvnzlZ1KJJULTl6eDH4tffoNGoMWgs9FncoqU1LPM3y777AKyiU1vc/XKFjJcYeJCc9jZCWcuhKeWjVWj5p9wn1neszcffHnLJ1BpfqXca5PGRSXkMtaNiDeal7eCzsMZp5NqvqcG7a6YP7+PvVCRTm5TH49fduyxuZX0QUGefPceG8TJbuhMB7NCnX6i2o365TVYchSdWaUKkI79ydUV/8SI+nJtz2+ysqyGf+J++h0evp9ewLqDUVG1gQu2kdGr2eOlFNKynCms9Ka8VXHb/Cy8aLtIJ0UNX8wR0yKa9p7H1QhOCdghNEukXyv/D/VXVEN+3AmhXMevc1rB2deODdj/EKCr0t9+MfHgVAvCyNeEfYOFrg7l99K/9URHiXHlUdgiTVCJa2dhWeU3QjiqKwYtqXXDh7hp7jJmLr5FKh4xlKijm6dRN1GjdDa3Frk0TvVY4WjkzrPA13K3dsdLdWnrY6qflfO+41jr5w2nTq58M2H6KpRt8sFaORjdN/Y/u8WfiGNaL3sy+it7K+bffn4OGJg4cn8TG7aNS11227H+k/TfsGkHIqu6rDuOMcPbzwj4giI+lcVYciSdIN7F2+mNhN62g55CF8G0ZU+Hin9sVQkJMth67cIk8bT+b0nUPpyzHVLNUnY5PKRasyLc4yqcUkPKw9qjia8isuLGDJV59wbNtmwjp1o8PDT1T4dGF5+IVHcWDtCkqKi9Foq8fCNtWZT4gTPiFOVR1Gleg2Zjz52VlVHYYkSddxLu4Ia379noDIaJr2G1Qpx4zdtA4Laxv8whtVyvHuRdV5fZWbIZPyGmZQ8CDC3cKr1TjynAvpzPtoEudPxNH2oUeJ6tnvjq046hceScyyhZyJPVgpPSKSVBYrO/vbftpdkqRbl5+dxYJPP8DGyYluY8YjVBUf4VtcWEDcjq2EtmqHWiM7fqTrk2PKaxgnC6dqlZCnnDrJX688R2piAn0nvErjXv3vWEIO4FO/IWqNRo4rlyRJuocpRoXFX35MXsYFej/7UqWVLTy+azvFhQWEtGxTKceTajaZlEtVxmAw8Pfrz6MYDQx980PqNL7zs9J1FpbUCqlPfIwsjShJknSvSjoZR3zMLtqPfByPwLqVdtzYTeuwcXKmVmj9SjumVHPJpFyqOoqCo4cX97/3Ce4BdaosDL+IKFJPnyI7LbXKYpAkSZKqkKIQ2ro9YZ26V9ohC3JzOblnF8HNW6O6l5Yylm5ZhZJyIYSTEGKFEOKY+bdjKdtECCG2CCEOCiH2CSGGXHbbL0KIk0KIGPNPREXikaqPwMbNiOzRlyFvfVDhclMV5R8eCcjSiJIkSfciG0cnXP0C6DxqTKUOn7xwNhGjoYTQVu0q7ZhSzVbRiZ4vAqsURflACPGi+e8XrtomDxiuKMoxIYQXsEsIsUxRlAzz7RMVRZlVwTikasYrKASvoJCqDgMAZx9fbJyciY/ZRcMOXao6HEmSJOkO6vL4UxiNxttS8cvR0ws3/8BKP65UM1V0+Epf4Ffz5V+BfldvoCjKUUVRjpkvnwWSgXtzaT/priSEwC88ilMHYjAaDFUdjiRJknQHCZXqtpXgDW7R9o4WL5Cqt4om5e6KolxcDeM84H69jYUQTQAdcPyyq981D2v5VAihv86+jwshdgohdqakpFQwbEm6kn9EJIW5uZyLO1rVoUiSJEk1hKy6It2MGyblQoiVQogDpfz0vXw7RVEUQLnOcTyB34GHFUUxmq9+CQgBogEnrh36cvnxpymK0lhRlMaurrKjXapctRtGIFQq4vfKKiySJElSxVja2uEZFIJzLZ+qDkWqRm54vkZRlE5l3SaESBJCeCqKcs6cdCeXsZ0dsAh4RVGUrZcd+2Ive6EQ4mdgwk1FL0mVxMLaBs+6IcTH7KLl4AerOhxJkiSpGusy+ikUo/HGG0rSZSo6fGU+MMJ8eQQw7+oNhBA6YC7w29UTOs2JPMI04KofcKCC8UjSLfMPj+T8iTjysjKrOhRJkiSpGtPqLdBZWlV1GFI1U9Gk/AOgsxDiGNDJ/DdCiMZCiB/M2wwG2gAjSyl9+KcQYj+wH3AB3qlgPJJ0y/wiokBROLVvT1WHIkmSJEnSPaZC040VRUkDOpZy/U5glPnyH8AfZezfoSL3L0mVyd0/EEtbO+Jjdsm6spIkSZIk3VFyRU9JMhMqFX7hkcTv2yPHAkqSJEmSdEfJpFySLuMXEUVeZgbJ8SeqOhRJkiRJku4hMimXpMv4hTUCIH7v7iqORJIkSZKke4lMyiXpMlb2DrgH1OFkjKxXLkmSJEnSnSOTckm6il94JGePHqYwL7eqQ5EkSZIk6R4hk3JJuopfeCSK0UjC/r1VHYokSZIkSfcImZRL0lU864ags7Ti5F45hEWSJEmSpDtDJuWSdBW1RoNvwwjTZE9FqepwJEmSJEm6B8ikXJJK4RcRSXZqCulnE6s6FEmSJEmS7gEyKZekUviFRwJw+uD+Ko5EkiRJkqR7gUzKJakUdi5uOHvXpqSosKpDkSRJkiTpHiCTckkqw8XeckmSJEmSpNtNJuWSVAa/iKiqDkGSJEmSpHuETMolqQzeIfXR6PRVHYYkSZIkSfcAmZRLUhk0Oh0+9RtWdRiSJEmSJN0DNFUdgCTdzZr0HYhnneCqDkOSJEmSpBpOJuWSdB3eoQ3wDm1Q1WFIkiRJklTDyeErkiRJkiRJklTFZFIuSZIkSZIkSVVMJuWSJEmSJEmSVMVkUi5JkiRJkiRJVUwm5ZIkSZIkSZJUxWRSLkmSJEmSJElVTCblkiRJkiRJklTFZFIuSZIkSZIkSVVMJuWSJEmSJEmSVMVkUi5JkiRJkiRJVUwm5ZIkSZIkSZJUxWRSLkmSJEmSJElVTCblkiRJkiRJklTFhKIoVR3DTRNCpACnquCuXYDUKrjfmkq2Z+WS7Vm5ZHtWLtmelUu2Z+WS7Vm5qkt7lidOX0VRXO9EMNUyKa8qQoidiqI0ruo4agrZnpVLtmflku1ZuWR7Vi7ZnpVLtmflqi7tebfFKYevSJIkSZIkSVIVk0m5JEmSJEmSJFUxmZTfnGlVHUANI9uzcsn2rFyyPSuXbM/KJduzcsn2rFzVpT3vqjjlmHJJkiRJkiRJqmKyp1ySJEmSJEmSqli1TsqFED5CiDVCiENCiINCiKfN1zsJIVYIIY6Zfzuarw8RQmwRQhQKISZcdaynhRAHzMd55jr32U0IcUQIESeEeLGU26cKIXKus3+UEGK/ef+pQghhvn6Q+b6NQogqmQlcw9rzTSHEGSFEjPmnxy02yy2rYe0Zbo5tvxBigRDC7hab5ZZV0/Z8Vwhx+upthBBPmNsyRgixUQhR7yabo8JqWHt+etlr/agQIuPmWqPiqlt7CiGshBCLhBCx5vv54LLb2gghdgshSoQQA2+xSSqkhrXnSCFEymXP0VG32Cy3rLq052VxHhZCZAshksz389llcW4QQqwTQuwTQmwXQuy6HXEKIX4RQpy87P8WUcb+/kKIbeb9ZwghdObrb/51pChKtf0BPIFI82Vb4ChQD5gMvGi+/kXgQ/NlNyAaeBeYcNlxGgAHACtAA6wE6pRyf2rgOBAA6IC9QL3Lbm8M/A7kXCfm7UAzQABLgO7m60OBYGAt0Fi2Z4Xb883LY5LtWeH23AG0NV9+BJgk27Nc7dnMHHfOVdfbXXa5D7BUtuett+dV2zwF/CTb8/rtaT5+e/NlHbCB/17vfkAY8Bsw8E63ZQ1sz5HAl1XRjtWtPS/GaT5+D3Oc4cBpzK9rYB+wyHz5PmDx7YgT+KU8z39gJjDUfPlb4H+3+jqq1j3liqKcUxRlt/lyNnAYqAX0BX41b/Yr0M+8TbKiKDuA4qsOFQpsUxQlT1GUEmAdpn/01ZoAcYqinFAUpQiYbr4vhBBq4CPg+bLiFUJ4Yvow3qqY/mO/XRbbYUVRjtxcC1SumtSed4Ma1p5BwHrz5RXAgPK0QWWqbu1pjmGroijnSrk+67I/rYE7PrmnJrXnVYYBf99gm0pX3drTfPw15stFwG7A2/x3vKIo+wDjTTVCJapJ7Xk3qC7teTFO8/EXm+N0A2yAQ+bN9ECI+fJcoNXtiLM8hBAC6ADMMl91eRve9OuoWifllxNC+AGNgG2A+2Vv3OcB9xvsfgBoLYRwFkJc/HbmU8p2tTB9W7so0XwdwFhg/g0+MGqZ9ylt/7tKDWnPsebTWz9dPCVXVWpAex7kvzeqQWXc/x1TTdrzuoQQY4QQxzH1VI271eNUhprQngBCCF/AH1hdkeNUVHVrTyGEA9AbWFWe7e+0GtKeA8yfR7OEEPL9sxzteVmcsYAdMMd80y5MPeoA/TH1/FvehjgB3jX/3z4VQuhL2d8ZyDAn/qXtf1NqRFIuhLABZgPPXNUDhbnH77q9UIqiHAY+BJYDS4EYwHAT9++FKVH54qYCv0vVkPb8BggEIoBzwMcVOFaF1JD2fAR4UgixC9MbYFEFjlUhNaQ9URTlK0VRAoEXgFcrcqyKqCntaTYUmKUoSrnvv7JVt/YUQmgwnVmYqijKifLez51SQ9pzAeCnKEoYpjONv5a1/+1WXdrzsjjHYypbWHRZe04ANEKIPUBb4MzVcVc0TrOXMPXIRwNOmN6rb6tqn5QLIbSY/nF/Kopy8VtUkvlU/MVT8sk3Oo6iKD8qihKlKEob4AJw1Dzh4OIA/ycw/eMv/6blbb6uEVAHiBNCxANW5gH/6sv2f9u8rXcp+981akp7KoqSpCiKQVEUI/A9plNUd1wNas9YRVG6KIoShekD5/gtNkmFVLP2LK/pVNGwqxrYnkOpgqErF1XT9pwGHFMU5bOKPPbboaa0p6IoaYqiFJr//AGIutm2qAzVqD3fuRgnph7uY0DCxTgxJeAnFUVpBLxivq6gkuO8OJRGMf/vfsacRwghlpn3/wFIAxzMX8au2P+WKFU48aCiP5gmo/0GfHbV9R9x5cSFyVfd/iZXTQIE3My/a2M6VeJQyv1pgBOYTo9enBBQv5TtbmYiXY+rbl9L1U30rDHtCXhets2zwHTZnhVqz4v3rzI/pkdke964PcvaBqh72eXewE7ZnrfenubrQoB4MK2/Idvzxu0JXEx+VGXc/gtVN9GzxrQnV34e9Qe2yvYsvT0vj/Py9rwqzrcvxolpgufbtyPOi/83c0yfAR+U0bb/cOVEzyevur3cr6M7/kKr5CdZK0zfmPZhOjURg+lblTOmsVzHMM24dTJv74FpvE8WkGG+bGe+bQOmSQR7gY7Xuc+Ls4GPA6+Usc31XrSNMY11Og58CZcWcOpvjqcQSAKWyfasUHv+Duw3P5b5XPamKNvzltrzafNxjwIfUAWJTzVtz8nm+zWaf79pvv5zTOP0Y4A1lPJhJduz/O1pvu1NyvjQlO1Z6vXe5ngPXxbvKPNt0eZ4cjH1BB6U7Vmh9nwf0+t9L6bXe4hsz9Lb87I4D5t/F5j332++7pj5MRw3H/vP2xUnprkp+zF9Jv4B2JSxfwCmDq04TAm6/lZfR3JFT0mSJEmSJEmqYtV+TLkkSZIkSZIkVXcyKZckSZIkSZKkKiaTckmSJEmSJEmqYjIplyRJkiRJkqQqJpNySZIkSZIkSapiMimXJEmSJEmSpComk3JJkiRJkiRJqmIyKZckSZIkSZKkKvZ/47WVHpsZCo8AAAAASUVORK5CYII=\n",
243
      "text/plain": [
244
       "<Figure size 864x432 with 1 Axes>"
245
      ]
246
     },
247
     "metadata": {
248
      "needs_background": "light"
249
     },
250
     "output_type": "display_data"
251
    }
252
   ],
253
   "source": [
254
    "figure(figsize=(12, 6))\n",
255
    "plt.plot(strain_apr)\n"
256
   ]
257
  },
258
  {
259
   "cell_type": "code",
260
   "execution_count": 33,
261
   "id": "47d81ba9",
262
   "metadata": {},
263
   "outputs": [],
264
   "source": [
265
    "df = pd.read_csv(\"daywise_oct.csv\")"
266
   ]
267
  },
268
  {
269
   "cell_type": "code",
270
   "execution_count": null,
271
   "id": "73a050ea",
272
   "metadata": {},
273
   "outputs": [],
274
   "source": [
275
    "x = df['timestamp']\n",
276
    "y = df['strain_1','strain_2']\n",
277
    "plt.scatter(x,y)"
278
   ]
279
  },
280
  {
281
   "cell_type": "code",
282
   "execution_count": 32,
283
   "id": "d42887da",
284
   "metadata": {},
285
   "outputs": [],
286
   "source": [
287
    "#find lag in the strain values (order = 1)\n",
288
    "mat = scipy.io.loadmat('./traindata_201810/'+arr[0])"
289
   ]
290
  },
291
  {
292
   "cell_type": "code",
293
   "execution_count": 41,
294
   "id": "177cf318",
295
   "metadata": {},
296
   "outputs": [
297
    {
298
     "data": {
299
      "text/plain": [
300
       "array([-3.39062644e-07, -2.76319165e-07,             nan,  2.19765438e-07,\n",
301
       "                   nan,             nan,  5.41557452e-07, -1.06885435e-07,\n",
302
       "                   nan,             nan,             nan,             nan,\n",
303
       "                   nan,             nan,             nan,             nan])"
304
      ]
305
     },
306
     "execution_count": 41,
307
     "metadata": {},
308
     "output_type": "execute_result"
309
    }
310
   ],
311
   "source": [
312
    "mat['predat_sg'][0][-1][-1][0]"
313
   ]
314
  },
315
  {
316
   "cell_type": "code",
317
   "execution_count": 32,
318
   "id": "1a4c2c62",
319
   "metadata": {},
320
   "outputs": [
321
    {
322
     "data": {
323
      "text/plain": [
324
       "array([[(array([[737335.67221965]]), array([[array(['tBD31A'], dtype='<U6')],\n",
325
       "               [array(['rhBD31A'], dtype='<U7')],\n",
326
       "               [array(['tVL'], dtype='<U3')],\n",
327
       "               [array(['rhVL'], dtype='<U4')],\n",
328
       "               [array(['vpVL'], dtype='<U4')],\n",
329
       "               [array(['grVL'], dtype='<U4')],\n",
330
       "               [array(['drVL'], dtype='<U4')],\n",
331
       "               [array(['dnrVL'], dtype='<U5')],\n",
332
       "               [array(['raVL'], dtype='<U4')],\n",
333
       "               [array(['wsVL'], dtype='<U4')],\n",
334
       "               [array(['wdVL'], dtype='<U4')]], dtype=object), array([[          nan,   71.28002926,   16.71666718,   74.5       ,\n",
335
       "                1417.87195067,           nan,           nan,           nan,\n",
336
       "                          nan,           nan,           nan]]))                                                                   ]],\n",
337
       "      dtype=[('sdn', 'O'), ('labels', 'O'), ('data', 'O')])"
338
      ]
339
     },
340
     "execution_count": 32,
341
     "metadata": {},
342
     "output_type": "execute_result"
343
    }
344
   ],
345
   "source": [
346
    "mat['predat_env']"
347
   ]
348
  },
349
  {
350
   "cell_type": "code",
351
   "execution_count": 52,
352
   "id": "606b26a4",
353
   "metadata": {},
354
   "outputs": [],
355
   "source": [
356
    "#looping to include all data in october month\n",
357
    "#LATEST\n",
358
    "for j in range(len(arr)):\n",
359
    "    strain = []\n",
360
    "    time = []\n",
361
    "    mat = scipy.io.loadmat('./traindata_201910/'+arr[j])\n",
362
    "    for item in mat['predat_sg'][0][0][3]:\n",
363
    "        strain.append(item)\n",
364
    "    for item in mat['predat_sg'][0][0][0]:\n",
365
    "        #convert matlab time to date_timestamp before appending \n",
366
    "        time.append(pd.to_datetime(item-719529,unit='d').round('s')[0].date())\n",
367
    "    if j==0:\n",
368
    "        col_name = []\n",
369
    "        for i in range (1,17):\n",
370
    "            col_name.append(\"strain_\"+str(i))\n",
371
    "    \n",
372
    "        #create datafrome to add the strain values\n",
373
    "        strain_oct = pd.DataFrame(strain, columns=col_name)\n",
374
    "        strain_oct.insert(0, 'timestamp', time)\n",
375
    "        strain_oct = strain_oct.groupby(['timestamp']).mean()\n",
376
    "        strain_oct['Surftemp'] = mat['predat_env'][0][0][-1][0][0] #Surface temperature at one point below deck\n",
377
    "        strain_oct['Rh'] = mat['predat_env'][0][0][-1][0][1] #Relative humidity at one point below deck\n",
378
    "        strain_oct['airtemp'] = mat['predat_env'][0][0][-1][0][2] #Average air temperature\n",
379
    "        strain_oct['avgRh'] = mat['predat_env'][0][0][-1][0][3] #Average Relative Humidity\n",
380
    "        strain_oct['avgVPr'] = mat['predat_env'][0][0][-1][0][4] #Average Vapour Pressure\n",
381
    "        strain_oct['avgGR'] = mat['predat_env'][0][0][-1][0][5] #Average global Radiation\n",
382
    "        strain_oct['avgdR']= mat['predat_env'][0][0][-1][0][6] #Average diffuse radiation\n",
383
    "        strain_oct['avgdnr'] = mat['predat_env'][0][0][-1][0][7] #Average Direct normal radiation\n",
384
    "        strain_oct['totalrain'] = mat['predat_env'][0][0][-1][0][8] #Total Rain\n",
385
    "        strain_oct['avgws10'] = mat['predat_env'][0][0][-1][0][9] #wind speed at 10m above ground\n",
386
    "        strain_oct['avgwd10'] = mat['predat_env'][0][0][-1][0][10] #wind direction at 10m above ground\n",
387
    "    else:\n",
388
    "        temp = pd.DataFrame(strain, columns=col_name)\n",
389
    "        temp.insert(0,'timestamp',time)\n",
390
    "        temp = temp.groupby(['timestamp']).mean()\n",
391
    "        temp['Surftemp'] = mat['predat_env'][0][0][-1][0][0] #Surface temperature at one point below deck\n",
392
    "        temp['Rh'] = mat['predat_env'][0][0][-1][0][1] #Relative humidity at one point below deck\n",
393
    "        temp['airtemp'] = mat['predat_env'][0][0][-1][0][2] #Average air temperature\n",
394
    "        temp['avgRh'] = mat['predat_env'][0][0][-1][0][3] #Average Relative Humidity\n",
395
    "        temp['avgVPr'] = mat['predat_env'][0][0][-1][0][4] #Average Vapour Pressure\n",
396
    "        temp['avgGR'] = mat['predat_env'][0][0][-1][0][5] #Average global Radiation\n",
397
    "        temp['avgdR']= mat['predat_env'][0][0][-1][0][6] #Average diffuse radiation\n",
398
    "        temp['avgdnr'] = mat['predat_env'][0][0][-1][0][7] #Average Direct normal radiation\n",
399
    "        temp['totalrain'] = mat['predat_env'][0][0][-1][0][8] #Total Rain\n",
400
    "        temp['avgws10'] = mat['predat_env'][0][0][-1][0][9] #wind speed at 10m above ground\n",
401
    "        temp['avgwd10'] = mat['predat_env'][0][0][-1][0][10] #wind direction at 10m above ground\n",
402
    "        strain_oct = strain_oct.append(temp)\n",
403
    "\n",
404
    "#save the dataframe to CSV file\n",
405
    "strain_oct.to_csv('daywise_oct_with_env2_final.csv')"
406
   ]
407
  },
408
  {
409
   "cell_type": "code",
410
   "execution_count": 37,
411
   "id": "48bd39a0",
412
   "metadata": {},
413
   "outputs": [],
414
   "source": [
415
    "df1 = pd.read_csv(\"daywise_oct_with_env.csv\")"
416
   ]
417
  },
418
  {
419
   "cell_type": "code",
420
   "execution_count": 38,
421
   "id": "af9780af",
422
   "metadata": {},
423
   "outputs": [
424
    {
425
     "data": {
426
      "text/html": [
427
       "<div>\n",
428
       "<style scoped>\n",
429
       "    .dataframe tbody tr th:only-of-type {\n",
430
       "        vertical-align: middle;\n",
431
       "    }\n",
432
       "\n",
433
       "    .dataframe tbody tr th {\n",
434
       "        vertical-align: top;\n",
435
       "    }\n",
436
       "\n",
437
       "    .dataframe thead th {\n",
438
       "        text-align: right;\n",
439
       "    }\n",
440
       "</style>\n",
441
       "<table border=\"1\" class=\"dataframe\">\n",
442
       "  <thead>\n",
443
       "    <tr style=\"text-align: right;\">\n",
444
       "      <th></th>\n",
445
       "      <th>timestamp</th>\n",
446
       "      <th>strain_1</th>\n",
447
       "      <th>strain_2</th>\n",
448
       "      <th>strain_3</th>\n",
449
       "      <th>strain_4</th>\n",
450
       "      <th>strain_5</th>\n",
451
       "      <th>strain_6</th>\n",
452
       "      <th>strain_7</th>\n",
453
       "      <th>strain_8</th>\n",
454
       "      <th>strain_9</th>\n",
455
       "      <th>...</th>\n",
456
       "      <th>Rh</th>\n",
457
       "      <th>airtemp</th>\n",
458
       "      <th>avgRh</th>\n",
459
       "      <th>avgVPr</th>\n",
460
       "      <th>avgGR</th>\n",
461
       "      <th>avgdR</th>\n",
462
       "      <th>avgdnr</th>\n",
463
       "      <th>totalrain</th>\n",
464
       "      <th>avgws10</th>\n",
465
       "      <th>avgwd10</th>\n",
466
       "    </tr>\n",
467
       "  </thead>\n",
468
       "  <tbody>\n",
469
       "    <tr>\n",
470
       "      <th>0</th>\n",
471
       "      <td>2018-10-02</td>\n",
472
       "      <td>1.804882e-06</td>\n",
473
       "      <td>1.291150e-06</td>\n",
474
       "      <td>NaN</td>\n",
475
       "      <td>0.000003</td>\n",
476
       "      <td>NaN</td>\n",
477
       "      <td>NaN</td>\n",
478
       "      <td>0.000003</td>\n",
479
       "      <td>5.482034e-06</td>\n",
480
       "      <td>NaN</td>\n",
481
       "      <td>...</td>\n",
482
       "      <td>71.280029</td>\n",
483
       "      <td>16.716667</td>\n",
484
       "      <td>74.500000</td>\n",
485
       "      <td>1417.871951</td>\n",
486
       "      <td>NaN</td>\n",
487
       "      <td>NaN</td>\n",
488
       "      <td>NaN</td>\n",
489
       "      <td>NaN</td>\n",
490
       "      <td>NaN</td>\n",
491
       "      <td>NaN</td>\n",
492
       "    </tr>\n",
493
       "    <tr>\n",
494
       "      <th>1</th>\n",
495
       "      <td>2018-10-03</td>\n",
496
       "      <td>2.269802e-06</td>\n",
497
       "      <td>1.698958e-06</td>\n",
498
       "      <td>NaN</td>\n",
499
       "      <td>0.000004</td>\n",
500
       "      <td>NaN</td>\n",
501
       "      <td>NaN</td>\n",
502
       "      <td>0.000003</td>\n",
503
       "      <td>5.813794e-06</td>\n",
504
       "      <td>NaN</td>\n",
505
       "      <td>...</td>\n",
506
       "      <td>76.997064</td>\n",
507
       "      <td>12.141666</td>\n",
508
       "      <td>79.166664</td>\n",
509
       "      <td>1120.819324</td>\n",
510
       "      <td>NaN</td>\n",
511
       "      <td>NaN</td>\n",
512
       "      <td>NaN</td>\n",
513
       "      <td>NaN</td>\n",
514
       "      <td>NaN</td>\n",
515
       "      <td>NaN</td>\n",
516
       "    </tr>\n",
517
       "    <tr>\n",
518
       "      <th>2</th>\n",
519
       "      <td>2018-10-03</td>\n",
520
       "      <td>2.128605e-06</td>\n",
521
       "      <td>1.411400e-06</td>\n",
522
       "      <td>NaN</td>\n",
523
       "      <td>0.000003</td>\n",
524
       "      <td>NaN</td>\n",
525
       "      <td>NaN</td>\n",
526
       "      <td>0.000002</td>\n",
527
       "      <td>5.213818e-06</td>\n",
528
       "      <td>NaN</td>\n",
529
       "      <td>...</td>\n",
530
       "      <td>55.975091</td>\n",
531
       "      <td>15.683333</td>\n",
532
       "      <td>61.250000</td>\n",
533
       "      <td>1091.387360</td>\n",
534
       "      <td>NaN</td>\n",
535
       "      <td>NaN</td>\n",
536
       "      <td>NaN</td>\n",
537
       "      <td>NaN</td>\n",
538
       "      <td>NaN</td>\n",
539
       "      <td>NaN</td>\n",
540
       "    </tr>\n",
541
       "    <tr>\n",
542
       "      <th>3</th>\n",
543
       "      <td>2018-10-04</td>\n",
544
       "      <td>3.457613e-06</td>\n",
545
       "      <td>2.919155e-06</td>\n",
546
       "      <td>NaN</td>\n",
547
       "      <td>0.000004</td>\n",
548
       "      <td>NaN</td>\n",
549
       "      <td>NaN</td>\n",
550
       "      <td>0.000004</td>\n",
551
       "      <td>8.611123e-06</td>\n",
552
       "      <td>NaN</td>\n",
553
       "      <td>...</td>\n",
554
       "      <td>79.072215</td>\n",
555
       "      <td>12.958333</td>\n",
556
       "      <td>83.083336</td>\n",
557
       "      <td>1241.060048</td>\n",
558
       "      <td>NaN</td>\n",
559
       "      <td>NaN</td>\n",
560
       "      <td>NaN</td>\n",
561
       "      <td>NaN</td>\n",
562
       "      <td>NaN</td>\n",
563
       "      <td>NaN</td>\n",
564
       "    </tr>\n",
565
       "    <tr>\n",
566
       "      <th>4</th>\n",
567
       "      <td>2018-10-04</td>\n",
568
       "      <td>1.420150e-07</td>\n",
569
       "      <td>-5.852899e-07</td>\n",
570
       "      <td>NaN</td>\n",
571
       "      <td>0.000005</td>\n",
572
       "      <td>NaN</td>\n",
573
       "      <td>NaN</td>\n",
574
       "      <td>0.000005</td>\n",
575
       "      <td>7.968894e-07</td>\n",
576
       "      <td>NaN</td>\n",
577
       "      <td>...</td>\n",
578
       "      <td>58.432998</td>\n",
579
       "      <td>21.924999</td>\n",
580
       "      <td>54.500000</td>\n",
581
       "      <td>1433.934434</td>\n",
582
       "      <td>NaN</td>\n",
583
       "      <td>NaN</td>\n",
584
       "      <td>NaN</td>\n",
585
       "      <td>NaN</td>\n",
586
       "      <td>NaN</td>\n",
587
       "      <td>NaN</td>\n",
588
       "    </tr>\n",
589
       "    <tr>\n",
590
       "      <th>5</th>\n",
591
       "      <td>2018-10-05</td>\n",
592
       "      <td>1.282716e-06</td>\n",
593
       "      <td>2.430030e-07</td>\n",
594
       "      <td>NaN</td>\n",
595
       "      <td>0.000008</td>\n",
596
       "      <td>NaN</td>\n",
597
       "      <td>NaN</td>\n",
598
       "      <td>0.000007</td>\n",
599
       "      <td>4.326709e-06</td>\n",
600
       "      <td>NaN</td>\n",
601
       "      <td>...</td>\n",
602
       "      <td>77.300284</td>\n",
603
       "      <td>9.525000</td>\n",
604
       "      <td>92.833336</td>\n",
605
       "      <td>1104.173129</td>\n",
606
       "      <td>NaN</td>\n",
607
       "      <td>NaN</td>\n",
608
       "      <td>NaN</td>\n",
609
       "      <td>NaN</td>\n",
610
       "      <td>NaN</td>\n",
611
       "      <td>NaN</td>\n",
612
       "    </tr>\n",
613
       "    <tr>\n",
614
       "      <th>6</th>\n",
615
       "      <td>2018-10-05</td>\n",
616
       "      <td>-3.599416e-07</td>\n",
617
       "      <td>-1.080711e-06</td>\n",
618
       "      <td>NaN</td>\n",
619
       "      <td>0.000005</td>\n",
620
       "      <td>NaN</td>\n",
621
       "      <td>NaN</td>\n",
622
       "      <td>0.000004</td>\n",
623
       "      <td>1.512664e-06</td>\n",
624
       "      <td>NaN</td>\n",
625
       "      <td>...</td>\n",
626
       "      <td>47.062426</td>\n",
627
       "      <td>23.875000</td>\n",
628
       "      <td>45.583332</td>\n",
629
       "      <td>1349.343321</td>\n",
630
       "      <td>NaN</td>\n",
631
       "      <td>NaN</td>\n",
632
       "      <td>NaN</td>\n",
633
       "      <td>NaN</td>\n",
634
       "      <td>NaN</td>\n",
635
       "      <td>NaN</td>\n",
636
       "    </tr>\n",
637
       "    <tr>\n",
638
       "      <th>7</th>\n",
639
       "      <td>2018-10-06</td>\n",
640
       "      <td>3.045380e-06</td>\n",
641
       "      <td>2.472536e-06</td>\n",
642
       "      <td>NaN</td>\n",
643
       "      <td>0.000006</td>\n",
644
       "      <td>NaN</td>\n",
645
       "      <td>NaN</td>\n",
646
       "      <td>0.000005</td>\n",
647
       "      <td>6.635354e-06</td>\n",
648
       "      <td>NaN</td>\n",
649
       "      <td>...</td>\n",
650
       "      <td>78.543308</td>\n",
651
       "      <td>11.433333</td>\n",
652
       "      <td>90.500000</td>\n",
653
       "      <td>1222.699295</td>\n",
654
       "      <td>NaN</td>\n",
655
       "      <td>NaN</td>\n",
656
       "      <td>NaN</td>\n",
657
       "      <td>NaN</td>\n",
658
       "      <td>NaN</td>\n",
659
       "      <td>NaN</td>\n",
660
       "    </tr>\n",
661
       "    <tr>\n",
662
       "      <th>8</th>\n",
663
       "      <td>2018-10-08</td>\n",
664
       "      <td>-4.537585e-07</td>\n",
665
       "      <td>-1.072013e-06</td>\n",
666
       "      <td>NaN</td>\n",
667
       "      <td>0.000006</td>\n",
668
       "      <td>NaN</td>\n",
669
       "      <td>NaN</td>\n",
670
       "      <td>0.000005</td>\n",
671
       "      <td>8.118908e-07</td>\n",
672
       "      <td>NaN</td>\n",
673
       "      <td>...</td>\n",
674
       "      <td>73.230142</td>\n",
675
       "      <td>5.833333</td>\n",
676
       "      <td>91.916664</td>\n",
677
       "      <td>849.545823</td>\n",
678
       "      <td>NaN</td>\n",
679
       "      <td>NaN</td>\n",
680
       "      <td>NaN</td>\n",
681
       "      <td>NaN</td>\n",
682
       "      <td>NaN</td>\n",
683
       "      <td>NaN</td>\n",
684
       "    </tr>\n",
685
       "    <tr>\n",
686
       "      <th>9</th>\n",
687
       "      <td>2018-10-08</td>\n",
688
       "      <td>-1.061381e-07</td>\n",
689
       "      <td>-7.471682e-07</td>\n",
690
       "      <td>NaN</td>\n",
691
       "      <td>0.000005</td>\n",
692
       "      <td>NaN</td>\n",
693
       "      <td>NaN</td>\n",
694
       "      <td>0.000005</td>\n",
695
       "      <td>6.869932e-07</td>\n",
696
       "      <td>NaN</td>\n",
697
       "      <td>...</td>\n",
698
       "      <td>52.548953</td>\n",
699
       "      <td>15.975000</td>\n",
700
       "      <td>56.000000</td>\n",
701
       "      <td>1016.622559</td>\n",
702
       "      <td>NaN</td>\n",
703
       "      <td>NaN</td>\n",
704
       "      <td>NaN</td>\n",
705
       "      <td>NaN</td>\n",
706
       "      <td>NaN</td>\n",
707
       "      <td>NaN</td>\n",
708
       "    </tr>\n",
709
       "    <tr>\n",
710
       "      <th>10</th>\n",
711
       "      <td>2018-10-09</td>\n",
712
       "      <td>1.628155e-06</td>\n",
713
       "      <td>1.257122e-06</td>\n",
714
       "      <td>NaN</td>\n",
715
       "      <td>0.000004</td>\n",
716
       "      <td>NaN</td>\n",
717
       "      <td>NaN</td>\n",
718
       "      <td>0.000004</td>\n",
719
       "      <td>5.748393e-06</td>\n",
720
       "      <td>NaN</td>\n",
721
       "      <td>...</td>\n",
722
       "      <td>77.955239</td>\n",
723
       "      <td>6.358333</td>\n",
724
       "      <td>92.833336</td>\n",
725
       "      <td>889.771595</td>\n",
726
       "      <td>NaN</td>\n",
727
       "      <td>NaN</td>\n",
728
       "      <td>NaN</td>\n",
729
       "      <td>NaN</td>\n",
730
       "      <td>NaN</td>\n",
731
       "      <td>NaN</td>\n",
732
       "    </tr>\n",
733
       "    <tr>\n",
734
       "      <th>11</th>\n",
735
       "      <td>2018-10-09</td>\n",
736
       "      <td>-3.682028e-07</td>\n",
737
       "      <td>-1.007747e-06</td>\n",
738
       "      <td>NaN</td>\n",
739
       "      <td>0.000005</td>\n",
740
       "      <td>NaN</td>\n",
741
       "      <td>NaN</td>\n",
742
       "      <td>0.000005</td>\n",
743
       "      <td>5.841734e-07</td>\n",
744
       "      <td>NaN</td>\n",
745
       "      <td>...</td>\n",
746
       "      <td>56.269163</td>\n",
747
       "      <td>18.052333</td>\n",
748
       "      <td>57.583332</td>\n",
749
       "      <td>1192.356382</td>\n",
750
       "      <td>20.417556</td>\n",
751
       "      <td>18.671694</td>\n",
752
       "      <td>16.358833</td>\n",
753
       "      <td>0.0</td>\n",
754
       "      <td>NaN</td>\n",
755
       "      <td>NaN</td>\n",
756
       "    </tr>\n",
757
       "    <tr>\n",
758
       "      <th>12</th>\n",
759
       "      <td>2018-10-10</td>\n",
760
       "      <td>-4.486108e-07</td>\n",
761
       "      <td>-1.049204e-06</td>\n",
762
       "      <td>NaN</td>\n",
763
       "      <td>0.000005</td>\n",
764
       "      <td>NaN</td>\n",
765
       "      <td>NaN</td>\n",
766
       "      <td>0.000005</td>\n",
767
       "      <td>4.158732e-07</td>\n",
768
       "      <td>NaN</td>\n",
769
       "      <td>...</td>\n",
770
       "      <td>81.122389</td>\n",
771
       "      <td>9.398639</td>\n",
772
       "      <td>93.750000</td>\n",
773
       "      <td>1105.629785</td>\n",
774
       "      <td>157.019694</td>\n",
775
       "      <td>66.948917</td>\n",
776
       "      <td>407.837417</td>\n",
777
       "      <td>0.0</td>\n",
778
       "      <td>NaN</td>\n",
779
       "      <td>NaN</td>\n",
780
       "    </tr>\n",
781
       "    <tr>\n",
782
       "      <th>13</th>\n",
783
       "      <td>2018-10-10</td>\n",
784
       "      <td>-3.506244e-07</td>\n",
785
       "      <td>-9.312912e-07</td>\n",
786
       "      <td>NaN</td>\n",
787
       "      <td>0.000004</td>\n",
788
       "      <td>-8.837225e-07</td>\n",
789
       "      <td>NaN</td>\n",
790
       "      <td>0.000004</td>\n",
791
       "      <td>5.287465e-07</td>\n",
792
       "      <td>NaN</td>\n",
793
       "      <td>...</td>\n",
794
       "      <td>54.889717</td>\n",
795
       "      <td>23.548417</td>\n",
796
       "      <td>56.416668</td>\n",
797
       "      <td>1637.594616</td>\n",
798
       "      <td>30.327806</td>\n",
799
       "      <td>16.180389</td>\n",
800
       "      <td>63.654694</td>\n",
801
       "      <td>0.0</td>\n",
802
       "      <td>NaN</td>\n",
803
       "      <td>NaN</td>\n",
804
       "    </tr>\n",
805
       "    <tr>\n",
806
       "      <th>14</th>\n",
807
       "      <td>2018-10-11</td>\n",
808
       "      <td>9.078712e-08</td>\n",
809
       "      <td>-6.254588e-07</td>\n",
810
       "      <td>NaN</td>\n",
811
       "      <td>0.000007</td>\n",
812
       "      <td>-5.223130e-07</td>\n",
813
       "      <td>NaN</td>\n",
814
       "      <td>0.000007</td>\n",
815
       "      <td>1.800594e-06</td>\n",
816
       "      <td>NaN</td>\n",
817
       "      <td>...</td>\n",
818
       "      <td>72.342233</td>\n",
819
       "      <td>19.004861</td>\n",
820
       "      <td>76.500000</td>\n",
821
       "      <td>1681.335790</td>\n",
822
       "      <td>31.314111</td>\n",
823
       "      <td>27.076306</td>\n",
824
       "      <td>0.377667</td>\n",
825
       "      <td>0.0</td>\n",
826
       "      <td>NaN</td>\n",
827
       "      <td>NaN</td>\n",
828
       "    </tr>\n",
829
       "    <tr>\n",
830
       "      <th>15</th>\n",
831
       "      <td>2018-10-11</td>\n",
832
       "      <td>-5.495572e-07</td>\n",
833
       "      <td>-1.042136e-06</td>\n",
834
       "      <td>NaN</td>\n",
835
       "      <td>0.000005</td>\n",
836
       "      <td>-6.461451e-07</td>\n",
837
       "      <td>NaN</td>\n",
838
       "      <td>0.000005</td>\n",
839
       "      <td>8.852473e-07</td>\n",
840
       "      <td>NaN</td>\n",
841
       "      <td>...</td>\n",
842
       "      <td>53.908886</td>\n",
843
       "      <td>24.208334</td>\n",
844
       "      <td>55.916668</td>\n",
845
       "      <td>1688.607212</td>\n",
846
       "      <td>NaN</td>\n",
847
       "      <td>NaN</td>\n",
848
       "      <td>NaN</td>\n",
849
       "      <td>NaN</td>\n",
850
       "      <td>NaN</td>\n",
851
       "      <td>NaN</td>\n",
852
       "    </tr>\n",
853
       "    <tr>\n",
854
       "      <th>16</th>\n",
855
       "      <td>2018-10-12</td>\n",
856
       "      <td>2.827529e-06</td>\n",
857
       "      <td>2.354601e-06</td>\n",
858
       "      <td>NaN</td>\n",
859
       "      <td>0.000004</td>\n",
860
       "      <td>3.245773e-06</td>\n",
861
       "      <td>NaN</td>\n",
862
       "      <td>0.000004</td>\n",
863
       "      <td>6.803631e-06</td>\n",
864
       "      <td>NaN</td>\n",
865
       "      <td>...</td>\n",
866
       "      <td>83.950116</td>\n",
867
       "      <td>17.993750</td>\n",
868
       "      <td>89.166664</td>\n",
869
       "      <td>1839.557833</td>\n",
870
       "      <td>140.983056</td>\n",
871
       "      <td>78.890306</td>\n",
872
       "      <td>214.392639</td>\n",
873
       "      <td>0.0</td>\n",
874
       "      <td>NaN</td>\n",
875
       "      <td>NaN</td>\n",
876
       "    </tr>\n",
877
       "    <tr>\n",
878
       "      <th>17</th>\n",
879
       "      <td>2018-10-12</td>\n",
880
       "      <td>1.409051e-06</td>\n",
881
       "      <td>8.248487e-07</td>\n",
882
       "      <td>NaN</td>\n",
883
       "      <td>0.000006</td>\n",
884
       "      <td>1.552718e-06</td>\n",
885
       "      <td>NaN</td>\n",
886
       "      <td>0.000006</td>\n",
887
       "      <td>5.098572e-06</td>\n",
888
       "      <td>NaN</td>\n",
889
       "      <td>...</td>\n",
890
       "      <td>64.288978</td>\n",
891
       "      <td>23.465000</td>\n",
892
       "      <td>67.250000</td>\n",
893
       "      <td>1942.281645</td>\n",
894
       "      <td>30.878333</td>\n",
895
       "      <td>27.683333</td>\n",
896
       "      <td>9.416667</td>\n",
897
       "      <td>0.0</td>\n",
898
       "      <td>NaN</td>\n",
899
       "      <td>NaN</td>\n",
900
       "    </tr>\n",
901
       "    <tr>\n",
902
       "      <th>18</th>\n",
903
       "      <td>2018-10-15</td>\n",
904
       "      <td>2.527285e-06</td>\n",
905
       "      <td>2.073035e-06</td>\n",
906
       "      <td>NaN</td>\n",
907
       "      <td>0.000002</td>\n",
908
       "      <td>2.815451e-06</td>\n",
909
       "      <td>NaN</td>\n",
910
       "      <td>0.000002</td>\n",
911
       "      <td>4.371978e-06</td>\n",
912
       "      <td>NaN</td>\n",
913
       "      <td>...</td>\n",
914
       "      <td>59.638465</td>\n",
915
       "      <td>19.570000</td>\n",
916
       "      <td>63.250000</td>\n",
917
       "      <td>1439.851964</td>\n",
918
       "      <td>90.183333</td>\n",
919
       "      <td>85.575000</td>\n",
920
       "      <td>3.056667</td>\n",
921
       "      <td>0.0</td>\n",
922
       "      <td>NaN</td>\n",
923
       "      <td>NaN</td>\n",
924
       "    </tr>\n",
925
       "    <tr>\n",
926
       "      <th>19</th>\n",
927
       "      <td>2018-10-15</td>\n",
928
       "      <td>-4.270678e-07</td>\n",
929
       "      <td>-1.003826e-06</td>\n",
930
       "      <td>NaN</td>\n",
931
       "      <td>0.000005</td>\n",
932
       "      <td>-6.829385e-07</td>\n",
933
       "      <td>NaN</td>\n",
934
       "      <td>0.000005</td>\n",
935
       "      <td>7.821662e-07</td>\n",
936
       "      <td>NaN</td>\n",
937
       "      <td>...</td>\n",
938
       "      <td>41.219275</td>\n",
939
       "      <td>22.181667</td>\n",
940
       "      <td>44.416668</td>\n",
941
       "      <td>1187.027705</td>\n",
942
       "      <td>9.636667</td>\n",
943
       "      <td>12.235000</td>\n",
944
       "      <td>0.311667</td>\n",
945
       "      <td>0.0</td>\n",
946
       "      <td>NaN</td>\n",
947
       "      <td>NaN</td>\n",
948
       "    </tr>\n",
949
       "    <tr>\n",
950
       "      <th>20</th>\n",
951
       "      <td>2018-10-16</td>\n",
952
       "      <td>1.935912e-06</td>\n",
953
       "      <td>1.531248e-06</td>\n",
954
       "      <td>NaN</td>\n",
955
       "      <td>0.000004</td>\n",
956
       "      <td>2.574173e-06</td>\n",
957
       "      <td>NaN</td>\n",
958
       "      <td>0.000003</td>\n",
959
       "      <td>6.310965e-06</td>\n",
960
       "      <td>NaN</td>\n",
961
       "      <td>...</td>\n",
962
       "      <td>71.332262</td>\n",
963
       "      <td>11.291667</td>\n",
964
       "      <td>86.583336</td>\n",
965
       "      <td>1158.849084</td>\n",
966
       "      <td>149.348333</td>\n",
967
       "      <td>65.840000</td>\n",
968
       "      <td>435.375000</td>\n",
969
       "      <td>0.0</td>\n",
970
       "      <td>NaN</td>\n",
971
       "      <td>NaN</td>\n",
972
       "    </tr>\n",
973
       "    <tr>\n",
974
       "      <th>21</th>\n",
975
       "      <td>2018-10-16</td>\n",
976
       "      <td>-3.912998e-07</td>\n",
977
       "      <td>-9.402715e-07</td>\n",
978
       "      <td>NaN</td>\n",
979
       "      <td>0.000005</td>\n",
980
       "      <td>-8.452086e-07</td>\n",
981
       "      <td>NaN</td>\n",
982
       "      <td>0.000005</td>\n",
983
       "      <td>8.549726e-07</td>\n",
984
       "      <td>NaN</td>\n",
985
       "      <td>...</td>\n",
986
       "      <td>43.499465</td>\n",
987
       "      <td>22.855000</td>\n",
988
       "      <td>40.916668</td>\n",
989
       "      <td>1139.047585</td>\n",
990
       "      <td>22.431667</td>\n",
991
       "      <td>25.788333</td>\n",
992
       "      <td>0.680000</td>\n",
993
       "      <td>0.0</td>\n",
994
       "      <td>NaN</td>\n",
995
       "      <td>NaN</td>\n",
996
       "    </tr>\n",
997
       "    <tr>\n",
998
       "      <th>22</th>\n",
999
       "      <td>2018-10-17</td>\n",
1000
       "      <td>2.287292e-06</td>\n",
1001
       "      <td>1.759895e-06</td>\n",
1002
       "      <td>NaN</td>\n",
1003
       "      <td>0.000004</td>\n",
1004
       "      <td>2.737282e-06</td>\n",
1005
       "      <td>NaN</td>\n",
1006
       "      <td>0.000004</td>\n",
1007
       "      <td>5.843397e-06</td>\n",
1008
       "      <td>NaN</td>\n",
1009
       "      <td>...</td>\n",
1010
       "      <td>75.164982</td>\n",
1011
       "      <td>11.135000</td>\n",
1012
       "      <td>90.833336</td>\n",
1013
       "      <td>1203.156142</td>\n",
1014
       "      <td>126.298333</td>\n",
1015
       "      <td>78.948333</td>\n",
1016
       "      <td>177.325000</td>\n",
1017
       "      <td>0.0</td>\n",
1018
       "      <td>NaN</td>\n",
1019
       "      <td>NaN</td>\n",
1020
       "    </tr>\n",
1021
       "    <tr>\n",
1022
       "      <th>23</th>\n",
1023
       "      <td>2018-10-17</td>\n",
1024
       "      <td>-6.658138e-07</td>\n",
1025
       "      <td>-1.174673e-06</td>\n",
1026
       "      <td>NaN</td>\n",
1027
       "      <td>0.000006</td>\n",
1028
       "      <td>-9.838982e-07</td>\n",
1029
       "      <td>NaN</td>\n",
1030
       "      <td>0.000005</td>\n",
1031
       "      <td>8.058195e-07</td>\n",
1032
       "      <td>NaN</td>\n",
1033
       "      <td>...</td>\n",
1034
       "      <td>65.386193</td>\n",
1035
       "      <td>18.858334</td>\n",
1036
       "      <td>71.166664</td>\n",
1037
       "      <td>1549.889447</td>\n",
1038
       "      <td>NaN</td>\n",
1039
       "      <td>NaN</td>\n",
1040
       "      <td>NaN</td>\n",
1041
       "      <td>NaN</td>\n",
1042
       "      <td>NaN</td>\n",
1043
       "      <td>NaN</td>\n",
1044
       "    </tr>\n",
1045
       "    <tr>\n",
1046
       "      <th>24</th>\n",
1047
       "      <td>2018-10-18</td>\n",
1048
       "      <td>1.756547e-06</td>\n",
1049
       "      <td>1.209365e-06</td>\n",
1050
       "      <td>NaN</td>\n",
1051
       "      <td>0.000004</td>\n",
1052
       "      <td>2.360669e-06</td>\n",
1053
       "      <td>NaN</td>\n",
1054
       "      <td>0.000003</td>\n",
1055
       "      <td>5.703489e-06</td>\n",
1056
       "      <td>NaN</td>\n",
1057
       "      <td>...</td>\n",
1058
       "      <td>84.501079</td>\n",
1059
       "      <td>12.526667</td>\n",
1060
       "      <td>94.500000</td>\n",
1061
       "      <td>1372.213888</td>\n",
1062
       "      <td>104.860000</td>\n",
1063
       "      <td>89.093333</td>\n",
1064
       "      <td>50.601667</td>\n",
1065
       "      <td>0.0</td>\n",
1066
       "      <td>NaN</td>\n",
1067
       "      <td>NaN</td>\n",
1068
       "    </tr>\n",
1069
       "    <tr>\n",
1070
       "      <th>25</th>\n",
1071
       "      <td>2018-10-18</td>\n",
1072
       "      <td>1.696276e-06</td>\n",
1073
       "      <td>1.333564e-06</td>\n",
1074
       "      <td>NaN</td>\n",
1075
       "      <td>0.000003</td>\n",
1076
       "      <td>2.450028e-06</td>\n",
1077
       "      <td>NaN</td>\n",
1078
       "      <td>0.000003</td>\n",
1079
       "      <td>5.655112e-06</td>\n",
1080
       "      <td>NaN</td>\n",
1081
       "      <td>...</td>\n",
1082
       "      <td>68.986611</td>\n",
1083
       "      <td>15.483334</td>\n",
1084
       "      <td>76.583336</td>\n",
1085
       "      <td>1347.232662</td>\n",
1086
       "      <td>NaN</td>\n",
1087
       "      <td>NaN</td>\n",
1088
       "      <td>NaN</td>\n",
1089
       "      <td>NaN</td>\n",
1090
       "      <td>NaN</td>\n",
1091
       "      <td>NaN</td>\n",
1092
       "    </tr>\n",
1093
       "    <tr>\n",
1094
       "      <th>26</th>\n",
1095
       "      <td>2018-10-19</td>\n",
1096
       "      <td>2.643052e-06</td>\n",
1097
       "      <td>2.049523e-06</td>\n",
1098
       "      <td>NaN</td>\n",
1099
       "      <td>0.000003</td>\n",
1100
       "      <td>2.662817e-06</td>\n",
1101
       "      <td>NaN</td>\n",
1102
       "      <td>0.000003</td>\n",
1103
       "      <td>5.999171e-06</td>\n",
1104
       "      <td>NaN</td>\n",
1105
       "      <td>...</td>\n",
1106
       "      <td>78.343009</td>\n",
1107
       "      <td>11.849999</td>\n",
1108
       "      <td>86.750000</td>\n",
1109
       "      <td>1204.783340</td>\n",
1110
       "      <td>NaN</td>\n",
1111
       "      <td>NaN</td>\n",
1112
       "      <td>NaN</td>\n",
1113
       "      <td>NaN</td>\n",
1114
       "      <td>NaN</td>\n",
1115
       "      <td>NaN</td>\n",
1116
       "    </tr>\n",
1117
       "    <tr>\n",
1118
       "      <th>27</th>\n",
1119
       "      <td>2018-10-19</td>\n",
1120
       "      <td>-1.319548e-07</td>\n",
1121
       "      <td>-6.674203e-07</td>\n",
1122
       "      <td>NaN</td>\n",
1123
       "      <td>0.000005</td>\n",
1124
       "      <td>-4.296196e-07</td>\n",
1125
       "      <td>NaN</td>\n",
1126
       "      <td>0.000005</td>\n",
1127
       "      <td>1.068996e-06</td>\n",
1128
       "      <td>NaN</td>\n",
1129
       "      <td>...</td>\n",
1130
       "      <td>64.888729</td>\n",
1131
       "      <td>15.866667</td>\n",
1132
       "      <td>72.000000</td>\n",
1133
       "      <td>1298.070458</td>\n",
1134
       "      <td>NaN</td>\n",
1135
       "      <td>NaN</td>\n",
1136
       "      <td>NaN</td>\n",
1137
       "      <td>NaN</td>\n",
1138
       "      <td>NaN</td>\n",
1139
       "      <td>NaN</td>\n",
1140
       "    </tr>\n",
1141
       "    <tr>\n",
1142
       "      <th>28</th>\n",
1143
       "      <td>2018-10-20</td>\n",
1144
       "      <td>-1.332337e-06</td>\n",
1145
       "      <td>-1.943410e-06</td>\n",
1146
       "      <td>NaN</td>\n",
1147
       "      <td>0.000006</td>\n",
1148
       "      <td>-1.712419e-06</td>\n",
1149
       "      <td>NaN</td>\n",
1150
       "      <td>0.000005</td>\n",
1151
       "      <td>1.355707e-07</td>\n",
1152
       "      <td>NaN</td>\n",
1153
       "      <td>...</td>\n",
1154
       "      <td>75.949176</td>\n",
1155
       "      <td>7.075000</td>\n",
1156
       "      <td>95.500000</td>\n",
1157
       "      <td>961.637716</td>\n",
1158
       "      <td>NaN</td>\n",
1159
       "      <td>NaN</td>\n",
1160
       "      <td>NaN</td>\n",
1161
       "      <td>NaN</td>\n",
1162
       "      <td>NaN</td>\n",
1163
       "      <td>NaN</td>\n",
1164
       "    </tr>\n",
1165
       "    <tr>\n",
1166
       "      <th>29</th>\n",
1167
       "      <td>2018-10-20</td>\n",
1168
       "      <td>1.969945e-06</td>\n",
1169
       "      <td>1.431171e-06</td>\n",
1170
       "      <td>NaN</td>\n",
1171
       "      <td>0.000003</td>\n",
1172
       "      <td>2.750630e-06</td>\n",
1173
       "      <td>NaN</td>\n",
1174
       "      <td>0.000003</td>\n",
1175
       "      <td>6.083674e-06</td>\n",
1176
       "      <td>NaN</td>\n",
1177
       "      <td>...</td>\n",
1178
       "      <td>58.713717</td>\n",
1179
       "      <td>14.366667</td>\n",
1180
       "      <td>63.166668</td>\n",
1181
       "      <td>1034.099888</td>\n",
1182
       "      <td>NaN</td>\n",
1183
       "      <td>NaN</td>\n",
1184
       "      <td>NaN</td>\n",
1185
       "      <td>NaN</td>\n",
1186
       "      <td>NaN</td>\n",
1187
       "      <td>NaN</td>\n",
1188
       "    </tr>\n",
1189
       "    <tr>\n",
1190
       "      <th>30</th>\n",
1191
       "      <td>2018-10-21</td>\n",
1192
       "      <td>1.810997e-06</td>\n",
1193
       "      <td>1.365175e-06</td>\n",
1194
       "      <td>NaN</td>\n",
1195
       "      <td>0.000005</td>\n",
1196
       "      <td>2.487162e-06</td>\n",
1197
       "      <td>NaN</td>\n",
1198
       "      <td>0.000004</td>\n",
1199
       "      <td>6.123559e-06</td>\n",
1200
       "      <td>NaN</td>\n",
1201
       "      <td>...</td>\n",
1202
       "      <td>77.954818</td>\n",
1203
       "      <td>5.383333</td>\n",
1204
       "      <td>91.916664</td>\n",
1205
       "      <td>823.388241</td>\n",
1206
       "      <td>NaN</td>\n",
1207
       "      <td>NaN</td>\n",
1208
       "      <td>NaN</td>\n",
1209
       "      <td>NaN</td>\n",
1210
       "      <td>NaN</td>\n",
1211
       "      <td>NaN</td>\n",
1212
       "    </tr>\n",
1213
       "    <tr>\n",
1214
       "      <th>31</th>\n",
1215
       "      <td>2018-10-21</td>\n",
1216
       "      <td>-1.732660e-06</td>\n",
1217
       "      <td>-2.282520e-06</td>\n",
1218
       "      <td>NaN</td>\n",
1219
       "      <td>0.000004</td>\n",
1220
       "      <td>-2.034108e-06</td>\n",
1221
       "      <td>NaN</td>\n",
1222
       "      <td>0.000004</td>\n",
1223
       "      <td>-1.025116e-06</td>\n",
1224
       "      <td>NaN</td>\n",
1225
       "      <td>...</td>\n",
1226
       "      <td>60.671882</td>\n",
1227
       "      <td>15.341667</td>\n",
1228
       "      <td>62.250000</td>\n",
1229
       "      <td>1085.177392</td>\n",
1230
       "      <td>NaN</td>\n",
1231
       "      <td>NaN</td>\n",
1232
       "      <td>NaN</td>\n",
1233
       "      <td>NaN</td>\n",
1234
       "      <td>NaN</td>\n",
1235
       "      <td>NaN</td>\n",
1236
       "    </tr>\n",
1237
       "    <tr>\n",
1238
       "      <th>32</th>\n",
1239
       "      <td>2018-10-22</td>\n",
1240
       "      <td>-1.100335e-06</td>\n",
1241
       "      <td>-1.913171e-06</td>\n",
1242
       "      <td>NaN</td>\n",
1243
       "      <td>0.000005</td>\n",
1244
       "      <td>-1.609247e-06</td>\n",
1245
       "      <td>NaN</td>\n",
1246
       "      <td>0.000005</td>\n",
1247
       "      <td>2.947903e-07</td>\n",
1248
       "      <td>NaN</td>\n",
1249
       "      <td>...</td>\n",
1250
       "      <td>90.282846</td>\n",
1251
       "      <td>12.816667</td>\n",
1252
       "      <td>91.416664</td>\n",
1253
       "      <td>1352.931970</td>\n",
1254
       "      <td>NaN</td>\n",
1255
       "      <td>NaN</td>\n",
1256
       "      <td>NaN</td>\n",
1257
       "      <td>NaN</td>\n",
1258
       "      <td>NaN</td>\n",
1259
       "      <td>NaN</td>\n",
1260
       "    </tr>\n",
1261
       "    <tr>\n",
1262
       "      <th>33</th>\n",
1263
       "      <td>2018-10-22</td>\n",
1264
       "      <td>-5.490189e-07</td>\n",
1265
       "      <td>-9.766282e-07</td>\n",
1266
       "      <td>NaN</td>\n",
1267
       "      <td>0.000005</td>\n",
1268
       "      <td>-6.847724e-07</td>\n",
1269
       "      <td>NaN</td>\n",
1270
       "      <td>0.000005</td>\n",
1271
       "      <td>8.822850e-07</td>\n",
1272
       "      <td>NaN</td>\n",
1273
       "      <td>...</td>\n",
1274
       "      <td>51.921047</td>\n",
1275
       "      <td>14.325000</td>\n",
1276
       "      <td>59.000000</td>\n",
1277
       "      <td>963.286852</td>\n",
1278
       "      <td>NaN</td>\n",
1279
       "      <td>NaN</td>\n",
1280
       "      <td>NaN</td>\n",
1281
       "      <td>NaN</td>\n",
1282
       "      <td>NaN</td>\n",
1283
       "      <td>NaN</td>\n",
1284
       "    </tr>\n",
1285
       "    <tr>\n",
1286
       "      <th>34</th>\n",
1287
       "      <td>2018-10-24</td>\n",
1288
       "      <td>1.784753e-06</td>\n",
1289
       "      <td>1.555411e-06</td>\n",
1290
       "      <td>NaN</td>\n",
1291
       "      <td>0.000003</td>\n",
1292
       "      <td>2.193270e-06</td>\n",
1293
       "      <td>NaN</td>\n",
1294
       "      <td>0.000002</td>\n",
1295
       "      <td>4.541856e-06</td>\n",
1296
       "      <td>NaN</td>\n",
1297
       "      <td>...</td>\n",
1298
       "      <td>86.378121</td>\n",
1299
       "      <td>14.766666</td>\n",
1300
       "      <td>87.500000</td>\n",
1301
       "      <td>1469.951907</td>\n",
1302
       "      <td>NaN</td>\n",
1303
       "      <td>NaN</td>\n",
1304
       "      <td>NaN</td>\n",
1305
       "      <td>NaN</td>\n",
1306
       "      <td>NaN</td>\n",
1307
       "      <td>NaN</td>\n",
1308
       "    </tr>\n",
1309
       "    <tr>\n",
1310
       "      <th>35</th>\n",
1311
       "      <td>2018-10-24</td>\n",
1312
       "      <td>8.190939e-07</td>\n",
1313
       "      <td>5.508098e-07</td>\n",
1314
       "      <td>NaN</td>\n",
1315
       "      <td>0.000006</td>\n",
1316
       "      <td>1.043012e-06</td>\n",
1317
       "      <td>NaN</td>\n",
1318
       "      <td>0.000005</td>\n",
1319
       "      <td>4.216968e-06</td>\n",
1320
       "      <td>NaN</td>\n",
1321
       "      <td>...</td>\n",
1322
       "      <td>85.035832</td>\n",
1323
       "      <td>14.500000</td>\n",
1324
       "      <td>88.750000</td>\n",
1325
       "      <td>1465.504286</td>\n",
1326
       "      <td>NaN</td>\n",
1327
       "      <td>NaN</td>\n",
1328
       "      <td>NaN</td>\n",
1329
       "      <td>NaN</td>\n",
1330
       "      <td>NaN</td>\n",
1331
       "      <td>NaN</td>\n",
1332
       "    </tr>\n",
1333
       "    <tr>\n",
1334
       "      <th>36</th>\n",
1335
       "      <td>2018-10-25</td>\n",
1336
       "      <td>3.724496e-06</td>\n",
1337
       "      <td>3.241454e-06</td>\n",
1338
       "      <td>NaN</td>\n",
1339
       "      <td>0.000003</td>\n",
1340
       "      <td>4.705916e-06</td>\n",
1341
       "      <td>NaN</td>\n",
1342
       "      <td>0.000002</td>\n",
1343
       "      <td>8.929031e-06</td>\n",
1344
       "      <td>NaN</td>\n",
1345
       "      <td>...</td>\n",
1346
       "      <td>72.341495</td>\n",
1347
       "      <td>11.650001</td>\n",
1348
       "      <td>78.166664</td>\n",
1349
       "      <td>1071.325174</td>\n",
1350
       "      <td>NaN</td>\n",
1351
       "      <td>NaN</td>\n",
1352
       "      <td>NaN</td>\n",
1353
       "      <td>NaN</td>\n",
1354
       "      <td>NaN</td>\n",
1355
       "      <td>NaN</td>\n",
1356
       "    </tr>\n",
1357
       "    <tr>\n",
1358
       "      <th>37</th>\n",
1359
       "      <td>2018-10-25</td>\n",
1360
       "      <td>1.824806e-06</td>\n",
1361
       "      <td>1.196929e-06</td>\n",
1362
       "      <td>NaN</td>\n",
1363
       "      <td>0.000003</td>\n",
1364
       "      <td>2.209937e-06</td>\n",
1365
       "      <td>NaN</td>\n",
1366
       "      <td>0.000003</td>\n",
1367
       "      <td>5.299628e-06</td>\n",
1368
       "      <td>NaN</td>\n",
1369
       "      <td>...</td>\n",
1370
       "      <td>68.176070</td>\n",
1371
       "      <td>12.483334</td>\n",
1372
       "      <td>73.083336</td>\n",
1373
       "      <td>1058.211217</td>\n",
1374
       "      <td>NaN</td>\n",
1375
       "      <td>NaN</td>\n",
1376
       "      <td>NaN</td>\n",
1377
       "      <td>NaN</td>\n",
1378
       "      <td>NaN</td>\n",
1379
       "      <td>NaN</td>\n",
1380
       "    </tr>\n",
1381
       "    <tr>\n",
1382
       "      <th>38</th>\n",
1383
       "      <td>2018-10-26</td>\n",
1384
       "      <td>2.153363e-06</td>\n",
1385
       "      <td>2.132159e-06</td>\n",
1386
       "      <td>NaN</td>\n",
1387
       "      <td>0.000003</td>\n",
1388
       "      <td>2.389443e-06</td>\n",
1389
       "      <td>NaN</td>\n",
1390
       "      <td>0.000002</td>\n",
1391
       "      <td>4.990096e-06</td>\n",
1392
       "      <td>NaN</td>\n",
1393
       "      <td>...</td>\n",
1394
       "      <td>78.287534</td>\n",
1395
       "      <td>10.116667</td>\n",
1396
       "      <td>83.916664</td>\n",
1397
       "      <td>1038.558421</td>\n",
1398
       "      <td>NaN</td>\n",
1399
       "      <td>NaN</td>\n",
1400
       "      <td>NaN</td>\n",
1401
       "      <td>NaN</td>\n",
1402
       "      <td>NaN</td>\n",
1403
       "      <td>NaN</td>\n",
1404
       "    </tr>\n",
1405
       "    <tr>\n",
1406
       "      <th>39</th>\n",
1407
       "      <td>2018-10-26</td>\n",
1408
       "      <td>1.326535e-06</td>\n",
1409
       "      <td>7.106164e-07</td>\n",
1410
       "      <td>NaN</td>\n",
1411
       "      <td>0.000008</td>\n",
1412
       "      <td>8.805592e-07</td>\n",
1413
       "      <td>NaN</td>\n",
1414
       "      <td>0.000008</td>\n",
1415
       "      <td>3.677825e-06</td>\n",
1416
       "      <td>NaN</td>\n",
1417
       "      <td>...</td>\n",
1418
       "      <td>79.999436</td>\n",
1419
       "      <td>9.926667</td>\n",
1420
       "      <td>89.250000</td>\n",
1421
       "      <td>1090.588126</td>\n",
1422
       "      <td>1.235000</td>\n",
1423
       "      <td>0.000000</td>\n",
1424
       "      <td>0.056667</td>\n",
1425
       "      <td>1.1</td>\n",
1426
       "      <td>NaN</td>\n",
1427
       "      <td>NaN</td>\n",
1428
       "    </tr>\n",
1429
       "    <tr>\n",
1430
       "      <th>40</th>\n",
1431
       "      <td>2018-10-27</td>\n",
1432
       "      <td>3.636625e-06</td>\n",
1433
       "      <td>2.991667e-06</td>\n",
1434
       "      <td>NaN</td>\n",
1435
       "      <td>0.000005</td>\n",
1436
       "      <td>3.793937e-06</td>\n",
1437
       "      <td>NaN</td>\n",
1438
       "      <td>0.000004</td>\n",
1439
       "      <td>7.498736e-06</td>\n",
1440
       "      <td>NaN</td>\n",
1441
       "      <td>...</td>\n",
1442
       "      <td>85.339351</td>\n",
1443
       "      <td>5.366667</td>\n",
1444
       "      <td>94.416664</td>\n",
1445
       "      <td>844.802221</td>\n",
1446
       "      <td>61.010000</td>\n",
1447
       "      <td>56.300000</td>\n",
1448
       "      <td>13.606667</td>\n",
1449
       "      <td>0.0</td>\n",
1450
       "      <td>NaN</td>\n",
1451
       "      <td>NaN</td>\n",
1452
       "    </tr>\n",
1453
       "    <tr>\n",
1454
       "      <th>41</th>\n",
1455
       "      <td>2018-10-27</td>\n",
1456
       "      <td>-6.211330e-07</td>\n",
1457
       "      <td>-9.717194e-07</td>\n",
1458
       "      <td>NaN</td>\n",
1459
       "      <td>0.000004</td>\n",
1460
       "      <td>-9.310713e-07</td>\n",
1461
       "      <td>NaN</td>\n",
1462
       "      <td>0.000004</td>\n",
1463
       "      <td>6.339895e-07</td>\n",
1464
       "      <td>NaN</td>\n",
1465
       "      <td>...</td>\n",
1466
       "      <td>79.924031</td>\n",
1467
       "      <td>7.693333</td>\n",
1468
       "      <td>86.166664</td>\n",
1469
       "      <td>905.187480</td>\n",
1470
       "      <td>1.633333</td>\n",
1471
       "      <td>1.825000</td>\n",
1472
       "      <td>0.000000</td>\n",
1473
       "      <td>0.0</td>\n",
1474
       "      <td>NaN</td>\n",
1475
       "      <td>NaN</td>\n",
1476
       "    </tr>\n",
1477
       "    <tr>\n",
1478
       "      <th>42</th>\n",
1479
       "      <td>2018-10-28</td>\n",
1480
       "      <td>4.497817e-06</td>\n",
1481
       "      <td>4.283923e-06</td>\n",
1482
       "      <td>NaN</td>\n",
1483
       "      <td>0.000004</td>\n",
1484
       "      <td>4.852430e-06</td>\n",
1485
       "      <td>NaN</td>\n",
1486
       "      <td>0.000003</td>\n",
1487
       "      <td>8.562411e-06</td>\n",
1488
       "      <td>NaN</td>\n",
1489
       "      <td>...</td>\n",
1490
       "      <td>82.718420</td>\n",
1491
       "      <td>3.806667</td>\n",
1492
       "      <td>87.666664</td>\n",
1493
       "      <td>703.161433</td>\n",
1494
       "      <td>102.038333</td>\n",
1495
       "      <td>94.306667</td>\n",
1496
       "      <td>17.771667</td>\n",
1497
       "      <td>0.0</td>\n",
1498
       "      <td>NaN</td>\n",
1499
       "      <td>NaN</td>\n",
1500
       "    </tr>\n",
1501
       "    <tr>\n",
1502
       "      <th>43</th>\n",
1503
       "      <td>2018-10-28</td>\n",
1504
       "      <td>-1.333735e-06</td>\n",
1505
       "      <td>-1.513523e-06</td>\n",
1506
       "      <td>NaN</td>\n",
1507
       "      <td>0.000005</td>\n",
1508
       "      <td>-1.296741e-06</td>\n",
1509
       "      <td>NaN</td>\n",
1510
       "      <td>0.000004</td>\n",
1511
       "      <td>3.020331e-07</td>\n",
1512
       "      <td>NaN</td>\n",
1513
       "      <td>...</td>\n",
1514
       "      <td>64.977425</td>\n",
1515
       "      <td>5.376667</td>\n",
1516
       "      <td>75.416664</td>\n",
1517
       "      <td>675.267940</td>\n",
1518
       "      <td>0.015000</td>\n",
1519
       "      <td>0.015000</td>\n",
1520
       "      <td>0.366667</td>\n",
1521
       "      <td>0.0</td>\n",
1522
       "      <td>NaN</td>\n",
1523
       "      <td>NaN</td>\n",
1524
       "    </tr>\n",
1525
       "    <tr>\n",
1526
       "      <th>44</th>\n",
1527
       "      <td>2018-10-29</td>\n",
1528
       "      <td>-5.603311e-07</td>\n",
1529
       "      <td>-1.228439e-06</td>\n",
1530
       "      <td>NaN</td>\n",
1531
       "      <td>0.000006</td>\n",
1532
       "      <td>-1.040336e-06</td>\n",
1533
       "      <td>NaN</td>\n",
1534
       "      <td>0.000005</td>\n",
1535
       "      <td>9.589513e-07</td>\n",
1536
       "      <td>NaN</td>\n",
1537
       "      <td>...</td>\n",
1538
       "      <td>81.862039</td>\n",
1539
       "      <td>4.883333</td>\n",
1540
       "      <td>86.166664</td>\n",
1541
       "      <td>745.416323</td>\n",
1542
       "      <td>51.123333</td>\n",
1543
       "      <td>48.155000</td>\n",
1544
       "      <td>0.085000</td>\n",
1545
       "      <td>0.0</td>\n",
1546
       "      <td>NaN</td>\n",
1547
       "      <td>NaN</td>\n",
1548
       "    </tr>\n",
1549
       "    <tr>\n",
1550
       "      <th>45</th>\n",
1551
       "      <td>2018-10-29</td>\n",
1552
       "      <td>1.156162e-06</td>\n",
1553
       "      <td>7.338229e-07</td>\n",
1554
       "      <td>NaN</td>\n",
1555
       "      <td>0.000007</td>\n",
1556
       "      <td>6.615397e-07</td>\n",
1557
       "      <td>NaN</td>\n",
1558
       "      <td>0.000007</td>\n",
1559
       "      <td>3.020624e-06</td>\n",
1560
       "      <td>NaN</td>\n",
1561
       "      <td>...</td>\n",
1562
       "      <td>77.330572</td>\n",
1563
       "      <td>6.280000</td>\n",
1564
       "      <td>81.666664</td>\n",
1565
       "      <td>778.518557</td>\n",
1566
       "      <td>0.691667</td>\n",
1567
       "      <td>0.011667</td>\n",
1568
       "      <td>0.133333</td>\n",
1569
       "      <td>0.0</td>\n",
1570
       "      <td>NaN</td>\n",
1571
       "      <td>NaN</td>\n",
1572
       "    </tr>\n",
1573
       "    <tr>\n",
1574
       "      <th>46</th>\n",
1575
       "      <td>2018-10-30</td>\n",
1576
       "      <td>-5.832049e-07</td>\n",
1577
       "      <td>-1.367379e-06</td>\n",
1578
       "      <td>NaN</td>\n",
1579
       "      <td>0.000005</td>\n",
1580
       "      <td>-1.198896e-06</td>\n",
1581
       "      <td>NaN</td>\n",
1582
       "      <td>0.000005</td>\n",
1583
       "      <td>6.190209e-07</td>\n",
1584
       "      <td>NaN</td>\n",
1585
       "      <td>...</td>\n",
1586
       "      <td>90.119412</td>\n",
1587
       "      <td>4.605000</td>\n",
1588
       "      <td>93.416664</td>\n",
1589
       "      <td>792.542864</td>\n",
1590
       "      <td>89.415000</td>\n",
1591
       "      <td>83.198333</td>\n",
1592
       "      <td>0.101667</td>\n",
1593
       "      <td>0.0</td>\n",
1594
       "      <td>NaN</td>\n",
1595
       "      <td>NaN</td>\n",
1596
       "    </tr>\n",
1597
       "    <tr>\n",
1598
       "      <th>47</th>\n",
1599
       "      <td>2018-10-30</td>\n",
1600
       "      <td>6.831304e-07</td>\n",
1601
       "      <td>-1.583820e-07</td>\n",
1602
       "      <td>NaN</td>\n",
1603
       "      <td>0.000005</td>\n",
1604
       "      <td>1.502555e-08</td>\n",
1605
       "      <td>NaN</td>\n",
1606
       "      <td>0.000005</td>\n",
1607
       "      <td>1.761219e-06</td>\n",
1608
       "      <td>NaN</td>\n",
1609
       "      <td>...</td>\n",
1610
       "      <td>89.176624</td>\n",
1611
       "      <td>9.105000</td>\n",
1612
       "      <td>89.000000</td>\n",
1613
       "      <td>1029.029277</td>\n",
1614
       "      <td>1.580000</td>\n",
1615
       "      <td>0.000000</td>\n",
1616
       "      <td>0.031667</td>\n",
1617
       "      <td>0.0</td>\n",
1618
       "      <td>NaN</td>\n",
1619
       "      <td>NaN</td>\n",
1620
       "    </tr>\n",
1621
       "    <tr>\n",
1622
       "      <th>48</th>\n",
1623
       "      <td>2018-10-31</td>\n",
1624
       "      <td>-2.640546e-07</td>\n",
1625
       "      <td>-1.038990e-06</td>\n",
1626
       "      <td>NaN</td>\n",
1627
       "      <td>0.000005</td>\n",
1628
       "      <td>-1.141497e-06</td>\n",
1629
       "      <td>NaN</td>\n",
1630
       "      <td>0.000005</td>\n",
1631
       "      <td>7.637132e-07</td>\n",
1632
       "      <td>NaN</td>\n",
1633
       "      <td>...</td>\n",
1634
       "      <td>84.420349</td>\n",
1635
       "      <td>6.031667</td>\n",
1636
       "      <td>88.916664</td>\n",
1637
       "      <td>833.193491</td>\n",
1638
       "      <td>168.916667</td>\n",
1639
       "      <td>132.145000</td>\n",
1640
       "      <td>157.476667</td>\n",
1641
       "      <td>0.0</td>\n",
1642
       "      <td>NaN</td>\n",
1643
       "      <td>NaN</td>\n",
1644
       "    </tr>\n",
1645
       "    <tr>\n",
1646
       "      <th>49</th>\n",
1647
       "      <td>2018-10-31</td>\n",
1648
       "      <td>4.328737e-07</td>\n",
1649
       "      <td>-5.693961e-09</td>\n",
1650
       "      <td>NaN</td>\n",
1651
       "      <td>0.000006</td>\n",
1652
       "      <td>1.244246e-07</td>\n",
1653
       "      <td>NaN</td>\n",
1654
       "      <td>0.000006</td>\n",
1655
       "      <td>2.026151e-06</td>\n",
1656
       "      <td>NaN</td>\n",
1657
       "      <td>...</td>\n",
1658
       "      <td>82.939124</td>\n",
1659
       "      <td>10.496667</td>\n",
1660
       "      <td>88.500000</td>\n",
1661
       "      <td>1123.467763</td>\n",
1662
       "      <td>0.000000</td>\n",
1663
       "      <td>0.028333</td>\n",
1664
       "      <td>0.430000</td>\n",
1665
       "      <td>0.0</td>\n",
1666
       "      <td>NaN</td>\n",
1667
       "      <td>NaN</td>\n",
1668
       "    </tr>\n",
1669
       "  </tbody>\n",
1670
       "</table>\n",
1671
       "<p>50 rows × 28 columns</p>\n",
1672
       "</div>"
1673
      ],
1674
      "text/plain": [
1675
       "     timestamp      strain_1      strain_2  strain_3  strain_4      strain_5  \\\n",
1676
       "0   2018-10-02  1.804882e-06  1.291150e-06       NaN  0.000003           NaN   \n",
1677
       "1   2018-10-03  2.269802e-06  1.698958e-06       NaN  0.000004           NaN   \n",
1678
       "2   2018-10-03  2.128605e-06  1.411400e-06       NaN  0.000003           NaN   \n",
1679
       "3   2018-10-04  3.457613e-06  2.919155e-06       NaN  0.000004           NaN   \n",
1680
       "4   2018-10-04  1.420150e-07 -5.852899e-07       NaN  0.000005           NaN   \n",
1681
       "5   2018-10-05  1.282716e-06  2.430030e-07       NaN  0.000008           NaN   \n",
1682
       "6   2018-10-05 -3.599416e-07 -1.080711e-06       NaN  0.000005           NaN   \n",
1683
       "7   2018-10-06  3.045380e-06  2.472536e-06       NaN  0.000006           NaN   \n",
1684
       "8   2018-10-08 -4.537585e-07 -1.072013e-06       NaN  0.000006           NaN   \n",
1685
       "9   2018-10-08 -1.061381e-07 -7.471682e-07       NaN  0.000005           NaN   \n",
1686
       "10  2018-10-09  1.628155e-06  1.257122e-06       NaN  0.000004           NaN   \n",
1687
       "11  2018-10-09 -3.682028e-07 -1.007747e-06       NaN  0.000005           NaN   \n",
1688
       "12  2018-10-10 -4.486108e-07 -1.049204e-06       NaN  0.000005           NaN   \n",
1689
       "13  2018-10-10 -3.506244e-07 -9.312912e-07       NaN  0.000004 -8.837225e-07   \n",
1690
       "14  2018-10-11  9.078712e-08 -6.254588e-07       NaN  0.000007 -5.223130e-07   \n",
1691
       "15  2018-10-11 -5.495572e-07 -1.042136e-06       NaN  0.000005 -6.461451e-07   \n",
1692
       "16  2018-10-12  2.827529e-06  2.354601e-06       NaN  0.000004  3.245773e-06   \n",
1693
       "17  2018-10-12  1.409051e-06  8.248487e-07       NaN  0.000006  1.552718e-06   \n",
1694
       "18  2018-10-15  2.527285e-06  2.073035e-06       NaN  0.000002  2.815451e-06   \n",
1695
       "19  2018-10-15 -4.270678e-07 -1.003826e-06       NaN  0.000005 -6.829385e-07   \n",
1696
       "20  2018-10-16  1.935912e-06  1.531248e-06       NaN  0.000004  2.574173e-06   \n",
1697
       "21  2018-10-16 -3.912998e-07 -9.402715e-07       NaN  0.000005 -8.452086e-07   \n",
1698
       "22  2018-10-17  2.287292e-06  1.759895e-06       NaN  0.000004  2.737282e-06   \n",
1699
       "23  2018-10-17 -6.658138e-07 -1.174673e-06       NaN  0.000006 -9.838982e-07   \n",
1700
       "24  2018-10-18  1.756547e-06  1.209365e-06       NaN  0.000004  2.360669e-06   \n",
1701
       "25  2018-10-18  1.696276e-06  1.333564e-06       NaN  0.000003  2.450028e-06   \n",
1702
       "26  2018-10-19  2.643052e-06  2.049523e-06       NaN  0.000003  2.662817e-06   \n",
1703
       "27  2018-10-19 -1.319548e-07 -6.674203e-07       NaN  0.000005 -4.296196e-07   \n",
1704
       "28  2018-10-20 -1.332337e-06 -1.943410e-06       NaN  0.000006 -1.712419e-06   \n",
1705
       "29  2018-10-20  1.969945e-06  1.431171e-06       NaN  0.000003  2.750630e-06   \n",
1706
       "30  2018-10-21  1.810997e-06  1.365175e-06       NaN  0.000005  2.487162e-06   \n",
1707
       "31  2018-10-21 -1.732660e-06 -2.282520e-06       NaN  0.000004 -2.034108e-06   \n",
1708
       "32  2018-10-22 -1.100335e-06 -1.913171e-06       NaN  0.000005 -1.609247e-06   \n",
1709
       "33  2018-10-22 -5.490189e-07 -9.766282e-07       NaN  0.000005 -6.847724e-07   \n",
1710
       "34  2018-10-24  1.784753e-06  1.555411e-06       NaN  0.000003  2.193270e-06   \n",
1711
       "35  2018-10-24  8.190939e-07  5.508098e-07       NaN  0.000006  1.043012e-06   \n",
1712
       "36  2018-10-25  3.724496e-06  3.241454e-06       NaN  0.000003  4.705916e-06   \n",
1713
       "37  2018-10-25  1.824806e-06  1.196929e-06       NaN  0.000003  2.209937e-06   \n",
1714
       "38  2018-10-26  2.153363e-06  2.132159e-06       NaN  0.000003  2.389443e-06   \n",
1715
       "39  2018-10-26  1.326535e-06  7.106164e-07       NaN  0.000008  8.805592e-07   \n",
1716
       "40  2018-10-27  3.636625e-06  2.991667e-06       NaN  0.000005  3.793937e-06   \n",
1717
       "41  2018-10-27 -6.211330e-07 -9.717194e-07       NaN  0.000004 -9.310713e-07   \n",
1718
       "42  2018-10-28  4.497817e-06  4.283923e-06       NaN  0.000004  4.852430e-06   \n",
1719
       "43  2018-10-28 -1.333735e-06 -1.513523e-06       NaN  0.000005 -1.296741e-06   \n",
1720
       "44  2018-10-29 -5.603311e-07 -1.228439e-06       NaN  0.000006 -1.040336e-06   \n",
1721
       "45  2018-10-29  1.156162e-06  7.338229e-07       NaN  0.000007  6.615397e-07   \n",
1722
       "46  2018-10-30 -5.832049e-07 -1.367379e-06       NaN  0.000005 -1.198896e-06   \n",
1723
       "47  2018-10-30  6.831304e-07 -1.583820e-07       NaN  0.000005  1.502555e-08   \n",
1724
       "48  2018-10-31 -2.640546e-07 -1.038990e-06       NaN  0.000005 -1.141497e-06   \n",
1725
       "49  2018-10-31  4.328737e-07 -5.693961e-09       NaN  0.000006  1.244246e-07   \n",
1726
       "\n",
1727
       "    strain_6  strain_7      strain_8  strain_9  ...         Rh    airtemp  \\\n",
1728
       "0        NaN  0.000003  5.482034e-06       NaN  ...  71.280029  16.716667   \n",
1729
       "1        NaN  0.000003  5.813794e-06       NaN  ...  76.997064  12.141666   \n",
1730
       "2        NaN  0.000002  5.213818e-06       NaN  ...  55.975091  15.683333   \n",
1731
       "3        NaN  0.000004  8.611123e-06       NaN  ...  79.072215  12.958333   \n",
1732
       "4        NaN  0.000005  7.968894e-07       NaN  ...  58.432998  21.924999   \n",
1733
       "5        NaN  0.000007  4.326709e-06       NaN  ...  77.300284   9.525000   \n",
1734
       "6        NaN  0.000004  1.512664e-06       NaN  ...  47.062426  23.875000   \n",
1735
       "7        NaN  0.000005  6.635354e-06       NaN  ...  78.543308  11.433333   \n",
1736
       "8        NaN  0.000005  8.118908e-07       NaN  ...  73.230142   5.833333   \n",
1737
       "9        NaN  0.000005  6.869932e-07       NaN  ...  52.548953  15.975000   \n",
1738
       "10       NaN  0.000004  5.748393e-06       NaN  ...  77.955239   6.358333   \n",
1739
       "11       NaN  0.000005  5.841734e-07       NaN  ...  56.269163  18.052333   \n",
1740
       "12       NaN  0.000005  4.158732e-07       NaN  ...  81.122389   9.398639   \n",
1741
       "13       NaN  0.000004  5.287465e-07       NaN  ...  54.889717  23.548417   \n",
1742
       "14       NaN  0.000007  1.800594e-06       NaN  ...  72.342233  19.004861   \n",
1743
       "15       NaN  0.000005  8.852473e-07       NaN  ...  53.908886  24.208334   \n",
1744
       "16       NaN  0.000004  6.803631e-06       NaN  ...  83.950116  17.993750   \n",
1745
       "17       NaN  0.000006  5.098572e-06       NaN  ...  64.288978  23.465000   \n",
1746
       "18       NaN  0.000002  4.371978e-06       NaN  ...  59.638465  19.570000   \n",
1747
       "19       NaN  0.000005  7.821662e-07       NaN  ...  41.219275  22.181667   \n",
1748
       "20       NaN  0.000003  6.310965e-06       NaN  ...  71.332262  11.291667   \n",
1749
       "21       NaN  0.000005  8.549726e-07       NaN  ...  43.499465  22.855000   \n",
1750
       "22       NaN  0.000004  5.843397e-06       NaN  ...  75.164982  11.135000   \n",
1751
       "23       NaN  0.000005  8.058195e-07       NaN  ...  65.386193  18.858334   \n",
1752
       "24       NaN  0.000003  5.703489e-06       NaN  ...  84.501079  12.526667   \n",
1753
       "25       NaN  0.000003  5.655112e-06       NaN  ...  68.986611  15.483334   \n",
1754
       "26       NaN  0.000003  5.999171e-06       NaN  ...  78.343009  11.849999   \n",
1755
       "27       NaN  0.000005  1.068996e-06       NaN  ...  64.888729  15.866667   \n",
1756
       "28       NaN  0.000005  1.355707e-07       NaN  ...  75.949176   7.075000   \n",
1757
       "29       NaN  0.000003  6.083674e-06       NaN  ...  58.713717  14.366667   \n",
1758
       "30       NaN  0.000004  6.123559e-06       NaN  ...  77.954818   5.383333   \n",
1759
       "31       NaN  0.000004 -1.025116e-06       NaN  ...  60.671882  15.341667   \n",
1760
       "32       NaN  0.000005  2.947903e-07       NaN  ...  90.282846  12.816667   \n",
1761
       "33       NaN  0.000005  8.822850e-07       NaN  ...  51.921047  14.325000   \n",
1762
       "34       NaN  0.000002  4.541856e-06       NaN  ...  86.378121  14.766666   \n",
1763
       "35       NaN  0.000005  4.216968e-06       NaN  ...  85.035832  14.500000   \n",
1764
       "36       NaN  0.000002  8.929031e-06       NaN  ...  72.341495  11.650001   \n",
1765
       "37       NaN  0.000003  5.299628e-06       NaN  ...  68.176070  12.483334   \n",
1766
       "38       NaN  0.000002  4.990096e-06       NaN  ...  78.287534  10.116667   \n",
1767
       "39       NaN  0.000008  3.677825e-06       NaN  ...  79.999436   9.926667   \n",
1768
       "40       NaN  0.000004  7.498736e-06       NaN  ...  85.339351   5.366667   \n",
1769
       "41       NaN  0.000004  6.339895e-07       NaN  ...  79.924031   7.693333   \n",
1770
       "42       NaN  0.000003  8.562411e-06       NaN  ...  82.718420   3.806667   \n",
1771
       "43       NaN  0.000004  3.020331e-07       NaN  ...  64.977425   5.376667   \n",
1772
       "44       NaN  0.000005  9.589513e-07       NaN  ...  81.862039   4.883333   \n",
1773
       "45       NaN  0.000007  3.020624e-06       NaN  ...  77.330572   6.280000   \n",
1774
       "46       NaN  0.000005  6.190209e-07       NaN  ...  90.119412   4.605000   \n",
1775
       "47       NaN  0.000005  1.761219e-06       NaN  ...  89.176624   9.105000   \n",
1776
       "48       NaN  0.000005  7.637132e-07       NaN  ...  84.420349   6.031667   \n",
1777
       "49       NaN  0.000006  2.026151e-06       NaN  ...  82.939124  10.496667   \n",
1778
       "\n",
1779
       "        avgRh       avgVPr       avgGR       avgdR      avgdnr  totalrain  \\\n",
1780
       "0   74.500000  1417.871951         NaN         NaN         NaN        NaN   \n",
1781
       "1   79.166664  1120.819324         NaN         NaN         NaN        NaN   \n",
1782
       "2   61.250000  1091.387360         NaN         NaN         NaN        NaN   \n",
1783
       "3   83.083336  1241.060048         NaN         NaN         NaN        NaN   \n",
1784
       "4   54.500000  1433.934434         NaN         NaN         NaN        NaN   \n",
1785
       "5   92.833336  1104.173129         NaN         NaN         NaN        NaN   \n",
1786
       "6   45.583332  1349.343321         NaN         NaN         NaN        NaN   \n",
1787
       "7   90.500000  1222.699295         NaN         NaN         NaN        NaN   \n",
1788
       "8   91.916664   849.545823         NaN         NaN         NaN        NaN   \n",
1789
       "9   56.000000  1016.622559         NaN         NaN         NaN        NaN   \n",
1790
       "10  92.833336   889.771595         NaN         NaN         NaN        NaN   \n",
1791
       "11  57.583332  1192.356382   20.417556   18.671694   16.358833        0.0   \n",
1792
       "12  93.750000  1105.629785  157.019694   66.948917  407.837417        0.0   \n",
1793
       "13  56.416668  1637.594616   30.327806   16.180389   63.654694        0.0   \n",
1794
       "14  76.500000  1681.335790   31.314111   27.076306    0.377667        0.0   \n",
1795
       "15  55.916668  1688.607212         NaN         NaN         NaN        NaN   \n",
1796
       "16  89.166664  1839.557833  140.983056   78.890306  214.392639        0.0   \n",
1797
       "17  67.250000  1942.281645   30.878333   27.683333    9.416667        0.0   \n",
1798
       "18  63.250000  1439.851964   90.183333   85.575000    3.056667        0.0   \n",
1799
       "19  44.416668  1187.027705    9.636667   12.235000    0.311667        0.0   \n",
1800
       "20  86.583336  1158.849084  149.348333   65.840000  435.375000        0.0   \n",
1801
       "21  40.916668  1139.047585   22.431667   25.788333    0.680000        0.0   \n",
1802
       "22  90.833336  1203.156142  126.298333   78.948333  177.325000        0.0   \n",
1803
       "23  71.166664  1549.889447         NaN         NaN         NaN        NaN   \n",
1804
       "24  94.500000  1372.213888  104.860000   89.093333   50.601667        0.0   \n",
1805
       "25  76.583336  1347.232662         NaN         NaN         NaN        NaN   \n",
1806
       "26  86.750000  1204.783340         NaN         NaN         NaN        NaN   \n",
1807
       "27  72.000000  1298.070458         NaN         NaN         NaN        NaN   \n",
1808
       "28  95.500000   961.637716         NaN         NaN         NaN        NaN   \n",
1809
       "29  63.166668  1034.099888         NaN         NaN         NaN        NaN   \n",
1810
       "30  91.916664   823.388241         NaN         NaN         NaN        NaN   \n",
1811
       "31  62.250000  1085.177392         NaN         NaN         NaN        NaN   \n",
1812
       "32  91.416664  1352.931970         NaN         NaN         NaN        NaN   \n",
1813
       "33  59.000000   963.286852         NaN         NaN         NaN        NaN   \n",
1814
       "34  87.500000  1469.951907         NaN         NaN         NaN        NaN   \n",
1815
       "35  88.750000  1465.504286         NaN         NaN         NaN        NaN   \n",
1816
       "36  78.166664  1071.325174         NaN         NaN         NaN        NaN   \n",
1817
       "37  73.083336  1058.211217         NaN         NaN         NaN        NaN   \n",
1818
       "38  83.916664  1038.558421         NaN         NaN         NaN        NaN   \n",
1819
       "39  89.250000  1090.588126    1.235000    0.000000    0.056667        1.1   \n",
1820
       "40  94.416664   844.802221   61.010000   56.300000   13.606667        0.0   \n",
1821
       "41  86.166664   905.187480    1.633333    1.825000    0.000000        0.0   \n",
1822
       "42  87.666664   703.161433  102.038333   94.306667   17.771667        0.0   \n",
1823
       "43  75.416664   675.267940    0.015000    0.015000    0.366667        0.0   \n",
1824
       "44  86.166664   745.416323   51.123333   48.155000    0.085000        0.0   \n",
1825
       "45  81.666664   778.518557    0.691667    0.011667    0.133333        0.0   \n",
1826
       "46  93.416664   792.542864   89.415000   83.198333    0.101667        0.0   \n",
1827
       "47  89.000000  1029.029277    1.580000    0.000000    0.031667        0.0   \n",
1828
       "48  88.916664   833.193491  168.916667  132.145000  157.476667        0.0   \n",
1829
       "49  88.500000  1123.467763    0.000000    0.028333    0.430000        0.0   \n",
1830
       "\n",
1831
       "    avgws10  avgwd10  \n",
1832
       "0       NaN      NaN  \n",
1833
       "1       NaN      NaN  \n",
1834
       "2       NaN      NaN  \n",
1835
       "3       NaN      NaN  \n",
1836
       "4       NaN      NaN  \n",
1837
       "5       NaN      NaN  \n",
1838
       "6       NaN      NaN  \n",
1839
       "7       NaN      NaN  \n",
1840
       "8       NaN      NaN  \n",
1841
       "9       NaN      NaN  \n",
1842
       "10      NaN      NaN  \n",
1843
       "11      NaN      NaN  \n",
1844
       "12      NaN      NaN  \n",
1845
       "13      NaN      NaN  \n",
1846
       "14      NaN      NaN  \n",
1847
       "15      NaN      NaN  \n",
1848
       "16      NaN      NaN  \n",
1849
       "17      NaN      NaN  \n",
1850
       "18      NaN      NaN  \n",
1851
       "19      NaN      NaN  \n",
1852
       "20      NaN      NaN  \n",
1853
       "21      NaN      NaN  \n",
1854
       "22      NaN      NaN  \n",
1855
       "23      NaN      NaN  \n",
1856
       "24      NaN      NaN  \n",
1857
       "25      NaN      NaN  \n",
1858
       "26      NaN      NaN  \n",
1859
       "27      NaN      NaN  \n",
1860
       "28      NaN      NaN  \n",
1861
       "29      NaN      NaN  \n",
1862
       "30      NaN      NaN  \n",
1863
       "31      NaN      NaN  \n",
1864
       "32      NaN      NaN  \n",
1865
       "33      NaN      NaN  \n",
1866
       "34      NaN      NaN  \n",
1867
       "35      NaN      NaN  \n",
1868
       "36      NaN      NaN  \n",
1869
       "37      NaN      NaN  \n",
1870
       "38      NaN      NaN  \n",
1871
       "39      NaN      NaN  \n",
1872
       "40      NaN      NaN  \n",
1873
       "41      NaN      NaN  \n",
1874
       "42      NaN      NaN  \n",
1875
       "43      NaN      NaN  \n",
1876
       "44      NaN      NaN  \n",
1877
       "45      NaN      NaN  \n",
1878
       "46      NaN      NaN  \n",
1879
       "47      NaN      NaN  \n",
1880
       "48      NaN      NaN  \n",
1881
       "49      NaN      NaN  \n",
1882
       "\n",
1883
       "[50 rows x 28 columns]"
1884
      ]
1885
     },
1886
     "execution_count": 38,
1887
     "metadata": {},
1888
     "output_type": "execute_result"
1889
    }
1890
   ],
1891
   "source": [
1892
    "df1"
1893
   ]
1894
  },
1895
  {
1896
   "cell_type": "code",
1897
   "execution_count": null,
1898
   "id": "ffd1ac20",
1899
   "metadata": {},
1900
   "outputs": [],
1901
   "source": [
1902
    "#looping to include all data in april month\n",
1903
    "#latest\n",
1904
    "for j in range(len(arr2)):\n",
1905
    "    strain = []\n",
1906
    "    time = []\n",
1907
    "    mat = scipy.io.loadmat('./traindata_201904/'+arr2[j])\n",
1908
    "    for item in mat['predat_sg'][0][0][3]:\n",
1909
    "        strain.append(item)\n",
1910
    "    for item in mat['predat_sg'][0][0][0]:\n",
1911
    "        #convert matlab time to date_timestamp before appending \n",
1912
    "        time.append(pd.to_datetime(item-719529,unit='d').round('s')[0].date())\n",
1913
    "    if j==0:\n",
1914
    "        col_name = []\n",
1915
    "        for i in range (1,17):\n",
1916
    "            col_name.append(\"strain_\"+str(i))\n",
1917
    "    \n",
1918
    "        #create datafrome to add the strain values\n",
1919
    "        strain_apr = pd.DataFrame(strain, columns=col_name)\n",
1920
    "        strain_apr.insert(0, 'timestamp', time)\n",
1921
    "        strain_apr = strain_apr.groupby(['timestamp']).mean()\n",
1922
    "        strain_apr['Surftemp'] = mat['predat_env'][0][0][-1][0][0] #Surface temperature at one point below deck\n",
1923
    "        strain_apr['Rh'] = mat['predat_env'][0][0][-1][0][1] #Relative humidity at one point below deck\n",
1924
    "        strain_apr['airtemp'] = mat['predat_env'][0][0][-1][0][2] #Average air temperature\n",
1925
    "        strain_apr['avgRh'] = mat['predat_env'][0][0][-1][0][3] #Average Relative Humidity\n",
1926
    "        strain_apr['avgVPr'] = mat['predat_env'][0][0][-1][0][4] #Average Vapour Pressure\n",
1927
    "        strain_apr['avgGR'] = mat['predat_env'][0][0][-1][0][5] #Average global Radiation\n",
1928
    "        strain_apr['avgdR']= mat['predat_env'][0][0][-1][0][6] #Average diffuse radiation\n",
1929
    "        strain_apr['avgdnr'] = mat['predat_env'][0][0][-1][0][7] #Average Direct normal radiation\n",
1930
    "        strain_apr['totalrain'] = mat['predat_env'][0][0][-1][0][8] #Total Rain\n",
1931
    "        strain_apr['avgws10'] = mat['predat_env'][0][0][-1][0][9] #wind speed at 10m above ground\n",
1932
    "        strain_apr['avgwd10'] = mat['predat_env'][0][0][-1][0][10] #wind direction at 10m above ground\n",
1933
    "        \n",
1934
    "    else:\n",
1935
    "        temp = pd.DataFrame(strain, columns=col_name)\n",
1936
    "        temp.insert(0,'timestamp',time)\n",
1937
    "        temp = temp.groupby(['timestamp']).mean()\n",
1938
    "        temp['Surftemp'] = mat['predat_env'][0][0][-1][0][0] #Surface temperature at one point below deck\n",
1939
    "        temp['Rh'] = mat['predat_env'][0][0][-1][0][1] #Relative humidity at one point below deck\n",
1940
    "        temp['airtemp'] = mat['predat_env'][0][0][-1][0][2] #Average air temperature\n",
1941
    "        temp['avgRh'] = mat['predat_env'][0][0][-1][0][3] #Average Relative Humidity\n",
1942
    "        temp['avgVPr'] = mat['predat_env'][0][0][-1][0][4] #Average Vapour Pressure\n",
1943
    "        temp['avgGR'] = mat['predat_env'][0][0][-1][0][5] #Average global Radiation\n",
1944
    "        temp['avgdR']= mat['predat_env'][0][0][-1][0][6] #Average diffuse radiation\n",
1945
    "        temp['avgdnr'] = mat['predat_env'][0][0][-1][0][7] #Average Direct normal radiation\n",
1946
    "        temp['totalrain'] = mat['predat_env'][0][0][-1][0][8] #Total Rain\n",
1947
    "        temp['avgws10'] = mat['predat_env'][0][0][-1][0][9] #wind speed at 10m above ground\n",
1948
    "        temp['avgwd10'] = mat['predat_env'][0][0][-1][0][10] #wind direction at 10m above ground\n",
1949
    "        strain_apr = strain_apr.append(temp)\n",
1950
    "\n",
1951
    "#save the dataframe to CSV file\n",
1952
    "strain_apr.to_csv('daywise_apr_with_env.csv')"
1953
   ]
1954
  },
1955
  {
1956
   "cell_type": "code",
1957
   "execution_count": null,
1958
   "id": "5ca8e23c",
1959
   "metadata": {},
1960
   "outputs": [],
1961
   "source": [
1962
    "#run multivariate VAR\n",
1963
    "\n",
1964
    "\n",
1965
    "import pandas as pd\n",
1966
    "import matplotlib.pyplot as plt\n",
1967
    "%matplotlib inline\n",
1968
    "import numpy as np\n",
1969
    "from sklearn.model_selection import train_test_split\n",
1970
    "\n",
1971
    "#read the data\n",
1972
    "df = pd.read_csv(\"AirQualityUCI.csv\", parse_dates=[['Date', 'Time']])\n",
1973
    "\n",
1974
    "#check the dtypes\n",
1975
    "df.dtypes\n",
1976
    "\n",
1977
    "#missing value treatment\n",
1978
    "cols = data.columns\n",
1979
    "for j in cols:\n",
1980
    "    for i in range(0,len(data)):\n",
1981
    "        if data[j][i] == -200:\n",
1982
    "            data[j][i] = data[j][i-1]\n",
1983
    "\n",
1984
    "#checking stationarity\n",
1985
    "from statsmodels.tsa.vector_ar.vecm import coint_johansen\n",
1986
    "#since the test works for only 12 variables, I have randomly dropped\n",
1987
    "#in the next iteration, I would drop another and check the eigenvalues\n",
1988
    "johan_test_temp = data.drop([ 'CO(GT)'], axis=1)\n",
1989
    "coint_johansen(johan_test_temp,-1,1).eig\n",
1990
    "\n",
1991
    "#creating the train and validation set\n",
1992
    "train = data[:int(0.8*(len(data)))]\n",
1993
    "valid = data[int(0.8*(len(data))):]\n",
1994
    "\n",
1995
    "#fit the model\n",
1996
    "from statsmodels.tsa.vector_ar.var_model import VAR\n",
1997
    "\n",
1998
    "model = VAR(endog=train)\n",
1999
    "model_fit = model.fit()\n",
2000
    "\n",
2001
    "# make prediction on validation\n",
2002
    "prediction = model_fit.forecast(model_fit.y, steps=len(valid))\n",
2003
    "\n",
2004
    "#converting predictions to dataframe\n",
2005
    "pred = pd.DataFrame(index=range(0,len(prediction)),columns=[cols])\n",
2006
    "for j in range(0,13):\n",
2007
    "    for i in range(0, len(prediction)):\n",
2008
    "        pred.iloc[i][j] = prediction[i][j]\n",
2009
    "\n",
2010
    "#check rmse\n",
2011
    "for i in cols:\n",
2012
    "    print('rmse value for', i, 'is : ', sqrt(mean_squared_error(pred[i], valid[i])))\n",
2013
    "\n",
2014
    "#make final predictions\n",
2015
    "model = VAR(endog=data)\n",
2016
    "model_fit = model.fit()\n",
2017
    "yhat = model_fit.forecast(model_fit.y, steps=1)\n",
2018
    "print(yhat)"
2019
   ]
2020
  },
2021
  {
2022
   "cell_type": "code",
2023
   "execution_count": 3,
2024
   "id": "87347b7d",
2025
   "metadata": {},
2026
   "outputs": [],
2027
   "source": [
2028
    "df1 = pd.read_csv(\"daywise_apr.csv\")\n",
2029
    "df2 = pd.read_csv(\"daywise_oct.csv\")"
2030
   ]
2031
  },
2032
  {
2033
   "cell_type": "code",
2034
   "execution_count": 24,
2035
   "id": "c454d88f",
2036
   "metadata": {},
2037
   "outputs": [],
2038
   "source": [
2039
    "df3 = df2.append(df1, ignore_index=True)"
2040
   ]
2041
  },
2042
  {
2043
   "cell_type": "code",
2044
   "execution_count": 22,
2045
   "id": "a51bb4ae",
2046
   "metadata": {},
2047
   "outputs": [
2048
    {
2049
     "data": {
2050
      "text/html": [
2051
       "<div>\n",
2052
       "<style scoped>\n",
2053
       "    .dataframe tbody tr th:only-of-type {\n",
2054
       "        vertical-align: middle;\n",
2055
       "    }\n",
2056
       "\n",
2057
       "    .dataframe tbody tr th {\n",
2058
       "        vertical-align: top;\n",
2059
       "    }\n",
2060
       "\n",
2061
       "    .dataframe thead th {\n",
2062
       "        text-align: right;\n",
2063
       "    }\n",
2064
       "</style>\n",
2065
       "<table border=\"1\" class=\"dataframe\">\n",
2066
       "  <thead>\n",
2067
       "    <tr style=\"text-align: right;\">\n",
2068
       "      <th></th>\n",
2069
       "      <th>timestamp</th>\n",
2070
       "      <th>strain_1</th>\n",
2071
       "      <th>strain_2</th>\n",
2072
       "      <th>strain_3</th>\n",
2073
       "      <th>strain_4</th>\n",
2074
       "      <th>strain_5</th>\n",
2075
       "      <th>strain_6</th>\n",
2076
       "      <th>strain_7</th>\n",
2077
       "      <th>strain_8</th>\n",
2078
       "      <th>strain_9</th>\n",
2079
       "      <th>strain_10</th>\n",
2080
       "      <th>strain_11</th>\n",
2081
       "      <th>strain_12</th>\n",
2082
       "      <th>strain_13</th>\n",
2083
       "      <th>strain_14</th>\n",
2084
       "      <th>strain_15</th>\n",
2085
       "      <th>strain_16</th>\n",
2086
       "    </tr>\n",
2087
       "  </thead>\n",
2088
       "  <tbody>\n",
2089
       "    <tr>\n",
2090
       "      <th>0</th>\n",
2091
       "      <td>2018-10-02</td>\n",
2092
       "      <td>1.804882e-06</td>\n",
2093
       "      <td>1.291150e-06</td>\n",
2094
       "      <td>NaN</td>\n",
2095
       "      <td>0.000003</td>\n",
2096
       "      <td>NaN</td>\n",
2097
       "      <td>NaN</td>\n",
2098
       "      <td>0.000003</td>\n",
2099
       "      <td>5.482034e-06</td>\n",
2100
       "      <td>NaN</td>\n",
2101
       "      <td>NaN</td>\n",
2102
       "      <td>NaN</td>\n",
2103
       "      <td>NaN</td>\n",
2104
       "      <td>NaN</td>\n",
2105
       "      <td>NaN</td>\n",
2106
       "      <td>NaN</td>\n",
2107
       "      <td>NaN</td>\n",
2108
       "    </tr>\n",
2109
       "    <tr>\n",
2110
       "      <th>1</th>\n",
2111
       "      <td>2018-10-03</td>\n",
2112
       "      <td>2.269802e-06</td>\n",
2113
       "      <td>1.698958e-06</td>\n",
2114
       "      <td>NaN</td>\n",
2115
       "      <td>0.000004</td>\n",
2116
       "      <td>NaN</td>\n",
2117
       "      <td>NaN</td>\n",
2118
       "      <td>0.000003</td>\n",
2119
       "      <td>5.813794e-06</td>\n",
2120
       "      <td>NaN</td>\n",
2121
       "      <td>NaN</td>\n",
2122
       "      <td>NaN</td>\n",
2123
       "      <td>NaN</td>\n",
2124
       "      <td>NaN</td>\n",
2125
       "      <td>NaN</td>\n",
2126
       "      <td>NaN</td>\n",
2127
       "      <td>NaN</td>\n",
2128
       "    </tr>\n",
2129
       "    <tr>\n",
2130
       "      <th>2</th>\n",
2131
       "      <td>2018-10-03</td>\n",
2132
       "      <td>2.128605e-06</td>\n",
2133
       "      <td>1.411400e-06</td>\n",
2134
       "      <td>NaN</td>\n",
2135
       "      <td>0.000003</td>\n",
2136
       "      <td>NaN</td>\n",
2137
       "      <td>NaN</td>\n",
2138
       "      <td>0.000002</td>\n",
2139
       "      <td>5.213818e-06</td>\n",
2140
       "      <td>NaN</td>\n",
2141
       "      <td>NaN</td>\n",
2142
       "      <td>NaN</td>\n",
2143
       "      <td>NaN</td>\n",
2144
       "      <td>NaN</td>\n",
2145
       "      <td>NaN</td>\n",
2146
       "      <td>NaN</td>\n",
2147
       "      <td>NaN</td>\n",
2148
       "    </tr>\n",
2149
       "    <tr>\n",
2150
       "      <th>3</th>\n",
2151
       "      <td>2018-10-04</td>\n",
2152
       "      <td>3.457613e-06</td>\n",
2153
       "      <td>2.919155e-06</td>\n",
2154
       "      <td>NaN</td>\n",
2155
       "      <td>0.000004</td>\n",
2156
       "      <td>NaN</td>\n",
2157
       "      <td>NaN</td>\n",
2158
       "      <td>0.000004</td>\n",
2159
       "      <td>8.611123e-06</td>\n",
2160
       "      <td>NaN</td>\n",
2161
       "      <td>NaN</td>\n",
2162
       "      <td>NaN</td>\n",
2163
       "      <td>NaN</td>\n",
2164
       "      <td>NaN</td>\n",
2165
       "      <td>NaN</td>\n",
2166
       "      <td>NaN</td>\n",
2167
       "      <td>NaN</td>\n",
2168
       "    </tr>\n",
2169
       "    <tr>\n",
2170
       "      <th>4</th>\n",
2171
       "      <td>2018-10-04</td>\n",
2172
       "      <td>1.420150e-07</td>\n",
2173
       "      <td>-5.852899e-07</td>\n",
2174
       "      <td>NaN</td>\n",
2175
       "      <td>0.000005</td>\n",
2176
       "      <td>NaN</td>\n",
2177
       "      <td>NaN</td>\n",
2178
       "      <td>0.000005</td>\n",
2179
       "      <td>7.968894e-07</td>\n",
2180
       "      <td>NaN</td>\n",
2181
       "      <td>NaN</td>\n",
2182
       "      <td>NaN</td>\n",
2183
       "      <td>NaN</td>\n",
2184
       "      <td>NaN</td>\n",
2185
       "      <td>NaN</td>\n",
2186
       "      <td>NaN</td>\n",
2187
       "      <td>NaN</td>\n",
2188
       "    </tr>\n",
2189
       "    <tr>\n",
2190
       "      <th>...</th>\n",
2191
       "      <td>...</td>\n",
2192
       "      <td>...</td>\n",
2193
       "      <td>...</td>\n",
2194
       "      <td>...</td>\n",
2195
       "      <td>...</td>\n",
2196
       "      <td>...</td>\n",
2197
       "      <td>...</td>\n",
2198
       "      <td>...</td>\n",
2199
       "      <td>...</td>\n",
2200
       "      <td>...</td>\n",
2201
       "      <td>...</td>\n",
2202
       "      <td>...</td>\n",
2203
       "      <td>...</td>\n",
2204
       "      <td>...</td>\n",
2205
       "      <td>...</td>\n",
2206
       "      <td>...</td>\n",
2207
       "      <td>...</td>\n",
2208
       "    </tr>\n",
2209
       "    <tr>\n",
2210
       "      <th>75</th>\n",
2211
       "      <td>2019-04-26</td>\n",
2212
       "      <td>-3.124659e-07</td>\n",
2213
       "      <td>-9.232934e-07</td>\n",
2214
       "      <td>-1.002870e-06</td>\n",
2215
       "      <td>0.000007</td>\n",
2216
       "      <td>-6.356581e-07</td>\n",
2217
       "      <td>-3.183168e-07</td>\n",
2218
       "      <td>0.000006</td>\n",
2219
       "      <td>1.193259e-06</td>\n",
2220
       "      <td>1.174737e-06</td>\n",
2221
       "      <td>1.245790e-06</td>\n",
2222
       "      <td>1.115366e-06</td>\n",
2223
       "      <td>1.164278e-06</td>\n",
2224
       "      <td>3.411089e-09</td>\n",
2225
       "      <td>1.196962e-07</td>\n",
2226
       "      <td>-3.273108e-07</td>\n",
2227
       "      <td>-1.667888e-06</td>\n",
2228
       "    </tr>\n",
2229
       "    <tr>\n",
2230
       "      <th>76</th>\n",
2231
       "      <td>2019-04-27</td>\n",
2232
       "      <td>2.549993e-07</td>\n",
2233
       "      <td>7.168742e-08</td>\n",
2234
       "      <td>-8.060298e-09</td>\n",
2235
       "      <td>0.000002</td>\n",
2236
       "      <td>5.027693e-08</td>\n",
2237
       "      <td>1.492946e-07</td>\n",
2238
       "      <td>0.000002</td>\n",
2239
       "      <td>6.433991e-07</td>\n",
2240
       "      <td>3.332187e-07</td>\n",
2241
       "      <td>3.612386e-07</td>\n",
2242
       "      <td>2.934336e-07</td>\n",
2243
       "      <td>3.209738e-07</td>\n",
2244
       "      <td>-3.559686e-08</td>\n",
2245
       "      <td>3.452330e-08</td>\n",
2246
       "      <td>-4.634966e-07</td>\n",
2247
       "      <td>-9.167307e-08</td>\n",
2248
       "    </tr>\n",
2249
       "    <tr>\n",
2250
       "      <th>77</th>\n",
2251
       "      <td>2019-04-28</td>\n",
2252
       "      <td>8.590041e-07</td>\n",
2253
       "      <td>6.393356e-07</td>\n",
2254
       "      <td>7.047048e-07</td>\n",
2255
       "      <td>0.000002</td>\n",
2256
       "      <td>1.048512e-06</td>\n",
2257
       "      <td>1.398638e-06</td>\n",
2258
       "      <td>0.000002</td>\n",
2259
       "      <td>2.602460e-06</td>\n",
2260
       "      <td>1.278090e-06</td>\n",
2261
       "      <td>1.505590e-06</td>\n",
2262
       "      <td>1.261098e-06</td>\n",
2263
       "      <td>1.437868e-06</td>\n",
2264
       "      <td>2.817936e-07</td>\n",
2265
       "      <td>6.031811e-08</td>\n",
2266
       "      <td>-1.552841e-07</td>\n",
2267
       "      <td>2.520299e-07</td>\n",
2268
       "    </tr>\n",
2269
       "    <tr>\n",
2270
       "      <th>78</th>\n",
2271
       "      <td>2019-04-29</td>\n",
2272
       "      <td>1.962889e-06</td>\n",
2273
       "      <td>1.290465e-06</td>\n",
2274
       "      <td>1.197580e-06</td>\n",
2275
       "      <td>0.000004</td>\n",
2276
       "      <td>1.593252e-06</td>\n",
2277
       "      <td>2.089498e-06</td>\n",
2278
       "      <td>0.000004</td>\n",
2279
       "      <td>3.852848e-06</td>\n",
2280
       "      <td>2.024704e-06</td>\n",
2281
       "      <td>2.109126e-06</td>\n",
2282
       "      <td>1.913340e-06</td>\n",
2283
       "      <td>2.073502e-06</td>\n",
2284
       "      <td>4.534765e-07</td>\n",
2285
       "      <td>6.241088e-08</td>\n",
2286
       "      <td>9.231739e-07</td>\n",
2287
       "      <td>-5.676041e-07</td>\n",
2288
       "    </tr>\n",
2289
       "    <tr>\n",
2290
       "      <th>79</th>\n",
2291
       "      <td>2019-04-30</td>\n",
2292
       "      <td>5.546739e-07</td>\n",
2293
       "      <td>3.677712e-08</td>\n",
2294
       "      <td>-2.769599e-08</td>\n",
2295
       "      <td>0.000004</td>\n",
2296
       "      <td>4.224754e-07</td>\n",
2297
       "      <td>9.494376e-07</td>\n",
2298
       "      <td>0.000004</td>\n",
2299
       "      <td>2.824605e-06</td>\n",
2300
       "      <td>1.739321e-06</td>\n",
2301
       "      <td>2.144481e-06</td>\n",
2302
       "      <td>1.680042e-06</td>\n",
2303
       "      <td>2.033107e-06</td>\n",
2304
       "      <td>7.093554e-07</td>\n",
2305
       "      <td>5.049996e-07</td>\n",
2306
       "      <td>-2.126916e-07</td>\n",
2307
       "      <td>2.013945e-07</td>\n",
2308
       "    </tr>\n",
2309
       "  </tbody>\n",
2310
       "</table>\n",
2311
       "<p>80 rows × 17 columns</p>\n",
2312
       "</div>"
2313
      ],
2314
      "text/plain": [
2315
       "     timestamp      strain_1      strain_2      strain_3  strain_4  \\\n",
2316
       "0   2018-10-02  1.804882e-06  1.291150e-06           NaN  0.000003   \n",
2317
       "1   2018-10-03  2.269802e-06  1.698958e-06           NaN  0.000004   \n",
2318
       "2   2018-10-03  2.128605e-06  1.411400e-06           NaN  0.000003   \n",
2319
       "3   2018-10-04  3.457613e-06  2.919155e-06           NaN  0.000004   \n",
2320
       "4   2018-10-04  1.420150e-07 -5.852899e-07           NaN  0.000005   \n",
2321
       "..         ...           ...           ...           ...       ...   \n",
2322
       "75  2019-04-26 -3.124659e-07 -9.232934e-07 -1.002870e-06  0.000007   \n",
2323
       "76  2019-04-27  2.549993e-07  7.168742e-08 -8.060298e-09  0.000002   \n",
2324
       "77  2019-04-28  8.590041e-07  6.393356e-07  7.047048e-07  0.000002   \n",
2325
       "78  2019-04-29  1.962889e-06  1.290465e-06  1.197580e-06  0.000004   \n",
2326
       "79  2019-04-30  5.546739e-07  3.677712e-08 -2.769599e-08  0.000004   \n",
2327
       "\n",
2328
       "        strain_5      strain_6  strain_7      strain_8      strain_9  \\\n",
2329
       "0            NaN           NaN  0.000003  5.482034e-06           NaN   \n",
2330
       "1            NaN           NaN  0.000003  5.813794e-06           NaN   \n",
2331
       "2            NaN           NaN  0.000002  5.213818e-06           NaN   \n",
2332
       "3            NaN           NaN  0.000004  8.611123e-06           NaN   \n",
2333
       "4            NaN           NaN  0.000005  7.968894e-07           NaN   \n",
2334
       "..           ...           ...       ...           ...           ...   \n",
2335
       "75 -6.356581e-07 -3.183168e-07  0.000006  1.193259e-06  1.174737e-06   \n",
2336
       "76  5.027693e-08  1.492946e-07  0.000002  6.433991e-07  3.332187e-07   \n",
2337
       "77  1.048512e-06  1.398638e-06  0.000002  2.602460e-06  1.278090e-06   \n",
2338
       "78  1.593252e-06  2.089498e-06  0.000004  3.852848e-06  2.024704e-06   \n",
2339
       "79  4.224754e-07  9.494376e-07  0.000004  2.824605e-06  1.739321e-06   \n",
2340
       "\n",
2341
       "       strain_10     strain_11     strain_12     strain_13     strain_14  \\\n",
2342
       "0            NaN           NaN           NaN           NaN           NaN   \n",
2343
       "1            NaN           NaN           NaN           NaN           NaN   \n",
2344
       "2            NaN           NaN           NaN           NaN           NaN   \n",
2345
       "3            NaN           NaN           NaN           NaN           NaN   \n",
2346
       "4            NaN           NaN           NaN           NaN           NaN   \n",
2347
       "..           ...           ...           ...           ...           ...   \n",
2348
       "75  1.245790e-06  1.115366e-06  1.164278e-06  3.411089e-09  1.196962e-07   \n",
2349
       "76  3.612386e-07  2.934336e-07  3.209738e-07 -3.559686e-08  3.452330e-08   \n",
2350
       "77  1.505590e-06  1.261098e-06  1.437868e-06  2.817936e-07  6.031811e-08   \n",
2351
       "78  2.109126e-06  1.913340e-06  2.073502e-06  4.534765e-07  6.241088e-08   \n",
2352
       "79  2.144481e-06  1.680042e-06  2.033107e-06  7.093554e-07  5.049996e-07   \n",
2353
       "\n",
2354
       "       strain_15     strain_16  \n",
2355
       "0            NaN           NaN  \n",
2356
       "1            NaN           NaN  \n",
2357
       "2            NaN           NaN  \n",
2358
       "3            NaN           NaN  \n",
2359
       "4            NaN           NaN  \n",
2360
       "..           ...           ...  \n",
2361
       "75 -3.273108e-07 -1.667888e-06  \n",
2362
       "76 -4.634966e-07 -9.167307e-08  \n",
2363
       "77 -1.552841e-07  2.520299e-07  \n",
2364
       "78  9.231739e-07 -5.676041e-07  \n",
2365
       "79 -2.126916e-07  2.013945e-07  \n",
2366
       "\n",
2367
       "[80 rows x 17 columns]"
2368
      ]
2369
     },
2370
     "execution_count": 22,
2371
     "metadata": {},
2372
     "output_type": "execute_result"
2373
    }
2374
   ],
2375
   "source": [
2376
    "df3"
2377
   ]
2378
  },
2379
  {
2380
   "cell_type": "code",
2381
   "execution_count": 19,
2382
   "id": "d58c2f0b",
2383
   "metadata": {},
2384
   "outputs": [],
2385
   "source": [
2386
    "df1 = df1.groupby(['timestamp']).mean().reset_index()"
2387
   ]
2388
  },
2389
  {
2390
   "cell_type": "code",
2391
   "execution_count": 23,
2392
   "id": "301e9de3",
2393
   "metadata": {},
2394
   "outputs": [],
2395
   "source": [
2396
    "df2 = df2.groupby(['timestamp']).mean().reset_index()"
2397
   ]
2398
  },
2399
  {
2400
   "cell_type": "code",
2401
   "execution_count": 26,
2402
   "id": "432c1f8b",
2403
   "metadata": {},
2404
   "outputs": [],
2405
   "source": [
2406
    "df5 = pd.read_csv('daywise_oct_with_env.csv')"
2407
   ]
2408
  },
2409
  {
2410
   "cell_type": "code",
2411
   "execution_count": 57,
2412
   "id": "8677b9f8",
2413
   "metadata": {},
2414
   "outputs": [],
2415
   "source": [
2416
    "strain_apr.to_csv('daywise_apr_with_env.csv')\n"
2417
   ]
2418
  },
2419
  {
2420
   "cell_type": "code",
2421
   "execution_count": 2,
2422
   "id": "7a66e87b",
2423
   "metadata": {},
2424
   "outputs": [],
2425
   "source": [
2426
    "dfa = pd.read_csv(\"daywise_apr_with_env.csv\")\n",
2427
    "dfo = pd.read_csv(\"daywise_oct_with_env2_final.csv\")"
2428
   ]
2429
  },
2430
  {
2431
   "cell_type": "code",
2432
   "execution_count": 3,
2433
   "id": "bf0a430f",
2434
   "metadata": {},
2435
   "outputs": [],
2436
   "source": [
2437
    "dfa = dfa.groupby('timestamp').mean()\n",
2438
    "dfa['retrofit'] = 0\n",
2439
    "dfo = dfo.groupby('timestamp').mean()\n",
2440
    "dfo['retrofit'] = 1"
2441
   ]
2442
  },
2443
  {
2444
   "cell_type": "code",
2445
   "execution_count": 4,
2446
   "id": "6def4f62",
2447
   "metadata": {},
2448
   "outputs": [],
2449
   "source": [
2450
    "dfall = dfa.append(dfo)"
2451
   ]
2452
  },
2453
  {
2454
   "cell_type": "code",
2455
   "execution_count": 5,
2456
   "id": "e1a1a671",
2457
   "metadata": {},
2458
   "outputs": [],
2459
   "source": [
2460
    "#dfall = dfall.reset_index()"
2461
   ]
2462
  },
2463
  {
2464
   "cell_type": "code",
2465
   "execution_count": 6,
2466
   "id": "0385d72f",
2467
   "metadata": {},
2468
   "outputs": [],
2469
   "source": [
2470
    "dfall = dfall.drop([\"strain_4\",\"strain_6\",\"strain_7\",\"strain_9\",\"strain_10\",\"strain_11\",\"strain_12\",\"strain_13\",\"strain_14\",\"strain_15\",\"strain_16\"], axis=1)"
2471
   ]
2472
  },
2473
  {
2474
   "cell_type": "code",
2475
   "execution_count": 7,
2476
   "id": "989b96db",
2477
   "metadata": {},
2478
   "outputs": [
2479
    {
2480
     "data": {
2481
      "text/html": [
2482
       "<div>\n",
2483
       "<style scoped>\n",
2484
       "    .dataframe tbody tr th:only-of-type {\n",
2485
       "        vertical-align: middle;\n",
2486
       "    }\n",
2487
       "\n",
2488
       "    .dataframe tbody tr th {\n",
2489
       "        vertical-align: top;\n",
2490
       "    }\n",
2491
       "\n",
2492
       "    .dataframe thead th {\n",
2493
       "        text-align: right;\n",
2494
       "    }\n",
2495
       "</style>\n",
2496
       "<table border=\"1\" class=\"dataframe\">\n",
2497
       "  <thead>\n",
2498
       "    <tr style=\"text-align: right;\">\n",
2499
       "      <th></th>\n",
2500
       "      <th>strain_1</th>\n",
2501
       "      <th>strain_2</th>\n",
2502
       "      <th>strain_3</th>\n",
2503
       "      <th>strain_5</th>\n",
2504
       "      <th>strain_8</th>\n",
2505
       "      <th>Surftemp</th>\n",
2506
       "      <th>Rh</th>\n",
2507
       "      <th>airtemp</th>\n",
2508
       "      <th>avgRh</th>\n",
2509
       "      <th>avgVPr</th>\n",
2510
       "      <th>avgGR</th>\n",
2511
       "      <th>avgdR</th>\n",
2512
       "      <th>avgdnr</th>\n",
2513
       "      <th>totalrain</th>\n",
2514
       "      <th>avgws10</th>\n",
2515
       "      <th>avgwd10</th>\n",
2516
       "      <th>retrofit</th>\n",
2517
       "    </tr>\n",
2518
       "    <tr>\n",
2519
       "      <th>timestamp</th>\n",
2520
       "      <th></th>\n",
2521
       "      <th></th>\n",
2522
       "      <th></th>\n",
2523
       "      <th></th>\n",
2524
       "      <th></th>\n",
2525
       "      <th></th>\n",
2526
       "      <th></th>\n",
2527
       "      <th></th>\n",
2528
       "      <th></th>\n",
2529
       "      <th></th>\n",
2530
       "      <th></th>\n",
2531
       "      <th></th>\n",
2532
       "      <th></th>\n",
2533
       "      <th></th>\n",
2534
       "      <th></th>\n",
2535
       "      <th></th>\n",
2536
       "      <th></th>\n",
2537
       "    </tr>\n",
2538
       "  </thead>\n",
2539
       "  <tbody>\n",
2540
       "    <tr>\n",
2541
       "      <th>2019-04-01</th>\n",
2542
       "      <td>1.391124e-06</td>\n",
2543
       "      <td>9.055422e-07</td>\n",
2544
       "      <td>7.714158e-07</td>\n",
2545
       "      <td>9.654413e-07</td>\n",
2546
       "      <td>2.746018e-06</td>\n",
2547
       "      <td>11.802222</td>\n",
2548
       "      <td>51.495514</td>\n",
2549
       "      <td>11.349167</td>\n",
2550
       "      <td>56.125002</td>\n",
2551
       "      <td>708.982498</td>\n",
2552
       "      <td>233.389167</td>\n",
2553
       "      <td>87.455833</td>\n",
2554
       "      <td>478.697500</td>\n",
2555
       "      <td>0.00</td>\n",
2556
       "      <td>3.335575</td>\n",
2557
       "      <td>37.478949</td>\n",
2558
       "      <td>0</td>\n",
2559
       "    </tr>\n",
2560
       "    <tr>\n",
2561
       "      <th>2019-04-02</th>\n",
2562
       "      <td>1.902302e-06</td>\n",
2563
       "      <td>1.393590e-06</td>\n",
2564
       "      <td>1.346971e-06</td>\n",
2565
       "      <td>1.786195e-06</td>\n",
2566
       "      <td>4.467735e-06</td>\n",
2567
       "      <td>11.776378</td>\n",
2568
       "      <td>72.111068</td>\n",
2569
       "      <td>10.497500</td>\n",
2570
       "      <td>77.708336</td>\n",
2571
       "      <td>985.274874</td>\n",
2572
       "      <td>87.955000</td>\n",
2573
       "      <td>83.221667</td>\n",
2574
       "      <td>2.445000</td>\n",
2575
       "      <td>0.05</td>\n",
2576
       "      <td>1.135126</td>\n",
2577
       "      <td>209.014923</td>\n",
2578
       "      <td>0</td>\n",
2579
       "    </tr>\n",
2580
       "    <tr>\n",
2581
       "      <th>2019-04-03</th>\n",
2582
       "      <td>7.411497e-07</td>\n",
2583
       "      <td>1.109817e-07</td>\n",
2584
       "      <td>7.233085e-08</td>\n",
2585
       "      <td>6.347549e-07</td>\n",
2586
       "      <td>3.083803e-06</td>\n",
2587
       "      <td>8.487706</td>\n",
2588
       "      <td>69.587566</td>\n",
2589
       "      <td>8.279167</td>\n",
2590
       "      <td>72.916666</td>\n",
2591
       "      <td>790.862084</td>\n",
2592
       "      <td>116.270833</td>\n",
2593
       "      <td>107.811667</td>\n",
2594
       "      <td>21.199167</td>\n",
2595
       "      <td>0.00</td>\n",
2596
       "      <td>1.599006</td>\n",
2597
       "      <td>141.619137</td>\n",
2598
       "      <td>0</td>\n",
2599
       "    </tr>\n",
2600
       "    <tr>\n",
2601
       "      <th>2019-04-04</th>\n",
2602
       "      <td>4.070716e-07</td>\n",
2603
       "      <td>-9.959862e-08</td>\n",
2604
       "      <td>-1.797842e-07</td>\n",
2605
       "      <td>-1.076326e-08</td>\n",
2606
       "      <td>1.905123e-06</td>\n",
2607
       "      <td>7.694840</td>\n",
2608
       "      <td>71.085618</td>\n",
2609
       "      <td>7.617500</td>\n",
2610
       "      <td>72.458332</td>\n",
2611
       "      <td>738.126551</td>\n",
2612
       "      <td>160.467500</td>\n",
2613
       "      <td>128.485000</td>\n",
2614
       "      <td>112.169167</td>\n",
2615
       "      <td>0.00</td>\n",
2616
       "      <td>1.181543</td>\n",
2617
       "      <td>178.318237</td>\n",
2618
       "      <td>0</td>\n",
2619
       "    </tr>\n",
2620
       "    <tr>\n",
2621
       "      <th>2019-04-05</th>\n",
2622
       "      <td>2.359754e-06</td>\n",
2623
       "      <td>1.851080e-06</td>\n",
2624
       "      <td>1.895205e-06</td>\n",
2625
       "      <td>2.641687e-06</td>\n",
2626
       "      <td>5.894953e-06</td>\n",
2627
       "      <td>9.097269</td>\n",
2628
       "      <td>66.807711</td>\n",
2629
       "      <td>9.810000</td>\n",
2630
       "      <td>71.999998</td>\n",
2631
       "      <td>846.904428</td>\n",
2632
       "      <td>225.915833</td>\n",
2633
       "      <td>94.376667</td>\n",
2634
       "      <td>376.993333</td>\n",
2635
       "      <td>0.00</td>\n",
2636
       "      <td>2.706478</td>\n",
2637
       "      <td>30.143506</td>\n",
2638
       "      <td>0</td>\n",
2639
       "    </tr>\n",
2640
       "    <tr>\n",
2641
       "      <th>...</th>\n",
2642
       "      <td>...</td>\n",
2643
       "      <td>...</td>\n",
2644
       "      <td>...</td>\n",
2645
       "      <td>...</td>\n",
2646
       "      <td>...</td>\n",
2647
       "      <td>...</td>\n",
2648
       "      <td>...</td>\n",
2649
       "      <td>...</td>\n",
2650
       "      <td>...</td>\n",
2651
       "      <td>...</td>\n",
2652
       "      <td>...</td>\n",
2653
       "      <td>...</td>\n",
2654
       "      <td>...</td>\n",
2655
       "      <td>...</td>\n",
2656
       "      <td>...</td>\n",
2657
       "      <td>...</td>\n",
2658
       "      <td>...</td>\n",
2659
       "    </tr>\n",
2660
       "    <tr>\n",
2661
       "      <th>2019-10-27</th>\n",
2662
       "      <td>-5.999584e-07</td>\n",
2663
       "      <td>-6.906911e-07</td>\n",
2664
       "      <td>-6.094068e-07</td>\n",
2665
       "      <td>-4.732139e-07</td>\n",
2666
       "      <td>1.166937e-07</td>\n",
2667
       "      <td>11.353086</td>\n",
2668
       "      <td>74.968842</td>\n",
2669
       "      <td>8.625833</td>\n",
2670
       "      <td>86.211667</td>\n",
2671
       "      <td>963.436168</td>\n",
2672
       "      <td>50.277500</td>\n",
2673
       "      <td>45.353333</td>\n",
2674
       "      <td>0.026667</td>\n",
2675
       "      <td>0.00</td>\n",
2676
       "      <td>0.675000</td>\n",
2677
       "      <td>212.700000</td>\n",
2678
       "      <td>1</td>\n",
2679
       "    </tr>\n",
2680
       "    <tr>\n",
2681
       "      <th>2019-10-28</th>\n",
2682
       "      <td>1.397000e-06</td>\n",
2683
       "      <td>9.859024e-07</td>\n",
2684
       "      <td>1.066181e-06</td>\n",
2685
       "      <td>2.024451e-06</td>\n",
2686
       "      <td>5.393001e-06</td>\n",
2687
       "      <td>9.467404</td>\n",
2688
       "      <td>80.369227</td>\n",
2689
       "      <td>6.798333</td>\n",
2690
       "      <td>90.648333</td>\n",
2691
       "      <td>895.893447</td>\n",
2692
       "      <td>95.483333</td>\n",
2693
       "      <td>30.701667</td>\n",
2694
       "      <td>225.355000</td>\n",
2695
       "      <td>0.00</td>\n",
2696
       "      <td>0.570000</td>\n",
2697
       "      <td>185.550000</td>\n",
2698
       "      <td>1</td>\n",
2699
       "    </tr>\n",
2700
       "    <tr>\n",
2701
       "      <th>2019-10-29</th>\n",
2702
       "      <td>-6.309372e-07</td>\n",
2703
       "      <td>-1.042560e-06</td>\n",
2704
       "      <td>-1.056013e-06</td>\n",
2705
       "      <td>-6.259414e-07</td>\n",
2706
       "      <td>1.546657e-06</td>\n",
2707
       "      <td>9.921486</td>\n",
2708
       "      <td>76.104669</td>\n",
2709
       "      <td>8.613333</td>\n",
2710
       "      <td>74.891667</td>\n",
2711
       "      <td>833.864494</td>\n",
2712
       "      <td>61.040000</td>\n",
2713
       "      <td>42.480833</td>\n",
2714
       "      <td>51.544167</td>\n",
2715
       "      <td>0.00</td>\n",
2716
       "      <td>1.270000</td>\n",
2717
       "      <td>36.745000</td>\n",
2718
       "      <td>1</td>\n",
2719
       "    </tr>\n",
2720
       "    <tr>\n",
2721
       "      <th>2019-10-30</th>\n",
2722
       "      <td>9.535004e-07</td>\n",
2723
       "      <td>6.590445e-07</td>\n",
2724
       "      <td>7.793678e-07</td>\n",
2725
       "      <td>1.486794e-06</td>\n",
2726
       "      <td>4.421555e-06</td>\n",
2727
       "      <td>7.566899</td>\n",
2728
       "      <td>77.632557</td>\n",
2729
       "      <td>6.325000</td>\n",
2730
       "      <td>78.035833</td>\n",
2731
       "      <td>745.242319</td>\n",
2732
       "      <td>32.364167</td>\n",
2733
       "      <td>29.780833</td>\n",
2734
       "      <td>0.000000</td>\n",
2735
       "      <td>0.00</td>\n",
2736
       "      <td>2.005000</td>\n",
2737
       "      <td>44.650000</td>\n",
2738
       "      <td>1</td>\n",
2739
       "    </tr>\n",
2740
       "    <tr>\n",
2741
       "      <th>2019-10-31</th>\n",
2742
       "      <td>9.887800e-07</td>\n",
2743
       "      <td>6.287566e-07</td>\n",
2744
       "      <td>7.288098e-07</td>\n",
2745
       "      <td>1.418339e-06</td>\n",
2746
       "      <td>4.201527e-06</td>\n",
2747
       "      <td>6.945136</td>\n",
2748
       "      <td>76.931039</td>\n",
2749
       "      <td>5.306667</td>\n",
2750
       "      <td>81.060000</td>\n",
2751
       "      <td>723.901020</td>\n",
2752
       "      <td>93.960000</td>\n",
2753
       "      <td>49.780000</td>\n",
2754
       "      <td>170.127500</td>\n",
2755
       "      <td>0.00</td>\n",
2756
       "      <td>1.125000</td>\n",
2757
       "      <td>53.745000</td>\n",
2758
       "      <td>1</td>\n",
2759
       "    </tr>\n",
2760
       "  </tbody>\n",
2761
       "</table>\n",
2762
       "<p>61 rows × 17 columns</p>\n",
2763
       "</div>"
2764
      ],
2765
      "text/plain": [
2766
       "                strain_1      strain_2      strain_3      strain_5  \\\n",
2767
       "timestamp                                                            \n",
2768
       "2019-04-01  1.391124e-06  9.055422e-07  7.714158e-07  9.654413e-07   \n",
2769
       "2019-04-02  1.902302e-06  1.393590e-06  1.346971e-06  1.786195e-06   \n",
2770
       "2019-04-03  7.411497e-07  1.109817e-07  7.233085e-08  6.347549e-07   \n",
2771
       "2019-04-04  4.070716e-07 -9.959862e-08 -1.797842e-07 -1.076326e-08   \n",
2772
       "2019-04-05  2.359754e-06  1.851080e-06  1.895205e-06  2.641687e-06   \n",
2773
       "...                  ...           ...           ...           ...   \n",
2774
       "2019-10-27 -5.999584e-07 -6.906911e-07 -6.094068e-07 -4.732139e-07   \n",
2775
       "2019-10-28  1.397000e-06  9.859024e-07  1.066181e-06  2.024451e-06   \n",
2776
       "2019-10-29 -6.309372e-07 -1.042560e-06 -1.056013e-06 -6.259414e-07   \n",
2777
       "2019-10-30  9.535004e-07  6.590445e-07  7.793678e-07  1.486794e-06   \n",
2778
       "2019-10-31  9.887800e-07  6.287566e-07  7.288098e-07  1.418339e-06   \n",
2779
       "\n",
2780
       "                strain_8   Surftemp         Rh    airtemp      avgRh  \\\n",
2781
       "timestamp                                                              \n",
2782
       "2019-04-01  2.746018e-06  11.802222  51.495514  11.349167  56.125002   \n",
2783
       "2019-04-02  4.467735e-06  11.776378  72.111068  10.497500  77.708336   \n",
2784
       "2019-04-03  3.083803e-06   8.487706  69.587566   8.279167  72.916666   \n",
2785
       "2019-04-04  1.905123e-06   7.694840  71.085618   7.617500  72.458332   \n",
2786
       "2019-04-05  5.894953e-06   9.097269  66.807711   9.810000  71.999998   \n",
2787
       "...                  ...        ...        ...        ...        ...   \n",
2788
       "2019-10-27  1.166937e-07  11.353086  74.968842   8.625833  86.211667   \n",
2789
       "2019-10-28  5.393001e-06   9.467404  80.369227   6.798333  90.648333   \n",
2790
       "2019-10-29  1.546657e-06   9.921486  76.104669   8.613333  74.891667   \n",
2791
       "2019-10-30  4.421555e-06   7.566899  77.632557   6.325000  78.035833   \n",
2792
       "2019-10-31  4.201527e-06   6.945136  76.931039   5.306667  81.060000   \n",
2793
       "\n",
2794
       "                avgVPr       avgGR       avgdR      avgdnr  totalrain  \\\n",
2795
       "timestamp                                                               \n",
2796
       "2019-04-01  708.982498  233.389167   87.455833  478.697500       0.00   \n",
2797
       "2019-04-02  985.274874   87.955000   83.221667    2.445000       0.05   \n",
2798
       "2019-04-03  790.862084  116.270833  107.811667   21.199167       0.00   \n",
2799
       "2019-04-04  738.126551  160.467500  128.485000  112.169167       0.00   \n",
2800
       "2019-04-05  846.904428  225.915833   94.376667  376.993333       0.00   \n",
2801
       "...                ...         ...         ...         ...        ...   \n",
2802
       "2019-10-27  963.436168   50.277500   45.353333    0.026667       0.00   \n",
2803
       "2019-10-28  895.893447   95.483333   30.701667  225.355000       0.00   \n",
2804
       "2019-10-29  833.864494   61.040000   42.480833   51.544167       0.00   \n",
2805
       "2019-10-30  745.242319   32.364167   29.780833    0.000000       0.00   \n",
2806
       "2019-10-31  723.901020   93.960000   49.780000  170.127500       0.00   \n",
2807
       "\n",
2808
       "             avgws10     avgwd10  retrofit  \n",
2809
       "timestamp                                   \n",
2810
       "2019-04-01  3.335575   37.478949         0  \n",
2811
       "2019-04-02  1.135126  209.014923         0  \n",
2812
       "2019-04-03  1.599006  141.619137         0  \n",
2813
       "2019-04-04  1.181543  178.318237         0  \n",
2814
       "2019-04-05  2.706478   30.143506         0  \n",
2815
       "...              ...         ...       ...  \n",
2816
       "2019-10-27  0.675000  212.700000         1  \n",
2817
       "2019-10-28  0.570000  185.550000         1  \n",
2818
       "2019-10-29  1.270000   36.745000         1  \n",
2819
       "2019-10-30  2.005000   44.650000         1  \n",
2820
       "2019-10-31  1.125000   53.745000         1  \n",
2821
       "\n",
2822
       "[61 rows x 17 columns]"
2823
      ]
2824
     },
2825
     "execution_count": 7,
2826
     "metadata": {},
2827
     "output_type": "execute_result"
2828
    }
2829
   ],
2830
   "source": [
2831
    "dfall"
2832
   ]
2833
  },
2834
  {
2835
   "cell_type": "code",
2836
   "execution_count": 8,
2837
   "id": "3f4497ea",
2838
   "metadata": {},
2839
   "outputs": [],
2840
   "source": [
2841
    "df_1 = dfall.drop(['strain_2','strain_3','strain_5','strain_8'],axis=1).rename(columns={\"strain_1\": \"strain\"})\n",
2842
    "df_2 = dfall.drop(['strain_1','strain_3','strain_5','strain_8'],axis=1).rename(columns={\"strain_2\": \"strain\"})\n",
2843
    "df_3 = dfall.drop(['strain_1','strain_2','strain_5','strain_8'],axis=1).rename(columns={\"strain_3\": \"strain\"})\n",
2844
    "df_5 = dfall.drop(['strain_1','strain_2','strain_3','strain_8'],axis=1).rename(columns={\"strain_5\": \"strain\"})\n",
2845
    "df_8 = dfall.drop(['strain_1','strain_2','strain_3','strain_5'],axis=1).rename(columns={\"strain_8\": \"strain\"})"
2846
   ]
2847
  },
2848
  {
2849
   "cell_type": "code",
2850
   "execution_count": 9,
2851
   "id": "9e343c23",
2852
   "metadata": {},
2853
   "outputs": [],
2854
   "source": [
2855
    "df_1[\"lx (m)\"] = 34.140625\n",
2856
    "df_2[\"lx (m)\"] = 48.515625\n",
2857
    "df_3[\"lx (m)\"] = 59.296875\n",
2858
    "df_5[\"lx (m)\"] = 80.859375\n",
2859
    "df_8[\"lx (m)\"] = 95.234375"
2860
   ]
2861
  },
2862
  {
2863
   "cell_type": "code",
2864
   "execution_count": 10,
2865
   "id": "3a57124a",
2866
   "metadata": {},
2867
   "outputs": [],
2868
   "source": [
2869
    "df_comp = df_1.append(df_2)\n",
2870
    "df_comp  = df_comp.append(df_3)\n",
2871
    "df_comp  = df_comp.append(df_5)\n",
2872
    "df_comp  = df_comp.append(df_8)"
2873
   ]
2874
  },
2875
  {
2876
   "cell_type": "code",
2877
   "execution_count": null,
2878
   "id": "03499b55",
2879
   "metadata": {},
2880
   "outputs": [],
2881
   "source": [
2882
    "plt.figure(figsize=(20,10))\n",
2883
    "plt.plot(df_1['timestamp'], df_1['strain'], marker='o', linestyle='--', color='r', label='Strain_1') \n",
2884
    "plt.plot(df_2['timestamp'], df_2['strain'], marker='o', linestyle='--', color='orange', label='Strain_2') \n",
2885
    "plt.plot(df_3['timestamp'], df_3['strain'], marker='o', linestyle='--', color='k', label='Strain_3') \n",
2886
    "plt.plot(df_5['timestamp'], df_5['strain'], marker='o', linestyle='--', color='y', label='Strain_5') \n",
2887
    "plt.plot(df_8['timestamp'], df_8['strain'], marker='o', linestyle='--', color='g', label='Strain_8') \n",
2888
    "plt.xticks(rotation=90)\n",
2889
    "plt.xlabel('Time Stamp')\n",
2890
    "plt.ylabel('Strain Value')\n",
2891
    "plt.legend()"
2892
   ]
2893
  },
2894
  {
2895
   "cell_type": "code",
2896
   "execution_count": 170,
2897
   "id": "97052d4e",
2898
   "metadata": {},
2899
   "outputs": [
2900
    {
2901
     "data": {
2902
      "text/html": [
2903
       "<div>\n",
2904
       "<style scoped>\n",
2905
       "    .dataframe tbody tr th:only-of-type {\n",
2906
       "        vertical-align: middle;\n",
2907
       "    }\n",
2908
       "\n",
2909
       "    .dataframe tbody tr th {\n",
2910
       "        vertical-align: top;\n",
2911
       "    }\n",
2912
       "\n",
2913
       "    .dataframe thead th {\n",
2914
       "        text-align: right;\n",
2915
       "    }\n",
2916
       "</style>\n",
2917
       "<table border=\"1\" class=\"dataframe\">\n",
2918
       "  <thead>\n",
2919
       "    <tr style=\"text-align: right;\">\n",
2920
       "      <th></th>\n",
2921
       "      <th>timestamp</th>\n",
2922
       "      <th>strain</th>\n",
2923
       "      <th>Surftemp</th>\n",
2924
       "      <th>Rh</th>\n",
2925
       "      <th>airtemp</th>\n",
2926
       "      <th>avgRh</th>\n",
2927
       "      <th>avgVPr</th>\n",
2928
       "      <th>avgGR</th>\n",
2929
       "      <th>avgdR</th>\n",
2930
       "      <th>avgdnr</th>\n",
2931
       "      <th>totalrain</th>\n",
2932
       "      <th>avgws10</th>\n",
2933
       "      <th>avgwd10</th>\n",
2934
       "      <th>retrofit</th>\n",
2935
       "      <th>lx (m)</th>\n",
2936
       "    </tr>\n",
2937
       "  </thead>\n",
2938
       "  <tbody>\n",
2939
       "    <tr>\n",
2940
       "      <th>0</th>\n",
2941
       "      <td>2019-04-01</td>\n",
2942
       "      <td>1.391124e-06</td>\n",
2943
       "      <td>11.802222</td>\n",
2944
       "      <td>51.495514</td>\n",
2945
       "      <td>11.349167</td>\n",
2946
       "      <td>56.125002</td>\n",
2947
       "      <td>708.982498</td>\n",
2948
       "      <td>233.389167</td>\n",
2949
       "      <td>87.455833</td>\n",
2950
       "      <td>478.697500</td>\n",
2951
       "      <td>0.00</td>\n",
2952
       "      <td>3.335575</td>\n",
2953
       "      <td>37.478949</td>\n",
2954
       "      <td>0</td>\n",
2955
       "      <td>34.140625</td>\n",
2956
       "    </tr>\n",
2957
       "    <tr>\n",
2958
       "      <th>1</th>\n",
2959
       "      <td>2019-04-02</td>\n",
2960
       "      <td>1.902302e-06</td>\n",
2961
       "      <td>11.776378</td>\n",
2962
       "      <td>72.111068</td>\n",
2963
       "      <td>10.497500</td>\n",
2964
       "      <td>77.708336</td>\n",
2965
       "      <td>985.274874</td>\n",
2966
       "      <td>87.955000</td>\n",
2967
       "      <td>83.221667</td>\n",
2968
       "      <td>2.445000</td>\n",
2969
       "      <td>0.05</td>\n",
2970
       "      <td>1.135126</td>\n",
2971
       "      <td>209.014923</td>\n",
2972
       "      <td>0</td>\n",
2973
       "      <td>34.140625</td>\n",
2974
       "    </tr>\n",
2975
       "    <tr>\n",
2976
       "      <th>2</th>\n",
2977
       "      <td>2019-04-03</td>\n",
2978
       "      <td>7.411497e-07</td>\n",
2979
       "      <td>8.487706</td>\n",
2980
       "      <td>69.587566</td>\n",
2981
       "      <td>8.279167</td>\n",
2982
       "      <td>72.916666</td>\n",
2983
       "      <td>790.862084</td>\n",
2984
       "      <td>116.270833</td>\n",
2985
       "      <td>107.811667</td>\n",
2986
       "      <td>21.199167</td>\n",
2987
       "      <td>0.00</td>\n",
2988
       "      <td>1.599006</td>\n",
2989
       "      <td>141.619137</td>\n",
2990
       "      <td>0</td>\n",
2991
       "      <td>34.140625</td>\n",
2992
       "    </tr>\n",
2993
       "    <tr>\n",
2994
       "      <th>3</th>\n",
2995
       "      <td>2019-04-04</td>\n",
2996
       "      <td>4.070716e-07</td>\n",
2997
       "      <td>7.694840</td>\n",
2998
       "      <td>71.085618</td>\n",
2999
       "      <td>7.617500</td>\n",
3000
       "      <td>72.458332</td>\n",
3001
       "      <td>738.126551</td>\n",
3002
       "      <td>160.467500</td>\n",
3003
       "      <td>128.485000</td>\n",
3004
       "      <td>112.169167</td>\n",
3005
       "      <td>0.00</td>\n",
3006
       "      <td>1.181543</td>\n",
3007
       "      <td>178.318237</td>\n",
3008
       "      <td>0</td>\n",
3009
       "      <td>34.140625</td>\n",
3010
       "    </tr>\n",
3011
       "    <tr>\n",
3012
       "      <th>4</th>\n",
3013
       "      <td>2019-04-05</td>\n",
3014
       "      <td>2.359754e-06</td>\n",
3015
       "      <td>9.097269</td>\n",
3016
       "      <td>66.807711</td>\n",
3017
       "      <td>9.810000</td>\n",
3018
       "      <td>71.999998</td>\n",
3019
       "      <td>846.904428</td>\n",
3020
       "      <td>225.915833</td>\n",
3021
       "      <td>94.376667</td>\n",
3022
       "      <td>376.993333</td>\n",
3023
       "      <td>0.00</td>\n",
3024
       "      <td>2.706478</td>\n",
3025
       "      <td>30.143506</td>\n",
3026
       "      <td>0</td>\n",
3027
       "      <td>34.140625</td>\n",
3028
       "    </tr>\n",
3029
       "    <tr>\n",
3030
       "      <th>...</th>\n",
3031
       "      <td>...</td>\n",
3032
       "      <td>...</td>\n",
3033
       "      <td>...</td>\n",
3034
       "      <td>...</td>\n",
3035
       "      <td>...</td>\n",
3036
       "      <td>...</td>\n",
3037
       "      <td>...</td>\n",
3038
       "      <td>...</td>\n",
3039
       "      <td>...</td>\n",
3040
       "      <td>...</td>\n",
3041
       "      <td>...</td>\n",
3042
       "      <td>...</td>\n",
3043
       "      <td>...</td>\n",
3044
       "      <td>...</td>\n",
3045
       "      <td>...</td>\n",
3046
       "    </tr>\n",
3047
       "    <tr>\n",
3048
       "      <th>56</th>\n",
3049
       "      <td>2019-10-27</td>\n",
3050
       "      <td>1.166937e-07</td>\n",
3051
       "      <td>11.353086</td>\n",
3052
       "      <td>74.968842</td>\n",
3053
       "      <td>8.625833</td>\n",
3054
       "      <td>86.211667</td>\n",
3055
       "      <td>963.436168</td>\n",
3056
       "      <td>50.277500</td>\n",
3057
       "      <td>45.353333</td>\n",
3058
       "      <td>0.026667</td>\n",
3059
       "      <td>0.00</td>\n",
3060
       "      <td>0.675000</td>\n",
3061
       "      <td>212.700000</td>\n",
3062
       "      <td>1</td>\n",
3063
       "      <td>95.234375</td>\n",
3064
       "    </tr>\n",
3065
       "    <tr>\n",
3066
       "      <th>57</th>\n",
3067
       "      <td>2019-10-28</td>\n",
3068
       "      <td>5.393001e-06</td>\n",
3069
       "      <td>9.467404</td>\n",
3070
       "      <td>80.369227</td>\n",
3071
       "      <td>6.798333</td>\n",
3072
       "      <td>90.648333</td>\n",
3073
       "      <td>895.893447</td>\n",
3074
       "      <td>95.483333</td>\n",
3075
       "      <td>30.701667</td>\n",
3076
       "      <td>225.355000</td>\n",
3077
       "      <td>0.00</td>\n",
3078
       "      <td>0.570000</td>\n",
3079
       "      <td>185.550000</td>\n",
3080
       "      <td>1</td>\n",
3081
       "      <td>95.234375</td>\n",
3082
       "    </tr>\n",
3083
       "    <tr>\n",
3084
       "      <th>58</th>\n",
3085
       "      <td>2019-10-29</td>\n",
3086
       "      <td>1.546657e-06</td>\n",
3087
       "      <td>9.921486</td>\n",
3088
       "      <td>76.104669</td>\n",
3089
       "      <td>8.613333</td>\n",
3090
       "      <td>74.891667</td>\n",
3091
       "      <td>833.864494</td>\n",
3092
       "      <td>61.040000</td>\n",
3093
       "      <td>42.480833</td>\n",
3094
       "      <td>51.544167</td>\n",
3095
       "      <td>0.00</td>\n",
3096
       "      <td>1.270000</td>\n",
3097
       "      <td>36.745000</td>\n",
3098
       "      <td>1</td>\n",
3099
       "      <td>95.234375</td>\n",
3100
       "    </tr>\n",
3101
       "    <tr>\n",
3102
       "      <th>59</th>\n",
3103
       "      <td>2019-10-30</td>\n",
3104
       "      <td>4.421555e-06</td>\n",
3105
       "      <td>7.566899</td>\n",
3106
       "      <td>77.632557</td>\n",
3107
       "      <td>6.325000</td>\n",
3108
       "      <td>78.035833</td>\n",
3109
       "      <td>745.242319</td>\n",
3110
       "      <td>32.364167</td>\n",
3111
       "      <td>29.780833</td>\n",
3112
       "      <td>0.000000</td>\n",
3113
       "      <td>0.00</td>\n",
3114
       "      <td>2.005000</td>\n",
3115
       "      <td>44.650000</td>\n",
3116
       "      <td>1</td>\n",
3117
       "      <td>95.234375</td>\n",
3118
       "    </tr>\n",
3119
       "    <tr>\n",
3120
       "      <th>60</th>\n",
3121
       "      <td>2019-10-31</td>\n",
3122
       "      <td>4.201527e-06</td>\n",
3123
       "      <td>6.945136</td>\n",
3124
       "      <td>76.931039</td>\n",
3125
       "      <td>5.306667</td>\n",
3126
       "      <td>81.060000</td>\n",
3127
       "      <td>723.901020</td>\n",
3128
       "      <td>93.960000</td>\n",
3129
       "      <td>49.780000</td>\n",
3130
       "      <td>170.127500</td>\n",
3131
       "      <td>0.00</td>\n",
3132
       "      <td>1.125000</td>\n",
3133
       "      <td>53.745000</td>\n",
3134
       "      <td>1</td>\n",
3135
       "      <td>95.234375</td>\n",
3136
       "    </tr>\n",
3137
       "  </tbody>\n",
3138
       "</table>\n",
3139
       "<p>305 rows × 15 columns</p>\n",
3140
       "</div>"
3141
      ],
3142
      "text/plain": [
3143
       "     timestamp        strain   Surftemp         Rh    airtemp      avgRh  \\\n",
3144
       "0   2019-04-01  1.391124e-06  11.802222  51.495514  11.349167  56.125002   \n",
3145
       "1   2019-04-02  1.902302e-06  11.776378  72.111068  10.497500  77.708336   \n",
3146
       "2   2019-04-03  7.411497e-07   8.487706  69.587566   8.279167  72.916666   \n",
3147
       "3   2019-04-04  4.070716e-07   7.694840  71.085618   7.617500  72.458332   \n",
3148
       "4   2019-04-05  2.359754e-06   9.097269  66.807711   9.810000  71.999998   \n",
3149
       "..         ...           ...        ...        ...        ...        ...   \n",
3150
       "56  2019-10-27  1.166937e-07  11.353086  74.968842   8.625833  86.211667   \n",
3151
       "57  2019-10-28  5.393001e-06   9.467404  80.369227   6.798333  90.648333   \n",
3152
       "58  2019-10-29  1.546657e-06   9.921486  76.104669   8.613333  74.891667   \n",
3153
       "59  2019-10-30  4.421555e-06   7.566899  77.632557   6.325000  78.035833   \n",
3154
       "60  2019-10-31  4.201527e-06   6.945136  76.931039   5.306667  81.060000   \n",
3155
       "\n",
3156
       "        avgVPr       avgGR       avgdR      avgdnr  totalrain   avgws10  \\\n",
3157
       "0   708.982498  233.389167   87.455833  478.697500       0.00  3.335575   \n",
3158
       "1   985.274874   87.955000   83.221667    2.445000       0.05  1.135126   \n",
3159
       "2   790.862084  116.270833  107.811667   21.199167       0.00  1.599006   \n",
3160
       "3   738.126551  160.467500  128.485000  112.169167       0.00  1.181543   \n",
3161
       "4   846.904428  225.915833   94.376667  376.993333       0.00  2.706478   \n",
3162
       "..         ...         ...         ...         ...        ...       ...   \n",
3163
       "56  963.436168   50.277500   45.353333    0.026667       0.00  0.675000   \n",
3164
       "57  895.893447   95.483333   30.701667  225.355000       0.00  0.570000   \n",
3165
       "58  833.864494   61.040000   42.480833   51.544167       0.00  1.270000   \n",
3166
       "59  745.242319   32.364167   29.780833    0.000000       0.00  2.005000   \n",
3167
       "60  723.901020   93.960000   49.780000  170.127500       0.00  1.125000   \n",
3168
       "\n",
3169
       "       avgwd10  retrofit     lx (m)  \n",
3170
       "0    37.478949         0  34.140625  \n",
3171
       "1   209.014923         0  34.140625  \n",
3172
       "2   141.619137         0  34.140625  \n",
3173
       "3   178.318237         0  34.140625  \n",
3174
       "4    30.143506         0  34.140625  \n",
3175
       "..         ...       ...        ...  \n",
3176
       "56  212.700000         1  95.234375  \n",
3177
       "57  185.550000         1  95.234375  \n",
3178
       "58   36.745000         1  95.234375  \n",
3179
       "59   44.650000         1  95.234375  \n",
3180
       "60   53.745000         1  95.234375  \n",
3181
       "\n",
3182
       "[305 rows x 15 columns]"
3183
      ]
3184
     },
3185
     "execution_count": 170,
3186
     "metadata": {},
3187
     "output_type": "execute_result"
3188
    }
3189
   ],
3190
   "source": [
3191
    "df_comp"
3192
   ]
3193
  },
3194
  {
3195
   "cell_type": "code",
3196
   "execution_count": 13,
3197
   "id": "b73b8554",
3198
   "metadata": {},
3199
   "outputs": [
3200
    {
3201
     "data": {
3202
      "text/plain": [
3203
       "LinearRegression()"
3204
      ]
3205
     },
3206
     "execution_count": 13,
3207
     "metadata": {},
3208
     "output_type": "execute_result"
3209
    }
3210
   ],
3211
   "source": [
3212
    "#run linear regression\n",
3213
    "\n",
3214
    "import numpy as np\n",
3215
    "import pandas as pd\n",
3216
    "from sklearn.linear_model import LinearRegression\n",
3217
    "import matplotlib.pyplot as plt\n",
3218
    "%matplotlib inline\n",
3219
    "from sklearn.model_selection import train_test_split\n",
3220
    "\n",
3221
    "#dealing with missing values\n",
3222
    "X = df_comp.drop('strain', axis=1)\n",
3223
    "y = df_comp['strain']\n",
3224
    "\n",
3225
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)\n",
3226
    "\n",
3227
    "lr = LinearRegression()\n",
3228
    "lr.fit(X_train, y_train)\n"
3229
   ]
3230
  },
3231
  {
3232
   "cell_type": "code",
3233
   "execution_count": 182,
3234
   "id": "6f545ec4",
3235
   "metadata": {},
3236
   "outputs": [
3237
    {
3238
     "data": {
3239
      "text/plain": [
3240
       "array([-7.32918585e-07, -2.31772820e-07,  1.07521188e-06,  2.83471035e-07,\n",
3241
       "       -4.83768362e-09,  1.14031235e-08, -2.04704203e-08, -6.49621047e-09,\n",
3242
       "       -1.70444583e-06,  8.94803691e-08, -3.00796022e-09, -5.62001361e-07,\n",
3243
       "        3.14184517e-08])"
3244
      ]
3245
     },
3246
     "execution_count": 182,
3247
     "metadata": {},
3248
     "output_type": "execute_result"
3249
    }
3250
   ],
3251
   "source": [
3252
    "lr.coef_"
3253
   ]
3254
  },
3255
  {
3256
   "cell_type": "code",
3257
   "execution_count": 183,
3258
   "id": "252c0de5",
3259
   "metadata": {},
3260
   "outputs": [
3261
    {
3262
     "data": {
3263
      "text/plain": [
3264
       "-2.3164128924815833e-06"
3265
      ]
3266
     },
3267
     "execution_count": 183,
3268
     "metadata": {},
3269
     "output_type": "execute_result"
3270
    }
3271
   ],
3272
   "source": [
3273
    "lr.intercept_"
3274
   ]
3275
  },
3276
  {
3277
   "cell_type": "code",
3278
   "execution_count": 184,
3279
   "id": "2a6a1bd9",
3280
   "metadata": {},
3281
   "outputs": [
3282
    {
3283
     "data": {
3284
      "text/plain": [
3285
       "0.3924089764234414"
3286
      ]
3287
     },
3288
     "execution_count": 184,
3289
     "metadata": {},
3290
     "output_type": "execute_result"
3291
    }
3292
   ],
3293
   "source": [
3294
    "lr.score(X_test, y_test)"
3295
   ]
3296
  },
3297
  {
3298
   "cell_type": "code",
3299
   "execution_count": 185,
3300
   "id": "a55527fa",
3301
   "metadata": {},
3302
   "outputs": [
3303
    {
3304
     "data": {
3305
      "text/html": [
3306
       "<div>\n",
3307
       "<style scoped>\n",
3308
       "    .dataframe tbody tr th:only-of-type {\n",
3309
       "        vertical-align: middle;\n",
3310
       "    }\n",
3311
       "\n",
3312
       "    .dataframe tbody tr th {\n",
3313
       "        vertical-align: top;\n",
3314
       "    }\n",
3315
       "\n",
3316
       "    .dataframe thead th {\n",
3317
       "        text-align: right;\n",
3318
       "    }\n",
3319
       "</style>\n",
3320
       "<table border=\"1\" class=\"dataframe\">\n",
3321
       "  <thead>\n",
3322
       "    <tr style=\"text-align: right;\">\n",
3323
       "      <th></th>\n",
3324
       "      <th>Surftemp</th>\n",
3325
       "      <th>Rh</th>\n",
3326
       "      <th>airtemp</th>\n",
3327
       "      <th>avgRh</th>\n",
3328
       "      <th>avgVPr</th>\n",
3329
       "      <th>avgGR</th>\n",
3330
       "      <th>avgdR</th>\n",
3331
       "      <th>avgdnr</th>\n",
3332
       "      <th>totalrain</th>\n",
3333
       "      <th>avgws10</th>\n",
3334
       "      <th>avgwd10</th>\n",
3335
       "      <th>retrofit</th>\n",
3336
       "      <th>lx (m)</th>\n",
3337
       "    </tr>\n",
3338
       "  </thead>\n",
3339
       "  <tbody>\n",
3340
       "    <tr>\n",
3341
       "      <th>Surftemp</th>\n",
3342
       "      <td>1.000000e+00</td>\n",
3343
       "      <td>-2.152850e-01</td>\n",
3344
       "      <td>9.747528e-01</td>\n",
3345
       "      <td>-2.983697e-01</td>\n",
3346
       "      <td>5.684068e-01</td>\n",
3347
       "      <td>9.519627e-02</td>\n",
3348
       "      <td>-8.447963e-02</td>\n",
3349
       "      <td>1.256301e-01</td>\n",
3350
       "      <td>4.533550e-02</td>\n",
3351
       "      <td>1.839667e-01</td>\n",
3352
       "      <td>-4.586977e-02</td>\n",
3353
       "      <td>7.498677e-02</td>\n",
3354
       "      <td>1.677069e-16</td>\n",
3355
       "    </tr>\n",
3356
       "    <tr>\n",
3357
       "      <th>Rh</th>\n",
3358
       "      <td>-2.152850e-01</td>\n",
3359
       "      <td>1.000000e+00</td>\n",
3360
       "      <td>-2.480698e-01</td>\n",
3361
       "      <td>9.723831e-01</td>\n",
3362
       "      <td>6.446555e-01</td>\n",
3363
       "      <td>-8.661916e-01</td>\n",
3364
       "      <td>-5.956108e-01</td>\n",
3365
       "      <td>-8.056235e-01</td>\n",
3366
       "      <td>2.042600e-01</td>\n",
3367
       "      <td>-5.197775e-01</td>\n",
3368
       "      <td>4.503028e-01</td>\n",
3369
       "      <td>7.288194e-01</td>\n",
3370
       "      <td>7.335662e-16</td>\n",
3371
       "    </tr>\n",
3372
       "    <tr>\n",
3373
       "      <th>airtemp</th>\n",
3374
       "      <td>9.747528e-01</td>\n",
3375
       "      <td>-2.480698e-01</td>\n",
3376
       "      <td>1.000000e+00</td>\n",
3377
       "      <td>-3.616480e-01</td>\n",
3378
       "      <td>5.406419e-01</td>\n",
3379
       "      <td>1.694691e-01</td>\n",
3380
       "      <td>-3.510775e-02</td>\n",
3381
       "      <td>1.952337e-01</td>\n",
3382
       "      <td>4.971249e-03</td>\n",
3383
       "      <td>2.731617e-01</td>\n",
3384
       "      <td>-6.243032e-02</td>\n",
3385
       "      <td>2.017131e-03</td>\n",
3386
       "      <td>-6.014388e-16</td>\n",
3387
       "    </tr>\n",
3388
       "    <tr>\n",
3389
       "      <th>avgRh</th>\n",
3390
       "      <td>-2.983697e-01</td>\n",
3391
       "      <td>9.723831e-01</td>\n",
3392
       "      <td>-3.616480e-01</td>\n",
3393
       "      <td>1.000000e+00</td>\n",
3394
       "      <td>5.608952e-01</td>\n",
3395
       "      <td>-8.401467e-01</td>\n",
3396
       "      <td>-5.541348e-01</td>\n",
3397
       "      <td>-7.924454e-01</td>\n",
3398
       "      <td>2.558436e-01</td>\n",
3399
       "      <td>-5.950151e-01</td>\n",
3400
       "      <td>4.794773e-01</td>\n",
3401
       "      <td>6.712207e-01</td>\n",
3402
       "      <td>6.911524e-16</td>\n",
3403
       "    </tr>\n",
3404
       "    <tr>\n",
3405
       "      <th>avgVPr</th>\n",
3406
       "      <td>5.684068e-01</td>\n",
3407
       "      <td>6.446555e-01</td>\n",
3408
       "      <td>5.406419e-01</td>\n",
3409
       "      <td>5.608952e-01</td>\n",
3410
       "      <td>1.000000e+00</td>\n",
3411
       "      <td>-6.132273e-01</td>\n",
3412
       "      <td>-5.177388e-01</td>\n",
3413
       "      <td>-5.510338e-01</td>\n",
3414
       "      <td>2.094811e-01</td>\n",
3415
       "      <td>-2.036595e-01</td>\n",
3416
       "      <td>3.509903e-01</td>\n",
3417
       "      <td>6.112809e-01</td>\n",
3418
       "      <td>-2.054537e-16</td>\n",
3419
       "    </tr>\n",
3420
       "    <tr>\n",
3421
       "      <th>avgGR</th>\n",
3422
       "      <td>9.519627e-02</td>\n",
3423
       "      <td>-8.661916e-01</td>\n",
3424
       "      <td>1.694691e-01</td>\n",
3425
       "      <td>-8.401467e-01</td>\n",
3426
       "      <td>-6.132273e-01</td>\n",
3427
       "      <td>1.000000e+00</td>\n",
3428
       "      <td>7.293697e-01</td>\n",
3429
       "      <td>9.061787e-01</td>\n",
3430
       "      <td>-1.775341e-01</td>\n",
3431
       "      <td>4.630690e-01</td>\n",
3432
       "      <td>-2.412233e-01</td>\n",
3433
       "      <td>-7.829176e-01</td>\n",
3434
       "      <td>4.095492e-16</td>\n",
3435
       "    </tr>\n",
3436
       "    <tr>\n",
3437
       "      <th>avgdR</th>\n",
3438
       "      <td>-8.447963e-02</td>\n",
3439
       "      <td>-5.956108e-01</td>\n",
3440
       "      <td>-3.510775e-02</td>\n",
3441
       "      <td>-5.541348e-01</td>\n",
3442
       "      <td>-5.177388e-01</td>\n",
3443
       "      <td>7.293697e-01</td>\n",
3444
       "      <td>1.000000e+00</td>\n",
3445
       "      <td>3.899672e-01</td>\n",
3446
       "      <td>-1.374128e-01</td>\n",
3447
       "      <td>2.765396e-01</td>\n",
3448
       "      <td>-2.703759e-02</td>\n",
3449
       "      <td>-7.715444e-01</td>\n",
3450
       "      <td>-7.025112e-16</td>\n",
3451
       "    </tr>\n",
3452
       "    <tr>\n",
3453
       "      <th>avgdnr</th>\n",
3454
       "      <td>1.256301e-01</td>\n",
3455
       "      <td>-8.056235e-01</td>\n",
3456
       "      <td>1.952337e-01</td>\n",
3457
       "      <td>-7.924454e-01</td>\n",
3458
       "      <td>-5.510338e-01</td>\n",
3459
       "      <td>9.061787e-01</td>\n",
3460
       "      <td>3.899672e-01</td>\n",
3461
       "      <td>1.000000e+00</td>\n",
3462
       "      <td>-1.841247e-01</td>\n",
3463
       "      <td>4.780176e-01</td>\n",
3464
       "      <td>-3.274065e-01</td>\n",
3465
       "      <td>-5.869362e-01</td>\n",
3466
       "      <td>4.600683e-17</td>\n",
3467
       "    </tr>\n",
3468
       "    <tr>\n",
3469
       "      <th>totalrain</th>\n",
3470
       "      <td>4.533550e-02</td>\n",
3471
       "      <td>2.042600e-01</td>\n",
3472
       "      <td>4.971249e-03</td>\n",
3473
       "      <td>2.558436e-01</td>\n",
3474
       "      <td>2.094811e-01</td>\n",
3475
       "      <td>-1.775341e-01</td>\n",
3476
       "      <td>-1.374128e-01</td>\n",
3477
       "      <td>-1.841247e-01</td>\n",
3478
       "      <td>1.000000e+00</td>\n",
3479
       "      <td>-1.593518e-01</td>\n",
3480
       "      <td>1.882248e-01</td>\n",
3481
       "      <td>-5.927637e-02</td>\n",
3482
       "      <td>9.468082e-17</td>\n",
3483
       "    </tr>\n",
3484
       "    <tr>\n",
3485
       "      <th>avgws10</th>\n",
3486
       "      <td>1.839667e-01</td>\n",
3487
       "      <td>-5.197775e-01</td>\n",
3488
       "      <td>2.731617e-01</td>\n",
3489
       "      <td>-5.950151e-01</td>\n",
3490
       "      <td>-2.036595e-01</td>\n",
3491
       "      <td>4.630690e-01</td>\n",
3492
       "      <td>2.765396e-01</td>\n",
3493
       "      <td>4.780176e-01</td>\n",
3494
       "      <td>-1.593518e-01</td>\n",
3495
       "      <td>1.000000e+00</td>\n",
3496
       "      <td>-2.644061e-01</td>\n",
3497
       "      <td>-2.872552e-01</td>\n",
3498
       "      <td>-1.120402e-15</td>\n",
3499
       "    </tr>\n",
3500
       "    <tr>\n",
3501
       "      <th>avgwd10</th>\n",
3502
       "      <td>-4.586977e-02</td>\n",
3503
       "      <td>4.503028e-01</td>\n",
3504
       "      <td>-6.243032e-02</td>\n",
3505
       "      <td>4.794773e-01</td>\n",
3506
       "      <td>3.509903e-01</td>\n",
3507
       "      <td>-2.412233e-01</td>\n",
3508
       "      <td>-2.703759e-02</td>\n",
3509
       "      <td>-3.274065e-01</td>\n",
3510
       "      <td>1.882248e-01</td>\n",
3511
       "      <td>-2.644061e-01</td>\n",
3512
       "      <td>1.000000e+00</td>\n",
3513
       "      <td>1.689668e-01</td>\n",
3514
       "      <td>2.738244e-16</td>\n",
3515
       "    </tr>\n",
3516
       "    <tr>\n",
3517
       "      <th>retrofit</th>\n",
3518
       "      <td>7.498677e-02</td>\n",
3519
       "      <td>7.288194e-01</td>\n",
3520
       "      <td>2.017131e-03</td>\n",
3521
       "      <td>6.712207e-01</td>\n",
3522
       "      <td>6.112809e-01</td>\n",
3523
       "      <td>-7.829176e-01</td>\n",
3524
       "      <td>-7.715444e-01</td>\n",
3525
       "      <td>-5.869362e-01</td>\n",
3526
       "      <td>-5.927637e-02</td>\n",
3527
       "      <td>-2.872552e-01</td>\n",
3528
       "      <td>1.689668e-01</td>\n",
3529
       "      <td>1.000000e+00</td>\n",
3530
       "      <td>2.020656e-16</td>\n",
3531
       "    </tr>\n",
3532
       "    <tr>\n",
3533
       "      <th>lx (m)</th>\n",
3534
       "      <td>1.677069e-16</td>\n",
3535
       "      <td>7.335662e-16</td>\n",
3536
       "      <td>-6.014388e-16</td>\n",
3537
       "      <td>6.911524e-16</td>\n",
3538
       "      <td>-2.054537e-16</td>\n",
3539
       "      <td>4.095492e-16</td>\n",
3540
       "      <td>-7.025112e-16</td>\n",
3541
       "      <td>4.600683e-17</td>\n",
3542
       "      <td>9.468082e-17</td>\n",
3543
       "      <td>-1.120402e-15</td>\n",
3544
       "      <td>2.738244e-16</td>\n",
3545
       "      <td>2.020656e-16</td>\n",
3546
       "      <td>1.000000e+00</td>\n",
3547
       "    </tr>\n",
3548
       "  </tbody>\n",
3549
       "</table>\n",
3550
       "</div>"
3551
      ],
3552
      "text/plain": [
3553
       "               Surftemp            Rh       airtemp         avgRh  \\\n",
3554
       "Surftemp   1.000000e+00 -2.152850e-01  9.747528e-01 -2.983697e-01   \n",
3555
       "Rh        -2.152850e-01  1.000000e+00 -2.480698e-01  9.723831e-01   \n",
3556
       "airtemp    9.747528e-01 -2.480698e-01  1.000000e+00 -3.616480e-01   \n",
3557
       "avgRh     -2.983697e-01  9.723831e-01 -3.616480e-01  1.000000e+00   \n",
3558
       "avgVPr     5.684068e-01  6.446555e-01  5.406419e-01  5.608952e-01   \n",
3559
       "avgGR      9.519627e-02 -8.661916e-01  1.694691e-01 -8.401467e-01   \n",
3560
       "avgdR     -8.447963e-02 -5.956108e-01 -3.510775e-02 -5.541348e-01   \n",
3561
       "avgdnr     1.256301e-01 -8.056235e-01  1.952337e-01 -7.924454e-01   \n",
3562
       "totalrain  4.533550e-02  2.042600e-01  4.971249e-03  2.558436e-01   \n",
3563
       "avgws10    1.839667e-01 -5.197775e-01  2.731617e-01 -5.950151e-01   \n",
3564
       "avgwd10   -4.586977e-02  4.503028e-01 -6.243032e-02  4.794773e-01   \n",
3565
       "retrofit   7.498677e-02  7.288194e-01  2.017131e-03  6.712207e-01   \n",
3566
       "lx (m)     1.677069e-16  7.335662e-16 -6.014388e-16  6.911524e-16   \n",
3567
       "\n",
3568
       "                 avgVPr         avgGR         avgdR        avgdnr  \\\n",
3569
       "Surftemp   5.684068e-01  9.519627e-02 -8.447963e-02  1.256301e-01   \n",
3570
       "Rh         6.446555e-01 -8.661916e-01 -5.956108e-01 -8.056235e-01   \n",
3571
       "airtemp    5.406419e-01  1.694691e-01 -3.510775e-02  1.952337e-01   \n",
3572
       "avgRh      5.608952e-01 -8.401467e-01 -5.541348e-01 -7.924454e-01   \n",
3573
       "avgVPr     1.000000e+00 -6.132273e-01 -5.177388e-01 -5.510338e-01   \n",
3574
       "avgGR     -6.132273e-01  1.000000e+00  7.293697e-01  9.061787e-01   \n",
3575
       "avgdR     -5.177388e-01  7.293697e-01  1.000000e+00  3.899672e-01   \n",
3576
       "avgdnr    -5.510338e-01  9.061787e-01  3.899672e-01  1.000000e+00   \n",
3577
       "totalrain  2.094811e-01 -1.775341e-01 -1.374128e-01 -1.841247e-01   \n",
3578
       "avgws10   -2.036595e-01  4.630690e-01  2.765396e-01  4.780176e-01   \n",
3579
       "avgwd10    3.509903e-01 -2.412233e-01 -2.703759e-02 -3.274065e-01   \n",
3580
       "retrofit   6.112809e-01 -7.829176e-01 -7.715444e-01 -5.869362e-01   \n",
3581
       "lx (m)    -2.054537e-16  4.095492e-16 -7.025112e-16  4.600683e-17   \n",
3582
       "\n",
3583
       "              totalrain       avgws10       avgwd10      retrofit  \\\n",
3584
       "Surftemp   4.533550e-02  1.839667e-01 -4.586977e-02  7.498677e-02   \n",
3585
       "Rh         2.042600e-01 -5.197775e-01  4.503028e-01  7.288194e-01   \n",
3586
       "airtemp    4.971249e-03  2.731617e-01 -6.243032e-02  2.017131e-03   \n",
3587
       "avgRh      2.558436e-01 -5.950151e-01  4.794773e-01  6.712207e-01   \n",
3588
       "avgVPr     2.094811e-01 -2.036595e-01  3.509903e-01  6.112809e-01   \n",
3589
       "avgGR     -1.775341e-01  4.630690e-01 -2.412233e-01 -7.829176e-01   \n",
3590
       "avgdR     -1.374128e-01  2.765396e-01 -2.703759e-02 -7.715444e-01   \n",
3591
       "avgdnr    -1.841247e-01  4.780176e-01 -3.274065e-01 -5.869362e-01   \n",
3592
       "totalrain  1.000000e+00 -1.593518e-01  1.882248e-01 -5.927637e-02   \n",
3593
       "avgws10   -1.593518e-01  1.000000e+00 -2.644061e-01 -2.872552e-01   \n",
3594
       "avgwd10    1.882248e-01 -2.644061e-01  1.000000e+00  1.689668e-01   \n",
3595
       "retrofit  -5.927637e-02 -2.872552e-01  1.689668e-01  1.000000e+00   \n",
3596
       "lx (m)     9.468082e-17 -1.120402e-15  2.738244e-16  2.020656e-16   \n",
3597
       "\n",
3598
       "                 lx (m)  \n",
3599
       "Surftemp   1.677069e-16  \n",
3600
       "Rh         7.335662e-16  \n",
3601
       "airtemp   -6.014388e-16  \n",
3602
       "avgRh      6.911524e-16  \n",
3603
       "avgVPr    -2.054537e-16  \n",
3604
       "avgGR      4.095492e-16  \n",
3605
       "avgdR     -7.025112e-16  \n",
3606
       "avgdnr     4.600683e-17  \n",
3607
       "totalrain  9.468082e-17  \n",
3608
       "avgws10   -1.120402e-15  \n",
3609
       "avgwd10    2.738244e-16  \n",
3610
       "retrofit   2.020656e-16  \n",
3611
       "lx (m)     1.000000e+00  "
3612
      ]
3613
     },
3614
     "execution_count": 185,
3615
     "metadata": {},
3616
     "output_type": "execute_result"
3617
    }
3618
   ],
3619
   "source": [
3620
    "X.corr()"
3621
   ]
3622
  },
3623
  {
3624
   "cell_type": "code",
3625
   "execution_count": 138,
3626
   "id": "bc340140",
3627
   "metadata": {},
3628
   "outputs": [
3629
    {
3630
     "data": {
3631
      "text/plain": [
3632
       "<AxesSubplot:>"
3633
      ]
3634
     },
3635
     "execution_count": 138,
3636
     "metadata": {},
3637
     "output_type": "execute_result"
3638
    },
3639
    {
3640
     "data": {
3641
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAHYCAYAAACGFZM8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABe30lEQVR4nO3de1yUdd7/8TdnLEXwAKlZecpj/rBE1FIENUUBFbK1THSXzEp0yxvzECWmpqZmGWWbWbeS20pqGEqo6a6uJ6Tk3tT1QGuYaIIocvCIcP3+4HbuCFTEGQec19PHPB5zfa/T5zszjHz4fK/vZWcYhiEAAAAAsHH21g4AAAAAAKoDkiMAAAAAEMkRAAAAAEgiOQIAAAAASSRHAAAAACCJ5AgAAAAAJJEcAQAAAKgmCgsLFRQUpMzMzHLrDh48qLCwMPXr10+vv/66rl69Kkk6efKkhg8frv79++ull17S+fPnq3x+kiMAAAAAVvevf/1LzzzzjDIyMipcP3HiRL3xxhvasGGDDMNQfHy8JGn69Ol69tlnlZycrA4dOuijjz6qcgwkRwAAAAAsIj8/X5mZmeUe+fn55baNj4/XtGnT5OnpWW7diRMndOnSJXl7e0uSQkNDlZycrKKiIqWmpqpfv35l2qvKscp71nBFOUetHYLZvP/om9YOwaz+nPK6tUMwm+hub1k7BLOa9oqbtUMwmyMLf7V2CGaVfqWOtUMwmw61c60dglnlnXe1dghmc59ngbVDMKt9pxpYOwSzaeJ0wdohmFXulbvn56Z31kprh1AplvrdeNmX6xUbG1uuPTIyUuPGjSvTNmvWrOseJzs7Ww0bNjQtN2zYUFlZWcrNzVXt2rXl6OhYpr2qbDY5AgAAAGBZI0eO1JAhQ8q1u7nd2h9cDcMo12ZnZ3fd9qoiOQIAAABsXUmxRQ7r5uZ2y4lQRby8vJSTk2NaPn36tDw9PVWvXj0VFhaquLhYDg4Opvaq4pojAAAAANVakyZN5OLioh9++EGSlJCQoJ49e8rJyUmdO3dWUlJSmfaqIjkCAAAAbJ1RYpnHbRo9erT27dsnSZo/f75mz56twMBAXbx4UeHh4ZKkadOmKT4+XgMGDND333+vV155pcrnY1gdAAAAYOtKbj+RMZctW7aYni9ZssT0vE2bNlq1alW57Zs0aaK4uDiznJvKEQAAAACIyhEAAABg8wwzDIG7G1A5AgAAAABROQIAAABQja45siYqRwAAAAAgKkcAAAAAuOZIEskRAAAAgJJia0dQLTCsDgAAAABUycpRcnKyPvnkE129elWGYWjQoEF6/vnnK32S+Ph4LV68WP3791etWrXUvXt3de7cucpBAwAAADAjhtVJqkRylJWVpblz52rNmjXy8PDQ+fPnNWLECDVr1ky9e/eu1EnWrVunGTNm6IknntCIESPk6+t724EDAAAAgDndNDnKzc1VUVGRLl26JEm69957NWfOHLm4uCggIEDLly/X/fffr5SUFMXGxiouLk4jRoxQ3bp1lZ6eruDgYO3bt0/Tp0/X2LFjtX//fkVHRys2Nlaurq6KiYnRuXPn5OrqqjfeeEPt2rXT5MmTVatWLf3www8qKCjQ1KlTtXbtWh06dEh9+vTR5MmTtWbNGm3cuFF5eXk6c+aM/P39NXnyZNnZ2Vn8RQMAAADuKkzlLakSyVGbNm3Uu3dv9enTR23btpWvr6+Cg4P14IMP3nC/1q1bKzY2VpKUkpKiyMhI+fr6avXq1YqMjFTr1q01bNgwvfnmm2rXrp1++uknjR07Vhs2bJAkZWdn65tvvtHXX3+tKVOmaMOGDXJxcVHPnj01duxYSdL+/fuVkJAgNzc3hYeHa9OmTXryySdv9zUBAAAAbIrBsDpJlbzmaPr06Xr55Ze1fft2bd++XU8//bTmz59/w306dux4w/Xnz5/X/v37NWXKFFPbhQsXlJubK0nq2bOnJKlx48Zq1aqV6tevL0lyd3dXXl6eJCkgIEANGjSQJA0YMEC7d+8mOQIAAABQJTdNjv7xj3/owoULGjBggMLCwhQWFqb4+HitWrVKkmQYhiTp6tWrZfZzdXW94XFLSkrk7OystWvXmtpOnTold3d3SZKTk9P/BelYcZgODg5ljvfbZQAAAACVxLA6SZWYytvV1VULFixQZmampNJk6KefflLbtm3l4eGhn376SZK0efPmSp3QwcFBxcXFqlOnjh566CFTcrRjxw4NHz78loLftm2bCgoKdPnyZa1fv95UbQIAAACAW3XTylHXrl0VGRmpF198UUVFRZKkHj16aOzYsXr00Uc1Y8YMxcbG6oknnqjUCXv06KFp06Zp7ty5mjdvnmJiYvTpp5/KyclJCxcuvKUJFerXr6/Ro0crNzdXgwYNUo8ePSq9LwAAAID/xTVHkiQ749q4uBpmzZo12rNnj+bMmVOl/Ytyjpo5Iut5/9E3rR2CWf055XVrh2A20d3esnYIZjXtFTdrh2A2Rxb+au0QzCr9Sh1rh2A2HWrnWjsEs8o7f+Nh5jXJfZ4F1g7BrPadamDtEMymidMFa4dgVrlX7p6fm95ZK60dQqVcPrTVIsd1aeNnkeNayk2H1QEAAACALajUbHXVUWhoqEJDQ60dBgAAAFDzMaxOEpUjAAAAAJBUgytHAAAAAMyEqbwlUTkCAAAAAElUjgAAAABwzZEkkiMAAAAADKuTxLA6AAAAAJBE5QgAAACweYZRbO0QqgUqRwAAAAAgKkcAAAAAmJBBkg0nR+8/+qa1QzCbP+99y9ohmNWcx96wdghmM3P33fM5k6Srm5ZbOwSz6fzrOmuHYFadG7Sydghm8++Tv1g7BLPa37aZtUMwm9FZztYOwaxWP3fB2iGYjUMvP2uHYFY7I1KsHYLtYUIGSQyrAwAAAABJNlw5AgAAAPC/GFYnicoRAAAAAEiicgQAAACghKm8JZIjAAAAAAyrk8SwOgAAAACQROUIAAAAAFN5S6JyBAAAAACSqBwBAAAA4JojSVSOAAAAAEASlSMAAAAAXHMkieQIAAAAAMmRpGqeHGVmZqp///5q0aKFJKmkpETnz5/X4MGD5evrq9jYWMXFxVk5SgAAAAB3g2qdHEmSp6en1q5da1rOyspSv3791KBBAytGBQAAANw9DKPY2iFUC9U+Ofq906dPyzAM3XvvvTp79qxGjx6tX375Rc2aNdOiRYvk7Oxs7RABAAAA1EDVPjnKzs7WoEGDdPnyZeXm5uqRRx5RbGysnJ2ddfLkSX388cdq0qSJnn76ae3cuVO9evWydsgAAABAzcI1R5JqwFTe14bVJSUladCgQSoqKlLXrl0lSW3atFHTpk1lb2+vFi1aKDc318rRAgAAADWQUWKZRw1T7ZOja+zt7fXaa6/pzJkz+uyzzyRJjo7/V/iys7OTYRjWCg8AAABADVdjkiOpNBl67bXX9PHHHysnJ8fa4QAAAAB3h5ISyzxqmBqVHElSz5495e3trffee8/aoQAAAAC4i1TrCRnuv/9+bdmypVz7559/Xq5tzpw5dyIkAAAA4O5TDa4PSkxM1OLFi1VUVKRRo0Zp+PDhpnUHDx7U5MmTTctnz55V3bp1tW7dOiUkJGj+/PmqX7++JKlXr1569dVXqxRDtU6OAAAAANwBVh4Cl5WVpYULF2rNmjVydnbWsGHD5Ovrq5YtW0qS2rZta7r36cWLFzV06FDFxMRIkvbt26fJkycrKCjotuOoccPqAAAAANxddu7cqa5du8rd3V333HOP+vXrp+Tk5Aq3/ctf/iIfHx917txZUmlylJCQoJCQEEVFRSkvL6/KcZAcAQAAALbOQlN55+fnKzMzs9wjPz+/zOmzs7PVsGFD07Knp6eysrLKhZmfn6/4+HhFRkaa2ho2bKhx48Zp7dq1atSokd56660qvwwMqwMAAABgEcuWLVNsbGy59sjISI0bN860XNEteezs7Mq1JSYmqk+fPqbriyTpww8/ND1//vnn1adPnyrHS3IEAAAA2DoLXXM0cuQoDRkypFy7m5tbmWUvLy99//33puXs7Gx5enqW2++7777TmDFjTMsFBQVavXq1Ro0aJak0yfrtvVBvFcPqAAAAAFiEm5ub7r///nKP3ydH3bt3165du3T27FldvHhRGzduVM+ePctsYxiGDhw4oE6dOpna7rnnHn366af617/+JUn64osv1Ldv3yrHS+UIAAAAsHVWnq3Oy8tLr776qsLDw1VUVKSnnnpKHTt21OjRozV+/Hg98sgjOnv2rJycnOTi4mLaz8HBQe+9955iYmJ06dIlPfTQQ3rnnXeqHAfJEQAAAGDrqsF9joKDgxUcHFymbcmSJabn9evX144dO8rt17lzZ3399ddmiYFhdQAAAAAgKkcAAAAArDysrrqgcgQAAAAAsuHK0Z9TXrd2CGYz57E3rB2CWU3+YYa1QzCbP3eebO0QzGr+S/daOwSzOdK6vbVDMKtD2fWsHYLZtG99d/3X9NPxu+e9+aJj+Rsy1mTffeFh7RDMxi1ut7VDMLPy97eBhVWDa46qg7vrfyAAAAAAt45hdZIYVgcAAAAAkqgcAQAAAGBYnSQqRwAAAAAgicoRAAAAAK45kkRyBAAAAIDkSBLD6gAAAABAEpUjAAAAAIZh7QiqBSpHAAAAACAqRwAAAAC45kgSlSMAAAAAkETlCAAAAACVI0kkRwAAAAAMkiPJQsPqsrKyNHr06ArXLVq0SN9//70lTgsAAAAAVWaR5MjLy0tLliypcF1qaqqKi4stcVoAAAAAVVFSYplHDXPbw+quXr2qmJgYpaenKycnR82aNdOUKVM0evRobdmyRZMnT9a5c+d07NgxvfDCC9q/f7+io6MVGxsrV1dXxcTE6Ny5c3J1ddUbb7yhdu3aafLkyapVq5Z++OEHFRQUaOrUqVq7dq0OHTqkPn36aPLkyVqzZo02btyovLw8nTlzRv7+/po8ebLs7OzM8boAAAAAsDG3nRylpaXJyclJK1euVElJiUaOHKmtW7eW2cbd3V0ff/yxJGnNmjWKjIxU69atNWzYML355ptq166dfvrpJ40dO1YbNmyQJGVnZ+ubb77R119/rSlTpmjDhg1ycXFRz549NXbsWEnS/v37lZCQIDc3N4WHh2vTpk168sknb7dLAAAAgG3hJrCSzJAc+fj4yN3dXStWrNDRo0eVkZGhCxculNmmY8eO5fY7f/689u/frylTppjaLly4oNzcXElSz549JUmNGzdWq1atVL9+fUmliVZeXp4kKSAgQA0aNJAkDRgwQLt37yY5AgAAAG5VDRwCZwm3nRxt3rxZixYtUnh4uEJDQ5Wbm6vGjRuX2cbV1bXcfiUlJXJ2dtbatWtNbadOnZK7u7skycnJ6f+CdKw4TAcHhzLH++0yAAAAANyK256QYdeuXQoMDFRYWJgaNGhw0wkXHBwcVFxcrDp16uihhx4yJUc7duzQ8OHDb+nc27ZtU0FBgS5fvqz169ebqk0AAAAAbgETMkgyQ+Vo6NChioqKUnJyspydneXt7a2UlJTrbt+jRw9NmzZNc+fO1bx58xQTE6NPP/1UTk5OWrhw4S1NqFC/fn2NHj1aubm5GjRokHr06HG73QEAAABgo247OWrdurUSExOvu37OnDllliMiIhQREWFajouLu+E+vr6+8vX1NS1v2bJFkrRnzx41b9683PEBAAAA3CJuAivJDMkRAAAAgJrNKGG2OqkGJ0ehoaEKDQ21dhgAAAAA7hI1NjkCAAAAYCY1cPIES7jt2eoAAAAA4G5A5QgAAACwdUzIIInKEQAAAABIonIEAAAAgNnqJJEcAQAAAGBCBkkMqwMAAAAASVSOAAAAAFA5kkTlCAAAAAAk2XDlKLrbW9YOwWxm7n7T2iGY1Z87T7Z2CGbz/vdzrB2CWRUtn23tEMymbfpBa4dgVt0atLZ2CGbzryMZ1g7BrA51vmrtEMwm+ICdtUMwq80RRdYOwWzsO7SzdghmtfOVQ9YOwfYYTMgg2XByBAAAAOB/MaxOEsPqAAAAAEASlSMAAAAA3OdIEpUjAAAAAJBE5QgAAACAwTVHEskRAAAAAIbVSWJYHQAAAABIonIEAAAA2DyDqbwlUTkCAAAAAElUjgAAAABwzZEkkiMAAAAAzFYniWF1AAAAACCpGleO1qxZozlz5qhRo0aSpOLiYl25ckWvvfaa+vTpow8++ECSNG7cOGuGCQAAANR81WBYXWJiohYvXqyioiKNGjVKw4cPL7M+NjZWq1evlpubmyTp6aef1vDhw3Xw4EFFR0ersLBQnTt31vTp0+XoWLU0p9omR5IUEBCgOXPmmJa/++47vfnmm+rTp48VowIAAABgTllZWVq4cKHWrFkjZ2dnDRs2TL6+vmrZsqVpm/379+vdd99Vp06dyuw7ceJEzZw5U97e3po6dari4+P17LPPVikOiyRHV69eVUxMjNLT05WTk6NmzZqpefPm8vLyUkREhCRp/PjxCgoKUseOHRUVFaW8vDw9/PDDSk1N1bZt2yo87okTJ1S3bl3T8o8//qhhw4YpKytLoaGhVJEAAACAqrDQVN75+fnKz88v1+7m5maqAEnSzp071bVrV7m7u0uS+vXrp+TkZEVGRpq22b9/v5YsWaLjx4/Lx8dHkyZNUk5Oji5duiRvb29JUmhoqBYtWlTl5Mgi1xylpaXJyclJK1eu1KZNm3T58mXdd999Wr9+vSSpsLBQe/fuVa9evTRr1iwFBgYqMTFR/fv3V1ZWluk4W7Zs0aBBg9S7d289/vjjOnDggD766CPT+jNnzmj58uVavXq1li5dqsLCQkt0BwAAAEAVLFu2TL179y73WLZsWZntsrOz1bBhQ9Oyp6dnmbzg/Pnzatu2rSZNmqSvv/5a+fn5+uijj8rt17BhwzL73SqLVI58fHzk7u6uFStW6OjRo8rIyJCHh4euXLmiY8eOKS0tTf7+/nJ2dtaOHTs0e/ZsSVLfvn3LZJDXhtUVFhbqhRdeUOPGjdWsWTPT+h49esjZ2Vn16tWTh4eH8vLyVLt2bUt0CQAAALh7Weiao5EjR2rIkCHl2n/7O78kGUb589vZ2Zme33vvvVqyZIlp+U9/+pOmTp0qPz+/G+53qyxSOdq8ebOioqLk6uqq0NBQ+fj4yDAMhYSEKCkpSUlJSQoJCZEkOTg4VPhi/Fbt2rU1d+5cff755/rhhx9M7b+90MrOzu6mxwEAAABQAaPEIg83Nzfdf//95R6/T468vLyUk5NjWs7Ozpanp6dp+eTJk1q1atX/hWsYcnR0LLff6dOny+x3qyySHO3atUuBgYEKCwtTgwYNlJqaquLiYgUHByspKUnHjh1T586dJUndu3dXYmKiJGnr1q0VjkmUpKZNm2rEiBGaPXs2SRAAAABwF+nevbt27dqls2fP6uLFi9q4caN69uxpWu/q6qp58+bp+PHjMgxDK1asUN++fdWkSRO5uLiYCigJCQll9rtVFhlWN3ToUEVFRSk5OVnOzs7y9vZWZmamGjVqJA8PD3l7e5vKXVOnTtWkSZMUHx+vNm3alMsif2vMmDFatWqVvvnmG0uEDQAAANgmK0/l7eXlpVdffVXh4eEqKirSU089pY4dO2r06NEaP368HnnkEb311lt66aWXVFRUpEcffVR//OMfJUnz589XdHS0zp8/r3bt2ik8PLzKcVgkOWrdurWpGvR7y5cvL7O8YcMGRUdHq2XLljpw4ICOHDkiqXSmidDQ0DLb1qlTR7t3767wuFu2bDFD5AAAAACsITg4WMHBwWXafnudUb9+/dSvX79y+7Vp06bMkLvbYfX7HD344IOaMGGC7O3t5eLiohkzZlg7JAAAAMCmGBaayrumsXpy5OfnV+EsEwAAAADuECsPq6suLDIhAwAAAADUNFavHAEAAACwMipHkqgcAQAAAIAkKkcAAAAADCZkkEiOAAAAADCsThLD6gAAAABAEpUjAAAAwOYZVI4kUTkCAAAAAElUjgAAAABQOZJkw8nRtFfcrB2C2VzdtNzaIZjV/JfutXYIZlO0fLa1QzArp/Ap1g7BbB6Zd8jaIZiVi52TtUMwG2/3ZtYOwayunL97ZoAa6tjI2iGYVdHRE9YOwWycH8y3dgjAXcFmkyMAAAAA/6vk7vlDzu0gOQIAAABsHcPqJDEhAwAAAABIonIEAAAAgMqRJCpHAAAAACCJyhEAAABg8wyDypFEcgQAAACAYXWSGFYHAAAAAJKoHAEAAACgciSJyhEAAAAASKJyBAAAANg8g8qRJJIjAAAAACRHkhhWBwAAAACSqkFyVFhYqE6dOikrK6tM+549ezRkyBBJUuvWrTVo0CANHjxYwcHBGjZsmA4fPmyNcAEAAIC7T4mFHjWM1ZOj2rVrq2/fvlq/fn2Z9oSEBIWFhZmW165dq4SEBCUmJmrw4MGaNGnSnQ4VAAAAwF3stq85unr1qmJiYpSenq6cnBw1a9ZMzZs3l5eXlyIiIiRJ48ePV1BQkDp27KioqCjl5eXp4YcfVmpqqrZt26awsDDNnTtXf/rTnyRJly9f1j/+8Y/rJkA+Pj6aM2eOJGnEiBGqW7eu0tPT9d5776lt27a32yUAAADApjAhQ6nbrhylpaXJyclJK1eu1KZNm3T58mXdd999pkpQYWGh9u7dq169emnWrFkKDAxUYmKi+vfvbxpK16VLF+Xn5+vo0aOSpO+++05du3ZV3bp1y53PMAx98803evTRR01trVu31oYNG0iMAAAAAFTZbVeOfHx85O7urhUrVujo0aPKyMiQh4eHrly5omPHjiktLU3+/v5ydnbWjh07NHv2bElS37595ebmJkmys7PTkCFDtG7dOo0fP15r167VqFGjypxn0KBBkqQrV66oRYsWeuutt0zrOnbseLvdAAAAAGwXlSNJZkiONm/erEWLFik8PFyhoaHKzc2VYRgKCQlRUlKS0tLSNHr0aEmSg4ODDKPiF37IkCH605/+pGeffVY///yzunXrVmb92rVrrxuDq6vr7XYDAAAAsF01cPIES7jtYXW7du1SYGCgwsLC1KBBA6Wmpqq4uFjBwcFKSkrSsWPH1LlzZ0lS9+7dlZiYKEnaunWr8vPzTcdp3LixGjdurEWLFmnQoEGys7O73dAAAAAAoNJuu3I0dOhQRUVFKTk5Wc7OzvL29lZmZqYaNWokDw8PeXt7mxKdqVOnatKkSYqPj1ebNm1Mw+quCQ0N1WuvvaZNmzbdblgAAAAAKokJGUrddnLUunVrUzXo95YvX15mecOGDYqOjlbLli114MABHTlypMz6oKAgBQUFlTvOje5pFBcXV4WoAQAAAKCs206ObsWDDz6oCRMmyN7eXi4uLpoxY8adPD0AAACAinDNkaQ7nBz5+fnJz8/vTp4SAAAAwE0wrK7UbU/IAAAAAAB3gztaOQIAAABQDTGsThKVIwAAAACQROUIAAAAsHkGlSNJJEcAAAAASI4kMawOAAAAACRROQIAAABsHsPqSlE5AgAAAABROQIAAABA5UiSDSdHRxb+au0QzKbzr+usHYJZHWnd3tohmE3b9IPWDsGsHpl3yNohmM2ufcusHYJZXd2dYO0QzMb+4S7WDsGslvT+2NohmM2YZy9YOwSzev9vja0dgtksWHd3/S7w1T2PWjsE2CibTY4AAAAAlOKao1IkRwAAAICNIzkqxYQMAAAAACCSIwAAAMDmGSWWedyKxMREDRgwQH379tWKFSvKrf/uu+80aNAghYSE6OWXX1ZeXp4kKSEhQU888YQGDRqkQYMGaeHChVV+HRhWBwAAAMCqsrKytHDhQq1Zs0bOzs4aNmyYfH191bJlS0lSYWGhYmJitHr1anl5een999/XBx98oOjoaO3bt0+TJ09WUFDQbcdB5QgAAACwdYadRR75+fnKzMws98jPzy9z+p07d6pr165yd3fXPffco379+ik5Odm0vqioSDExMfLy8pIktW7dWr/+Wjr79L59+5SQkKCQkBBFRUWZKkpVQXIEAAAA2DhLDatbtmyZevfuXe6xbFnZW2pkZ2erYcOGpmVPT09lZWWZlj08PNSnTx9J0qVLl/TJJ5+Ylhs2bKhx48Zp7dq1atSokd56660qvw4MqwMAAABgESNHjtSQIUPKtbu5uZVZNgyj3DZ2dnbl2goKCvTyyy+rTZs2puN++OGHpvXPP/+8KWmqCpIjAAAAwMYZJeUTEXNwc3MrlwhVxMvLS99//71pOTs7W56enmW2yc7OVkREhLp27aqpU6dKKk2WVq9erVGjRkkqTbIcHaue4jCsDgAAAIBVde/eXbt27dLZs2d18eJFbdy4UT179jStLy4u1osvvqjAwEC9/vrrpqrSPffco08//VT/+te/JElffPGF+vbtW+U4qBwBAAAANs7aN4H18vLSq6++qvDwcBUVFempp55Sx44dNXr0aI0fP16nTp3Sv//9bxUXF2vDhg2SpA4dOmjWrFl67733FBMTo0uXLumhhx7SO++8U+U4SI4AAAAAG2cYlhlWdyuCg4MVHBxcpm3JkiWSpEceeUSHDh2qcL/OnTvr66+/NksM1S45Onv2rBYsWKA9e/bI0dFRrq6uioyMVO/evSVJI0aM0KlTp3TPPfdIKp3zvGnTppo/f74aNGhgzdABAAAA1GDVKjm6cuWKRo4caZrX3MHBQUePHlVERISaNGmiNm3aSJJmzpwpX19fSVJJSYnGjx+vzz//XBMnTrRm+AAAAECNZO1hddWF2ZKjq1evKiYmRunp6crJyVGzZs3UvHlzeXl5KSIiQpI0fvx4BQUFqWPHjqYbND388MNKTU3Vtm3btGHDBrm4uCgyMtJ03ObNmysmJkbFxcUVnvfChQvKzc1Vx44dzdUVAAAAADbIbMlRWlqanJyctHLlSpWUlGjkyJG67777tG7dOkVERKiwsFB79+7V/Pnz9V//9V8KDAzU8OHDtWnTJq1bt06S9K9//Us+Pj7lju3n51dmOTo6WrVq1dLZs2dVt25dDRgwwDR9HwAAAIBbY6mpvGsasyVHPj4+cnd314oVK3T06FFlZGTIw8NDV65c0bFjx5SWliZ/f385Oztrx44dmj17tiSpb9++1537fP78+frnP/+pS5cuqUePHoqOjpb0f8Pq9u7dq/Hjx8vPz0/Ozs7m6goAAAAAG2S2+xxt3rxZUVFRcnV1VWhoqHx8fGQYhkJCQpSUlKSkpCSFhIRIkhwcHCq8C26HDh2UlpZmWo6KitLatWs1ZswYFRYWltv+0Ucf1YgRIzRp0iRdvXrVXF0BAAAAbIphWOZR05gtOdq1a5cCAwMVFhamBg0aKDU1VcXFxQoODlZSUpKOHTumzp07Syq9yVNiYqIkaevWrcrPz5ckDRgwQBcvXtTixYtVVFQkqXQ2upSUFNnbVxzqH//4R128eFF/+9vfzNUVAAAAwKYYJXYWedQ0ZhtWN3ToUEVFRSk5OVnOzs7y9vZWZmamGjVqJA8PD3l7e5vuZDt16lRNmjRJ8fHxatOmjWlYnbOzs5YvX6733ntPgwcPlqOjo0pKShQQEKDnn3++wvM6OzvrlVde0dtvv61BgwapTp065uoSAAAAABtituSodevWpmrQ7y1fvrzM8oYNGxQdHa2WLVvqwIEDOnLkiGld3bp1NW3atOueJy4urlxbSEiIacgeAAAAgFtTE6s8lmCV+xw9+OCDmjBhguzt7eXi4qIZM2ZYIwwAAAAAMLFKcuTn51duem4AAAAA1lETJ0+wBKskRwAAAACqD4bVlTLbbHUAAAAAUJNROQIAAABsnGFQOZKoHAEAAACAJCpHAAAAgM0zSqwdQfVAcgQAAADYuBKG1UliWB0AAAAASKJyBAAAANg8JmQoReUIAAAAAGTDlaP0K3WsHYLZdG7QytohmNWh7HrWDsFsujVobe0QzMrFzsnaIZjN1d0J1g7BrBy7DrZ2CGZzccqL1g7BrGoZntYOwWwu7j1j7RDM6rFLjawdgtnY2/FXf9webgJbisoRAAAAAMiGK0cAAAAAShmGtSOoHkiOAAAAABvHsLpSDKsDAAAAAFE5AgAAAGweN4EtReUIAAAAAETlCAAAALB53AS2FMkRAAAAYOOYra4Uw+oAAAAAQFSOAAAAAJvHhAylqBwBAAAAgKgcAQAAADaPCRlKkRwBAAAANo4JGUrVmOQoICBAy5cv14kTJ/Tiiy/qgQcekCSVlJTo/PnzGj16tJ555hkrRwkAAACgpqoxydFvdejQQXFxcablgwcP6qmnnlJwcLBq165txcgAAACAmocJGUpZJDm6evWqYmJilJ6erpycHDVr1kzNmzeXl5eXIiIiJEnjx49XUFCQOnbsqKioKOXl5enhhx9Wamqqtm3bpnPnzmnixIk6deqUWrRoocuXL1/3fCdOnFCtWrXk7Oxsie4AAAAAsAEWma0uLS1NTk5OWrlypTZt2qTLly/rvvvu0/r16yVJhYWF2rt3r3r16qVZs2YpMDBQiYmJ6t+/v7KysiRJixYtUrt27ZSYmKjhw4crJyfHdPz9+/dr0KBBevLJJ+Xr66tvvvlGn332GckRAAAAUAWGYWeRR01jkcqRj4+P3N3dtWLFCh09elQZGRny8PDQlStXdOzYMaWlpcnf31/Ozs7asWOHZs+eLUnq27ev3NzcJEl79uzRggULTMdr2rSp6fjXhtVduXJFEydOlIuLizp27GiJrgAAAACwERapHG3evFlRUVFydXVVaGiofHx8ZBiGQkJClJSUpKSkJIWEhEiSHBwcZFQwPYadnV2ZdgcHh3LbODs7a+bMmdq+fbvWrVtnia4AAAAAd70Sw84ij5rGIsnRrl27FBgYqLCwMDVo0ECpqakqLi5WcHCwkpKSdOzYMXXu3FmS1L17dyUmJkqStm7dqvz8fElSt27dtHbtWknSjz/+qF9++aXCc9WpU0fjxo3T/PnzdenSJUt0BwAAALirGRZ61DQWSY6GDh2q9evXa/DgwRo3bpy8vb2VmZmpRo0aycPDQ/369ZOdXWkmOXXqVG3cuFGDBw/Wt99+axpWN378eB0/flwDBw7UkiVLygyrq+h8tWrV0meffWaJ7gAAAACwARa55qh169amatDvLV++vMzyhg0bFB0drZYtW+rAgQM6cuSIJKl27dqKjY0tt//9998vX1/fMm2Ojo769ttvzRQ9AAAAYFtq4hA4S7D6fY4efPBBTZgwQfb29nJxcdGMGTOsHRIAAAAAG2T15MjPz09+fn7WDgMAAACwWTVx2m1LsHpyBAAAAMC6SqwdQDVhkQkZAAAAAKCmoXIEAAAA2DhDDKuTqBwBAAAAgCSSIwAAAMDmlRiWedyKxMREDRgwQH379tWKFSvKrT948KDCwsLUr18/vf7667p69aok6eTJkxo+fLj69++vl156SefPn6/y60ByBAAAANi4EtlZ5FFZWVlZWrhwof76179q7dq1WrlypX766acy20ycOFFvvPGGNmzYIMMwFB8fL0maPn26nn32WSUnJ6tDhw766KOPqvw6kBwBAAAAsIj8/HxlZmaWe+Tn55fZbufOneratavc3d11zz33qF+/fkpOTjatP3HihC5duiRvb29JUmhoqJKTk1VUVKTU1FT169evTHtVMSEDAAAAYOMsNSHDsmXLFBsbW649MjJS48aNMy1nZ2erYcOGpmVPT0/9+OOP113fsGFDZWVlKTc3V7Vr15ajo2OZ9qoiOQIAAABgESNHjtSQIUPKtbu5uZVZNozyFyjZ2dnddP3N9rtVNpscdaida+0QzObfJ3+xdghm1b713fOx/NeRDGuHYFbe7s2sHYLZ2D/cxdohmNXFKS9aOwSzqTX7Y2uHYFYXkt+0dghmc08XT2uHYFYb0q0dgfm0cmxi7RDM66q1A7A9lroJrJubW7lEqCJeXl76/vvvTcvZ2dny9PQssz4nJ8e0fPr0aXl6eqpevXoqLCxUcXGxHBwcTO1VxTVHAAAAgI0zZGeRR2V1795du3bt0tmzZ3Xx4kVt3LhRPXv2NK1v0qSJXFxc9MMPP0iSEhIS1LNnTzk5Oalz585KSkoq015VJEcAAAAArMrLy0uvvvqqwsPDNXjwYAUFBaljx44aPXq09u3bJ0maP3++Zs+ercDAQF28eFHh4eGSpGnTpik+Pl4DBgzQ999/r1deeaXKcdw945cAAAAAVImlhtXdiuDgYAUHB5dpW7Jkiel5mzZttGrVqnL7NWnSRHFxcWaJgcoRAAAAAIjKEQAAAGDzqkPlqDqgcgQAAAAAonIEAAAA2DxL3QS2piE5AgAAAGxcCbmRJIbVAQAAAIAkKkcAAACAzSthWJ0kKkcAAAAAIInKEQAAAGDzDGsHUE1U+8pRQECAMjMzrR0GAAAAcNcqsdCjpqn2yREAAAAA3AlmHVZ39epVxcTEKD09XTk5OWrWrJmaN28uLy8vRURESJLGjx+voKAgdezYUVFRUcrLy9PDDz+s1NRUbdu2TefOndPEiRN16tQptWjRQpcvX5YkrVmzRv/85z+Vl5en48eP6/HHH1dMTIxSUlI0b948lZSUqFWrVpo7d645uwQAAADc9UrsmJBBMnPlKC0tTU5OTlq5cqU2bdqky5cv67777tP69eslSYWFhdq7d6969eqlWbNmKTAwUImJierfv7+ysrIkSYsWLVK7du2UmJio4cOHKycnp8zxFy1apG+++UZ///vfdfjwYUlSRkaGli1bRmIEAAAAoMrMWjny8fGRu7u7VqxYoaNHjyojI0MeHh66cuWKjh07prS0NPn7+8vZ2Vk7duzQ7NmzJUl9+/aVm5ubJGnPnj1asGCB6XhNmzY1Hb9Tp06qXbu2JKlp06bKy8uTJDVr1kx16tQxZ1cAAAAAm8GEDKXMWjnavHmzoqKi5OrqqtDQUPn4+MgwDIWEhCgpKUlJSUkKCQmRJDk4OMgwyr8NdnZ2ZdodHBxMz11cXCrcztXV1ZzdAAAAAGwKEzKUMmtytGvXLgUGBiosLEwNGjRQamqqiouLFRwcrKSkJB07dkydO3eWJHXv3l2JiYmSpK1btyo/P1+S1K1bN61du1aS9OOPP+qXX34xZ4gAAAAAUCGzDqsbOnSooqKilJycLGdnZ3l7eyszM1ONGjWSh4eHvL29Zfe/F3tNnTpVkyZNUnx8vNq0aWMaVjd+/HhNnjxZAwcOVPPmzcsMqwMAAABgfiXMxyDJzMlR69atTdWg31u+fHmZ5Q0bNig6OlotW7bUgQMHdOTIEUlS7dq1FRsbW27/+++/X6GhoabluLg403NfX19zhA8AAADAhpk1OboVDz74oCZMmCB7e3u5uLhoxowZ1goFAAAAsGklonQkWTE58vPzk5+fn7VODwAAAABlWC05AgAAAFA9MJV3KZIjAAAAwMYxIUMps07lDQAAAAA1FZUjAAAAwMbVxBu2WgKVIwAAAAAQlSMAAADA5jEhQymSIwAAAMDGMSFDKYbVAQAAAICoHAEAAAA2jwkZStlscpR33tXaIZjN/rbNrB2CWf10vJ61QzCbQ52vWjsEs7py/u756lzS+2Nrh2BWtQxPa4dgNheS37R2CGb1Ytpb1g7BbJZ2urvemz/Xz7J2CGbjd6qRtUMws2JrBwAbZbPJEQAAAIBSd8+fP28PyREAAABg4wwmZJDEhAwAAAAAIInKEQAAAGDzGFZXisoRAAAAAIjKEQAAAGDzqByVonIEAAAAAKJyBAAAANg8w9oBVBMkRwAAAICNK2Eqb0kMqwMAAAAASVSOAAAAAJvHhAylqBwBAAAAgKgcAQAAADaPylGpKlWOCgoK9PLLL99wmylTpujEiRM33GbEiBFKSUmp9Hk3b96s999/v9LbAwAAALg5w0KPmqZKyVFeXp4OHTp0w21SUlJkGOZ9SXr37q0///nPZj0mAAAAAEhVHFY3c+ZMZWdna+zYsQoICNDnn38uOzs7tW/fXm+88YZWrFih7OxsvfDCC1qxYoV2796tzz//XJcuXdLly5c1c+ZM+fj4mI6XkpKiefPmqaSkRK1atdKECRM0depUFRQU6PTp0xo4cKCioqK0Zs0a7dmzR3PmzFFAQIBCQkK0fft2Xbx4UXPnzlWHDh3M9sIAAAAAtoKpvEtVqXIUHR0tT09PjR8/Xh9//LHi4uKUmJioWrVqKTY2Vi+88II8PT31ySefqG7duvrb3/6mjz/+WN98841Gjx6tpUuXljtmRkaGli1bprlz52rdunUKCgpSfHy8vvnmG/31r3/V2bNny+3j7u6uVatWadiwYfrLX/5Sla4AAAAAgKTbnJAhNTVV/v7+8vDwkCT94Q9/0JQpU8psY29vrw8//FBbtmzRzz//rD179sjevnxO1qxZM9WpU0eSFBERod27d2vp0qVKT09XUVGRLl68WG6fHj16SJJatWqljRs33k5XAAAAAJvFhAylbmsq75KSsi+jYRi6evVqmbbz588rLCxMmZmZ8vHx0YgRIyo8lqurq+n5nDlzFBcXp8aNG+ull16Sh4dHhdcvubi4SJLs7KgDAgAAAFXFhAylqpQcOTo66urVq+rSpYu2bNmic+fOSZLi4+Pl6+srSXJwcFBxcbEyMjJkb2+vF198UV27dtW2bdtUXFx8w+Pv2LFDERERCgwM1K+//qqsrKxyiRgAAACAu9vJkyc1fPhw9e/fXy+99JLOnz9fbpvs7GxFRERo0KBBGjJkiHbt2iVJKioq0qOPPqpBgwaZHjfLQ6o0rK5+/fpq3LixZs2apTFjxmjEiBEqKipS+/btNX36dElSr1699MILL2jJkiVq27atAgMD5erqKh8fH508efKGxx8zZoxee+01ubm5qX79+urQoYMyMzOrEioAAACAmyippnWe6dOn69lnn9XAgQP14Ycf6qOPPtLEiRPLbPPOO+/I399fzz33nI4ePaoRI0Zo27ZtOnz4sDp16lThfAfXY2eYe77tGmJ341Brh2A2jRvnWTsEs/rpeH1rh2A27dtmWzsEs7py3sHaIZjN2lONrB2CWdW6i77JL9xlI6VfTHvL2iGYzdJOb1o7BLPqXz/L2iGYzf+camjtEMyqjnHjv+7XJL2zVlo7hEqZ9eBwixz39WMrqrxvUVGRfH19tWfPHjk6OurXX3/Vc889p82bN5fZbuPGjfL19VXdunVVXFwsX19f/f3vf9e6desUHx8vJycnSVJUVJS6dOlyw3Pe1oQMAAAAAGo+S13Akp+fr/z8/HLtbm5ucnNzu+G+ubm5ql27thwdS1OWhg0bKiur/B81nnzySdPzpUuXqm3btqpTp47s7OzUu3dvjR07VgcPHtTo0aOVmJioevXqXfecJEcAAAAALGLZsmWKjY0t1x4ZGalx48aZlr/99lvNnj27zDYPPfRQuf1uNBHbf//3f2vlypX64osvJEnDhg0zrWvXrp06duyovXv3qk+fPtc9BskRAAAAYOMsNTp75MiRGjJkSLn231eNAgMDFRgYWKbt2rC64uJiOTg46PTp0/L09KzwPO+88462bt2qFStW6L777pMkJSQk6NFHH9UDDzwgqXRm7WtD7K6H5AgAAACwcZYaVleZ4XPX4+TkpM6dOyspKUnBwcFKSEhQz549y2333//930pJSdGXX35Z5lyHDx/W//zP/ygmJkZHjx7VwYMH9dhjj93wnCRHAAAAAKqladOmafLkyVq8eLEaNWqkd999V5L05ZdfKjs7W+PHj9eHH36o2rVrl7mf6ieffKKxY8dq6tSpCgoKkp2dnebOnavatWvf8HwkRwAAAICNK6mmM4U2adJEcXFx5dqfeeYZ0/PU1NTr7r9o0aJbOl+VbgILAAAAAHcbKkcAAACAjauuN4G900iOAAAAABtHalSKYXUAAAAAIBuuHN3nWWDtEMxmdJaztUMwqy86lr/zcU0VfKCaXt1YRUMdG1k7BLMZ8+wFa4dgVhf3nrF2CGZzT5eK72FRUy3t9Ka1QzCbiLS3rB2CWc167A1rh2A2Ra5319/9Ay5aOwLbY6mpvGsaKkcAAAAAIBuuHAEAAAAoxYQMpUiOAAAAABtHalSKYXUAAAAAICpHAAAAgM1jQoZSVI4AAAAAQFSOAAAAAJvHhAylqBwBAAAAgKgcAQAAADaPulEpkiMAAADAxjEhQymG1QEAAACAqBwBAAAANs9gYJ0kKkcAAAAAIKmGJEdFRUUaOXKkUlJSTG0HDx5UWFiY+vXrp9dff11Xr161YoQAAABAzVVioUdNU+2To6NHj2rEiBFKS0sr0z5x4kS98cYb2rBhgwzDUHx8vJUiBAAAAGq2EhkWedQ0lbrm6OrVq4qJiVF6erpycnLUrFkzNW/eXF5eXoqIiJAkjR8/XkFBQerYsaOioqKUl5enhx9+WKmpqUpISFBISIi2b98uSerRo4emTJmiAQMG6JNPPpGdnZ06dOigefPmSZLq1q2rBQsWqF69elq1apWef/55LVu2zBTPiRMndOnSJXl7e0uSQkNDtWjRIj377LPmfG0AAAAA2JBKVY7S0tLk5OSklStXatOmTbp8+bLuu+8+rV+/XpJUWFiovXv3qlevXpo1a5YCAwOVmJio/v37KysrS/Xq1VPjxo115MgR/ec//1FxcbH27NkjSdq2bZv8/f310UcfKSYmRmvWrJG/v7/+/e9/S5Jee+019enTp0w82dnZatiwoWm5YcOGysrKMssLAgAAANgaw0KPmqZSlSMfHx+5u7trxYoVOnr0qDIyMuTh4aErV67o2LFjSktLk7+/v5ydnbVjxw7Nnj1bktS3b1+5ublJkvz8/LRr1y45OjoqPDxc69evV0FBgU6fPq2WLVuqd+/eioyMVJ8+fdS7d289/vjj143HMMq/1HZ2dlXpPwAAAABIqmTlaPPmzYqKipKrq6tCQ0Pl4+MjwzAUEhKipKQkJSUlKSQkRJLk4OBQYfJyLTlKSUlR3759ZW9vr8TERPXo0UOSNGrUKMXFxemBBx7QvHnztHjx4uvG4+XlpZycHNPy6dOn5enpeUsdBwAAAFCKa45KVSo52rVrlwIDAxUWFqYGDRooNTVVxcXFCg4OVlJSko4dO6bOnTtLkrp3767ExERJ0tatW5Wfny9Jat++vX7++WdlZGSoRYsW8vX11eLFi9WrVy9J0tChQ3X+/HmNGjVKo0aNMg2rq0iTJk3k4uKiH374QZKUkJCgnj17VvlFAAAAAGwZs9WVqtSwuqFDhyoqKkrJyclydnaWt7e3MjMz1ahRI3l4eMjb29s0rG3q1KmaNGmS4uPj1aZNG9OwOjs7Oz322GO6ePGiJKlr16766quv1KVLF0nShAkTNHnyZDk6OsrFxUXTp0+/YUzz589XdHS0zp8/r3bt2ik8PLzKLwIAAAAAVCo5at26taka9HvLly8vs7xhwwZFR0erZcuWOnDggI4cOWJa9/bbb5ueBwQElJmeu1u3bvrmm2+uG0NcXFyZ5TZt2mjVqlWVCR8AAADADRg1cAicJVQqOboVDz74oCZMmCB7e3u5uLhoxowZ5j4FAAAAAJid2ZMjPz8/+fn5mfuwAAAAACykJl4fZAmVmpABAAAAAO52Zq8cAQAAAKhZuOaoFMkRAAAAYOMYVleKYXUAAAAAICpHAAAAgM0rMRhWJ1E5AgAAAABJVI4AAAAAm0fdqBTJEQAAAGDjSkiPJDGsDgAAAAAk2XDlaN+pBtYOwWxWP3fB2iGY1XdfeFg7BLPZHFFk7RDMqujoCWuHYDbv/62xtUMwq8cuNbJ2CGazId3aEZjXn+tnWTsEs5n12BvWDsGsXv9hhrVDMJvj/i9aOwSz+vni3fO7QE3BfY5KUTkCAAAAANlw5QgAAABAKW4CW4rkCAAAALBxTMhQimF1AAAAACAqRwAAAIDNY0KGUlSOAAAAAEBUjgAAAACbx4QMpagcAQAAAICoHAEAAAA2zzC45kgiOQIAAABsHlN5l2JYHQAAAACIyhEAAABg86rrhAwnT57UxIkTdebMGTVr1kzz58/XvffeW26bgQMH6oEHHpAkNWjQQEuXLtWVK1f0+uuva//+/XJ1ddX8+fPVokWLG56vWlaOAgIClJmZaVrOysrSE088UWabxMREDRgwQH379tWKFSvudIgAAAAALGz69Ol69tlnlZycrA4dOuijjz4qt82+ffsUHBystWvXau3atVq6dKkkKS4uTrVq1dK3336rqVOnavLkyTc9X7VMjn5r69atCg8P1+nTp01tWVlZWrhwof76179q7dq1WrlypX766ScrRgkAAADUXIaF/uXn5yszM7PcIz8//6YxFRUVKTU1Vf369ZMkhYaGKjk5udx2+/bt05EjRxQaGqrw8HAdPnxYkvSPf/xDISEhkiQfHx/l5ubq5MmTNzznTYfVXb16VTExMUpPT1dOTo6aNWum5s2by8vLSxEREZKk8ePHKygoSB07dlRUVJTy8vL08MMPKzU1VQkJCQoJCdH27dslST169NCUKVM0YMAAffLJJ7Kzs9PQoUM1ceJEnTp1Si1atNDly5dN51+1apU++OADBQcHm9p27typrl27yt3dXZLUr18/JScnKzIy8mbdAQAAAPA7lpqQYdmyZYqNjS3XHhkZqXHjxt1w39zcXNWuXVuOjqUpS8OGDZWVlVVuOxcXFw0ePFjDhg3T1q1bNXbsWCUlJSk7O1sNGzY0bdewYUOdOnVKjRs3vu45b5ocpaWlycnJSStXrlRJSYlGjhyp++67T+vWrVNERIQKCwu1d+9ezZ8/X//1X/+lwMBADR8+XJs2bdK6detUr149NW7cWEeOHJGDg4OKi4u1Z88eDRgwQNu2bVNMTIwWLVqkdu3aacmSJUpNTdW3335rOv8HH3xQLqbfd9TT01M//vjjzboCAAAA4A4aOXKkhgwZUq7dzc2tzPK3336r2bNnl2l76KGHyu1nZ2dXru23SZafn58WLFigo0ePVhiPvf2NB87dNDny8fGRu7u7VqxYoaNHjyojI0MeHh66cuWKjh07prS0NPn7+8vZ2Vk7duwwdapv376mTvv5+WnXrl1ydHRUeHi41q9fr4KCAp0+fVotW7bUnj17tGDBAtP5mjZtesOYKpqHvaIXCgAAAMDNWeo+R25ubuUSoYoEBgYqMDCwTFtRUZF8fX1VXFwsBwcHnT59Wp6enuX2jYuLU1BQkDw8PCSV9sXR0VGenp46ffq0HnzwQUm67v6/ddNrjjZv3qyoqCi5uroqNDRUPj4+MgxDISEhSkpKUlJSkmksn4ODQ4Uv7LXkKCUlRX379pW9vb0SExPVo0cPSaWJzW/3c3BwuGFMXl5eysnJMS1nZ2fftKMAAAAAag4nJyd17txZSUlJkqSEhAT17Nmz3HapqalatWqVJGnPnj0qKSlR8+bN5efnp7Vr10qSvv/+e7m4uNxwSJ1UieRo165dCgwMVFhYmBo0aKDU1FQVFxcrODhYSUlJOnbsmDp37ixJ6t69uxITEyWVTqRw7UKr9u3b6+eff1ZGRoZatGghX19fLV68WL169ZIkdevWzRT4jz/+qF9++eWGMXXv3l27du3S2bNndfHiRW3cuLHCFwoAAADAzZVY6HG7pk2bpvj4eA0YMEDff/+9XnnlFUnSl19+qffff1+S9Prrr2vnzp0KCgrS3LlztWDBAtnb22vEiBG6cuWKBg4cqFmzZumdd9656fluOqxu6NChioqKUnJyspydneXt7a3MzEw1atRIHh4e8vb2Ng1pmzp1qiZNmqT4+Hi1adPGVEKzs7PTY489posXL0qSunbtqq+++kpdunSRVDqhw+TJkzVw4EA1b978psPqvLy89Oqrryo8PFxFRUV66qmn1LFjx5t2FgAAAEB5hoUmZLhdTZo0UVxcXLn2Z555xvTcy8tLn3/+ebltXFxcNHfu3Fs6302To9atW5uqQb+3fPnyMssbNmxQdHS0WrZsqQMHDujIkSOmdW+//bbpeUBAgNLS0kzLtWvXrnAWi9+6NiXfNcHBwWVmsAMAAACA23HT5OhWPPjgg5owYYLs7e3l4uKiGTNmmPPwAAAAACzAUlN51zRmTY78/Pzk5+dnzkMCAAAAwB1h1uQIAAAAQM1jqam8a5qbzlYHAAAAALaAyhEAAABg47jmqBTJEQAAAGDjqutU3ncaw+oAAAAAQFSOAAAAAJtXwoQMkqgcAQAAAIAkKkcAAACAzaNuVIrkCAAAALBxzFZXymaToyZOF6wdgtk49PKzdghm5Ra329ohmI19h3bWDsGsnB/Mt3YIZrNg3Tprh2BW9nZ21g7BbFo5NrF2CGbld6qRtUMwmyLXu+uXp+P+L1o7BLNp+vePrR2CWf3cfoq1Q4CNstnkCAAAAEApKkelmJABAAAAAETlCAAAALB5BlN5SyI5AgAAAGwew+pKMawOAAAAAETlCAAAALB5BpUjSVSOAAAAAEASlSMAAADA5jEhQymSIwAAAMDGMSFDKYbVAQAAAICoHAEAAAA2j2F1pagcAQAAAICoHAEAAAA2j2uOSlmtcnT8+HFNnTr1lvYpLi5WRESEBg4cqKVLl+r111+XJK1cuVLr1q2zRJgAAAAAbITVKkcnT57U8ePHb2mfrKwsHT58WNu3by/TnpaWpi5dupgzPAAAAMBmcBPYUhZJjlJSUjRv3jyVlJSoSZMmuueee5Senq7i4mKNHj1aQUFBmjlzpjIzMzV9+nT179/ftH2rVq0UExOj6OhoHT58WHZ2doqIiNDgwYM1ZswYnTt3TqGhoZo0aZJiY2P10ksvacuWLdq9e7caNmyoHj16WKJLAAAAwF2rhAkZJFmwcpSRkaG///3v+stf/iJPT0/NnTtXhYWFGjZsmP7f//t/io6OVmxsrKZNm6aUlBTT9nXq1NE777wjDw8PrVu3TmfPntXQoUPVpk0bLV68WOHh4VqzZo1SUlIkSd27d1dAQIC6dOlCYgQAAACgyiyWHDVr1kx16tTRzp07denSJa1evVqSdOHCBaWnp+vee++tcHtJ2r17t95++21JUr169dS7d2/t2bNHAQEBlgoXAAAAsFkMqytlseTI1dVVklRSUqJ58+apffv2kqScnBzVrVtXe/furXB7qfw864ZhqLi42FKhAgAAAIDlZ6vr2rWrvvzyS0lSdna2QkJC9Ouvv8rBwUFXr1697j6rVq2SJJ09e1abN2++4YQLDg4OJE8AAABAFZUYhkUeNY3Fk6PIyEhdunRJQUFBGjlypCZOnKgHHnhALVq0UEFBgSZOnFhun7Fjx+rcuXMKDg7Wc889pxdffNFUeapI9+7d9fHHHys5OdmSXQEAAADuSoaF/tU0dsbvx7DZiL1NB1k7BLNpu9jP2iGY1a6I3dYOwWy6vdfW2iGYlVGQb+0QzOb+/7q77o1mb2dn7RDMplWdJtYOwawmFTeydghmk+p6821qkog6OdYOwWya/v1ja4dgVtvaT7F2CGbTO2ultUOolDaePhY57qHsVIsc11Ksdp8jAAAAANVDTRwCZwkWH1YHAAAAADUBlSMAAADAxtXE64MsgeQIAAAAsHEMqyvFsDoAAAAAEJUjAAAAwOYxrK4UlSMAAAAAEJUjAAAAwOYZRom1Q6gWqBwBAAAAgKgcAQAAADavhGuOJJEcAQAAADbPYCpvSZKdYaOvxGavP1g7BAAAAFSg54HZ1g7BbJwaNLd2CJXyQL1HLHLcX87us8hxLYXKEQAAAGDjGFZXigkZAAAAAEBUjgAAAACbV12vtDl58qQmTpyoM2fOqFmzZpo/f77uvffeMtu8+OKL+vXXXyVJJSUlOnLkiFatWqU2bdrI19dXTZs2NW27Zs0aOTg4XPd8JEcAAACAjSuppsnR9OnT9eyzz2rgwIH68MMP9dFHH2nixIlltvn4449Nz99//315e3vrkUce0f79+9WpUyctXbq00udjWB0AAAAAi8jPz1dmZma5R35+/k33LSoqUmpqqvr16ydJCg0NVXJy8nW3/89//qOEhARNmjRJkrRv3z6dPXtWTz/9tJ5++mnt2bPnpuekcgQAAADYOMNCEzIsW7ZMsbGx5dojIyM1bty4G+6bm5ur2rVry9GxNGVp2LChsrKyrrv94sWLFRERodq1a0uS7Ozs1Lt3b40dO1YHDx7U6NGjlZiYqHr16l33GCRHAAAAACxi5MiRGjJkSLl2Nze3MsvffvutZs8uO4X7Qw89VG4/Ozu7Cs+Tl5enHTt2aNasWaa2YcOGmZ63a9dOHTt21N69e9WnT5/rxktyBAAAANg4S03I4ObmVi4RqkhgYKACAwPLtBUVFcnX11fFxcVycHDQ6dOn5enpWeH+W7duVc+ePeXi4mJqS0hI0KOPPqoHHnhAUmkfnZycbhgH1xwBAAAANq5EhkUet8PJyUmdO3dWUlKSpNJkp2fPnhVu+z//8z/q3LlzmbbDhw/rs88+kyQdPXpUBw8e1GOPPXbDc5IcAQAAAKiWpk2bpvj4eA0YMEDff/+9XnnlFUnSl19+qffff9+03fHjx+Xl5VVm37Fjx+rs2bMKCgrSn//8Z82dO9d0PdL12BnVdVJzC9vs9QdrhwAAAIAK9Dww++Yb1RBODZpbO4RKaeD2sEWOm5N/xCLHtRQqRwAAAACgO5QcpaSkaMSIEZXevri4WJGRkbp48WKltt+/f7/eeeedqoYHAAAA2LQSw7DIo6aplpWjL7/8Uk888YRq1apVqe07dOigU6dO6fDhwxaODAAAAMDd6o4mR4WFhQoICNCuXbskSREREVqxYkWZbQzDUFxcnAYOHChJmjx5sqZPn66QkBD5+/tr06ZNioyMVJ8+fTRnzhzTfsHBwabZKAAAAABUnmEYFnnUNHf0Pke1a9fWrFmzFBMTo/DwcNnZ2Wn48OFltjl06JDq1KmjOnXqmNqys7P1zTff6Ouvv9aUKVO0YcMGubi4qGfPnho7dqzq1KkjHx8fTZo0SYZhXPfmUAAAAADKu91pt+8Wd/wmsN26dVPXrl317rvv6ttvvy23PiMjQ/fdd1+ZtmvzmTdu3FitWrVS/fr1JUnu7u7Ky8tTnTp1VLt2bRmGodzcXNWrV8/yHQEAAABwV7nj1xwZhqGff/5ZtWrVUkZGRvmA7O3l4OBQpu23d7J1dLx+Pufo6Ch7+2p5GRUAAABQbTGsrtQdzyT++te/6p577tFHH32k6OhoXbhwocz6Bx54QCdPnrzl4xYWFsowDLm7u5spUgAAAAC25I4mR8ePH9fixYs1bdo0dezYUU888US5KbjbtGmj3NxcFRQU3NKxU1NT5e/vb85wAQAAAJvAVN6l7IxqWO9avny57O3t9dxzz1V6n3HjxikyMlKtW7eu1Pabvf5Q1fAAAABgQT0PzLZ2CGbj1KC5tUOolHvvecgixz1/IcMix7WUanmBzjPPPKMdO3ZU+iawP/74oxo3blzpxAgAAAAAfq9aVo7uBCpHAAAA1ROVozuvVq0HLXLcixePWeS4llItK0cAAAAAcKfd8fscAQAAAKhebHQwWTkkRwAAAICNM0RyJDGsDgAAAAAkUTkCAAAAbB7D6kpROQIAAAAAUTkCAAAAbB6Vo1JUjgAAAABAVI4AAAAAm0fdqJSdQQ0NAAAAABhWBwAAAAASyREAAAAASCI5AgAAAABJJEcAAAAAIInkCAAAAAAkkRwBAAAAgCSSIwAAAACQRHIEAAAAAJJIjgAAAABAEskRAAAAAEgiOTJJTk5WaGioQkJCFBwcrE8//fSW9o+Pj5e/v7/mzp2rRYsW6fvvv7dQpJaXmZmpDh06aNCgQRo0aJCCg4MVEBCgRYsWKSUlRSNGjLB2iGVkZWVp9OjRFa6r6e/FrVizZo26dOliet+CgoL05JNP6rvvvpMkffDBB/rggw+sHOWNFRYWqlOnTsrKyirTvmfPHg0ZMkSS1Lp1aw0aNEiDBw9WcHCwhg0bpsOHD1sj3Eo7e/asXn/9dfXt21eBgYEaMmSINm/ebFo/YsQI9e3b1/Te9e7dW6NGjVJOTo4Vo668gIAAZWZmKiUlRZ06dSr33fHll19aO8RKu9aXO6GgoEAvv/zyDbeZMmWKTpw4ccNtRowYoZSUlEqfd/PmzXr//fcrvX11V1RUpJEjR5Z5DQ4ePKiwsDD169dPr7/+uq5evWrFCG/s95+5rKwsPfHEE2W2SUxM1IABA9S3b1+tWLHijsR1/PhxTZ069Zb2KS4uVkREhAYOHKilS5fq9ddflyStXLlS69ats0SYJrf6+0lxcbEiIyN18eLFSm2/f/9+vfPOO1UNDzWIo7UDqA6ysrI0d+5crVmzRh4eHjp//rxGjBihZs2aqXfv3pU6xrp16zRjxgw98cQTGjFihHx9fS0ctWV5enpq7dq1puWsrCz169dPDRo0sGJUFfPy8tKSJUsqXJeamlrj34tbERAQoDlz5piWv/vuO7355pvq06ePFaOqvNq1a6tv375av369/vSnP5naExISFBYWZlr+7Wfzb3/7myZNmqSEhIQ7GWqlXblyRSNHjlS/fv2UnJwsBwcHHT16VBEREWrSpInatGkjSZo5c6bps1pSUqLx48fr888/18SJE60Z/i3r0KGD4uLiTMsHDx7UU089peDgYNWuXduKkVU/eXl5OnTo0A23SUlJ0dixY8163t69e1f6/7bq7ujRo5o6dar+/e9/l2mfOHGiZs6cKW9vb02dOlXx8fF69tlnrRRl5W3dulVvv/22Tp8+bWrLysrSwoULtWbNGjk7O2vYsGHy9fVVy5YtLRrLyZMndfz48VvaJysrS4cPH9b27dvLtKelpalLly7mDO+2ffnll3riiSdUq1atSm3foUMHffbZZzp8+LBat25t4ehgTSRHknJzc1VUVKRLly5Jku69917NmTNHLi4uCggI0PLly3X//fcrJSVFsbGxiouL04gRI1S3bl2lp6crODhY+/bt0/Tp0zV27Fjt379f0dHRio2Nlaurq2JiYnTu3Dm5urrqjTfeULt27TR58mTVqlVLP/zwgwoKCjR16lStXbtWhw4dUp8+fTR58mStWbNGGzduVF5ens6cOSN/f39NnjxZdnZ2d/w1On36tAzD0L333quzZ89q9OjR+uWXX9SsWTMtWrRIzs7OdySOq1evKiYmRunp6crJyVGzZs00ZcoUjR49Wlu2bNHkyZN17tw5HTt2TC+88EKNeS8q6lfz5s3l5eWliIgISdL48eMVFBSkjh07KioqSnl5eXr44YeVmpqqbdu2VXjcEydOqG7duqblH3/8UcOGDVNWVpZCQ0M1btw4s8Rvzn6EhYVp7ty5puTo8uXL+sc//qFJkyZVeE4fHx9TQvjbn8v33ntPbdu2tXp/NmzYIBcXF0VGRpqO27x5c8XExKi4uLjC8164cEG5ubnq2LHjbcVvqT6dO3dOEydO1KlTp9SiRQtdvnz5uuc7ceKEatWqZZHvCEv2Zc2aNfrnP/+pvLw8HT9+XI8//rhiYmKUkpKiefPmqaSkRK1atdLcuXOrHP/MmTOVnZ2tsWPHKiAgQJ9//rns7OzUvn17vfHGG1qxYoWys7P1wgsvaMWKFdq9e7c+//xzXbp0SZcvX9bMmTPl4+NjOt7vY5swYYKmTp2qgoICnT59WgMHDlRUVJTWrFmjPXv2aM6cOQoICFBISIi2b9+uixcvau7cuerQocMdfR8SEhJMMUhSjx49NGXKFA0YMECffPKJ7Ozs1KFDB82bN0+SVLduXS1YsED16tXTqlWr9Pzzz2vZsmWmeE6cOKFLly7J29tbkhQaGqpFixZVKjm6E30ZOnTodX9+Vq1apQ8++EDBwcGmtp07d6pr165yd3eXJNMfWn77nXKrfvtZadKkie655x6lp6eruLhYo0ePVlBQkGbOnKnMzExNnz5d/fv3L/PZiomJUXR0tA4fPiw7OztFRERo8ODBGjNmjM6dO6fQ0FBNmjRJsbGxeumll7Rlyxbt3r1bDRs2VI8ePaocd2UUFhYqJCREs2bNUrdu3RQREaGAgAANHz7ctI1hGIqLi9OqVaskqVK/B0hScHCwPvvss9v6uUcNYMAwDMN48803jXbt2hlhYWHGO++8Yxw8eNAwDMPw9/c3jh8/bhiGYezevdt47rnnDMMwjOeee85YtGiRaf/nnnvO2L17d7nnf/jDH4wDBw4YhmEY6enpxpNPPmkYhmFMmjTJePnllw3DMIw1a9YYjz32mJGTk2MUFBQYnTp1MvLz843Vq1cbjz/+uHH69Gnj8uXLxh/+8Adjw4YNFn8tjh8/brRv394ICQkx+vXrZ3Tp0sWIiIgwtm3bZuzevdvw9vY2fvnlF6O4uNgICwsz/v73v1s8pmv27NljxMTEGIZhGMXFxcZzzz1nLF261PD39zcMo/R1nTRpkmn7mvJeXK9fQ4YMMQzDMAoKCozHH3/cuHz5shEZGWl88cUXhmEYxsaNG42HH37YMAzDWL16teHj42OEhIQYAQEBRvfu3Y2JEycaR48eNQzDMBYtWmQMGTLEuHz5snHmzBnj//2//2cUFBSYrQ/m6kdJSYnRu3dv4z//+Y9hGIaxbt0649VXXzWd49p217Z99913jT/+8Y+GYZT/uawO/ZkxY4YxZ86cG57nueeeM/r06WMEBwcbjz/+uDFgwAAjNjbWuHz5stn6Ys4+TZ8+3Xj33XdNx3v44YeN48ePm74fQkJCjL59+xpdunQxxo0bZ/zrX/8yez8s3ZfVq1cbfn5+RkFBgXHhwgWjZ8+exqFDh4zdu3cbjz32mJGfn3/b8R8/ftzw9/c3Dh06ZPTp08c4e/asYRiGERMTY/rMXPs/qLi42AgPDzfOnDljGIZhfPXVV8aYMWMMw/i/77nfx/bpp58aa9asMQzDMPLz841OnToZZ86cMVavXm36nvT39zc+//xzwzAMY/ny5UZkZOQt98Mc78PQoUONw4cPGz/99JPRrVs3Y9q0aYZhGMbw4cON9PR047nnnjN9jpYtW2b885//LBPDb7/r9+7dawwbNsy0LiMjw/R9Xx36cr3P3G/99nvu448/Nm1vGIYRHx9vREdHV6o/1/Pbz8q8efOMZcuWmfo3cOBA45dffinzO8/vP1tz5841ZsyYYRiGYZw5c8YICAgwDh48aPpMX9vn2v6TJk0yVq9efVsxV6ZP1863c+dO48knnzS++OILIyIioty2//73v42wsDDTcmV+DzCM0tfHx8fHKCkpsWhfYF1Ujv7X9OnT9fLLL2v79u3avn27nn76ac2fP/+G+9zsr7rnz5/X/v37NWXKFFPbtb8IS1LPnj0lSY0bN1arVq1Uv359SZK7u7vy8vIklQ6TujaUbcCAAdq9e7eefPLJqnXyFlwbVldSUqI5c+bo8OHD6tq1q/bu3as2bdqoadOmkqQWLVqY+nMn+Pj4yN3dXStWrNDRo0eVkZGhCxculNmmovelur8XFfXLw8NDV65c0bFjx5SWliZ/f385Oztrx44dmj17tiSpb9++cnNzMx3n2rC6wsJCvfDCC2rcuLGaNWtmWt+jRw85OzurXr168vDwUF5enlmHOpmjH3Z2dhoyZIjWrVun8ePHa+3atRo1alSZ8wwaNEhS6ZC1Fi1a6K233jKtM2e1xVzvy2/Nnz9f//znP3Xp0iX16NFD0dHRkv5vWN3evXs1fvx4+fn5WaTaYo4+7dmzRwsWLDAd79r3gfR/w+quXLmiiRMnysXFxSIVsDvRl06dOpl+Ppo2bWr6LmjWrJnq1Kljtn6kpqbK399fHh4ekqQ//OEPZb6rJMne3l4ffvihtmzZop9//ll79uyRvX35y4Z/G1tERIR2796tpUuXKj09XUVFRRVeX3HtL/mtWrXSxo0bbzl+c7wPfn5+2rVrlxwdHRUeHq7169ebKl4tW7ZU7969FRkZqT59+qh37956/PHHrxuPYRjl2ipb5b8TfbnRZ87c/bmRa5+VnTt36tKlS1q9erWk0v8b09PTde+991a4vSTt3r1bb7/9tiSpXr166t27t/bs2aOAgIDbjsscunXrpq5du+rdd9/Vt99+W259RkaG7rvvvjJtN/s9oE6dOqpdu7YMw1Bubq7q1atn+Y7AKpiQQdI//vEPJSUlycvLS2FhYVq4cKGio6NN5dZrX0y/v6DT1dX1hsctKSmRs7Oz1q5da3p89dVXptK4k5OTaVtHx4rzVAcHhzLH++3ynWBvb6/XXntNZ86c0WeffSapbKx2dnYVfnFbyubNmxUVFSVXV1eFhobKx8dHjRs3LrNNRe9LdX8vKuqXYRgKCQlRUlKSkpKSFBISYorjZq957dq1NXfuXH3++ef64YcfTO2Wfu/M1Y8hQ4YoKSlJOTk5+vnnn9WtW7cy66+9h99++61iY2N1//33m9bd7OfyTvenQ4cOSktLMy1HRUVp7dq1GjNmjAoLC8tt/+ijj2rEiBGaNGmSRS4iN0effv/ZqehnwdnZWTNnztT27dstdiG2pfvi4uJS4Xbm/IxJpd8nv2UYRrn3/vz58woLC1NmZqZ8fHyue+H5b2ObM2eO4uLi1LhxY7300kvy8PCo8DW41s+q/sJtjvfhWkKRkpKivn37yt7eXomJiabEbdSoUYqLi9MDDzygefPmafHixdeNx8vLq8xkJqdPn5anp2e16Utlfn5u1J/s7OxK9+dGrn1WSkpKNG/ePNP3anx8fIVD33772fp9vw3DuO4wYWswDEM///yzatWqpYyMjHLr7e3ty73ulfk94Nq6iv4wgbsH765Kf+AXLFhgmi3GMAz99NNPatu2rTw8PPTTTz9JUpnZpW7EwcFBxcXFqlOnjh566CHTxeM7duwoM+a1MrZt26aCggJdvnxZ69evN/1l405ydHTUa6+9po8//tjqs2ft2rVLgYGBCgsLU4MGDZSamnrDL+Sa8l5cr1/BwcFKSkrSsWPH1LlzZ0lS9+7dlZiYKKn04t38/PwKj9m0aVONGDFCs2fPvmMJrLn60bhxYzVu3FiLFi3SoEGDrHKdnbn6M2DAAF28eFGLFy9WUVGRpNIx8SkpKdf9D/aPf/yjLl68qL/97W/Vsk/dunUz/Sz9+OOP+uWXXyo8V506dTRu3DjNnz/fdE1nTe2LJTg6Ourq1avq0qWLtmzZonPnzkkqnf302uQc177DMjIyZG9vrxdffFFdu3bVtm3bbvrL6I4dOxQREaHAwED9+uuvysrKKpeImYM53of27dvr559/VkZGhlq0aCFfX18tXrxYvXr1kiQNHTpU58+f16hRozRq1KhyEzD8VpMmTeTi4mL6w1BCQkKlv6/vRF9u9TPXvXt37dq1S2fPntXFixe1ceNGs/7/07VrV9OMktnZ2QoJCdGvv/4qBweH6/6BpmvXrqY/IJ89e1abN2++4YQL1z7Hd8pf//pX3XPPPfroo48UHR1dboTJAw88oJMnT97ycQsLC2UYhukPq7g7MaxOpT/kkZGRevHFF02/vPTo0UNjx47Vo48+qhkzZig2Nrbc1JrX06NHD02bNk1z587VvHnzFBMTo08//VROTk5auHDhLf2iV79+fY0ePVq5ubkaNGiQxS9kvJ6ePXvK29tb7733XrlS9J00dOhQRUVFKTk5Wc7OzvL29r7hFLY15b2oqF+ZmZlq1KiRPDw85O3tbYp16tSpmjRpkuLj49WmTZvrDt+SpDFjxmjVqlX65ptvzBbrnepHaGioXnvtNW3atOmOxF4Rc/TH2dlZy5cv13vvvafBgwfL0dFRJSUlCggI0PPPP1/heZ2dnfXKK6/o7bff1qBBg8w6hMscfRo/frwmT56sgQMHqnnz5jccFjR06FAtX75cn3322U2nra7ufTG3+vXrq3Hjxpo1a5bGjBmjESNGqKioSO3bt9f06dMlSb169dILL7ygJUuWqG3btgoMDJSrq6t8fHxu+svdmDFj9Nprr8nNzU3169dXhw4dLDJNuTneBzs7Oz322GOmYX9du3bVV199ZfqFe8KECZo8ebIcHR3l4uJien2uZ/78+YqOjtb58+fVrl07hYeHV5u+3OpnzsvLS6+++qrCw8NVVFSkp556yqxDVSMjIxUTE6OgoCAVFxdr4sSJeuCBB1SnTh0VFBRo4sSJeuqpp8rsM3bsWMXExCg4OFjFxcV68cUX1b59++t+vrp37653331XderUUf/+/c0We0WOHz+uxYsX66uvvlKjRo30xBNP6J133lFMTIxpmzZt2ig3N1cFBQW39P16bQgs7nKWv6wJVfXbi2ZhXdXpvVi2bJmRnp5uGIZh7N+/33ShcE1zt/TjmrutP4Zxd/XpbupLTXY3vQ93U19s0bJly4y4uLhb2icyMtI4dOiQhSJCdUHlCKhhHnzwQU2YMEH29vZycXHRjBkzrB1Sldwt/bjmbuuPdHf16W7qS012N70Pd1NfbNEzzzyj8ePHKywsrFL3Ovrxxx/VuHFj7nFkA+wM4w5eTQ8AAAAA1RQTMgAAAACASI4AAAAAQBLJEQAAAABIIjkCAAAAAEkkRwAAAAAgSfr/6Zsb7HUlV24AAAAASUVORK5CYII=\n",
3642
      "text/plain": [
3643
       "<Figure size 1080x576 with 2 Axes>"
3644
      ]
3645
     },
3646
     "metadata": {},
3647
     "output_type": "display_data"
3648
    }
3649
   ],
3650
   "source": [
3651
    "import seaborn as sns\n",
3652
    "sns.set(rc = {'figure.figsize':(15,8)})\n",
3653
    "sns.heatmap(X.corr())\n"
3654
   ]
3655
  },
3656
  {
3657
   "cell_type": "code",
3658
   "execution_count": 14,
3659
   "id": "5edc2102",
3660
   "metadata": {},
3661
   "outputs": [
3662
    {
3663
     "data": {
3664
      "text/plain": [
3665
       "array([-1.00330316e-06, -2.34493720e-07,  7.09387255e-07,  2.98206738e-07,\n",
3666
       "       -5.44373350e-09,  9.78316711e-09, -1.85111235e-08, -6.81229930e-09,\n",
3667
       "       -2.07917277e-06,  2.79915760e-07, -2.56745536e-09, -9.96398106e-07,\n",
3668
       "        3.11206047e-08,  2.65314746e-08,  2.52690794e-10,  2.48370481e-12])"
3669
      ]
3670
     },
3671
     "execution_count": 14,
3672
     "metadata": {},
3673
     "output_type": "execute_result"
3674
    }
3675
   ],
3676
   "source": [
3677
    "#Linear Regression with correlated variables\n",
3678
    "\n",
3679
    "# Air_temp and Surf_temp\n",
3680
    "# AvgRh and Rh\n",
3681
    "# Avgdnr and avgGR\n",
3682
    "\n",
3683
    "df_new = df_comp.copy()\n",
3684
    "df_new['airtemp*Surftemp'] = df_new['airtemp']*df_new['Surftemp']\n",
3685
    "df_new['avgRh*Rh'] = df_new['avgRh']*df_new['Rh']\n",
3686
    "df_new['avgdnr*avgGR'] = df_new['avgdnr']*df_new['avgGR']\n",
3687
    "X1 = df_new.drop('strain', axis=1)\n",
3688
    "y1 = df_new['strain']\n",
3689
    "X1_train, X1_test, y1_train, y1_test = train_test_split(X1, y1, test_size=0.3, random_state=42)\n",
3690
    "lr1 = LinearRegression()\n",
3691
    "lr1.fit(X1_train, y1_train)\n",
3692
    "lr1.coef_"
3693
   ]
3694
  },
3695
  {
3696
   "cell_type": "code",
3697
   "execution_count": 15,
3698
   "id": "9df6682b",
3699
   "metadata": {},
3700
   "outputs": [
3701
    {
3702
     "data": {
3703
      "text/plain": [
3704
       "-6.767178628037426e-07"
3705
      ]
3706
     },
3707
     "execution_count": 15,
3708
     "metadata": {},
3709
     "output_type": "execute_result"
3710
    }
3711
   ],
3712
   "source": [
3713
    "lr1.intercept_"
3714
   ]
3715
  },
3716
  {
3717
   "cell_type": "code",
3718
   "execution_count": 17,
3719
   "id": "ff1a4e98",
3720
   "metadata": {},
3721
   "outputs": [
3722
    {
3723
     "data": {
3724
      "text/plain": [
3725
       "0.4217589069954959"
3726
      ]
3727
     },
3728
     "execution_count": 17,
3729
     "metadata": {},
3730
     "output_type": "execute_result"
3731
    }
3732
   ],
3733
   "source": [
3734
    "lr1.score(X1_test,y1_test)"
3735
   ]
3736
  },
3737
  {
3738
   "cell_type": "code",
3739
   "execution_count": 18,
3740
   "id": "1f812841",
3741
   "metadata": {},
3742
   "outputs": [
3743
    {
3744
     "data": {
3745
      "text/plain": [
3746
       "array([-1.02847347e-06, -2.16258266e-07,  7.39409173e-07,  3.24857545e-07,\n",
3747
       "       -6.07804384e-09,  1.19045085e-08, -2.12715103e-08, -6.86964903e-09,\n",
3748
       "       -2.07847876e-06,  2.89672063e-07, -2.49922913e-09, -1.01819999e-06,\n",
3749
       "        3.09133416e-08,  2.80110267e-08])"
3750
      ]
3751
     },
3752
     "execution_count": 18,
3753
     "metadata": {},
3754
     "output_type": "execute_result"
3755
    }
3756
   ],
3757
   "source": [
3758
    "#final Linear Regression\n",
3759
    "\n",
3760
    "df_final = df_comp.copy()\n",
3761
    "df_final['airtemp*Surftemp'] = df_final['airtemp']*df_final['Surftemp'] \n",
3762
    "X2 = df_final.drop('strain', axis=1)\n",
3763
    "y2 = df_final['strain']\n",
3764
    "lr2 = LinearRegression()\n",
3765
    "X2_train, X2_test, y2_train, y2_test = train_test_split(X2, y2, test_size=0.3, random_state=42)\n",
3766
    "lr2.fit(X2_train,y2_train)\n",
3767
    "lr2.coef_"
3768
   ]
3769
  },
3770
  {
3771
   "cell_type": "code",
3772
   "execution_count": 19,
3773
   "id": "a579f226",
3774
   "metadata": {},
3775
   "outputs": [
3776
    {
3777
     "data": {
3778
      "text/plain": [
3779
       "-2.1807076893661185e-06"
3780
      ]
3781
     },
3782
     "execution_count": 19,
3783
     "metadata": {},
3784
     "output_type": "execute_result"
3785
    }
3786
   ],
3787
   "source": [
3788
    "lr2.intercept_"
3789
   ]
3790
  },
3791
  {
3792
   "cell_type": "code",
3793
   "execution_count": 20,
3794
   "id": "aaa8b9ef",
3795
   "metadata": {},
3796
   "outputs": [
3797
    {
3798
     "data": {
3799
      "text/plain": [
3800
       "0.42059142260398696"
3801
      ]
3802
     },
3803
     "execution_count": 20,
3804
     "metadata": {},
3805
     "output_type": "execute_result"
3806
    }
3807
   ],
3808
   "source": [
3809
    "lr2.score(X2_test, y2_test)"
3810
   ]
3811
  },
3812
  {
3813
   "cell_type": "code",
3814
   "execution_count": null,
3815
   "id": "d022ddd3",
3816
   "metadata": {},
3817
   "outputs": [],
3818
   "source": []
3819
  }
3820
 ],
3821
 "metadata": {
3822
  "kernelspec": {
3823
   "display_name": "Python 3",
3824
   "language": "python",
3825
   "name": "python3"
3826
  },
3827
  "language_info": {
3828
   "codemirror_mode": {
3829
    "name": "ipython",
3830
    "version": 3
3831
   },
3832
   "file_extension": ".py",
3833
   "mimetype": "text/x-python",
3834
   "name": "python",
3835
   "nbconvert_exporter": "python",
3836
   "pygments_lexer": "ipython3",
3837
   "version": "3.9.5"
3838
  }
3839
 },
3840
 "nbformat": 4,
3841
 "nbformat_minor": 5
3842
}