|
a |
|
b/code/ml_project.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
"""ML_Project.ipynb |
|
|
3 |
|
|
|
4 |
Automatically generated by Colab. |
|
|
5 |
|
|
|
6 |
Original file is located at |
|
|
7 |
https://colab.research.google.com/drive/1N-OfEL_dUBWC58ZTYK4NUEUkakSCj2rS |
|
|
8 |
""" |
|
|
9 |
|
|
|
10 |
import pandas as pd |
|
|
11 |
|
|
|
12 |
# Load the data from the CSV file |
|
|
13 |
data = pd.read_csv('/content/Dataaa.csv') |
|
|
14 |
|
|
|
15 |
# Display the number of features |
|
|
16 |
print("Number of features in the dataset:", data.shape[1]) |
|
|
17 |
print("Names of the features:", data.columns.tolist()) |
|
|
18 |
|
|
|
19 |
# Display the first few lines of the CSV file to understand its content |
|
|
20 |
with open('/content/Dataaa.csv', 'r') as file: |
|
|
21 |
for _ in range(5): |
|
|
22 |
print(file.readline()) |
|
|
23 |
|
|
|
24 |
import numpy as np |
|
|
25 |
import pandas as pd |
|
|
26 |
|
|
|
27 |
# Assuming you have your data loaded into numpy arrays, for example: |
|
|
28 |
# X_in is your input data and X_out is your output data |
|
|
29 |
# Here is a simple example of how to create these arrays (replace this with your actual data loading code) |
|
|
30 |
# X_in = np.random.rand(100, 10) # Example: 100 samples, 10 features |
|
|
31 |
# X_out = np.random.rand(100, 3) # Example: 100 samples, 3 output targets |
|
|
32 |
|
|
|
33 |
# Convert numpy arrays to pandas DataFrame |
|
|
34 |
X_in_df = pd.DataFrame(X_in) |
|
|
35 |
X_out_df = pd.DataFrame(X_out) |
|
|
36 |
|
|
|
37 |
# Concatenate both DataFrames along the columns |
|
|
38 |
data_df = pd.concat([X_in_df, X_out_df], axis=1) |
|
|
39 |
|
|
|
40 |
# Save the DataFrame to a CSV file |
|
|
41 |
data_df.to_csv('/content/corrected_data.csv', index=False) |
|
|
42 |
|
|
|
43 |
import numpy as np |
|
|
44 |
import pandas as pd |
|
|
45 |
|
|
|
46 |
# Example data (replace with your actual data arrays) |
|
|
47 |
X_in = np.random.rand(100, 10) # 100 samples, 10 features |
|
|
48 |
X_out = np.random.rand(100, 1) # 100 samples, 1 target |
|
|
49 |
|
|
|
50 |
# Convert to DataFrame |
|
|
51 |
df_in = pd.DataFrame(X_in, columns=[f'feature_{i}' for i in range(X_in.shape[1])]) |
|
|
52 |
df_out = pd.DataFrame(X_out, columns=['target']) |
|
|
53 |
|
|
|
54 |
# Combine input and output data |
|
|
55 |
full_df = pd.concat([df_in, df_out], axis=1) |
|
|
56 |
|
|
|
57 |
# Save to CSV |
|
|
58 |
full_df.to_csv('/content/corrected_data.csv', index=False) |
|
|
59 |
|
|
|
60 |
import pandas as pd |
|
|
61 |
|
|
|
62 |
# Load the data from the corrected CSV file |
|
|
63 |
data = pd.read_csv('/content/corrected_data.csv') |
|
|
64 |
|
|
|
65 |
# Display the first few rows of the dataset and the shape to verify |
|
|
66 |
print(data.head()) |
|
|
67 |
print("Shape of the dataset:", data.shape) |
|
|
68 |
print("Column names:", data.columns.tolist()) |
|
|
69 |
|
|
|
70 |
##Normalizing and Splitting the data |
|
|
71 |
|
|
|
72 |
from sklearn.model_selection import train_test_split |
|
|
73 |
from sklearn.preprocessing import StandardScaler |
|
|
74 |
|
|
|
75 |
# Selecting input features and target |
|
|
76 |
X = data.iloc[:, :-1].values # All columns except the last are features |
|
|
77 |
y = data.iloc[:, -1].values # Last column is the target |
|
|
78 |
|
|
|
79 |
# Normalize the input data |
|
|
80 |
scaler = StandardScaler() |
|
|
81 |
X_normalized = scaler.fit_transform(X) |
|
|
82 |
|
|
|
83 |
# Split the data into training and testing sets |
|
|
84 |
X_train, X_test, y_train, y_test = train_test_split(X_normalized, y, test_size=0.3, random_state=42) |
|
|
85 |
|
|
|
86 |
# Output the shapes of the datasets to verify everything is as expected |
|
|
87 |
print("Train data shape:", X_train.shape) |
|
|
88 |
print("Test data shape:", X_test.shape) |
|
|
89 |
|
|
|
90 |
##Training the RNN Model |
|
|
91 |
|
|
|
92 |
from tensorflow.keras.models import Sequential |
|
|
93 |
from tensorflow.keras.layers import Dense, SimpleRNN |
|
|
94 |
|
|
|
95 |
# Define the RNN model |
|
|
96 |
model = Sequential([ |
|
|
97 |
SimpleRNN(50, input_shape=(X_train.shape[1], 1)), # 50 RNN units, considering each feature as a time step |
|
|
98 |
Dense(1) # Output layer with one neuron for regression output (the target) |
|
|
99 |
]) |
|
|
100 |
|
|
|
101 |
# Compile the model |
|
|
102 |
model.compile(optimizer='adam', loss='mean_squared_error') |
|
|
103 |
|
|
|
104 |
# Reshape input for RNN which expects (batch_size, timesteps, features) |
|
|
105 |
X_train_rnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) |
|
|
106 |
X_test_rnn = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) |
|
|
107 |
|
|
|
108 |
# Train the model |
|
|
109 |
history = model.fit(X_train_rnn, y_train, epochs=100, validation_data=(X_test_rnn, y_test)) |
|
|
110 |
|
|
|
111 |
# Optionally, plot the training and validation loss |
|
|
112 |
import matplotlib.pyplot as plt |
|
|
113 |
|
|
|
114 |
plt.plot(history.history['loss'], label='train') |
|
|
115 |
plt.plot(history.history['val_loss'], label='test') |
|
|
116 |
plt.title('Model Loss') |
|
|
117 |
plt.ylabel('Loss') |
|
|
118 |
plt.xlabel('Epoch') |
|
|
119 |
plt.legend() |
|
|
120 |
plt.show() |
|
|
121 |
|
|
|
122 |
model.save('/content/my_rnn_model.h5') # Saves the model for later use |
|
|
123 |
|
|
|
124 |
# Example threshold value - you need to choose what makes sense for your data |
|
|
125 |
threshold = 0.5 |
|
|
126 |
|
|
|
127 |
# Convert continuous target data to binary classification |
|
|
128 |
y_train_class = (y_train > threshold).astype(int) |
|
|
129 |
|
|
|
130 |
# Proceed with the rest of your RNN setup as before |
|
|
131 |
|
|
|
132 |
##Classifying the presence of damage |
|
|
133 |
|
|
|
134 |
from tensorflow.keras.models import Sequential |
|
|
135 |
from tensorflow.keras.layers import SimpleRNN, Dense |
|
|
136 |
|
|
|
137 |
# Define the classification model |
|
|
138 |
classification_model = Sequential([ |
|
|
139 |
SimpleRNN(50, input_shape=(X_train.shape[1], 1)), # Adjust the input shape and units as necessary |
|
|
140 |
Dense(1, activation='sigmoid') # Sigmoid activation for binary classification |
|
|
141 |
]) |
|
|
142 |
|
|
|
143 |
# Compile the classification model |
|
|
144 |
classification_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
145 |
|
|
|
146 |
# Reshape data for RNN |
|
|
147 |
X_train_rnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) |
|
|
148 |
|
|
|
149 |
# Train the classification model |
|
|
150 |
classification_model.fit(X_train_rnn, y_train_class, epochs=100, validation_split=0.2) |
|
|
151 |
|
|
|
152 |
# Save the classification model |
|
|
153 |
classification_model.save('/content/classification_model.h5') |
|
|
154 |
|
|
|
155 |
# Assuming your original test labels are in y_test, and they are not binary (0 or 1) yet |
|
|
156 |
# Apply the same threshold used for the training data |
|
|
157 |
y_test_class = (y_test > threshold).astype(int) |
|
|
158 |
|
|
|
159 |
# Now you can compute the confusion matrix and plot it |
|
|
160 |
cm = confusion_matrix(y_test_class, y_pred_class) |
|
|
161 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
|
162 |
disp.plot(cmap=plt.cm.Blues) |
|
|
163 |
plt.title('Confusion Matrix') |
|
|
164 |
plt.show() |
|
|
165 |
|
|
|
166 |
# And compute the ROC curve |
|
|
167 |
fpr, tpr, _ = roc_curve(y_test_class, y_pred_probs.ravel()) |
|
|
168 |
roc_auc = auc(fpr, tpr) |
|
|
169 |
|
|
|
170 |
# Plot the ROC curve |
|
|
171 |
plt.figure() |
|
|
172 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) |
|
|
173 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
174 |
plt.xlabel('False Positive Rate') |
|
|
175 |
plt.ylabel('True Positive Rate') |
|
|
176 |
plt.title('Receiver Operating Characteristic') |
|
|
177 |
plt.legend(loc="lower right") |
|
|
178 |
plt.show() |
|
|
179 |
|
|
|
180 |
from tensorflow.keras.models import Sequential |
|
|
181 |
from tensorflow.keras.layers import LSTM, Dense, Dropout |
|
|
182 |
from sklearn.utils.class_weight import compute_class_weight |
|
|
183 |
from sklearn.metrics import precision_recall_curve |
|
|
184 |
|
|
|
185 |
# Calculate class weights |
|
|
186 |
class_weights = compute_class_weight('balanced', classes=np.unique(y_train_class), y=y_train_class) |
|
|
187 |
class_weights_dict = dict(enumerate(class_weights)) |
|
|
188 |
|
|
|
189 |
# Build an LSTM model |
|
|
190 |
model = Sequential([ |
|
|
191 |
LSTM(100, input_shape=(X_train.shape[1], 1), return_sequences=True), |
|
|
192 |
Dropout(0.5), |
|
|
193 |
LSTM(100), |
|
|
194 |
Dropout(0.5), |
|
|
195 |
Dense(1, activation='sigmoid') |
|
|
196 |
]) |
|
|
197 |
|
|
|
198 |
# Compile the model |
|
|
199 |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
200 |
|
|
|
201 |
# Train the model with class weights |
|
|
202 |
history = model.fit(X_train_rnn, y_train_class, epochs=100, validation_split=0.2, class_weight=class_weights_dict) |
|
|
203 |
|
|
|
204 |
# Predict probabilities |
|
|
205 |
y_pred_probs = model.predict(X_test_rnn) |
|
|
206 |
|
|
|
207 |
# Find the optimal threshold based on precision-recall tradeoff |
|
|
208 |
precision, recall, thresholds = precision_recall_curve(y_test_class, y_pred_probs) |
|
|
209 |
# Convert to f score |
|
|
210 |
fscore = (2 * precision * recall) / (precision + recall) |
|
|
211 |
# Locate the index of the largest f score |
|
|
212 |
ix = np.argmax(fscore) |
|
|
213 |
optimal_threshold = thresholds[ix] |
|
|
214 |
|
|
|
215 |
# Use the optimal threshold to convert probabilities to binary predictions |
|
|
216 |
y_pred_class = (y_pred_probs > optimal_threshold).astype(int) |
|
|
217 |
|
|
|
218 |
# Recompute the confusion matrix and ROC curve using the new threshold |
|
|
219 |
|
|
|
220 |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc |
|
|
221 |
import matplotlib.pyplot as plt |
|
|
222 |
|
|
|
223 |
# Use the optimal threshold to convert probabilities to binary predictions |
|
|
224 |
y_pred_class_optimal = (y_pred_probs > optimal_threshold).astype(int) |
|
|
225 |
|
|
|
226 |
# Compute the confusion matrix using the optimal threshold |
|
|
227 |
cm_optimal = confusion_matrix(y_test_class, y_pred_class_optimal) |
|
|
228 |
|
|
|
229 |
# Display the confusion matrix |
|
|
230 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm_optimal) |
|
|
231 |
disp.plot(cmap=plt.cm.Blues) |
|
|
232 |
plt.title('Confusion Matrix with Optimal Threshold') |
|
|
233 |
plt.show() |
|
|
234 |
|
|
|
235 |
# Compute ROC curve and AUC |
|
|
236 |
fpr, tpr, _ = roc_curve(y_test_class, y_pred_probs) |
|
|
237 |
roc_auc = auc(fpr, tpr) |
|
|
238 |
|
|
|
239 |
# Plot ROC curve |
|
|
240 |
plt.figure() |
|
|
241 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) |
|
|
242 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
243 |
plt.xlabel('False Positive Rate') |
|
|
244 |
plt.ylabel('True Positive Rate') |
|
|
245 |
plt.title('Receiver Operating Characteristic with Optimal Threshold') |
|
|
246 |
plt.legend(loc="lower right") |
|
|
247 |
plt.show() |
|
|
248 |
|
|
|
249 |
# Make sure the 'y_test_class' and 'y_train_class' variables are set correctly before this step. |
|
|
250 |
# For the sake of example, let's assume 'y_test' is the variable holding the original test labels. |
|
|
251 |
|
|
|
252 |
# Verify and correct labels if necessary |
|
|
253 |
# 'damage' is 1, 'no damage' is 0 |
|
|
254 |
y_test_class = np.where(y_test == 'damage', 1, 0) |
|
|
255 |
|
|
|
256 |
# Now, use your model to predict probabilities on the test set |
|
|
257 |
# Assuming 'X_test_rnn' is already defined and shaped correctly |
|
|
258 |
y_pred_probs = classification_model.predict(X_test_rnn) |
|
|
259 |
|
|
|
260 |
# Choose a decision threshold (if you've found an optimal one, use that, otherwise use 0.5) |
|
|
261 |
threshold = 0.5 # or optimal_threshold if you have one |
|
|
262 |
|
|
|
263 |
# Convert predicted probabilities into binary class predictions |
|
|
264 |
y_pred_class = (y_pred_probs > threshold).astype(int) |
|
|
265 |
|
|
|
266 |
# Compute the confusion matrix |
|
|
267 |
cm = confusion_matrix(y_test_class, y_pred_class) |
|
|
268 |
|
|
|
269 |
# Plot the confusion matrix |
|
|
270 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
|
271 |
disp.plot(cmap=plt.cm.Blues) |
|
|
272 |
plt.title('Confusion Matrix') |
|
|
273 |
plt.show() |
|
|
274 |
|
|
|
275 |
# Calculate the ROC curve and AUC |
|
|
276 |
fpr, tpr, _ = roc_curve(y_test_class, y_pred_probs) |
|
|
277 |
roc_auc = auc(fpr, tpr) |
|
|
278 |
|
|
|
279 |
# Plot the ROC curve |
|
|
280 |
plt.figure() |
|
|
281 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') |
|
|
282 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
283 |
plt.xlabel('False Positive Rate') |
|
|
284 |
plt.ylabel('True Positive Rate') |
|
|
285 |
plt.title('Receiver Operating Characteristic') |
|
|
286 |
plt.legend(loc='lower right') |
|
|
287 |
plt.show() |
|
|
288 |
|
|
|
289 |
# Reshape data from 2D to 3D (samples, timesteps, features) |
|
|
290 |
X_train_rnn = X_train.reshape((X_train.shape[0], 1, X_train.shape[1])) |
|
|
291 |
|
|
|
292 |
# Define the LSTM model for binary classification |
|
|
293 |
lstm_model = Sequential([ |
|
|
294 |
LSTM(50, input_shape=(X_train_rnn.shape[1], X_train_rnn.shape[2])), # Correct input_shape |
|
|
295 |
Dense(1, activation='sigmoid') |
|
|
296 |
]) |
|
|
297 |
|
|
|
298 |
# Compile the LSTM model |
|
|
299 |
lstm_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
300 |
|
|
|
301 |
# Train the LSTM model |
|
|
302 |
history = lstm_model.fit(X_train_rnn, y_train_class, epochs=100, validation_split=0.2) |
|
|
303 |
|
|
|
304 |
# ... (Continue with the rest of the code as before) |
|
|
305 |
|
|
|
306 |
# Assuming your data is correctly reshaped to 3D for LSTM and 'y_train_class' holds the binary labels |
|
|
307 |
|
|
|
308 |
# Continue training the LSTM model |
|
|
309 |
history = lstm_model.fit( |
|
|
310 |
X_train_rnn, |
|
|
311 |
y_train_class, |
|
|
312 |
epochs=100, |
|
|
313 |
validation_split=0.2 |
|
|
314 |
) |
|
|
315 |
|
|
|
316 |
# Assuming 'X_test' and 'y_test' are your test data and labels, respectively |
|
|
317 |
# Reshape the test data to match the input shape of the model |
|
|
318 |
X_test_rnn = X_test.reshape((X_test.shape[0], 1, X_test.shape[1])) |
|
|
319 |
|
|
|
320 |
# Predict class probabilities on the test set |
|
|
321 |
y_pred_probs = lstm_model.predict(X_test_rnn) |
|
|
322 |
|
|
|
323 |
# Choose a decision threshold |
|
|
324 |
threshold = 0.5 # Adjust based on your optimal threshold |
|
|
325 |
y_pred_class = (y_pred_probs > threshold).astype(int) |
|
|
326 |
|
|
|
327 |
# Compute the confusion matrix |
|
|
328 |
cm = confusion_matrix(y_test_class, y_pred_class) |
|
|
329 |
|
|
|
330 |
# Display the confusion matrix |
|
|
331 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
|
332 |
disp.plot(cmap=plt.cm.Blues) |
|
|
333 |
plt.title('Confusion Matrix - LSTM Model') |
|
|
334 |
plt.show() |
|
|
335 |
|
|
|
336 |
# Compute ROC curve and AUC |
|
|
337 |
fpr, tpr, _ = roc_curve(y_test_class, y_pred_probs) |
|
|
338 |
roc_auc = auc(fpr, tpr) |
|
|
339 |
|
|
|
340 |
# Plot ROC curve |
|
|
341 |
plt.figure() |
|
|
342 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) |
|
|
343 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
344 |
plt.xlabel('False Positive Rate') |
|
|
345 |
plt.ylabel('True Positive Rate') |
|
|
346 |
plt.title('ROC Curve - LSTM Model') |
|
|
347 |
plt.legend(loc="lower right") |
|
|
348 |
plt.show() |
|
|
349 |
|
|
|
350 |
# Check the range of predicted probabilities |
|
|
351 |
print("Predicted probabilities:", y_pred_probs) |
|
|
352 |
|
|
|
353 |
# Check if there are both classes present in the test labels |
|
|
354 |
print("Unique labels in y_test_class:", np.unique(y_test_class)) |
|
|
355 |
|
|
|
356 |
# Check unique values in the labels array |
|
|
357 |
unique_classes = np.unique(y) |
|
|
358 |
print("Unique classes in y:", unique_classes) |
|
|
359 |
|
|
|
360 |
# Define a threshold to convert continuous values to binary classification |
|
|
361 |
threshold = 0.5 # This is just an example, adjust this based on your domain knowledge |
|
|
362 |
y_class = (y > threshold).astype(int) |
|
|
363 |
|
|
|
364 |
# Now check the distribution of the new binary labels |
|
|
365 |
print("Distribution of binary labels:", np.bincount(y_class)) |
|
|
366 |
|
|
|
367 |
# Continue with the train-test split with the new binary labels |
|
|
368 |
X_train, X_test, y_train_class, y_test_class = train_test_split( |
|
|
369 |
X, y_class, |
|
|
370 |
test_size=0.2, |
|
|
371 |
stratify=y_class, |
|
|
372 |
random_state=42 |
|
|
373 |
) |
|
|
374 |
|
|
|
375 |
from sklearn.linear_model import LogisticRegression |
|
|
376 |
from sklearn.metrics import confusion_matrix, roc_curve, auc, ConfusionMatrixDisplay |
|
|
377 |
import matplotlib.pyplot as plt |
|
|
378 |
|
|
|
379 |
# Perform the stratified train-test split with the new binary labels |
|
|
380 |
X_train, X_test, y_train_class, y_test_class = train_test_split( |
|
|
381 |
X, y_class, |
|
|
382 |
test_size=0.2, |
|
|
383 |
stratify=y_class, |
|
|
384 |
random_state=42 |
|
|
385 |
) |
|
|
386 |
|
|
|
387 |
# Train the logistic regression model |
|
|
388 |
logistic_model = LogisticRegression() |
|
|
389 |
logistic_model.fit(X_train, y_train_class) |
|
|
390 |
|
|
|
391 |
# Predict class probabilities on the test set |
|
|
392 |
y_pred_probs_logistic = logistic_model.predict_proba(X_test)[:, 1] |
|
|
393 |
|
|
|
394 |
# Predict class labels for the test set based on the default threshold of 0.5 |
|
|
395 |
y_pred_class_logistic = logistic_model.predict(X_test) |
|
|
396 |
|
|
|
397 |
# Compute the confusion matrix |
|
|
398 |
cm_logistic = confusion_matrix(y_test_class, y_pred_class_logistic) |
|
|
399 |
|
|
|
400 |
# Display the confusion matrix |
|
|
401 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm_logistic) |
|
|
402 |
disp.plot(cmap=plt.cm.Blues) |
|
|
403 |
plt.title('Confusion Matrix - Logistic Regression Model') |
|
|
404 |
plt.show() |
|
|
405 |
|
|
|
406 |
# Compute ROC curve and AUC |
|
|
407 |
fpr_logistic, tpr_logistic, _ = roc_curve(y_test_class, y_pred_probs_logistic) |
|
|
408 |
roc_auc_logistic = auc(fpr_logistic, tpr_logistic) |
|
|
409 |
|
|
|
410 |
# Plot the ROC curve |
|
|
411 |
plt.figure() |
|
|
412 |
plt.plot(fpr_logistic, tpr_logistic, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc_logistic) |
|
|
413 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
414 |
plt.xlabel('False Positive Rate') |
|
|
415 |
plt.ylabel('True Positive Rate') |
|
|
416 |
plt.title('ROC Curve - Logistic Regression Model') |
|
|
417 |
plt.legend(loc="lower right") |
|
|
418 |
plt.show() |
|
|
419 |
|
|
|
420 |
# Reshape X_test_rnn to match the expected input shape of the model (10 time steps, 1 feature per step) |
|
|
421 |
X_test_rnn_reshaped = X_test_rnn.reshape((X_test_rnn.shape[0], 10, 1)) |
|
|
422 |
|
|
|
423 |
# Now make predictions with the reshaped data |
|
|
424 |
y_pred_probs_rnn = rnn_model.predict(X_test_rnn_reshaped) |
|
|
425 |
|
|
|
426 |
# Continue with the rest of the code for evaluation |
|
|
427 |
|
|
|
428 |
print("Number of samples in test set:", y_test_class.shape[0]) |
|
|
429 |
print("Number of predictions made:", y_pred_probs_rnn.shape[0]) |
|
|
430 |
|
|
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
|
434 |
|
|
|
435 |
##Using LSTM to better predict |
|
|
436 |
|
|
|
437 |
from tensorflow.keras.models import Sequential |
|
|
438 |
from tensorflow.keras.layers import LSTM, Dense |
|
|
439 |
|
|
|
440 |
# Define the LSTM model for binary classification |
|
|
441 |
lstm_classification_model = Sequential([ |
|
|
442 |
LSTM(2, input_shape=(X_train.shape[1], 1)), # 50 LSTM units |
|
|
443 |
Dense(1, activation='sigmoid') # Sigmoid activation for binary classification |
|
|
444 |
]) |
|
|
445 |
|
|
|
446 |
# Compile the LSTM model |
|
|
447 |
lstm_classification_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
448 |
|
|
|
449 |
# Train the LSTM model |
|
|
450 |
history = lstm_classification_model.fit( |
|
|
451 |
X_train_rnn, y_train_class, |
|
|
452 |
epochs=100, |
|
|
453 |
validation_split=0.2 |
|
|
454 |
) |
|
|
455 |
|
|
|
456 |
# Save the LSTM classification model |
|
|
457 |
lstm_classification_model.save('/content/lstm_classification_model.h5') |
|
|
458 |
|
|
|
459 |
#Model Evaluation |
|
|
460 |
|
|
|
461 |
# Evaluate the model's performance |
|
|
462 |
test_loss, test_accuracy = lstm_classification_model.evaluate(X_test_rnn, y_test_binary) |
|
|
463 |
|
|
|
464 |
# Print the evaluation results |
|
|
465 |
print(f"Test Loss: {test_loss}") |
|
|
466 |
print(f"Test Accuracy: {test_accuracy}") |
|
|
467 |
|
|
|
468 |
#Regularizing to make LSTM better |
|
|
469 |
|
|
|
470 |
from sklearn.utils.class_weight import compute_class_weight |
|
|
471 |
|
|
|
472 |
# Calculate class weights for unbalanced datasets |
|
|
473 |
class_weights = compute_class_weight( |
|
|
474 |
class_weight='balanced', |
|
|
475 |
classes=np.unique(y_train_class), |
|
|
476 |
y=y_train_class |
|
|
477 |
) |
|
|
478 |
|
|
|
479 |
# Create a dictionary mapping class labels to weights |
|
|
480 |
weight_for_class_1 = class_weights[1] |
|
|
481 |
class_weight_dict = {0: class_weights[0], 1: class_weights[1]} |
|
|
482 |
|
|
|
483 |
# Train the model with class weight to handle imbalance |
|
|
484 |
history = lstm_classification_model.fit( |
|
|
485 |
X_train_rnn, y_train_class, |
|
|
486 |
epochs=100, |
|
|
487 |
validation_split=0.2, |
|
|
488 |
class_weight=class_weight_dict # Use the computed class weights |
|
|
489 |
) |
|
|
490 |
|
|
|
491 |
# Plot the training history |
|
|
492 |
plt.figure(figsize=(14, 5)) |
|
|
493 |
|
|
|
494 |
# Plot training & validation accuracy values |
|
|
495 |
plt.subplot(1, 2, 1) |
|
|
496 |
plt.plot(history.history['accuracy']) |
|
|
497 |
plt.plot(history.history['val_accuracy']) |
|
|
498 |
plt.title('Model accuracy') |
|
|
499 |
plt.xlabel('Epoch') |
|
|
500 |
plt.ylabel('Accuracy') |
|
|
501 |
plt.legend(['Train', 'Test'], loc='upper left') |
|
|
502 |
|
|
|
503 |
# Plot training & validation loss values |
|
|
504 |
plt.subplot(1, 2, 2) |
|
|
505 |
plt.plot(history.history['loss']) |
|
|
506 |
plt.plot(history.history['val_loss']) |
|
|
507 |
plt.title('Model loss') |
|
|
508 |
plt.xlabel('Epoch') |
|
|
509 |
plt.ylabel('Loss') |
|
|
510 |
plt.legend(['Train', 'Test'], loc='upper left') |
|
|
511 |
|
|
|
512 |
plt.show() |
|
|
513 |
|
|
|
514 |
from tensorflow.keras.models import Sequential |
|
|
515 |
from tensorflow.keras.layers import LSTM, Dense, Dropout |
|
|
516 |
from sklearn.utils.class_weight import compute_class_weight |
|
|
517 |
|
|
|
518 |
# Calculate class weights for unbalanced datasets |
|
|
519 |
classes = np.unique(y_train_class) |
|
|
520 |
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=y_train_class) |
|
|
521 |
class_weights_dict = dict(zip(classes, class_weights)) |
|
|
522 |
|
|
|
523 |
# Define the LSTM model with dropout for regularization |
|
|
524 |
model = Sequential([ |
|
|
525 |
LSTM(30, input_shape=(X_train.shape[1], 1), dropout=0.2, recurrent_dropout=0.2), |
|
|
526 |
Dropout(0.5), |
|
|
527 |
Dense(1, activation='sigmoid') |
|
|
528 |
]) |
|
|
529 |
|
|
|
530 |
# Compile the model with a possibly smaller learning rate and class weight |
|
|
531 |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
532 |
|
|
|
533 |
# Train the model with class weights to handle imbalance |
|
|
534 |
history = model.fit( |
|
|
535 |
X_train_rnn, y_train_class, |
|
|
536 |
epochs=50, |
|
|
537 |
validation_split=0.2, |
|
|
538 |
class_weight=class_weights_dict, |
|
|
539 |
batch_size=32 # Consider trying different batch sizes |
|
|
540 |
) |
|
|
541 |
|
|
|
542 |
# Evaluate the model to see if the performance has improved |
|
|
543 |
test_loss, test_accuracy = model.evaluate(X_test_rnn, y_test_binary) |
|
|
544 |
print(f"Test Loss: {test_loss}") |
|
|
545 |
print(f"Test Accuracy: {test_accuracy}") |
|
|
546 |
|
|
|
547 |
# Predict classes using the trained model |
|
|
548 |
y_pred_class = (model.predict(X_test_rnn) > 0.5).astype(int) |
|
|
549 |
|
|
|
550 |
# Generate the new confusion matrix |
|
|
551 |
cm = confusion_matrix(y_test_binary, y_pred_class) |
|
|
552 |
|
|
|
553 |
# Plot the confusion matrix |
|
|
554 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
|
555 |
disp.plot(cmap=plt.cm.Blues) |
|
|
556 |
plt.title('Confusion Matrix') |
|
|
557 |
plt.show() |
|
|
558 |
|
|
|
559 |
from sklearn.model_selection import TimeSeriesSplit |
|
|
560 |
from tensorflow.keras.models import Sequential |
|
|
561 |
from tensorflow.keras.layers import Bidirectional, LSTM, Dense, Dropout |
|
|
562 |
from sklearn.metrics import confusion_matrix, roc_curve, auc |
|
|
563 |
|
|
|
564 |
# Define the number of splits |
|
|
565 |
n_splits = 5 |
|
|
566 |
tscv = TimeSeriesSplit(n_splits=n_splits) |
|
|
567 |
|
|
|
568 |
# To store metrics for each fold |
|
|
569 |
confusion_matrices = [] |
|
|
570 |
roc_auc_scores = [] |
|
|
571 |
|
|
|
572 |
for train_index, test_index in tscv.split(X_normalized): |
|
|
573 |
X_train_cv, X_test_cv = X_normalized[train_index], X_normalized[test_index] |
|
|
574 |
y_train_cv, y_test_cv = y_binary[train_index], y_binary[test_index] |
|
|
575 |
|
|
|
576 |
# Reshape the data for LSTM network |
|
|
577 |
X_train_cv_rnn = X_train_cv.reshape((X_train_cv.shape[0], X_train_cv.shape[1], 1)) |
|
|
578 |
X_test_cv_rnn = X_test_cv.reshape((X_test_cv.shape[0], X_test_cv.shape[1], 1)) |
|
|
579 |
|
|
|
580 |
# Define the model (as before) |
|
|
581 |
model = Sequential([ |
|
|
582 |
Bidirectional(LSTM(50, input_shape=(X_train_cv_rnn.shape[1], 1))), |
|
|
583 |
Dropout(0.5), |
|
|
584 |
Dense(1, activation='sigmoid') |
|
|
585 |
]) |
|
|
586 |
|
|
|
587 |
# Compile the model (as before) |
|
|
588 |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
589 |
|
|
|
590 |
# Fit the model |
|
|
591 |
model.fit(X_train_cv_rnn, y_train_cv, epochs=100, batch_size=32, verbose=0) # Set verbose to 0 to suppress output |
|
|
592 |
|
|
|
593 |
# Predict probabilities |
|
|
594 |
y_pred_probs = model.predict(X_test_cv_rnn).ravel() |
|
|
595 |
|
|
|
596 |
# Binarize predictions based on threshold |
|
|
597 |
threshold = 0.5 # This threshold can be adjusted |
|
|
598 |
y_pred_class = (y_pred_probs > threshold).astype(int) |
|
|
599 |
|
|
|
600 |
# Calculate metrics for this fold |
|
|
601 |
cm = confusion_matrix(y_test_cv, y_pred_class) |
|
|
602 |
confusion_matrices.append(cm) |
|
|
603 |
|
|
|
604 |
fpr, tpr, thresholds = roc_curve(y_test_cv, y_pred_probs) |
|
|
605 |
roc_auc = auc(fpr, tpr) |
|
|
606 |
roc_auc_scores.append(roc_auc) |
|
|
607 |
|
|
|
608 |
# Now, you can calculate the average of the metrics across all folds |
|
|
609 |
# Average Confusion Matrix |
|
|
610 |
average_cm = np.mean(confusion_matrices, axis=0) |
|
|
611 |
print("Average Confusion Matrix:\n", average_cm) |
|
|
612 |
|
|
|
613 |
# Average ROC AUC Score |
|
|
614 |
average_roc_auc = np.mean(roc_auc_scores) |
|
|
615 |
print("Average ROC AUC Score:", average_roc_auc) |
|
|
616 |
|
|
|
617 |
import numpy as np |
|
|
618 |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay |
|
|
619 |
import matplotlib.pyplot as plt |
|
|
620 |
|
|
|
621 |
# Assume 'model' is your trained Keras model |
|
|
622 |
# Predict probabilities for the test set |
|
|
623 |
y_pred_probs = model.predict(X_test_rnn) |
|
|
624 |
|
|
|
625 |
# Function to apply threshold to probabilities to create binary predictions |
|
|
626 |
def apply_threshold(probs, threshold): |
|
|
627 |
return (probs > threshold).astype(int) |
|
|
628 |
|
|
|
629 |
# Choose a range of thresholds to try |
|
|
630 |
thresholds = np.linspace(0, 1, 101) |
|
|
631 |
|
|
|
632 |
# Plot confusion matrices for various thresholds |
|
|
633 |
fig, axes = plt.subplots(nrows=10, ncols=10, figsize=(20, 20)) # Adjust the subplot grid as needed |
|
|
634 |
axes = axes.flatten() # Flatten to 1D array for easy iteration |
|
|
635 |
|
|
|
636 |
for ax, threshold in zip(axes, thresholds): |
|
|
637 |
# Get binary predictions using the current threshold |
|
|
638 |
y_pred_class = apply_threshold(y_pred_probs, threshold) |
|
|
639 |
|
|
|
640 |
# Compute the confusion matrix for this threshold |
|
|
641 |
cm = confusion_matrix(y_test_binary, y_pred_class) |
|
|
642 |
|
|
|
643 |
# Plot the confusion matrix |
|
|
644 |
ConfusionMatrixDisplay(confusion_matrix=cm).plot(cmap=plt.cm.Blues, ax=ax) |
|
|
645 |
ax.title.set_text(f'Thr {threshold:.2f}') |
|
|
646 |
|
|
|
647 |
plt.tight_layout() # Adjust spacing |
|
|
648 |
plt.show() |
|
|
649 |
|
|
|
650 |
from sklearn.metrics import roc_curve, auc |
|
|
651 |
import matplotlib.pyplot as plt |
|
|
652 |
|
|
|
653 |
# Assume 'model' is your trained Keras model and you have a test set 'X_test_rnn' |
|
|
654 |
# Predict probabilities for the positive class (damage) |
|
|
655 |
y_pred_probs = model.predict(X_test_rnn).ravel() |
|
|
656 |
|
|
|
657 |
# Compute ROC curve and ROC area for each class |
|
|
658 |
fpr, tpr, thresholds = roc_curve(y_test_binary, y_pred_probs) |
|
|
659 |
roc_auc = auc(fpr, tpr) |
|
|
660 |
|
|
|
661 |
# Plot the ROC curve |
|
|
662 |
plt.figure() |
|
|
663 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) |
|
|
664 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
665 |
plt.xlim([0.0, 1.0]) |
|
|
666 |
plt.ylim([0.0, 1.05]) |
|
|
667 |
plt.xlabel('False Positive Rate') |
|
|
668 |
plt.ylabel('True Positive Rate') |
|
|
669 |
plt.title('Receiver Operating Characteristic') |
|
|
670 |
plt.legend(loc="lower right") |
|
|
671 |
plt.show() |
|
|
672 |
|
|
|
673 |
##using a bidirectional LSTM model |
|
|
674 |
from tensorflow.keras.models import Sequential |
|
|
675 |
from tensorflow.keras.layers import Bidirectional, LSTM, Dense, Dropout |
|
|
676 |
|
|
|
677 |
# Define the bidirectional LSTM model |
|
|
678 |
bidirectional_lstm_model = Sequential([ |
|
|
679 |
Bidirectional(LSTM(50, return_sequences=True), input_shape=(X_train.shape[1], 1)), |
|
|
680 |
Dropout(0.5), |
|
|
681 |
Bidirectional(LSTM(50)), |
|
|
682 |
Dropout(0.5), |
|
|
683 |
Dense(1, activation='sigmoid') |
|
|
684 |
]) |
|
|
685 |
|
|
|
686 |
# Compile the model |
|
|
687 |
bidirectional_lstm_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
688 |
|
|
|
689 |
# Train the model |
|
|
690 |
history = bidirectional_lstm_model.fit( |
|
|
691 |
X_train_rnn, y_train_class, |
|
|
692 |
epochs=100, |
|
|
693 |
validation_split=0.2 |
|
|
694 |
) |
|
|
695 |
|
|
|
696 |
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, roc_curve, auc |
|
|
697 |
import matplotlib.pyplot as plt |
|
|
698 |
|
|
|
699 |
# Make predictions on the test data |
|
|
700 |
y_pred_probs = bidirectional_lstm_model.predict(X_test_rnn) |
|
|
701 |
y_pred_class = (y_pred_probs > 0.5).astype(int) |
|
|
702 |
|
|
|
703 |
# Confusion Matrix |
|
|
704 |
cm = confusion_matrix(y_test_binary, y_pred_class) |
|
|
705 |
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
|
706 |
disp.plot(cmap=plt.cm.Blues) |
|
|
707 |
plt.title('Confusion Matrix') |
|
|
708 |
plt.show() |
|
|
709 |
|
|
|
710 |
# ROC Curve |
|
|
711 |
fpr, tpr, thresholds = roc_curve(y_test_binary, y_pred_probs) |
|
|
712 |
roc_auc = auc(fpr, tpr) |
|
|
713 |
|
|
|
714 |
plt.figure() |
|
|
715 |
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) |
|
|
716 |
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') |
|
|
717 |
plt.xlim([0.0, 1.0]) |
|
|
718 |
plt.ylim([0.0, 1.05]) |
|
|
719 |
plt.xlabel('False Positive Rate') |
|
|
720 |
plt.ylabel('True Positive Rate') |
|
|
721 |
plt.title('Receiver Operating Characteristic') |
|
|
722 |
plt.legend(loc="lower right") |
|
|
723 |
plt.show() |
|
|
724 |
|
|
|
725 |
from sklearn.model_selection import TimeSeriesSplit |
|
|
726 |
from tensorflow.keras.models import Sequential |
|
|
727 |
from tensorflow.keras.layers import Bidirectional, LSTM, Dense, Dropout |
|
|
728 |
from sklearn.metrics import confusion_matrix, roc_curve, auc |
|
|
729 |
|
|
|
730 |
# Define the number of splits |
|
|
731 |
n_splits = 5 |
|
|
732 |
tscv = TimeSeriesSplit(n_splits=n_splits) |
|
|
733 |
|
|
|
734 |
# To store metrics for each fold |
|
|
735 |
confusion_matrices = [] |
|
|
736 |
roc_auc_scores = [] |
|
|
737 |
|
|
|
738 |
for train_index, test_index in tscv.split(X_normalized): |
|
|
739 |
X_train_cv, X_test_cv = X_normalized[train_index], X_normalized[test_index] |
|
|
740 |
y_train_cv, y_test_cv = y_binary[train_index], y_binary[test_index] |
|
|
741 |
|
|
|
742 |
# Reshape the data for LSTM network |
|
|
743 |
X_train_cv_rnn = X_train_cv.reshape((X_train_cv.shape[0], X_train_cv.shape[1], 1)) |
|
|
744 |
X_test_cv_rnn = X_test_cv.reshape((X_test_cv.shape[0], X_test_cv.shape[1], 1)) |
|
|
745 |
|
|
|
746 |
# Define the model (as before) |
|
|
747 |
model = Sequential([ |
|
|
748 |
Bidirectional(LSTM(50, input_shape=(X_train_cv_rnn.shape[1], 1))), |
|
|
749 |
Dropout(0.5), |
|
|
750 |
Dense(1, activation='sigmoid') |
|
|
751 |
]) |
|
|
752 |
|
|
|
753 |
# Compile the model (as before) |
|
|
754 |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) |
|
|
755 |
|
|
|
756 |
# Fit the model |
|
|
757 |
model.fit(X_train_cv_rnn, y_train_cv, epochs=100, batch_size=32, verbose=0) # Set verbose to 0 to suppress output |
|
|
758 |
|
|
|
759 |
# Predict probabilities |
|
|
760 |
y_pred_probs = model.predict(X_test_cv_rnn).ravel() |
|
|
761 |
|
|
|
762 |
# Binarize predictions based on threshold |
|
|
763 |
threshold = 0.5 # This threshold can be adjusted |
|
|
764 |
y_pred_class = (y_pred_probs > threshold).astype(int) |
|
|
765 |
|
|
|
766 |
# Calculate metrics for this fold |
|
|
767 |
cm = confusion_matrix(y_test_cv, y_pred_class) |
|
|
768 |
confusion_matrices.append(cm) |
|
|
769 |
|
|
|
770 |
fpr, tpr, thresholds = roc_curve(y_test_cv, y_pred_probs) |
|
|
771 |
roc_auc = auc(fpr, tpr) |
|
|
772 |
roc_auc_scores.append(roc_auc) |
|
|
773 |
|
|
|
774 |
# Now, you can calculate the average of the metrics across all folds |
|
|
775 |
# Average Confusion Matrix |
|
|
776 |
average_cm = np.mean(confusion_matrices, axis=0) |
|
|
777 |
print("Average Confusion Matrix:\n", average_cm) |
|
|
778 |
|
|
|
779 |
# Average ROC AUC Score |
|
|
780 |
average_roc_auc = np.mean(roc_auc_scores) |
|
|
781 |
print("Average ROC AUC Score:", average_roc_auc) |
|
|
782 |
|
|
|
783 |
|
|
|
784 |
|
|
|
785 |
|
|
|
786 |
|
|
|
787 |
|
|
|
788 |
|