|
a |
|
b/process_data.py |
|
|
1 |
if __name__ == "__main__": |
|
|
2 |
import fall_detector |
|
|
3 |
import sys |
|
|
4 |
import csv |
|
|
5 |
import os |
|
|
6 |
import joblib |
|
|
7 |
import time |
|
|
8 |
sub_start = 15 |
|
|
9 |
sub_end = 18 |
|
|
10 |
orig_sys_argv = sys.argv |
|
|
11 |
for act_id in range(1, 12): |
|
|
12 |
for sub_id in range(sub_start, sub_end): |
|
|
13 |
dl = [] |
|
|
14 |
t0 = time.time() |
|
|
15 |
for trial_id in range(1, 4): |
|
|
16 |
for cam_id in range(1, 3): |
|
|
17 |
if os.path.exists(f'dataset/Activity{act_id}/Subject{sub_id}/Trial{trial_id}Cam1.mp4'): |
|
|
18 |
args = ['--coco_points', f'--video=dataset/Activity{act_id}/Subject{sub_id}/Trial{trial_id}Cam{cam_id}.mp4'] |
|
|
19 |
sys.argv = [orig_sys_argv[0]] + args |
|
|
20 |
f = fall_detector.FallDetector() |
|
|
21 |
q1 = f.begin_mixed() |
|
|
22 |
dl.append(q1) |
|
|
23 |
|
|
|
24 |
joblib.dump(dl, f'dataset/Activity{act_id}/Subject{sub_id}/coco.kps', True) |
|
|
25 |
print(time.time()-t0) |